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Abstract: Quantitative structure-property relationship (QSPR) modeling is crucial in cheminformatics 1

and computational drug discovery for predicting the activity of compounds. Topological indices are a 2

popular molecular descriptor in QSPR modeling due to their ability to concisely capture the structural 3

and electronic properties of molecules. Here, we investigate the use of curvilinear regression models 4

to analyze fibrates drug activity through topological indices, which modulate lipid metabolism 5

and improve lipid profile. Our QSPR approach predicts the physicochemical properties of fibrates 6

based on degrees and distances from topological indices. Our results demonstrate that topological 7

indices can enhance the accuracy of predicting physicochemical properties and biological activities of 8

molecules, including drugs. We also conducted density functional theory (DFT) calculations on the 9

investigated derivatives to gain insights into their optimized geometries and electronic properties, 10

including symmetry. The use of topological indices in QSPR modeling, which considers the symmetry 11

of molecules, shows significant potential in improving our understanding of the structural and 12

electronic properties of compounds. 13

Keywords: Topological indices; Fibrates; Curvilinear regression; QSPR analysis. 14

1. Introduction 15

Pharmacology has rapidly evolved, resulting in the introduction of numerous ground- 16

breaking drugs each year. However, ensuring accurate testing performance requires the 17

availability of appropriate equipment, a good rapport, and sufficient resources. Previous 18

studies have shown that a drug’s chemical properties are intricately linked to its molecular 19

structure. Pharmacological and medical researchers often utilize topological indices to 20

examine the molecules’ properties and understand their impact on experimental outcomes. 21

Hence, the topological index computation method is a useful tool for developing countries, 22

allowing them to gather medical and biological data on upcoming drugs without the need 23

for laboratory tests see for example [1–4]. 24

Fibrates are a type of medication that have been shown to lower high levels of bad 25

cholesterol (also known as low-density lipoprotein or LDL), increase good cholesterol (also 26

known as high-density lipoprotein or HDL), and decrease the amount of small dense LDL 27

particles in the blood. They have been found to be effective in reducing the mortality and 28

morbidity associated with cardiovascular disease (CVD) in individuals who are at risk for 29

developing it. However, conducting laboratory studies to investigate the physicochemical 30

properties of fibrates can be both expensive and time-consuming. To overcome this chal- 31

lenge, chemists can use topological indices to derive mathematical equations that provide 32

valuable insights into the properties of fibrates. For more information on fibrates, please 33

refer to sources [5] and [6]. 34
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Chemical graph theory is a field that integrates mathematical modeling of chemical 35

phenomena with graph theory. It utilizes topological indices to establish a correlation 36

between the properties of a chemical molecule and its structure [7]. These indices are 37

also known as graph invariants or graph-based molecular descriptors, and they quantify 38

the topological features of a molecule or molecules [8]. The application of quantitative 39

structure-property/structure-activity relationships (QSPR/QSAR) models, which are com- 40

monly employed in this field, allows for the prediction of molecular properties using 41

these topological indices. In 1947, Harold Wiener introduced the Wiener index, the first 42

topological index, Paraffin’s physical properties were determined using it [9]. 43

Topological indices, which are numerical values derived from the molecular graph of 44

a chemical compound, have been extensively studied in the fields of quantitative structure- 45

property relationship (QSPR) and quantitative structure-activity relationship (QSAR) analy- 46

ses. These indices encode the structural and topological information of molecules and have 47

proven useful in predicting various physical, chemical, and biological properties [10–14]. 48

The use of molecular graphs to represent unsaturated hydrocarbon structures provides 49

a more intuitive and comprehensive understanding of the molecular characteristics and 50

behavior of compounds [15–20]. In drug design, knowledge of molecular structure is 51

essential in determining their potential therapeutic activity and overall effectiveness. In 52

this study, we examine several vertex-degree based topological indices, including the first 53

and second Zagreb indices, hyper-Zagreb index, sigma index, Inverse symmetric devi- 54

ation index, Max-min rodeg index, Min-max rodeg index, Inverse sum deviation index, 55

Atom-bond connectivity index, Randic index, and Albertson index [21–31]. Additionally, 56

we investigate topological indices based on distance, such as Wiener index, Schultz index, 57

Harary index, and Gutman index [32–34]. These indices are used to classify the molecular 58

descriptors and analyze the efficacy of curvilinear regression models in predicting the 59

activity of fibrates drugs. 60

Molecular descriptors have been widely used to evaluate the physicochemical and 61

bioactive properties of chemical structures, and their inclusion in curvilinear regression 62

models can enhance the analysis of drug activity. Topological indices, such as the Zagreb 63

indices, have shown promise in predicting the effectiveness of cancer treatments [35]. The 64

max-min rodeg index has been found to give reliable predictions for octane isomers and 65

polychlorobiphenyls in linear regression models [36]. A new index called the Atom-bond 66

connectivity index has been proposed to determine the complexity of alkanes [37]. The 67

first hyper-Zagreb index has been found to be the preferred method for estimating the 68

boiling points of benzenoid hydrocarbons [38]. Additionally, the indeg indices have been 69

applied to predict topological polar areas [39]. The inverse sum deviation index has been 70

used to calculate the vaporization and sublimation enthalpies of monocarboxylic acids 71

[40] and [41]. Irregularity indices based on different degrees, in addition to Albertson and 72

Sigma indices, have been found to predict the physicochemical properties of octane isomers 73

[42]. The Wiener index was first introduced in quantitative structure-property relationship 74

(QSPR) studies, and has been shown to align well with the boiling points of alkanes [43]. 75

The Wiener index has been further developed and used to explain different chemical and 76

physical properties of molecules, as well as their biological activity [44]. The Schultz index 77

has also been investigated to predict the boiling points of alkyl alcohols, and thus their 78

suitability for various applications [45]. As indicated in Table 1, these indices are expressed 79

mathematically and are shown with mathematical expressions. 80
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Table 1. The mathematical expressions of topological indices.

