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Demonstration of Silicon Nitride Optical Waveguide

Parametric Amplifiers Integrated with Graphene
Oxide Films

David J. Moss

Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

Abstract: Optical parametric amplification (OPA) represents a powerful solution to achieve broadband
amplification in wavelength ranges beyond the scope of conventional gain media, for generating high-power
optical pulses, optical microcombs, entangled photon pairs and a wide range of other applications. Here, we
demonstrate optical parametric amplifiers based on silicon nitride (SisN4) waveguides integrated with two-
dimensional (2D) layered graphene oxide (GO) films. We achieve precise control over the thickness, length,
and position of the GO films using a transfer-free, layer-by-layer coating method combined with accurate
window opening in the chip cladding using photolithography. Detailed OPA measurements with a pulsed
pump for the fabricated devices with different GO film thicknesses and lengths show a maximum parametric
gain of ~24.0 dB, representing a ~12.2 dB improvement relative to the device without GO. We perform a
theoretical analysis of the device performance, achieving good agreement with experiment and showing that
there is substantial room for further improvement. This work demonstrates a new way of achieving high
photonic integrated OPA performance by incorporating 2D materials.

Keywords: integrated photonics; nonlinear optics; optical parametric process; 2D materials

Introduction

Optical amplifiers are key to many applications'? such as optical communications where they
have been instrumental with rare-earth-doped fibers*¢ and III-V semiconductors’. However, these
devices are restricted to specific wavelength ranges determined by the energy gaps between states’'0.
In contrast, optical parametric amplification (OPA) can achieve gain across virtually any wavelength
range''2, and so is capable of achieving broadband optical amplification outside of conventional
wavelength windows!113, Since its discovery in 1965, OPA has found applications in many fields
such as ultrafast spectroscopy'>1¢, optical communications>'3, optical imaging!”8, laser processing!%%,
and quantum optics?'2. Notably, it has underpinned many new technological breakthroughs such as
optical microcombs?2* and entangled photon pairs?2.

To achieve OPA, materials with a high optical nonlinearity are needed — either second- (x®) or
third-order (x®) nonlinearities?”?, and has been demonstrated in birefringent crystals »-3, optical
fibers103233, and photonic integrated chips!?24343%. Amongst these, photonic integrated chips offer the
advantages of a compact footprint, low power consumption, high stability and scalability, as well as
cost reduction through large-scale manufacturing?-38. Despite silicon’s dominance as a platform for
linear photonic integrated devices®%, its significant two photon absorption (TPA) in the near infrared
wavelength region and the resulting free carrier absorption lead to a high nonlinear loss®?’, making
it challenging to achieve any significant OPA gain in this wavelength range. Other nonlinear
integrated material platforms, such as silicon nitride (SisN4)!#!, silicon rich nitride**, doped silica®*,
AlGaAs*4, chalcogenide¥*, GaP¥, and tantala®, exhibit much lower TPA at near infrared
wavelengths and have made significant progress over the past decade. However, their comparatively
low third-order optical nonlinearity imposes a significant limitation on the OPA gain that they can
achieve.

Recently, two-dimensional (2D) materials with ultrahigh optical nonlinearities and broadband
response have been integrated on photonic chips to achieve exceptional nonlinear optical
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performance?51-%4, highlighted by the progress in realizing OPA by exploiting the high second-order
optical nonlinearities of monolayer transition metal dichalcogenides (TMDCs)?. Previously®%, we
reported an ultra-high third-order optical nonlinearity in 2D graphene oxide (GO) films that is about
4 orders of magnitude larger than silicon, together with a large bandgap (> 2 eV) that yields a linear
loss more than 2 orders of magnitude lower than graphene, and perhaps most importantly, low TPA
at near infrared wavelengths — all of which are key to achieving high OPA. In addition, GO has
demonstrated high compatibility with various integrated platforms 238, along with the capability to
achieve precise control over its film thickness and length%0,

In this work, we demonstrate significantly increased optical parametric gain in SisNa
waveguides by integrating them with 2D layered GO films. We employ a transfer-free, layer-by-layer
coating method to achieve precise control over the GO film thickness, and by using photolithography
to open windows in the waveguide cladding we are able to accurately control the GO film length and
position. We perform a detailed experimental characterization of the OPA performance of the devices
with different GO film thicknesses and lengths, achieving a maximum parametric gain of ~24.0 dB,
representing a ~12.2 dB improvement over the uncoated device. By fitting experimental results with
theory, we analyse the influence of the applied power, wavelength detuning, and GO film thickness
and length on the OPA performance, and in the process demonstrate that there is still significant
potential for improved performance. These results verify the effectiveness of the on-chip integration
of 2D GO films to improve the OPA performance of photonic integrated devices.

