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Abstract: In a complex working environment, the fault signal of the gearbox is greatly affected by
the outside world, and fault feature recognition is difficult, so the fault diagnosis accuracy is difficult
to meet the expected requirements. To solve this problem, this paper proposes a gearbox fault
diagnosis method based on an optimized stacked denoising auto encoder (SDAE) and kernel
extreme learning machine (KELM). Firstly, the Particle Swarm Optimization algorithm in Adaptive
Weight (SAPSO) was adopted to optimize the SDAE network structure, and the number of hidden
layer nodes, learning rate, noise addition ratio and iteration times were adaptively obtained to make
SDAE obtain the best network structure. Then, the best SDAE network structure was used to extract
the deep feature information of weak faults in the original signal. Finally, the extracted fault features
are fed into KELM for fault classification. Experimental results show that, compared with existing
commonly used methods of fault diagnosis, the fault diagnosis model proposed in this paper can
reduce the influence of noise in the original signal can better learn the deep-level features in the
original signal and has higher diagnosis accuracy, faster diagnosis speed and good generalization
in fault diagnosis.

Keywords: self-adaptive weighted particle swarm optimization algorithm; stacked denoising
automatic encoder; kernel extreme learning machine; gearbox; fault diagnosis

1. Introduction

The gearbox is a key component of the transmission system of self-propelled artillery, tank,
helicopter, and other equipment, and plays an important role in the operation of equipment. These
equipment operate in complex and harsh environments such as long-term wind and sand, rain and
snow, and plateau hypoxia, which is easy to cause gear wear and broken teeth and other faults. If
these faults are not detected and handled as soon as possible, the operation of the equipment may be
affected, resulting in the reduction of the working efficiency of the transmission system, or the
equipment may be damaged, resulting in casualties and other serious accidents. Vibration signal
contains all the information of equipment running state. Fault prognostics and health Management
(PHM) technology based on vibration signal can better improve the reliability and safety of
equipment and avoid serious faults of equipment. Therefore, the use of vibration signal for gearbox
fault diagnosis has important practical value [1-3].

Health monitoring and fault diagnosis of equipment by extracting features from vibration
signals is a common method used by many scholars [4-6]. The purpose of extracting features from
vibration signals is to use them as indicators to judge whether a gearbox has failed or deteriorated in
function. For example, Li et al [7] used Pearson correlation coefficient plots and orthogonality to select
time-domain features of diesel engines and used the parameters of the best better-correlated
correlated time-domain features to input into a generalized regression neural network for fault
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classification, which could significantly improve the accuracy of fault identification. Meng et al. [8]
used time domain and frequency domain features to input into the KELM optimized by quantum
particle swarm optimization (QPSO) for fault classification, which could well identify gearbox faults.
Zhao et al [9] used adaptive Variational Time Domain Decomposition (VIDD) to decompose and
reconstruct complex multi-shock vibration signals. This method was used to extract features from the
vibration signals of engine valve faults with good results. Wang et al [10] used Pearson correlation
coefficients and fault state selection features to be able to diagnose engine faults and damage levels
well. Dhamande et al [11] used continuous and discrete wavelets to extract time-frequency domain
features from gear and bearing vibration signals for fault diagnosis, with better results than
conventional time-domain and frequency-domain feature parameters. Li et al [12] generated depth
statistical features from the time, frequency, and time-frequency domain signals of rotating
machinery and fed them into a Support Vector Machine (SVM) for fault diagnosis with good results.

The above methods using feature extraction can solve some fault diagnosis problems well, but
they are often not effective in dealing with complex vibration signals. Complex vibration signals are
often mixed with a lot of noise and have non-smooth, non-linear characteristics. In order to solve this
problem, the method of signal decomposition was used by many scholars. Examples include
Empirical Modal Decomposition (EMD), Variational Modal Decomposition (VMD), Local Mean
Decomposition (LMD), Wavelet Transform (WT), etc. Yang et al [13] combined a hybrid fault
diagnosis method of EMD and WT, which can effectively solve the problem of component failure in
wind turbine gearboxes. Yan et al [14] can eliminate the noise in the original signal well by using
VMD. Han et al [15] used LMD to decompose the original signal into a finite number of product
functions (PF) and extracted Multi-scale Symbolic Dynamic information Entropy (MSDE) as features
for fault diagnosis, and the method was experimentally proven to be good at eliminating noise. Syed
et al [16] used the eight decomposition coefficients of the wavelet family to extract the root-mean-
square energy as a feature, which was fed into the classifier with very satisfactory results. These
methods can well eliminate the noise in the vibration signal and retain the main fault characteristic
signals, effectively improving the fault diagnosis accuracy of complex vibration signals.

Currently, deep learning-based fault diagnosis methods are a hot research topic. Liu et al. [17]
used CNN to extract the features of continuous wavelet transform (CWT) to construct the wavelet
time-frequency graph, which was input into the ELM classifier optimized by the Sparrow search
optimization algorithm (SSA), which could well identify bearing faults. Liu et al [18] used LMD to
eliminate noise from the reciprocating compressor signal and then fed the frequency domain signal
into an SDAE network for fault diagnosis, which was more effective than the conventional method.
Shao et al [19] designed a One-dimensional Convolutional Neural Network (1D-CNN) with a self-
encoder structure, which can extract deep-level features in the signal for fault diagnosis and has good
robustness. Jia et al [20] used the Sparrow Search Algorithm (SSA) to optimize the SDAE network
and input the time-frequency map generated by the CWT into the optimized SDAE for fault
diagnosis, with a high accuracy rate.