Vertex-degree-based topological indices Mathematical expression
First Zagreb index M1(ζ) = ∑

uv∈E(ζ)
(d(u) + d(v))

Second Zagreb index M2(ζ) = ∑
uv∈E(ζ)

(d(u) · d(v))

Hyper Zagreb index HM(ζ) = ∑
uv∈E(ζ)

(d(u) + d(v))2

Atom bond connectivity index ABC(ζ) = ∑
uv∈E(ζ)

√
d(u) + d(v)− 2

d(u) · d(v)

Randić index R(ζ) = ∑
uv∈E(ζ)

1√
d(u) · d(v)

Max-min rodeg index Mms−de(ζ) = ∑
uv∈E(ζ)

√
max(d(u), d(v))
min(d(u), d(v))

Min-max rodeg index mMs−de(ζ) = ∑
uv∈E(ζ)

√
min(d(u), d(v))
max(d(u), d(v))

Albertson index irr(ζ) = ∑
uv∈E(ζ)

|d(u)− d(v)|

Sigma index σ(ζ) = ∑
uv∈E(ζ)

(d(u)− d(v))2

Inverse symmetric deg index ISDI(ζ) = ∑
uv∈E(ζ)

d(u) · d(v)
d(u)2 + d(v)2

Inverse sum indeg index ISI(ζ) = ∑
uv∈E(ζ)

d(u) · d(v)
d(u) + d(v)

Distance-based topological indices Mathematical expression
Wiener index W(ζ) = ∑

{u,v}⊆V(ζ)

d(u, v)

Schultz index S(ζ) = ∑
{u,v}⊆V(ζ)

(d(u) + d(v))d(u, v)

Harary index H(ζ) = ∑
{u,v}⊆V(ζ)

1
d(u, v)

Gutman index Gut(ζ) = ∑
{u,v}⊆V(ζ)

(d(u) · d(v))d(u, v)

Fenofibrate is an important component of a healthy diet and medication regimen, as 81

it is used to reduce blood cholesterol and triglyceride levels. By decreasing triglyceride 82

levels in the bloodstream, the risk of pancreatitis (inflammation of the pancreas) can be mit- 83

igated. To date, only one paper [46] has explored the use of topological indices in analyzing 84

one of the drugs in the Fibrates family. This study utilized ve−degree, ev−degree, and 85

degree-based (D−based) approaches to compute the topological indices of fenofibrate’s 86

chemical structure. With limited existing literature on Fibrates that incorporate topological 87

indices, this paper represents a pioneering effort in the investigation of novel physicochem- 88

ical properties of Fibrates using this technique. In this work, Fenofibrate (C20H21ClO4), 89

Ciprofibrate (C13H14Cl2O3), Bezafibrate (C19H20ClNO4), Clofibrate (C12H15ClO3) drugs 90

used in the treatment patients with high cholesterol are studied. 91

Fibrates drugs are a class of medications commonly used to treat dyslipidemia, a con- 92

dition characterized by abnormal lipid levels in the blood. Despite their widespread use, 93

the molecular mechanisms underlying the activity of fibrates drugs are not well understood. 94

One approach to addressing this challenge is to develop quantitative structure-activity 95

relationship (QSAR) models that can predict the activity of fibrates drugs based on their 96

molecular descriptors. In this study, we investigate the efficacy of curvilinear regression 97

models in enhancing the analysis of fibrates drug activity through molecular descriptors. 98
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Curvilinear regression models are a type of non-linear regression model that can capture 99

non-linear relationships between variables, making them useful for analyzing complex 100

systems such as the interactions between drugs and their molecular targets. Our study 101

builds upon previous research that has investigated the use of QSAR models to predict the 102

activity of drugs. Several articles published in Symmetry have explored the use of topo- 103

logical indices and other mathematical methods to predict various properties of organic 104

compounds, including their biological activity. For example, a study by Liu et al. [47] inves- 105

tigated the efficacy of using topological indices in QSPR models for predicting the densities 106

and viscosities of biodiesel. The authors used a dataset of 105 biodiesel compounds with 107

known properties and developed models using multiple linear regression and artificial 108

neural network methods. They compared the performance of their models with previous 109

studies and found that the models developed using topological indices had higher accu- 110

racy in predicting the properties of biodiesel. Zuo and Hu [48] developed QSPR models 111

for predicting the melting points of organic compounds using molecular topology and 112

quantum chemical descriptors. The authors used a dataset of 893 organic compounds and 113

developed multiple linear regression models using the partial least squares (PLS) method. 114

They compared their models with other models reported in the literature and found that 115

their models were more accurate in predicting the melting points of organic compounds. 116

Zhang et al. [49] developed QSPR models for predicting the melting points of organic 117

compounds based on molecular topology. The authors used a dataset of 1,427 organic 118

compounds and developed models using the neural network algorithm. They compared 119

their models with other models reported in the literature and found that their models 120

were more accurate in predicting the melting points of organic compounds. Naghipour 121

and Kiasat [50] developed a QSPR model for predicting the fullerene-like behavior of C60 122

derivatives using topological indices. The authors used a dataset of 46 C60 derivatives with 123

known fullerene-like behavior and developed a model using multiple linear regression. 124

They compared their model with other models reported in the literature and found that 125

their model had higher accuracy in predicting the fullerene-like behavior of C60 derivatives. 126

Wang and Xu [51] developed QSPR models for predicting the boiling points of alkyl alkanes 127

based on the novel vertex degree valence topological index. The authors used a dataset 128

of 388 alkyl alkanes and developed models using multiple linear regression and artificial 129

neural network methods. They compared their models with other models reported in the 130

literature and found that their models were more accurate in predicting the boiling points 131

of alkyl alkanes. 132

In our study, we apply curvilinear regression models to analyze the activity of fibrates 133

drugs based on their molecular descriptors. By incorporating non-linear relationships 134

between variables, we aim to enhance the accuracy and predictive power of QSAR models 135

for analyzing the activity of fibrates drugs. Ultimately, our research may contribute to 136

a better understanding of the molecular mechanisms underlying the activity of fibrates 137

drugs, and to the development of more effective treatments for dyslipidemia. These studies 138

demonstrate the usefulness of QSAR modeling and related techniques for predicting the 139

activity of various compounds based on their molecular descriptors. By building on this 140

previous work, we hope to further advance our understanding of the molecular mechanisms 141

underlying the activity of fibrates drugs. 142

The QSPR model is a highly effective tool for predicting a wide range of physicochemi- 143

cal properties of drugs. To make these predictions, the model employs degree-based indices 144

and distance-based topological indices (as detailed in Table 1). The properties considered 145

include Polarizability, Sum of electronic and zero-point Energies, Sum of electronic and 146

thermal Energies, Sum of electronic and thermal Enthalpies, Sum of electronic and thermal 147

Free Energies, Zero-point vibrational energy, Complexity, Topological polar area, Dipole 148

moment, Heat capacity, Molar entropy, and Octanol-water partition coefficients. To analyze 149

the relationships between these properties and the topological indices, curvilinear regres- 150

sion (linear, quadratic, and cubic) is utilized. The model generates statistical parameters 151

using SPSS and MATLAB statistical functions. In addition, DFT calculations are conducted 152
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at the B3LYP/6-31G(d,p) to gain insight into the optimized geometries, DOS plots, HOMO 153

and LUMO orbitals energies, and distribution of the four derivatives studied in the next 154

section. Section 3 examines the contributions of different topological indices as molecular 155

structural descriptors. Finally, Section 4 concludes the paper. 156

2. DFT Part 157

In Figures 1,2,3, and 4 four important characteristics of the four investigated Fi- 158

brate derivatives were indicated, included: (1) optimized geometries, (2) electron density 159

mapped with electrostatic potential (ESPM), (3) total density of states (DOS) plots, and 160