Experimental results

GO properties. Figure 1(a) illustrates the atomic structure and bandgap of GO, which is a
derivative of graphene. Unlike graphene, which consists solely of sp>-hybridized carbon atoms, GO
contains various oxygen-containing functional groups (OCFGs) such as hydroxyl, carboxyl, and
carbonyl groups'?. Some of the carbon atoms in GO are sp3-hybridized through o-bonding with the
OCFGs, resulting in a heterogeneous structure. In contrast to graphene, which has a zero bandgap,
GO has an opened bandgap resulting from the isolated sp? domains within the sp?> C—-O matrix. The
bandgap of GO typically falls between 2.1 eV and 3.6 eV3, resulting in both low linear light
absorption and low nonlinear TPA at near-infrared wavelengths that are attractive for nonlinear
optical applications®. Moreover, the material properties of GO can be tuned by manipulating the
OCFGs to engineer its bandgap, which has enabled a range of photonic, electronic, and optoelectronic
applications!2.

Figure 1(b) illustrates the principle of signal amplification based on an optical parametric
process®.. In this process, when pump and idler photons travel collinearly through a nonlinear optical
medium, a pump photon excites a virtual energy level. The decay of this energy level is stimulated
by a signal photon, resulting in the emission of an identical second signal photon and an idler photon,
while conserving both energy and momentum. In processes that involve optical absorption, such as
photoluminescence and TPA, real photogenerated carriers are involved, which can alter the quiescent
material nonlinear response’??”. In contrast, the optical parametric process operates by virtual
excitation of carriers without creating photogenerated carriers. This makes it quasi-instantaneous,
with ultrafast response times on the order of femtoseconds'*. We note that although the parametric
gain itself is almost instantaneous, when influenced by nonlinear absorption with much slower
recovery times such as that induced by free carriers in silicon”, the net parametric gain can
accordingly have a slow time response component.
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Figure 1. (a) Schematic of GO’s atomic structure and bandgap. The colorful balls in the atomic
structure represent the diverse oxygen-containing functional groups (OCFGs). (b) Schematic of signal
amplification based on optical parametric process. (c) Schematic of a SisN4 waveguide integrated with
a single layer GO film. (d) Microscopic image of the fabricated SisN4 integrated chip coated with a
single layer GO film. (e) Measured Raman spectrum of the GO-coated SisNa chip in (d). (f) Dispersion
(D) of the uncoated waveguide (GO-0) and hybrid waveguides with 1 and 2 layers of GO (GO-1, GO-
2). Inset shows TE mode profile of the SisN4 waveguide integrated with a single layer GO film.

Device design and fabrication. Figure 1(c) illustrates the schematic of a SisN: waveguide
integrated with a single layer GO film. Compared to silicon that has a small (indirect) bandgap of
~1.1 eV?, SisNs has a large bandgap of ~5.0 eV that yields low TPA in the near-infrared region. To
enable the interaction between the GO film and the evanescent field of the waveguide mode, a portion
of the silica upper cladding was removed to allow for the GO film to be coated on the top surface of
the SisN4 waveguide. Figure 1(d) shows a microscopic image of the fabricated SisN4 chip integrated
with a single layer GO film. The successful coating of the GO film is confirmed by the presence of the
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representative D (1345 cm™) and G (1590 cm™) peaks in the measured Raman spectrum, as shown in
Figure 1(e). First, we fabricated low-loss SisNs waveguides via CMOS-compatible processes (see
Methods). Next, we coated the waveguides with 2D GO films using a transfer-free, solution-based
coating method (see Methods). This approach allows for large-area, layer-by-layer film coating with
high repeatability and compatibility with various integrated material platforms'23$62, The thickness
of the GO film, characterized via atomic force microscopy measurements, was ~2 nm. The high
transmittance and excellent morphology of the fabricated device demonstrate that our GO coating
method, based on self-assembly via electrostatic attachment, can achieve conformal film coating in
the window opening area without any noticeable wrinkling or stretching. This offers advantages
compared to film transfer techniques commonly used for coating other 2D materials like graphene
and TMDCs®. The length and position of the GO films can be easily controlled by adjusting the length
and position of the windows opened on the silica upper cladding, which provides high flexibility for
optimizing the performance of the hybrid waveguides by altering the GO film parameters.