These methods, although to a certain extent solving the problem of gearbox fault diagnosis, also
suffer from the following problems:

1. Traditional machine learning methods need to extract features manually, which is time-
consuming and laborious. Moreover, the selection of features depends on previous experience,
which has limitations in practical engineering applications.

2. Deep learning methods can effectively learn the deep information hidden in the data, but the
selection of parameters for commonly used deep learning network models is based on previous
experience and personal experimental debugging, which is time-consuming and labor-intensive,
and fault diagnosis models require a large amount of labeled data to be trained for a long time
to ensure the accuracy of the diagnosis results and the generalization of the diagnosis model.

A diagnostic model with fast diagnostic speed, high diagnostic accuracy, and strong operability
is the need for practical engineering applications. Therefore, the following work is done to improve
this paper's time efficiency and fault diagnosis accuracy. Firstly, the PSO algorithm is improved to
provide faster and better global optimization capabilities. Fast determination of optimal parameters
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for SDAE network models using improved PSO. Then, the optimized SDAE network was used to

extract the deep features of the original signals. Finally, the fast classification ability of KELM was

used to classify the extracted deep features quickly. The major contributions of this paper include the
following:

1. By improving the inertia weights of particles and adopting the PSO with adaptive weights, the
parameter optimization of the SDAE network is faster and more effective.

2. Using the optimized SDAE network structure, deep-level features can be extracted directly from
the original signal, avoiding the disadvantages of manual feature extraction.

3. The SAPSO-SDAE-KELM diagnostic model proposed in this paper solves the problems of noise
reduction and dimensional catastrophe of the original signal, avoids the phenomenon of
overfitting, and achieves rapid diagnosis of gearbox faults.

The rest of the paper is organized as follows: Section 2 introduces the theory related to the
gearbox fault diagnosis method proposed in this paper. Section 3 introduces the SDAE network
construction and fault diagnosis process. Section 4 shows the experiments and data set generation.
Section 5 shows the comparison of diagnostic methods and noise addition experiments, which
validate the method proposed in this paper. Section 6 gives the conclusions of this paper and
proposes future research plans.

2. Theoretical Background

2.1 SDAE implements the principle of dimensionality reduction and denoising

SDAE is a deep-learning network composed of multiple denoising autoencoders. SDAE is an
unsupervised learning method that can extract deep features of gearbox faults from vibration signals.

2.1.1. Principle of noise reduction with denoising autoencoder

Denoising Autoencoder (DAE) [21] is an improvement on the Auto encoder (AE) [22]. Noise
reduction is achieved by adding noise to the original vibration signal at the input, corrupting the
original signal by noise, and then reconstructing a better input without noise using a sample
containing noise [23-24]. The structure of the DAE is shown in Figure 1.

nnilsl:eg .

I(B)

Figure. 1 Structure of DAE

The process of noise reduction of the original vibration signal by DAE is as follows:

1. Input noise to the original vibration signal X to obtain the damaged signal X.
2. The damaged signal a is used as the input, and the hidden layer Z is obtained through
encoding. The encoding formula is as follows:

z=g(wx +b) 1)

3. After decoding and reconstruction, the reconstructed signal Y is obtained, so that
reconstructed signal Y is close to the original signal X

y=h(w'z+b) @)

4. Train the parameter 0= {W, b, W , b'} in the DAE with minimized reconstruction error:
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Loae = Z(Xi - Yi)2 3)
i=1

Where X is the original vibration signal, X is the original signal after adding noise, Z is the
hidden layer variable, Y is the reconstructed signal, Wis the weight coefficient, b is the bias

vector, ((¢)and h(e) are the activation functions.

As can be seen from the above process, DAE noise reduction is achieved by adding noise to the
original vibration signal, which, together with the noise of the original signal, is eliminated at the
time of encoding. The hidden layer decoding provides a good restoration of the original vibration
signal, and by minimizing the reconstruction error, the trained DAE model has better robustness.

2.1.2. Stacked denoising autoencoder (SDAE)

Although DAEs can achieve the effect of dimensional and noise reduction on the original
vibration data, individual DAEs are still shallow neural networks that do not learn the deeper
features of the original vibration signal very well. SDAE is a deep neural network made up of
multiple DAEs stacked on top of each other. The hidden layer of the previous DAE is used as input
to the next DAE, forming a multi-layer DAE model structure, and finally achieving the extraction of
feature information layer by layer, so SDAE has better learning ability and expression ability for data
features. The structure of the SADE is shown in Figure 2.