(4) the special distributions of the highest occupied molecular orbitals (HOMOs) and 161

the lowest unoccupied molecular orbitals (LUMOs). Density Functional Theory (DFT) 162

calculations of the investigated Fibrate derivatives utilized the one of the well-known 163

hybrid functionals, Becke, 3−parameter, Lee–Yang–Parr (B3LYP). In DFT, hybrid func- 164

tionals incorporate a portion of Hartree-Fock exchange, as well as extra exchange from 165

other sources (empirical/ab initio) to approximate the exchange-correlation energy. The 166

B3LYP as a representation of Hamiltonian term in Schrödinger equation was combined with 167

6− 31G(d, p) basis set as a representation of eigen-value wavefunction. It is a moderate 168

double zeta (ζ) basis set enlarged with two polarization basis functions, a d−function for 169

heavy atoms (Carbon, Oxygen, and chlorine), and a p-function for all Hydrogen atoms. 170

Most of the physicochemical properties of the investigated fibrate derivatives discussed in 171

next section were obtained from the frequency calculations carried out at the same level of 172

theory of optimization. Calculations were carried out using Gaussian 09 software suite [52]. 173

Visualizations of molecular structures were performed by using GaussView (version 5.0.8) 174

[53], ESPMs were drawn used the Avogadro package [54], and GaussSum program [55] was 175

used to DOS plots. ESPMs show how electron density is distributed in the four non-planar 176

molecules considering the electrostatic potentials, and this gives information about the 177

region in the molecule that has the highest or lowest electron density, and thus is most likely 178

to be attacked by electrophilic or nucleophilic agents. Keep in mind that the nucleophilic 179

and electrophilic attack regions are represented by blue (positively charged) and red colors 180

(negatively charged). The red color is concentrated on the more electronegative atoms such 181

as Oxygen (deep red) and chlorin atoms (light red), the blue color covered the Hydrogen 182

atoms (the least electronegative atoms), while the Carbon atoms are covered by white color 183

indicating intermediate electronegativity of Carbon atom. Thus, it is possible to determine 184

the position and region in a molecule attacked by an electrophile or nucleophile using 185

ESPMs. Molecule DOS plot indicates how many energy states electrons are allowed to 186

occupy in the system. The HOMO energies of the four investigated Fibrate derivatives are 187

−6.230,−6.108,−6.166, and −6.422 eV for Fenofibrate, Ciprofibrate, Bezafibrate, and Clofi- 188

brate, respectively. Since, the HOMO energy used as a measure of electron-donating power 189

of a molecule, destabilized HOMO (less negative) leads to more ability to donate electrons. 190

The ability of electron donation of the five derivatives can be arranged as follows: Ciprofi- 191

brate > Bezafibrate > Fenofibrate > Clofibrate. On the other hands, the LUMO energy 192

measures the ability of electron accepting of a molecule, more ability combined stabilized 193

LUMO (more negative). Therefore, the derivatives ability to accept electrons is: Fenofibrate 194

(−1.720 eV) > Bezafibrate (−1.220 eV) > Clofibrate (−0.461 eV) > Ciprofibrate (−0.457 195

eV). The energy gap (HOMO energy subtracted from LUMO energy) measures the chemi- 196

cal reactivity. Smaller gap is more reactive molecule, the reactivity of the four derivatives is: 197

Fenofibrate (4.51 eV) < Bezafibrate (4.95 eV) < Ciprofibrate (5.65 eV) < Clofibrate (5.96 198

eV). Finally, the 2D−special distribution of HOMO and LUMO orbitals is another indictor 199

of the position/region subjected to electrophilic and nucleophilic attack. The HOMO and 200

LUMO orbitals in Ciprofibrate are distributed on similar parts of molecule, except that 201

the two chlorine atoms have more HOMO character. Other molecules, HOMO orbitals 202

delocalized over different regions compared to the LUMO orbitals distribution. 203
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Figure 1. Fenofibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and
LUMOs.

Figure 2. Ciprofibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and
LUMOs.
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Figure 3. Bezafibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and
LUMOs.

Figure 4. Clofibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and LUMOs.
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3. Materials and Method 204

In this section, the overall objective is to establish a quantitative structure-property- 205

activity (QSPR) relationship between the various topological indices and some physic- 206

ochemical properties/activity of the Fibrates drugs under study in order to assess the 207

effectiveness of these drugs. Eleven degree-based and four distance topological indices 208

were used for modeling antiviral activity. Based on DMol3-optimized geometries for Fi- 209

brates drugs investigated. The version 8.0 of Material Studio from BIOVIA was used to 210

perform DFT calculations, which are as follows: Polarizability (P), Sum of electronic and 211

zero-point Energies (SEZPE), Sum of electronic and thermal Energies (SETEnergy), Sum 212

of electronic and thermal Enthalpies (SETEnthalpy), Sum of electronic and thermal Free 213

Energies (SETFEnergy), Zero-point vibrational energy (ZPVE), Complexity (C), Topologi- 214

cal polar area (TPA), Dipole moment (DM), Heat capacity (CV), Molar entropy (S), and 215

Octanol-water partition coefficients (XlogP3) of several drugs currently being investigated 216

for the treatment of high cholesterol which includes Fenofibrate, Ciprofibrate, Bezafibrate, 217

Clofibrate drugs. It is possible to use curvilinear regression analysis to fit curves instead 218

of straight lines, SPSS statistical software is used to analyze curvilinear regressions. As 219

described below, the independent variables in the curvilinear regression models are topo- 220

logical indices. Indicators derived from cholesterol-lowering drugs. Based on the equations 221

below, tests are conducted. 222

y = a + bx; n, R2, F, Se, SF (Linear equation)

y = a + b1x + b2x2; n, R2, F, Se, SF (Quadratic equation)

y = a + b1x + b2x2 + b3x3; n, R2, F, Se, SF (Cubic equation)

In this context, y represents the response or dependent variable, while a denotes the 223

regression model constant, and bi(i = 1, 2, 3) refers to the coefficients for each individual 224

descriptor. The independent variable is represented by x, and n signifies the number of 225

samples used in building the regression equation. R2 denotes the coefficient of determina- 226

tion, R signifies the correlation coefficient, F represents the calculated value of the Fischer 227

F−values test, Se denotes the standard error of estimate, and SF stands for F−significance. 228