Figure 1(f) shows the dispersion D of the uncoated waveguide and the hybrid waveguides with
1 and 2 layers of GO, calculated with commercial mode solving software using the materials’
refractive indices measured by spectral ellipsometry. The SisN4 waveguides in all these devices had
a cross section of 1.60 um x 0.72 um, and the inset in Figure 1(f) depicts the transverse electric (TE)
mode profile of the hybrid waveguide with 1 layer of GO. The interaction between the highly
nonlinear GO film and the waveguide’s evanescent field enhances the nonlinear optical response of
the hybrid waveguide, which is the foundation for improving the OPA performance. We selected TE-
polarization for our subsequent measurements since it supports in-plane interaction between the
waveguide’s evanescent field and the GO film, which is much stronger than the out-of-plane
interaction due to the significant optical anisotropy in 2D materials®¢4. In Figure 1(f), it can be
observed that all three waveguides exhibit anomalous dispersion, which is crucial for reducing phase
mismatch and improving the parametric gain in the optical parametric process. Upon incorporating
1 layer of GO, the hybrid waveguide shows a slightly increased anomalous dispersion compared to
waveguides without GO. For the hybrid waveguides with 2 layers of GO, the anomalous dispersion
is further enhanced.

Loss measurements. The coating of GO films onto SisN4 waveguides introduces extra linear and
nonlinear loss. Before the OPA measurements, we used the experimental setup in Figure S1 of the
Supplementary Information to characterize the linear and nonlinear loss of the fabricated devices.
Fiber-to-chip coupling was achieved via lensed fibers butt coupled to inverse-taper couplers at both
ends of the SisN4 waveguides. The coupling loss was ~4.2 dB / facet. We measured three devices,
including the uncoated SisNs waveguide and hybrid waveguides with 1 and 2 layers of GO. The SisNa
waveguides in these devices were all ~20 mm in length, while for the hybrid waveguides, windows
with a length of ~1.4 mm were opened at a distance of ~0.7 mm from the input port. In our following
discussion, the input light power quoted refers to the power coupled into the devices, with the fiber-
to-chip coupling loss being excluded.

The linear loss was measured using continuous-wave (CW) light with a power of ~1 mW. Figure
2a shows the insertion loss of the fabricated devices versus wavelength. All devices exhibited nearly
a flat spectral response, which suggests the absence of any material absorption or coupling loss that
would generate a strong wavelength dependence. By using a cut-back method®, we obtained a
propagation loss of ~0.5 dB/cm for the SisNs+waveguides buried in silica cladding. By comparing the
SisNs waveguides with and without opened windows in the silica cladding, we deduced a higher
propagation loss of ~3.0 dB/cm for the SisNswaveguides in the opened window area, which can be
attributed to the mitigating effect of the silica cladding on the SisN4 surface roughness. Finally, using
these values and the measured insertion loss of the hybrid waveguides, we extracted an excess
propagation loss induced by the GO films of ~3.1 dB/cm and ~6.3 dB/cm for the 1- and 2-layer devices,
respectively. Such a loss induced by the GO films is about 2 orders of magnitude lower than SisNa
waveguides integrated with graphene films®¢7, which can be attributed to the large bandgap of GO,
resulting in low light absorption at near infrared wavelengths. This is a crucial advantage of GO in
OPA applications where low loss is required to achieve a high net parametric gain.
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Figure 2. Experimental results for loss measurements. (a) Measured insertion loss versus wavelength
of input continuous-wave (CW) light. The input CW power is ~1 mW. (b) Measured insertion loss
versus input CW power. The input CW wavelength is ~1550 nm. (c) Measured insertion loss versus
peak power Ppek of 180-fs optical pulses. (d) Excess propagation loss induced by SA of GO ASA versus
Ppeax extracted from (c). In (a) — (d), the curves for GO-0, GO-1, and GO-2 show the results for the
uncoated SisN4 waveguides, and the hybrid waveguides with 1 and 2 layers of GO, respectively.