Structure of the SDAE
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Figure. 2 Structure of SDAE

The SDAE stacking process is as follows:
1. The first DAE training.

z,=f(x)=s, (Wx+hb)

4)
y= 9(21) = Sg (\szl + bz)

The error reconstruction is calculated as:


https://doi.org/10.20944/preprints202305.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 May 2023 d0i:10.20944/preprints202305.0194.v1

Preprints.org 5 of 21

Lspae (X, Y) = Z(Xi - yi)2 )
i1

The weighting and bias update formulae are as follows:
(
. oL oy
— SDAE
W, =W, -7 X
oW,
1 5 ©)
b1 bl SDAE Zl

oz, o
al‘SDAE

In the above equation, 7 is the learning rate, ——-= is the partial derivative of W,, and
oW, '

Olspae
oby

and used as the input layer for the next DAE.
2. The second DAE training

is the partial derivative of b1 After the first DAE is trained, the hidden layer is extracted

h =f(x)=s,(W,x +b)

@)
y= 9(21) = Sg (\stz + bs)
The weights and bias updates are calculated as follows:
Wzl =W, -7 aI—SDAE x oy
oW,
3 ®)
b —b _TaLSDAE %
| 0z, b,

The subsequent training process is the same as in steps 1 and 2, and all SDAEs in SDAE are
trained in the same way. The weights and biases of the SDAE network are adjusted by a gradient
descent algorithm [25] to fine-tune them in reverse.

2.2 An improved PSO algorithm for selecting SDAE network parameters

The particle swarm optimization algorithm [26] is a swarm optimization method that simulates
the predatory habits of birds. Before the optimization algorithm begins, a random initialization
determines the initial velocity and position of the particles. Set the position of the 1 th particlein N-

dimensional space to be X; =[X, X ,. ] and the initial velocity to beV; =[V;;,V;,...,V, ,

" | n
then for each iteration of training, at moment t, the particle's velocity and position are expressed as
in (12) (13):
Vi (t+) =aov, ;(O) +cnlp ;- X O]+ cnlp  —X (]
©)
X, t+)=x,;t)+v;;(t+1), j=1..,n (10)

where: C, and C, arelearning factors; I, and I, are uniformly distributed random numbers

between 0 and 1, and P, =[ Pigs Pigees pi’n] is the best position in the local neighborhood. In the

process of optimization, it is also necessary to set particle velocity interval [V ] and position

min WV max

range [X.., Xya] to realize the control of particle optimization range.
The PSO algorithm is superior in solving complex optimization problems, but has the following
drawbacks: the algorithm does not have high search accuracy, has a poor local search capability,

tends to fall into local minimal value solutions, and has some dependence on parameters. In view of
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these drawbacks, the inertia weights @ of the particles are improved in this paper [27] by self-
adopting the PSO algorithm with adaptive weights. The SAPSO algorithm balances global search
capability with local improvement capability by taking non-inertial dynamic inertia weights, which
are calculated as shown below:

— * —
—_ (a)max wmin) (f fmin) ’ f < favg

min

= favg - fmin
Opr T > 1
(11)
Where: @, , @y, denote the maximum and minimum values of @ respectively, f

denote the current objective function value of the particle, fa\,g and f_. denote the current

average and minimum objective values of all particles respectively. As can be seen from the above
equation, the inertia weights are self-varying with the value of the particle's objective function and
are therefore called adaptive weights.

2.3 Kernel Based Extreme Learning Machine (KELM)D

The extreme learning machine (ELM) was proposed by Huang [28] and others based on the
theory of Moore-Penrose generalized inverse. The main solution to the problems of the slow learning
rate, long iteration time, and the need to set learning parameters such as learning step size and
learning rate in advance in Single-hidden Layer Feedforward Neural Networks (SLFNs) . The ELM
simply sets the appropriate number of nodes, generates all the parameters required for the
corresponding implicit layer, and determines the weights of the output layer by means of a least
squares method. ELM is widely used in engineering practice due to its advantages of fast learning
and approximation of non-linear terms. Kernel based extreme learning machine (KELM) [29] is an
improved algorithm based on extreme learning machine and combined with kernel functions, KELM
can improve the performance of the model while retaining the benefits of ELM. The basic structure
of the Extreme Learning Machine is shown in Figure 3.

h(x)

(W1 s hl ) ’i/ 1

Figure. 3 The basic structure of the ELM

The model equation for the extreme learning machine is:
y=h(x)p=Hp (12)
where: X is the input vector, Y is the output vector, h(X), H is the hidden layer feature
matrix, and [ is the output weight.

[ is calculated as:
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ﬁ:HT(HHT+é)1T (13)

Where T is the input vector, C is the canonical factor and I is the unit matrix.
KELM is the introduction of a kernel function to replace the mapping of hidden layer nodes in
ELM and its model is calculated as:

I I
y=hOOHT (HHT + 2) T = KOHT (HHT + )T
(14)
Radial basis functions are selected as kernel functions in this paper:
X~

ker(x,y) = exp(—TZyH) (15)

where X istheinput, Y is the output and o is the width parameter of the kernel function.
Introducing the kernel function into ELM results in the following output:

[ ker(x, x;) |

' I
— . HT(HH™ +—)'T
y ( C)

| ker(x, x,) |
(16)
where: (X, X,,...,X,) is the given training sample, can be N the number of samples, and

ker(:) is the kernel function.