It should be noted that when the experimental and theoretical results are in close proximity 229

to each other, the correlation coefficient approaches 1. To gauge the predictability of a 230

model, it is necessary to compare the observed values and the model predictions, for which 231

the Root Mean Square Error (RMSE) metric is used. The predictive quality of a model is 232

higher when the error or RMSE is lower, which is calculated as follows: 233

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where yi is the observed value of the independent variable in the test set, ŷi is the predicted 234

value of the independent variables in the test set, n is the number of samples in the test 235

topological indices serve as independent variables. To evaluate our initial model, we used 236

the RMSE metric and then normalized the data to enhance our predictions’ accuracy. We 237

measured the difference between predicted and actual values using the RMSE score, which 238

revealed that our model needed improvement. To address issues such as outliers and 239

varying scales of measurement that could negatively affect model performance, we applied 240

normalization techniques to our data. The normalization step was essential in improving 241

the model’s accuracy, as it scaled variables to a common range, reduced the impact of 242

outliers, and ensured that all variables were weighted equally. After normalization, we 243

re-evaluated the model using the RMSE metric, and the updated score showed a significant 244

improvement in our predictions’ accuracy. Computed topological indices values are shown 245

in Table 2. We compute the values using combinatorial computations and edge partitioning 246

as follows: the molecular graph of Fenofibrate has 25 vertices and 26 edges. Its edges can 247
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be partitioned as |E1,4| = 2, |E1,3| = 5, |E2,3| = 11, |E2,2| = 4, |E3,4| = 1, |E3,3| = 2, and 248

|E2,4| = 1. The molecular graph of Ciprofibrate has 18 vertices and 19 edges. Its edges 249

can be partitioned as |E2,2| = 2, |E1,4| = 4, |E2,4| = 2, |E1,3| = 2, |E2,3| = 6, |E1,4| = 2, and 250

|E1,3| = 1. The molecular graph of Bezafibrate has 25 vertices and 26 edges. Its edges can 251

be partitioned as |E1,3| = 4, |E2,3| = 11, |E2,2| = 6, |E3,3| = 1, |E2,4| = 1, |E3,4| = 1, and 252

|E1,4| = 2. The molecular graph of Fenofibrate has 16 vertices and 16 edges. Its edges can 253

be partitioned as |E1,3| = 2, |E2,3| = 6, |E1,2| = 1, |E2,2| = 3, |E3,4| = 1, |E1,4| = 2, and 254

|E2,4| = 1. Using MATLAB, it is possible to efficiently compute degree-based and distance- 255

based topological indices, as explained in Algorithm 1 and Algorithm 2. To calculate the 256

topological indices of molecules based on distance and degree, MATLAB utilizes various 257

mathematical expressions. The Fibrates family and the drugs under consideration, namely 258

Fenofibrate, Ciprofibrate, Bezafibrate, and Clofibrate, have been studied and are presented 259

in Table 3, including their experimental data [52] and optimized geometries obtained 260

through DFT calculations using the DMol3 module of Version 8.0 of Material Studio from 261

BIOVIA. Table 4 shows the correlation coefficient (R) between degree-based topological 262

indices and some physicochemical properties, computed using a linear regression model. 263

Quadratic regression model is used in Table 6 to calculate the correlation coefficient (R) 264

between these indices and some physicochemical properties. The cubic model is employed 265

for this purpose in Table 8. Similarly, for the distance-based topological indices, linear, 266

quadratic, and cubic regression models are utilized, and the results are presented in Table 267

10. Once the correlation coefficient for a physicochemical property is obtained, the model 268

with the maximum R becomes the most accurate predictor of the regression model. This 269

indicated in Tables 5, 7, 9 and 11. By leveraging the power of MATLAB, it is possible 270

to efficiently and accurately compute topological indices and use them to predict the 271

physicochemical properties of molecules, which can be incredibly useful in various fields, 272

including drug discovery and materials science. 273

Algorithm 1. Computational Procedure of calculation of degree-based indices 274

Input: Edges and nodes of molecule 275

Output: e← Topological indices vector 276

Step 1. Start 277

Step 2. G← Graph of undirected edges 278

Step 3. A← Adjacency matrix of G 279

Step 4. d← Distances of G 280

Step 5. d1 ← Vertex degree of G 281

Step 6. Calculate size of matrix d 282

Step 4. Construct AN : 283

for i = 1 to number of columns do 284

for j = 1 to number of rows do 285

if i = j then 286

AN(i, j) = 0 287

elseif A(i, j) = 1 then 288

AN(i, j) = d1(i) + d1(j) First Zagerb index 289

AN(i, j) = d1(i) ∗ d1(j) Second Zagerb index 290

AN(i, j) = (d1(i) + d1(j))2 Hyper Zagerb index 291

AN(i, j) =

√
d1(i) + d1(j)− 2
(d1(i) ∗ d1(j))

Atom Bond Connectivity index 292

AN(i, j) =
1√

d1(i) ∗ d1(j)
Randic index 293

AN(i, j) =

√
min(d1(i), d1(j))
max(d1(i), d1(j)

min-max rodeg index 294

AN(i, j) =

√
max(d1(i), d1(j))
min(d1(i), d1(j))

max-min rodeg index 295
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AN(i, j) = |d1(i)− d1(j)| Alberston index 296

AN(i, j) = (d1(i)− d1(j))2 Sigma index 297

AN(i, j) =
d1(i).d1(j)

d1(i)2 + d1(j)2 Inverse symmetric deg index 298

AN(i, j) =
d1(i).d1(j)

d1(i) + d1(j)
Inverse sum deg index 299

end if 300

end for 301

end for 302

Step 5. e = (summation of AN)/2. 303

Algorithm 2. Computational Procedure of calculation of distance-based indices 304

Input: Edges and nodes of molecule 305

Output: e← Topological indices vector 306

Step 1. Start 307

Step 2. G← Graph of undirected edges 308

Step 3. A← Adjacency matrix of G 309

Step 4. d← Distances of G 310

Step 5. d1 ← Vertex degree of G 311

Step 6. Calculate size of matrix d 312

Step 4. Construct AN : 313

for i = 1 to number of rows−1 do 314

aa = 0; 315

for j = i + 1 to number of columns do 316

aa = ∑ d(i, j) Wiener index 317

aa = ∑ d(i, j) ∗ (d1(i) + d1(j)) Schultz index 318

aa = ∑
1

d(i, j))
Harary index 319

aa = ∑ d(i, j)(d1(i) ∗ d1(j)) Gutman index 320

end for AN(i) = aa 321

end for 322

Step 5. e = summation of AN . 323

Table 2. Values of topological indices in Fibrates’ molecular structures

Topological index Fenofibrate Ciprofibrate Bezafibrate Clofibrate
M1(ζ) 126 98 124 76
M2(ζ) 143 115 139 84
H(ζ) 626 520 606 374
ABC(ζ) 19.1 14.12 19.03 11.78
R(ζ) 11.68 8.22 11.77 7.45
mMs−de(ζ) 20.44 14.19 20.864 12.33
Mms−de(ζ) 34.7 26.95 33.9693 21.79
irr(ζ) 30 28 28 20
σ(ζ) 54 60 50 38
ISDI(ζ) 10.92 7.5704 11.12 6.61
ISI(ζ) 28.59 21.4952 28.34 17.01
W(ζ) 1716 660 1882 468
S(ζ) 6872 2652 7600 1776
H(ζ) 87.5476 55.1468 84.5541 45.5162
Gut(ζ) 6846 2638 7650 1670
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Table 3. The physicochemical properties of potential drugs of Fibrates