3. SDAE network construction and SAPSO-SDAE-KELM troubleshooting process
3.1 Construct the optimal SDAE network chat structure

3.1.1 Determine the number of hidden layers

Is it better to have more hidden layers in a SDAE neural network? For this problem, Du et al [30]
conducted simulation experiments and concluded that the network structure of SDAE containing
three hidden layers for fault diagnosis works best. Experiments were carried out according to their
experimental methodology, using data from the experiments in Section 4. The first thing that should
be considered when determining whether SDAE hidden layer is optimal is the principle of SDAE.
The essence of SDAE is to minimize the error value between the input data and the reconstructed
data by decoding and encoding. The smaller the error between the input condition signal and the
reconstructed data signal, the stronger the SDAE fault signal extraction capability, and the larger the
error, the weaker the SDAE fault signal feature extraction capability. The smaller error value indicates
that the sparse deep-level feature data in the hidden layer can well characterize the original data
when the data in the hidden layer is used for fault diagnosis, which better reflects the rigor of the
diagnosis method.

The RMSE characterizes the error between the input data and the reconstructed data in a very
specific way, and therefore the root mean square error (RMSE) is a good evaluation metric to assess
the magnitude of the error between the two vectors. Pearson's correlation coefficient is the most
commonly used statistical measure to describe the extent to which two variables are related to each
other. When the inputs and outputs are more similar, the error between the inputs and outputs is
smaller, so the Pearson correlation coefficient can be used as an evaluation indicator to measure the
variation in inputs and outputs. Therefore, RMSE and Pearson's correlation coefficient are introduced
in this paper as evaluation indicators. The calculation formula is as follows:
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RMSE = \/%Zn:(xi -Y))? 17)
i=1

L S —ECO) —E(W)

Pxy =—
X =

>0 -ECOF |20 -EC)
] n ] n
(18)

is the original signal and Y; is the

Where Nis the number of vibration signal samples, Xi

corresponding reconstructed signal. E(X) is the mean value of the raw signal and E(Y) is the
mean value of the output signal.

In order to obtain the best-hidden layers for SDAE, SDAE networks containing 2, 3, 4, and 5
hidden layers are designed and verified respectively. The RMSE, Pearson's correlation coefficient,
and fault diagnosis accuracy were calculated respectively. The details are shown in Table 1.

Table 1. Evaluation indicator values for different numbers of hidden layers

Number of

2 4
hidden layers 3 >
Pearson’s 0.983 0.996 0.976 0.978
coefficient
RMSE 0.0125 0.0093 0.0392 0.0534
Diagnostic 99.33% 100.0% 98.0% 96.67%
accuracy

As can be seen from the above table, the SDAE containing 3 hidden layers has a value of 0.0093
for RMSE, a correlation coefficient of 0.996, and a fault diagnosis accuracy of 100.0%. SDAE works
best when it contains 3 hidden layers compared to other numb the errors of hidden layers. Therefore,
the SDAE network structure with 3 hidden layers is adopted in this paper.

3.1.2. The best parameters of SDAE are selected by improved PSO optimization

The process of selecting parameters for improved PSO optimization of SDAE network structure
is shown in Figure 4, and the specific steps are described as follows:

Step 1. Set the particle swarm velocity interval and position range.

Step 2. Initializes the population size and a number of iterations of the particle swarm
optimization algorithm.

Step 3. Set the bit initial position of the particles. Calculate the fitness, which is determined by
the root mean square error (RMSE) magnitude between the actual and predicted values of the particle
population.

Step 4. A particle swarm search algorithm with a self-adaptive inertia factor @ is used for
iterative optimization. In one iteration, the individual best extreme pbest of a single particle and
the global best gbest of a population of particles are recorded, while the position and velocity of the
particles are updated.

Step 5. Determine whether the current number of iterations exceeds the iteration limit. If yes, the
iteration is terminated and the globally optimal result gbest and the pbest of individual particles
are output; If no, the next step is executed.

Step 6. The optimal parameters are obtained. When the iteration proceeds until the RMSE of the
actual and predicted values is reduced to a predetermined value, the search for the best stops. At this
point, the relevant parameters corresponding to the best position of the particle swarm are the best

d0i:10.20944/preprints202305.0194.v1
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parameters in the SDAE network. If the RMSE is greater than the predetermined value, the iterative
search continues and returns to step 4.
Start
\J
Set the particle velocity range and position range

Initialize the SAPSO-related parameters

+<
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" o
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Figure. 4 Flowchart of the improved particle swarm optimization algorithm for obtaining the optimal
parameters of the SDAE network structure

3.2. Fault diagnosis method and process of SAPSO-SDAE-KELM

The SAPSO-SDAE-KELM based gearbox fault diagnosis flow chart is shown in Figure 5 and is
divided into the following 3 steps.

Step 1: Data pre-training. The vibration signal of the gearbox is obtained by using the
experimental platform, the vibration signal is normalized, the redundant signal in the original signal
is removed by PCA, and then it is divided into a training set and a test set.

Step 2: Unsupervised model training. The training set divided in step 1 is used to input the
SAPSO-SDAE neural network model. The SDAE neural network model and its parameters are first
initialized. The hyperparameter in the network model is then optimized by round-robin
optimization. If the results of the network training do not meet the requirements, the training is re-
iterated until the requirements are met.

Step 3: Supervised fault diagnosis. Using the parameters obtained in Step 2, the optimal SDAE
network structure is constructed. The step 1 test set data is labeled and fed into the SDAE network
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for deep feature extraction. The data from the last hidden layer is extracted and fed into KELM for
fault classification to produce fault diagnosis results.