Physicochemical properties Fenofibrate Ciprofibrate Bezafibrate Clofibrate
(DM) 3.98025 3.94641 3.01127 2.19815
(P) 164.27567 244.49533 232.43367 144.46
(SEZPE) −1649.62662 −1535.54779 −1551.61567 −1151.954
(SETEnergy) −1649.60875 −1535.52308 −1551.59139 −1151.93749
(SETEnthalpy) −1649.6078 −1535.52214 −1551.59044 −1151.93749
(SETFEnergy) −1649.67518 −1535.60609 −1551.6753 −1152.00027
(ZPVE) 155.46481 231.67184 225.46799 157.25221
(CV) 66.502 92.538 91.009 61.172
(S) 141.803 176.701 178.604 134.118
(XLogP3) 5.2 3.4 3.8 3.3
(C) 458 333 452 232
(TPA) 52.6 46.5 75.6 35.5

3.1. Results and Discussion 324

Fibrates drugs are predicted by numerous topological indices. In QSPR, linear, 325

quadratic, and cubic regression models are examined. Several topological indices are 326

calculated for Fibrates drugs, including vertex degree, and distance between vertices. The 327

models are analyzed using twelve descriptors and thirteen topological indices. Using linear 328

regression model a correlation coefficient (R) between these indices and some physico- 329

chemical properties can be seen in Table 4. In Table 6 using quadratic regression model a 330

correlation coefficient (R) between these indices and some physicochemical properties is 331

computed. When a correlation coefficient is obtained for a physicochemical property, the 332

model that has maximum R is the most accurate predictor of the regression model. In Table 333

4, we display maximum(R) for each physicochemical property, based upon the analysis of 334

the data (linear and quadratic). We have excluded values less than 0.64 from the Tables 4, 335

and 6, out of convenience. 336

Table 4. The correlation coefficient (R) obtained by linear regression model between topological
indices and physicochemical properties of various drugs of Fibrates.

T.I.

(SEZPE)
(SETEnergy)
(SETEnthalpy)
(SETFEnergy)

(XLogP3) (C) (TPA)

M1(ζ) −0.902 0.74 1 0.811
M2(ζ) −0.941 0.729 0.995 0.786
H(ζ) −0.89 0.771 0.998 0.791
ABC(ζ) −0.84 0.748 0.992 0.826
R(ζ) −0.765 0.746 0.967 0.826
mMs−de(ζ) −0.914 0.833 0.985 0.705
Mms−de(ζ) −0.796 0.758 0.978 0.819
irr(ζ) −0.999 0.647 0.887 −
σ(ζ) −0.848 − − −
ISDI(ζ) −0.669 0.736 0.922 0.805
ISI(ζ) −0.855 0.75 0.995 0.821

With linear regression models, the following Table 5 illustrates the most appropriate 337

topological index for estimating physicochemical properties. A diagram depicting this is 338

shown in Figure 5. 339
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Table 5. Linear regression models that give the best estimate for physicochemical

Linear regression model R2 F Se SF RMSE
SEZPE = −162.126− (49.436)irr(ζ) 0.999 1747.706 9.083 0.0005 6.4227673
XLogP3 = 0.226 + (0.128)mMs−de(ζ) 0.639 4.522 0.595 0.167 0.4953885
C = −113.023 + (4.545)M1(ζ) 1 13088.633 1.632 0.000076 1.1555164
TPA = −8.603 + (3.820)ABC(ζ) 0.682 4.293 16.390 0.174 8.2595015
TPA = −7.735 + (6.164)R(ζ) 0.683 4.308 11.667 0.174 8.2495412

Figure 5. Plots of Linear Regression Equations for the Best Physicochemical Properties Predicted by
Degree-based Topological Indices.

Table 6. The correlation coefficient (R) obtained by quadratic regression model between topological
indices and physicochemical properties of various drugs of Fibrates.

T.I. DM P ZPVE CV S XLogP3 C TPA

SEZPE
SETEnergy

SETEnthalpy
SETFEnergy

M1 0.850 0.881 0.803 0.848 0.820 0.807 1.000 0.811 0.979
M2 0.837 0.908 0.843 0.878 0.850 0.850 0.998 0.786 0.981
H 0.808 0.930 0.872 0.904 0.879 0.852 0.999 0.804 0.973
ABC 0.874 0.884 0.752 0.808 0.779 0.768 1.000 0.829 0.981
R 0.929 0.756 − 0.714 0.684 0.746 1.000 0.831 0.993
mMs−de 0.868 0.851 0.760 0.815 0.787 0.768 1.000 0.832 0.979
Mms−de 0.746 0.997 0.984 0.990 0.979 0.964 0.990 0.796 0.971
irr 0.894 0.995 0.998 0.999 0.999 0.983 0.893 0.712 1.000
σ 0.947 0.708 − 0.667 − 0.677 0.996 0.882 0.991
ISDI − − − − − 0.736 0.922 0.810 0.669
ISI 0.861 0.863 0.777 0.828 0.800 0.782 1.000 0.825 0.979
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Table 7 illustrate the best topological index which gives the best estimate for physico- 340

chemical properties using quadratic regression models, we only consider topological index 341

with R2 ≥ 0.8. A diagram depicting this is shown in Figure 6. 342

Table 7. Quadratic regression model that give the best estimate for physicochemical

Quadratic regression model R2 F Se SF RMSE
DM = −3.085 + (.171)σ− (0.001)σ2 0.897 4.360 0.473 0.321 0.4332951

P =
−1690.487 + (135.897)Mms−de

−(2.374)Mms−de
2 0.995 97.646 6.116 0.071 3.057903

ZPVE =
−2567.209 + (227.158)irr

−(4.547)irr2 0.996 135.526 4.387 .061 2.193392

CV =
−937.144 + (82.838)irr

−(1.646)irr2 0.999 339.909 1.081 0.038 0.540583

S =
−1283.246 + (117.601)irr

−(2.337)irr2 0.999 443.193 1.346 0.034 0.732681

XLogP3 = 0.0763irr2 − 3.6225irr + 45.25 0.965 6.644 0.283 0.265 0.141424

C =
−0.0020091M2

1 + 4.9546771M1
−133.0233134 1.000 4059.09 2.07 0.01 1.036262

C =
−22.6208403R2 + 485.9459637R

−2, 132.8797476 1.000 8639.90 1.42 0.01 0.710303

C =
−4.2704046mM2

s−de+
167.3955975mMs−de
−1, 182.6544670

0.999 811.32 4.63 0.02 2.317288

C =
−0.7828926ISI2 + 55.0686241ISI

−478.1259314 1.000 3041.59 2.39 0.01 1.297084

C =
0.0217651ABC2 − 0.9932150ABC

+161.4302698 0.999 155.21 10.58 0.06 5.291185

TPA = −0.2245σ2 + 22.318σ− 487.45 0.778 1.751 13.810 0.471 6.90523
SEZPE = −0.4068irr2 − 29.427irr− 400.68 0.999 558.642 11.362 0.030 5.68161

Figure 6. Plots of Quadratic Regression Equations for the Best Physicochemical Properties Predicted
by Degree-based Topological Indices.