Gear fault vibration signal acquisition
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Vibration signal data normalisation
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Figure 5 SAPSO-SDAE-KELM based gearbox fault diagnosis flow chart
4. Experiments and data pre-processing

4.1. Experimental platform

Figure 6 shows the structure and sensor layout of the test bed. The test bench consists of a base,
planetary gear reducer, three-phase asynchronous motor, electromagnetic speed control motor, and
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magnetic powder brake. The experiments were carried out on a reducer model JZQ175. The vibration
sensor model is IEPE general number 14100. Through the CNC machine tool, the gearbox gear preset
2mm crack, 5Smm crack, and 2mm broken teeth, and 5mm broken teeth 4 kinds of faults. Figure 7
shows the preset fault.

Magnetic powder brake

=1
="

Tacho regulator |

Signal Collectors

= —

Sensor layout &

, \\}__.

Magnetic powder tension ‘s ree-pl;ase asynchronous
controllers ' speed regulating motor

Figure 7 Fault preset condition: (a) 2 mm crack; (b) 5 mm crack; (c) 2 mm break. (c) 5 mm break.

4.2. Signal acquisition and sample generation

4.2.1. Signal acquisition scheme

After the experimental platform runs smoothly, the signal is collected. The input speed of the
motor was 1200 r/min, the magnetic powder brake load current was 1A, the sampling frequency of
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the vibration sensor was 20000 Hz, and the signal sampling time was 6 seconds. The vibration signals
are collected for each of the 5 operating conditions.

Fault Sampling Sampling Input Number of Load
status frequency time speed sensors currents
normal 20000Hz 6s 1200r/min 2 1A
2 mm 20000Hz 65 1200r/min 2 1A
crack

> mm 20000Hz 65 1200r/min 2 1A
crack

2 mm 20000Hz 65 1200r/min 2 1A
break

> mm 20000Hz 65 1200r/min 2 1A
break

Table 2. Vibration signal acquisition solution

4.2.2. Sample construction and data set generation

As can be seen from Table 2, 120,000 data points were collected for each operating conditions in
this experiment. One sample is taken for every 800 points, so 150 samples can be taken for each
working condition, and the sample construction is shown in Figure 8.

[ 800 sampling points |

5 . ; ; ;

5 : .
) 2 4 \ 6 8 10 12
| A sample | =< 104

Figure 8 Sample construction

In order to speed up the training, PCA is used to eliminate redundant signals from the original
signal. Figure 9 shows the effect of PCA dimensionality reduction. It can be seen from Figure 9 that
when the data is reduced to 112 dimensions, the essential characteristics of the original signal can be
better retained. The ratio of training set and test set is divided into 8:2, and the details of sample
division are shown in Table 3:
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Figure 9 PCA reduces the dimension of the original signal

Training set and testing set according to the division of 8:2, as shown in table 3:

Table 3. Composition of the dataset

Fault status Labels Training Sets Testing Sets
normal L1 120x112 30x112

2 mm crack L2 120x112 30x112

5 mm crack L3 120x112 30x112

2 mm break L4 120x112 30x112

5 mm break L5 120x112 30x112

5. Method validation and comparison

Before the method verification and comparison, the optimal SDAE neural network structure is
first clarified. According to 3.1.1, the optimal network structure contains three hidden layers. Using
the method in 3.1.2 and the sample data in 4.2, the optimal parameters of SDAE are obtained as
follows. The number of iterations is 600, the learning rate is 0.6, the noise addition ratio is 0.3, and
the number of hidden layer nodes is 69-55-46. The training curve of SDAE neural network is shown
in Figure 11.
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Figure 10 The SDAE training curve.

5.1. Comparison of Optimization Results after Particle Swarm Improvement

To verify that the improved PSO optimization method proposed in this paper is better, PSO and
SAPSO are used to optimize the SDAE neural network respectively. The RMSE of the actual value
and the predicted value is used as the fitness value in 2.2, so the size of the fitness value can be used
to determine which optimization effect is better. The smaller the fitness value, the better the SDAE
network is trained. Figure 11 shows the change of fitness value in the iterative optimization process
of PSO and SAPSO. It can be seen from the figure that the final fitness value of PSO is 0.028, while
the lowest fitness value of SAPSO is 0.01. The fitness value of SAPSO is less than that of PSO, which
can prove that SAPSO has better optimization effect.

Maodel iteration error variation Model iteration error variation
0.07 T 0.06
i 0.05 -
0.05
0.04 -
— =
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= 0.04 =
o [+4
= % 0.03 -
2003 E
= -
0.02 -
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0.01 - 1 0.01 -
0 0
5 10 15 20 25 30 5 10 15 20 25 30
Number of particle swarm iterations Number of particle swarm iterations
(a) (b)

Figure 11 Variation of RMSE with number of iterations:(a) PSO; (b) SAPSO
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5.2. Comparison with other fault diagnosis methods

In order to verify the superiority of the SAPSO-SDAE-KELM diagnosis model proposed by the
ontology, CNN-SSA-ELM, QPSO-KELM and PSO-SDAE-KELM fault diagnosis methods were
selected to compare with it. The vibration data collected by the above testbed were used for testing.
These diagnostic methods include deep learning method and machine learning fault diagnosis
method based on feature extraction. The diagnosis results are shown in Table 4. It can be seen from
the table that the accuracy of the fault diagnosis method in this paper is 100% and the running time
is 8.76 seconds. Compared with the other three methods, the fault diagnosis method in this paper has
great advantages in diagnosis accuracy and diagnosis time.