Remark 1. Initially, linear regression was attempted on all physicochemical properties using degree- 343

based topological indices. Correlation coefficients were calculated for 7 out of 12 properties that 344
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showed satisfactory results, as presented in Table 4. For the remaining properties with correlation 345

coefficients less than 0.64, Table 6 explored alternative models. Five additional properties were 346

tested, and if their correlation coefficients exceeded 0.64, the quadratic regression model was used. 347

Note that some properties, such as Sum of the electronic and zero-point energies (SEZPE), Sum 348

of the electronic and thermal energies
(
SETEnergy

)
, Sum of the electronic and thermal enthalpies 349(

SETEnthalpy

)
, Sum of the electronic and thermal free energies

(
SETFEnergy

)
, have identical 350

correlation coefficients, and only (SEZPE) is listed in Tables 5 and 7. 351

The cubic model is used for all the physicochemical properties and degree-based 352

topological indices in order to provide a comprehensive analysis. Table 8 presents the 353

correlation coefficients, which are high as anticipated. Table 9 and Figure 7 display the best 354

predictions of the properties. 355

Table 8. The correlation coefficient (R) obtained by cubic regression model between topological
indices and physicochemical properties of various drugs of Fibrates.

T.I.

(
SETEnergy

)(
SETEnthalpy

)(
SETFEnergy

)
(SEZPE)

P C TPA XLogP3 S DM CV

M1 0.979 0.886 1.000 0.811 0.813 0.826 0.850 0.854
M2 0.981 0.915 0.998 0.786 0.859 0.858 0.837 0.885
H 0.973 0.939 0.999 0.806 0.863 0.890 0.808 0.914
ABC 0.981 0.846 1.000 0.829 0.769 0.782 0.874 0.810
R 0.994 0.756 1.000 0.831 0.746 0.684 0.934 0.714
mMs−de 0.979 0.854 1.000 0.832 0.769 0.791 0.868 0.819
Mms−de 0.971 0.999 0.991 0.806 0.973 0.985 0.746 0.994
irr 1.000 0.995 0.893 0.712 0.983 0.999 0.894 0.999
σ 0.992 0.708 0.998 0.882 0.689 0.645 0.948 0.667
ISDI 0.691 / 0.923 0.970 0.997 0.690 / 0.650
ISI 0.979 0.867 1.000 0.825 0.785 0.805 0.861 0.833
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Table 9. Cubic regression model that give the best estimate for physicochemical

Cubic regression model R2 F Se SF RMSE
SEZPE = −0.407irr2 − 29.427irr− 400.677 0.999 558.642 11.362 0.030 5.68160

P =
−0.0584988Mm3

s−de+

2.5776095Mm2
s−de−

1.62895Mms−de − 438.67733
1.000 361.397 3.185 0.037 0.00032

C =
−0.001M3

1 + 0.334M2
1−

27.881M1 + 915.803 1.000 4108.744 2.060 0.011 0.06846

C =
2.043ABC3 − 94.407ABC2

+1, 457.607ABC− 7, 177.748 1.000 1315.359 3.640 0.019 0.00024

C =
−1.502R3 + 18.604R2

+116.427R− 1.047.001 1.000 4237.196 0.641 0.003 0.00006

C =
1.637mM3

s−de − 81.094mM2
s−de

+1, 340.111mMs−de − 7, 031.15
1.000 811.323 4.635 0.025 0.00005

C =
0.159ISI3 − 11.343ISI2

+283.834ISI − 2, 095.506 1.000 3041.588 2.394 0.013 0.00052

TPA =
−51.090ISDI3 + 1, 488.36ISDI2

−14, 074.62ISDI + 42, 794.32 1.000 7.894 7.151 0.244 0.00003

S = −2.337irr2 + 117.599irr− 1283.215 0.999 443.193 1.346 0.034 0.67175

XLogP3 =
−0.900ISDI3 + 24.127ISDI2

−210.964ISDI + 603.459 0.900 85.350 0.116 0.076 0.00001

DM =
−0.002σ3 + 0.241σ2

−11.686σ + 186.850 1.000 4.396 0.471 0.320 0.00612

CV = −1.646irr2 + 82.849irr− 937.277 0.999 339.909 1.081 0.038 0.54094

Figure 7. Plots of Cubic Regression Equations for the Best Physicochemical Properties Predicted by
Degree-based Topological Indices.

Based on three curvilinear models, linear, quadratic, and cubic, the following Table 356

10, illustrates the correlation coefficient R for the four distance topological indices. The 357

next Table shows the most accurate prediction of the physicochemical properties based 358

on linear or quadratic models. It should be noted that the physicochemical properties: 359

Sum of the electronic and zero-point energies (SEZPE), Sum of the electronic and thermal 360

energies
(
SETEnergy

)
, Sum of the electronic and thermal enthalpies

(
SETEnthalpy

)
, Sum of 361

the electronic and thermal free energies
(
SETFEnergy

)
have the same correlation coefficients, 362
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which is why the (SEZPE) is the only one listed in Table 10. It is evident that the cubic 363

model is the optimal model to predict all physicochemical properties of Fibrates. Notice 364

that, we displayed the correlation coefficient in bold for the cubic model. Table 11 and 365

Figure 8 illustrated the best linear and quadratic model of distance-based topological 366

indices with the properties. 367

Table 10. The curvilinear models, along with the linear, quadratic, and cubic regression models, were
used to determine the correlation coefficient (R) between the physicochemical properties of various
Fibrates drugs and their distance topological indices..

P.P. W︸︷︷︸
Linear, Quadratic, cubic

S︸︷︷︸
Linear, Quadratic, cubic

H︸︷︷︸
Linear, Quadratic, cubic

Gut︸︷︷︸
Linear, Quadratic, cubic

DM 0.334, 0.991, 1 0.335, 0.989, 1 0.465, 0.750, 0.750 0.349, 0.997, 1
P 0.185, 0.332, 1 0.198, 0.321, 1 0.166, 0.958, 0.971 0.209, 0.383, 1
ZPVE 0.086, 0.152, 1 0.1, 0.144, 1 0.042, 0.908, 0.950 0.108, 0.205, 1
CV 0.207, 0.297, 1 0.221, 0.292, 1 0.177, 0.937, 0.954 0.230, 0.345, 1
S 0.258, 0.305, 1 0.272, 0.306, 1 0.220, 0.917,0.936 0.280, 0.348, 1
SEZPE 0.731, 0.977, 1 0.734, 0.976, 1 0.807, 0, 950, 0.950 0.744, 0.986, 1
XLogP3 0.696, 0.819, 1 0.688, 0.819, 1 0.789, 0.839, 0.859 0.690, 0.793, 1
C 0.954, 0.995, 1 0.955, 0.996, 1 0.979, 0.999, 0.999 0.960, 0.998, 1
TPA 0.859, 0.876, 1 0.866, 0.885, 1 0.790, 0.854, 0.856 0.867, 0.881, 1

Table 11. The linear and quadratic regression models provide the most accurate predictions for the
physicochemical properties.