Table 4. The accuracy and diagnosis time of different fault diagnosis methods

Labels SAPSO-SDAE-KELM PSO-SDAE-KELM CNN-SSSA-ELM QPSO-KELM

L1 100.0% 100.0% 100.0% 100.0%

L2 100.0% 100.0% 100.0% 100.0%

L3 100.0% 100.0% 90.0% 90.0%

L4 100.0% 93.33% 83.33% 76.67%

L5 100.0% 93.33% 90.33% 93.33%
Diagnostic time 8.71s 14.62s 10.33s 12.76s
Accuracy 100.0% 97.33% 93.33% 92.0%

SAPSO-SDAE-KELM Diagnostic Accuracy: 100% PSO-SDAE-KELM Diagnostic Accuracy: 97.3333%

Bl 100.00 0.00 0.00 0.00 L1 0.00

L2 100.00 0.00 0.00 L2 0.00

SL3| 000 100.00 0.00 L3 0.00
=
£ &

L4 0.00 0.00 100.00 L4 0.0 0.00 0.00 6.67

Ls| 0.00 0.00 0.00 0.00 100.00 LS| 0.00 0.00 0.00 6.67 93.33
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() (b)
CNN-SSA-ELM Diagnostic Accuracy: 93.3333% QPS0-KELM Diagnostic Accuracy: 92%
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Figure 12 Accuracy of different diagnostic methods: (a) SAP-SO-SDAE-KELM; (b) PSO-SDAE-
KELM;(c) CNN-SSSA-ELM; (d) QPSO-KELM.
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It can be seen from Figure 12 that the accuracy of PSO-SDAE-KELM is slightly lower than that
of SAPSO-SDAE-KELM, because SDAE feature extraction is greatly affected by parameters, while
SAPSO is better than PSO in parameter optimization. The accuracy of CNN-SSA-ELM is 93.33%, and
the diagnosis time is 14.36 seconds, which is the longest among these methods. Although CNN has a
good effect in the feature extraction method, compared with SDAE, it lacks the effect of noise
reduction, which affects the accuracy of fault diagnosis, and the long time of image feature extraction
leads to the slow speed of fault diagnosis. The fault diagnosis accuracy of QPSO-KELM is 92%, mainly
because the fault features need to be extracted and selected manually in the diagnosis, which has a
great impact on the speed and diagnosis results of fault diagnosis. From the above
comparison,SAPSO-SDAE-KELM has superior performance in diagnostic accuracy.

5.3. Verification of different signal inputs

To verify the generality of the proposed method in this paper different signals are fed into the
diagnostic model presented for validation. In this paper, the input signals are divided into original
vibration signals, frequency domain signals and characteristic signals for testing.

The frequency domain signal is the original vibration signal obtained by the fast Fourier
transform (FFT). The original vibration has 120000 collection points for each working condition, and
60000 points after transforming into frequency domain signal. Taking 400 points as a sample, there
are 150 samples for each condition, so that it is consistent with the original vibration signal data set.
After reducing to 78 dimensions using PCA, the training set is 120x78 and the test set is 30x78 for
each condition.

The feature signal is to extract the time domain features and frequency domain features of the
original vibration signal as input signals. In this paper, 19-time domain features and 4 frequency
domain features of the vibration signal are extracted as input signals, and the details are shown in
Table 5.

Table 5. Vibration signal feature extraction situation

Feature types Extracted features Number of features

1 maximum value,2 minimum value,3
peak-peak value,4 mean value,5 mean
square value,6 root mean square
(RMS),7 average amplitude,8 root
Time domain feature amplitude,9 variance,10 standard 19
deviation,11 peak value,12 kurtosis, 13
skewness, 14 energy,15 peak factor,16
pulse factor,17 waveform factor,18
margin factor,19 clearance factor

1 frequency mean value,2 frequency
Frequency domain feature center,3 root mean square frequency,4 4
frequency standard deviation.

Every 800 points in the original vibration signal is a sample for feature extraction, so as to ensure
that the number of samples in each working condition is 150, which is the same as the original
vibration signal input samples. After 23 features were extracted, the input vector composed of each
condition was 150x23, the training set was 120x23, and the test set was 30x23. After SAPSO
optimization, the SDAE network parameters corresponding to the three signal input methods are
shown in Table 6.
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Table 6. SDAE parameters for different signal inputs

. Number of nodes in . Noise addition Number of
Input signals . Learning Rate . .
the hidden layer rates iterations
Time domain signals 69-55-46 0.6 0.3 600
Frequency domain 56-42-34 0.4 0.1 300
signals
Feature signals 15-11-6 0.5 0.1 200

In order to visualize how the SDAE network extracts deeper features from the data, the t-
stochastic neighbor embedding (t-SNE) method is adopted to visualize the distribution of features in
the last hidden layer of the SDAE neural network. The feature scatter plots of the hidden layers for
the three different signal inputs are shown in Figure 13. As can be seen from the figure, the deep
features of the 5 different operating conditions of the time domain signal extracted using SDAE can
be well separated and there is no cross-mixing. The frequency domain signals and feature signals are
fed into the SDAE network for deep feature extraction, from the graph it can be seen that there is a
small amount of crossover on the features labelled as L4 and L5, the other features can be well

separated.
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Figure 13 Feature visualization of hidden layers: (a) Time domain signals; (b) Frequency domain
signals;(c) Feature signals.