Linear andQuadratic
best regression model R2 F Se SF RMSE

DM =
−2.010 + (0.003)Gut
−
(
3.239E−7)Gut2 0.994 84.508 0.113 0.077 0.9007267

P = −1200.200 + (44.294)H − (0.326)H2 0.918 5.597 24.537 0.286 12.239175

ZPVE =
−925.184 + (35.716)H

−(0.265)H2 0.824 1.252 30.377 0.534 15.16917

CV = −371.268 + (14.228)H − (0.105)H2 0.878 3.585 9.869 0.350 4.9268046
S = −463.186 + (19.618)H − (0.144)H2 0.840 2.634 16.012 0.399 7.9943483

SEZPE =
−354.281− (0.591)Gut

+
(
5.778E−5)Gut2 0.972 17.347 63.547 0.167 36.510223

XLogP3 = 9.019− (0.202)H + (0.002)H2 0.704 1.188 0.827 0.544 0.413171
C = −615.681 + (25.600)H − (0.153)H2 0.999 475.806 6.051 0.032 3.0262032
C = 26.598 + (5.018)H 0.958 45.340 27.142 0.021 19.193309
TPA = 49.861− (0.008)S +

(
1.334E−6)S2 0.783 1.799 13.664 0.466 6.9466441

TPA = 29.462 + (0.005)Gut 0.751 6.031 10.340 0.133 7.3111917

The physicochemical properties of Fibrates drugs and their corresponding degree- 368

based and distance-based topological indices were analyzed using three curvilinear models: 369

linear, quadratic, and cubic. The aim was to determine the most accurate correlation 370

coefficient for the properties studied. 371

Table 4 shows the correlation coefficients (R) obtained by a linear regression model 372

between various topological indices and physicochemical properties of Fibrates drugs. The 373

topological indices include degree-based topological indices. The results show that the 374

correlation coefficients vary across the different topological indices and physicochemical 375

properties. Positive correlation indicates two variables that tend to move strongly in 376

opposite directions, while negative correlation indicates two variables that move strongly 377

in opposite directions. In particular, for the first Zagreb index M1(ζ) the correlation 378

coefficient lies between 0.740 and 1, with the best prediction for complexity (C) being 1. 379

For the second Zagreb index M2(ζ) the range of the correlation coefficient is 0.729 ≤ R ≤ 380
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Figure 8. Plots of Linear and Quadratic Regression Equations for the Best Physicochemical Properties
Predicted by Distance-based Topological Indices.

−0.941 which indicates high prediction of all physicochemical properties under study. The 381

highest correlation coefficient values were observed for the (SEZPE) property with values 382

ranging from 0.887 to 0.998, followed by the (TPA) index with values ranging from 0.786 to 383

0.826. The other topological indices showed weaker correlations with the physicochemical 384

properties, with correlation coefficients ranging from 0.647 to 0.967 for the remaining 385

indices. Table 5 provided lists five linear regression models and their corresponding R2 and 386

RMSE values. R2, or coefficient of determination, is a measure of how well the independent 387

variables in a linear regression model explain the variation in the dependent variable. It 388

ranges from 0 to 1, with 1 indicating a perfect fit. RMSE, or root mean squared error, 389

is a measure of how well the regression model’s predictions match the actual values. It 390

represents the average distance between the predicted and actual values, and lower values 391

indicate better accuracy. All five models have relatively high R2 values, indicating that 392

they explain a significant amount of the variation in the dependent variable. The lowest 393

R2 value is 0.639, which is still considered a relatively good fit. However, the models have 394

different levels of prediction accuracy as measured by RMSE. The XLogP3 with Min-max 395

rodeg index mMs−de(ζ) index model has the lowest RMSE value of 0.495, which suggests 396

that it has the most accurate predictions among the five models. The C model with first 397

Zagreb index M1 has the second lowest RMSE value of 1.156, followed by the SEZPE 398

model with an RMSE of 6.423. The TPA(ABC index) and TPA(R index) models have the 399

highest RMSE values of 8.260 and 8.250, respectively, indicating that their predictions are 400

the least accurate among the five models. In summary, while all five models have relatively 401

high R2 values indicating good fit to the data, the XLogP3 model is the most accurate based 402

on its low RMSE value, followed by the C and SEZPE models, and then the TPA (ABC 403

index) and TPA (R index) models, which have the highest RMSE values. 404

Table 6 presents the correlation coefficients (R) obtained by a quadratic regression 405

model between topological indices and physicochemical properties of various drugs of 406

Fibrates. Upon analyzing the data in Table 6, several noteworthy findings can be observed. 407

Firstly, many of the correlation coefficients (R) are relatively high, indicating a strong 408

linear relationship between the topological indices and physicochemical properties of the 409

Fibrates drugs. For instance, σ(ζ) has a high correlation coefficient of 0.947 with (DM), 410
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indicating a strong positive linear relationship between these two variables. Similarly, 411

Mms−de(ζ) has a high correlation coefficient of 0.997 with (P), suggesting a strong positive 412

linear relationship between these variables as well. Furthermore, some of the correlation 413

coefficients are close to 1, indicating a perfect positive linear relationship between the 414

variables. For example, M1, ABC, R, mMs−de, and ISI indices have a correlation coefficient 415

of 1.000 with (C), suggesting a perfect positive linear relationship between these two 416

variables. Similarly, irr index has a correlation coefficient of 1.000 with SEZPE,SETEnergy, 417

SETEnthalpy, and SETFEnergy, indicating a perfect positive linear relationship between these 418

variables. On the other hand, some correlation coefficients are relatively low, indicating a 419

weak linear relationship between the variables. For instance, ISDI index has a correlation 420

coefficient less than 0.64 for most of the properties exept for (C) (R = 0.922) and (TPA) 421

(R = 0.882), suggesting a weak positive linear relationship between these two variables. It 422

is also interesting to note that we don’t have any negative values which would indicating an 423

inverse relationship between the variables. In addition, some of the correlation coefficients 424

are moderate, suggesting a moderate linear relationship between the variables. For instance, 425

(TPA) has a correlation coefficient of (0.712 ≤ R ≤ 0.882), indicating a moderate positive 426

linear relationship between these variables. Overall, the findings from Table 6 suggest 427

that there are varying degrees of linear relationships between the topological indices and 428

physicochemical properties of Fibrates drugs. Some of the relationships are strong, while 429

others are weak or moderate. Looking at Table 7, we see that all five models for Complexity 430

property (C) have high R2 values, with the lowest being 0.999 and the highest being 1.000. 431

This suggests that all five models are good at explaining the variation in the physicochemical 432

property they are modeling. The second thing to consider is the RMSE value, a lower 433

RMSE value indicates that the model has a better fit. In this table, we can see that the 434

RMSE values range from 0.710303 to 5.291185. The model with the lowest RMSE value is 435

the second model: C = −22.6208403R2 + 485.9459637R− 132.8797476 for the Randic index. 436

This indicates that this model has the best fit for estimating the physicochemical property. 437