Figure 14 shows the diagnostic results of the time domain signal, frequency domain signal and
feature signal input into SAPSO-SDAE-KELM. The accuracy rates were 100%, 96.67% and 98.67%
respectively. The diagnostic results nicely validate the results of the feature visualization in Figure
13. The lowest diagnostic accuracy of the three signal inputs is over 96%, indicating that the SDAE
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network can well extract the features of different signal inputs, and therefore the diagnostic model
proposed in this paper has good generalization.
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Figure 14 Diagnostic results for three different signals: (a) Time domain signals; (b) Frequency domain

signals;(c) Feature signals.

5.4. Verification of the noise reduction effect

The actual working environment of gearboxes is very complex, facing the effects of different
environments such as sand, rain, snow and plateau. The complex operating environment of the
gearbox is simulated by adding noise to the original signal. By controlling the size of the input noise
to test, add noise to the vibration signal to make the signal-to-noise ratio of -20db, -15db, -10db, -5db,
10db, in order to get different kinds of noise signals. Figure 15 shows the time domain waveform of
the vibration signal after adding Gaussian white noise with different signal-to-noise ratios for a 5Smm
broken tooth condition. The figure shows that with the addition of noise, the amplitude of the
vibration signal becomes significantly larger, thus showing that the fault signal is masked by the
noise signal. Using signals containing different noises, they are fed into the fault diagnosis model
proposed in this paper for fault diagnosis. In order to verify the stability of this model, the signals
with added noise are fed into different diagnostic methods for comparison. The results are shown in

Table 7.
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Figure 15 Time domain waveforms at different signal-to-noise ratios

Table 7. The diagnostic accuracy of different diagnostic methods under different signal-to-noise ratios

SNR Diagnostic accuracy

(db) SAPSO-SDAE-KELM PSO-SDAE-KELM CNN-SSSA-ELM  QPSO-KELM
10 100.0% 100.0% 100.0% 100.0%
-5 99.33% 98.67% 96.0% 94.67%
-10 98.67% 97.33% 91.33% 90.0%
-15 98.00% 96.67% 88.67% 85.33%
-20 97.33% 95.33% 84.67% 82.67%

It can be seen from the table that the accuracy of the four diagnostic methods is affected by the
noise, and the diagnostic accuracy decreases with the increase of the noise. The accuracy of PSO-
SDAE-KELM is decreased by 4%, CNN-SSA-ELM is decreased by about 15%, QPSO-KELM is
decreased by 17%, and SAPSO-SDAE-KELM is only decreased by 2.7%. The accuracy of the method
proposed in this paper is still higher than 97% in the case of high noise, which shows that the model
has a good anti-noise effect.

6. Conclusions

This paper presents a gearbox fault diagnosis model using SAPSO-SDAE-KELM. Through
experimental comparison and analysis, the gearbox fault diagnosis model proposed in this paper
outperforms other fault diagnosis models in terms of diagnostic accuracy and diagnostic speed. This
paper contributes as follows:
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1. The hyperparameters associated with the structure of the SDAE network have a significant effect
on the classification effect of the model. The improved PSO was used to optimize SDAE and
other parameters to realize the rapid adaptive adjustment of network structure.

2. The fault diagnosis is carried out by the optimized SDAE network with different signal inputs,
and the diagnosis accuracy is above 96%, which proves that the diagnosis model in this paper
has good generalizability corresponding to different signal inputs.

3. Through noise addition experiments, the method proposed in this paper has a high diagnostic
accuracy in the presence of high noise. Compared to other diagnostic models, the method
proposed in this paper has better noise immunity.

This paper mainly studies the use of SDAE to extract high-dimensional features of one-
dimensional signals for fault diagnosis. In future research, it can use the input of two-dimensional
signals or picture signals into SDAE to extract deep fault features for fault diagnosis. Gearbox hybrid
fault diagnosis will be further investigated in the future.

References

1. Feng Z, Gao A, Li K, et al. Planetary gearbox fault diagnosis via rotary encoder signal analysis.
Mechanical Systems and Signal Processing, 2021, 149: 107325.

2. Hendriks J, Dumond P, Knox D A. Towards better benchmarking using the CWRU bearing fault
dataset. Mechanical Systems and Signal Processing, 2022, 169: 108732.

3. Wang Y. Study on nature of crossover phenomena with application to gearbox fault diagnosis.
Mechanical Systems and Signal Processing, 2017, 83: 272-295.

4. Wang C, Peng Z, Liu R, et al. Research on Multi-Fault Diagnosis Method Based on Time Domain
Features of Vibration Signals. Sensors, 2022, 22(21): 8164.

5. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals.
Neurocomputing, 2020, 396: 542-555.

6. LiJ, Li X, LiY, et al. A New Method of Tractor Engine State Identification Based on Vibration
Characteristics. Processes, 2023, 11(2): 303.

7. Zhiyong L, Hongdong Z, Ruili Z, et al. Fault identification method of diesel engine in light of pearson
correlation coefficient diagram and orthogonal vibration signals. Mathematical Problems in
Engineering, 2019, 2019.