However, it is important to note that all five models have high R2 values, suggesting that 438

they all provide good estimates for the physicochemical property. After analyzing the table, 439

we found that there are five quadratic regression models with both high R2 values and low 440

RMSE values. The quadratic regression model for S has a high R2 value of 0.999 and a low 441

RMSE value of 0.732681, making it one of the best models in terms of accurately predicting 442

the target variable. The other models are for (ZPVE), (CV), (SEZPE), and (P). The model 443

for (ZPVE) has an R2 value of 0.996 and an RMSE of 2.193392, the model for (CV) has 444

an R2 value of 0.999 and an RMSE of 0.540583, the model for (SEZPE) has an R2 value 445

of 0.999 and an RMSE of 5.68161, and the model for (P) has an R2 value of 0.995 and an 446

RMSE of 3.057903. These models can be considered the best in terms of their ability to fit 447

the data and accurately predict the target variable. 448

Table 8 presents the correlation coefficient (R) obtained by cubic regression models 449

between topological indices and physicochemical properties of various drugs of fibrates. 450

Looking at the table, we can see that the range of correlation coefficient varies for each row. 451

For instance, the correlation coefficient for the row of the first Zagreb index (M1) ranges 452

from 0.811 to 1.0, while for the row Inverse symmetric deg index (ISDI), the correlation 453

coefficient ranges from 0.650 to 0.970. Overall, most of the correlation coefficients are 454

relatively high, with many of them being close to 1.0. This suggests a strong correlation 455

between the topological indices and the physicochemical properties of the drugs of fibrates. 456

The high correlation coefficients could indicate that the topological indices could be used 457

to predict the physicochemical properties of the drugs with high accuracy. Based on 458

the Table 9, it appears that the cubic regression model provides the highest correlation 459

coefficients for most of the topological indices and physicochemical properties of Fibrates 460

drugs. The range of correlation coefficients for each row varies, but in general, they 461

are relatively high, indicating a strong relationship between the topological indices and 462

physicochemical properties. Furthermore, the high correlation coefficients suggest that 463

the cubic regression model is an effective tool for predicting physicochemical properties 464
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based on the topological indices of Fibrates drugs. Overall, the results of the table suggest 465

that the cubic regression model is the best choice for analyzing the relationship between 466

topological indices and physicochemical properties in Fibrates drugs. based on Table 9, 467

we can analyze the four topological indices with respect to high R2 and minimum RMSE. 468

(XLogP3) (RMSE = 0.00001, R2 = 0.900) indicating a strong correlation between the 469

physicochemical properties and this index. Additionally, its RMSE value of 0.00001 is also 470

very low, suggesting that the predicted values using this index are very close to the actual 471

values. (TPA) (RMSE = 0.00003, R2 = 1.000) indicating a perfect correlation with the 472

physicochemical properties. 473

By deep looking at Table 10, considering only the distance-based topological indices, 474

we can notice that the model which gives the highest correlations with all the investigated 475

physicochemical properties of Fibrate drugs is the cubic model. Since the correlation coeffi- 476

cients range from 0.750 to 1.000. In the second place is the quadratic model, since it gives 477

good correlations with most of these properties, the correlation coefficients range from 478

0.750 to 0.999. While the linear model comes in the third place, shows good correlation but 479

with the least number of properties, the correlation coefficients range 0.688 to 0.979. An 480

important note, in most cases, that the linear and quadratic models give comparable corre- 481

lation coefficients, while there is a significant improvement in the correlation coefficients 482

when the cubic model is used for most of properties. For instance, for the polarizability 483

(P) property estimated using wiener index, correlations are comparable, R = 0.185 and 484

R = 0.322 for the linear and quadratic models, respectively, and it improves to 1 with the 485

cubic model. As a result, we should consider our model type when dealing with such 486

properties. Generally speaking, the four properties at the end of Table 10 are estimated very 487

well with the three models compared to the first five properties in the table. The complexity 488

(C) property can be best estimated using the various models, since the correlations with 489

each model reach ∼ 1. The topological polar area (TPA) can be nominated as the second- 490

best estimated property by the three models, followed by Sum of electronic and zero-point 491

Energies (SEZPE) property. Conversely, the zero-point vibrational energy (ZPVE) and 492

heat capacity (CV) properties seems to be the least properties which can be estimated 493

correctly using the two models (linear and quadratic), the correlations not exceeded 0.345, 494

the exception is the quadratic model of the hyper Zagreb index H(ζ), R = 0.824 and 495

0.937, respectively. Based on the RMSE values given in Table 11, the three best predictors 496

with the lowest RMSE values are: Linear Regression (DM = −2.010 + (0.003)Gut) with 497

RMSE = 0.9007, Quadratic Regression (P = −1200.200 + (44.294)H − (0.326)H2) with 498

RMSE = 12.2392, and Curvilinear Regression (XLogP3 = 9.019− (0.202)H + (0.002)H2) 499

with RMSE = 0.4131. These three regression models exhibit the lowest RMSE values, indi- 500

cating higher accuracy and better predictive performance compared to the other regression 501

models. Therefore, these three regression models, namely linear, quadratic, and curvilinear, 502

can be considered as the best predictors for enhancing the analysis of fibrates drug activity 503

through molecular descriptors in this study. Therefore, based on the results obtained, it 504

can be concluded that the cubic and quadratic regression models are the top predictors 505

for the physicochemical properties analyzed in this investigation, as they exhibit both 506

high R2 values and minimum RMSE values simultaneously. These findings highlight the 507

effectiveness of these regression models in enhancing the analysis of fibrates drug activity 508

through molecular descriptors and provide valuable insights for future research in this 509

area. 510

4. Conclusion 511

Based on our comprehensive analysis, we have demonstrated that the use of curvi- 512

linear regression models can significantly enhance the analysis of fibrates drug activity 513

through molecular descriptors. Our results have revealed that these models have superior 514

predictive power compared to linear regression models, especially when the underlying 515

data exhibits nonlinear relationships. Furthermore, the incorporation of molecular descrip- 516

tors as independent variables has substantially improved the accuracy and robustness of 517
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the models. Our findings have several important implications for the field of drug dis- 518

covery and development. Firstly, the use of curvilinear regression models, in conjunction 519

with molecular descriptors, can facilitate the identification and optimization of more potent 520

and selective drugs, thus reducing the time and cost associated with drug development. 521

Secondly, our study underscores the importance of considering nonlinear relationships 522

between molecular descriptors and drug activity, which has traditionally been overlooked 523

in conventional linear regression analyses. Lastly, the efficacy of curvilinear regression 524

models and molecular descriptors in predicting drug activity may be extended to other 525

drug classes and further elucidated through future studies. In summary, our investiga- 526

tion demonstrates that curvilinear regression models represent a powerful approach for 527

analyzing drug activity, particularly when coupled with molecular descriptors. Our re- 528

sults provide a basis for the development of improved drug discovery pipelines and offer 529

insights into the molecular mechanisms governing drug activity. 530
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