8. Meng S, Kang ], Chi K, et al. Gearbox fault diagnosis through quantum particle swarm optimization
algorithm and kernel extreme learning machine. Journal of Vibroengineering, 2020, 22(6): 1399-1414.

9. ZhaoN, ZhangJ, Ma W, et al. Variational time-domain decomposition of reciprocating machine multi-
impact vibration signals. Mechanical Systems and Signal Processing, 2022, 172: 108977.

10. Wang C, Peng Z, Liu R, et al. Research on Multi-Fault Diagnosis Method Based on Time Domain
Features of Vibration Signals. Sensors, 2022, 22(21): 8164.

11. Dhamande L S, Chaudhari M B. Compound gear-bearing fault feature extraction using statistical
features based on time-frequency method. Measurement, 2018, 125: 63-77.

12. LiC, Sanchez RV, Zurita G, et al. Fault diagnosis for rotating machinery using vibration measurement
deep statistical feature learning. Sensors, 2016, 16(6): 895.

13.  Yang Q, An D. EMD and wavelet transform based fault diagnosis for wind turbine gear box. Advances
in Mechanical Engineering, 2013, 5: 212836.

14. Yan H, Bai H, Zhan X, et al. Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault
Diagnosis Method of Diesel Engine. Sensors, 2022, 22(21): 8325.

15. Han M, Wu Y, Wang Y, et al. Roller bearing fault diagnosis based on LMD and multi-scale symbolic
dynamic information entropy. Journal of Mechanical Science and Technology, 2021, 35: 1993-2005.

16. Syed S H, Muralidharan V. Feature extraction using Discrete Wavelet Transform for fault classification
of planetary gearbox—A comparative study. Applied Acoustics, 2022, 188: 108572.

17. Liu X, Zhang Z, Meng F, et al. Fault Diagnosis of Wind Turbine Bearings Based on CNN and SSA-
ELM. Journal of Vibration Engineering & Technologies, 2022: 1-17.

18. LiuY, DuanL, Yuan Z, et al. An intelligent fault diagnosis method for reciprocating compressors based
on LMD and SDAE. Sensors, 2019, 19(5): 1041.

19. Shao X, Kim C S. Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing. Sensors,
2022, 22(11): 4156.

20. JiaN, Cheng, Liu Y, et al. Intelligent Fault Diagnosis of Rotating Machines Based on Wavelet Time-
Frequency Diagram and Optimized Stacked Denoising Auto-Encoder. IEEE Sensors Journal, 2022,
22(17): 17139-17150.


https://doi.org/10.20944/preprints202305.0194.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 May 2023 d0i:10.20944/preprints202305.0194.v1

Preprints.org 21 of 21

21. Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. Journal of machine learning
research, 2010, 11(12).

22. Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798-1828.

23. Yang P, Chen ], Zhang H, et al. A fault identification method for electric submersible pumps based on
dae-svm. Shock and Vibration, 2022, 2022.

24. Shao H, Jiang H, Lin Y, et al. A novel method for intelligent fault diagnosis of rolling bearings using
ensemble deep auto-encoders. Mechanical Systems and Signal Processing, 2018, 102: 278-297.

25. Wang B, Hu T. Distributed pairwise algorithms with gradient descent methods. Neurocomputing,
2019, 333: 364-373.

26. Kennedy ], Eberhart R. Particle swarm optimization//Proceedings of ICNN'95-international conference
on neural networks. IEEE, 1995, 4: 1942-1948.

27. Han H, Bai X, Han H, et al. Self-adjusting multitask particle swarm optimization. IEEE Transactions
on Evolutionary Computation, 2021, 26(1): 145-158.

28. Huang G B, Zhu QY, Siew C K. Extreme learning machine: theory and applications. Neurocomputing,
2006, 70(1-3): 489-501.

29. Ding S, Zhao H, Zhang Y, et al. Extreme learning machine: algorithm, theory and applications.
Artificial Intelligence Review, 2015, 44: 103-115.

30. DuX, JiaL, HaqIU.Faultdiagnosis based on SPBO-SDAE and transformer neural network for rotating
machinery. Measurement, 2022, 188: 110545.


https://doi.org/10.20944/preprints202305.0194.v1

	1. Introduction
	2. Theoretical Background
	2.1 SDAE implements the principle of dimensionality reduction and denoising
	2.1.1. Principle of noise reduction with denoising autoencoder

	2.2 An improved PSO algorithm for selecting SDAE network parameters
	2.3 Kernel Based Extreme Learning Machine（KELM）

	3. SDAE network construction and SAPSO-SDAE-KELM troubleshooting process
	3.1 Construct the optimal SDAE network chat structure
	3.1.1 Determine the number of hidden layers
	3.1.2. The best parameters of SDAE are selected by improved PSO optimization

	3.2. Fault diagnosis method and process of SAPSO-SDAE-KELM

	4. Experiments and data pre-processing
	4.1. Experimental platform
	4.2. Signal acquisition and sample generation
	4.2.1. Signal acquisition scheme
	4.2.2. Sample construction and data set generation


	5. Method validation and comparison
	5.1. Comparison of Optimization Results after Particle Swarm Improvement
	5.2. Comparison with other fault diagnosis methods
	5.3. Verification of different signal inputs
	5.4. Verification of the noise reduction effect

	6. Conclusions
	References