Figure 2b shows the measured insertion loss versus input CW power at a wavelength of ~1550
nm. All devices showed no significant variation in insertion loss when the power was below 30 mW,
indicating that the power-dependent loss induced by photo-thermal changes in the GO films was
negligible within this range. This observation is consistent with our previous results where photo-
thermal changes were only observed for average powers above 40 mW?368,

The measurement of nonlinear loss was conducted using a fiber pulsed laser (FPL) capable of
generating nearly Fourier-transform limited femtosecond optical pulses centered around 1557 nm.
The pulse duration and repetition rate were ~180 fs and ~60 MHz, respectively. Figure 2c shows the
measured insertion loss versus pulse peak power Ppet. The average power of the femtosecond optical
pulses was adjusted using a variable optical attenuator, ranging from 0.32 mW to 1.94 mW, which
corresponds to peak powers ranging from 30 W to 180 W. The insertion loss of the hybrid waveguides
decreased as the pulse peak power increased, with the 2-layer device exhibiting a more significant
decrease than the 1-layer device. In contrast, the insertion loss of the uncoated SisNs+ waveguide
remained constant. These results reflect that the hybrid waveguides experienced saturable absorption
(SA) in the GO films, consistent with observations in waveguides incorporating graphene®®.
Additionally, we note that the loss changes observed were not present when using CW light with
equivalent average powers. This suggests that the changes are specifically induced by optical pulses
with high peak powers. In GO, the SA can be induced by the bleaching of the ground states that are
associated with sp? orbitals (e.g., with an energy gap of ~0.5 eV%) as well as the defect states. Figure
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2d shows the SA-induced excess propagation loss (ASA) versus pulse peak power Ppek, which was
extracted from the result in Figure 2¢, with the linear propagation loss being excluded. The negative
values of ASA indicate that there is a decrease in loss as the peak power increases in the SA process.
Such decrease in loss is beneficial for increasing the pump peak power in the OPA process, which
helps improve the parametric gain.

OPA experiments. We conducted OPA experiments using the same devices that were fabricated
and used for the loss measurements. A schematic of the experimental setup is shown in Figure 3. To
generate the pump light required for the OPA experiments, we employed the same FPL that was
used for the loss measurements. On the other hand, the signal light was generated through
amplification of the CW light from a tunable laser. The pulsed pump and the CW signal were
combined by a broadband 50:50 coupler and sent to the device under test (DUT) for the optical
parametric process. The polarization of both signals was adjusted to TE polarized using two
polarization controllers (PCs). To adjust the power of the pulsed pump, a broadband variable optical
attenuator (VOA) was utilized. The output after propagation through the DUT was directed towards
an optical spectrum analyzer (OSA) for analysis.

CW laser EDFA BPF PC

Optical path Electrical path |

A ~0 )

\ ~0C N 4
- \/_\Q (/i
L I PC
VOA

- - 50:50
FPL coupler
ccDh Optical [
camera isolator 1$
—_—
Computer

e

N

DUT

Figure 3. Experimental setup for OPA experiments. CW laser: continuous-wave laser. FPL: fiber
pulsed laser. PC: polarization controller. EDFA: Erbium doped fiber amplifier. VOA: variable optical
attenuator. OPM: optical power meter. DUT: device under test. CCD: charged-coupled device. OSA:
optical spectrum analyzer.

Figure 4a shows the optical spectra after propagation through the uncoated SisNs: waveguide
and the hybrid waveguides with 1 and 2 layers of GO. For all three devices, the input pump peak
power and signal power were kept the same at Ppeat = ~180 W and Psigna= ~6 mW, respectively. As the
pump light used for the OPA experiments was pulsed, the optical parametric process occurred at a
rate equivalent to the repetition rate of the FPL. As a result, both the generated idler and amplified
signal also exhibited a pulsed nature with the same repetition rate as that of the FPL. The optical
spectra in Figure 4a were analyzed to extract the parametric gain PG experienced by the signal light
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for the three devices (see Methods). The PG for the uncoated SisNs: waveguide and the hybrid
waveguides with 1 and 2 layers of GO were ~11.8 dB, ~20.4 dB, and ~24.0 dB, respectively. The hybrid
waveguides exhibited higher parametric gain compared to the uncoated waveguide, and the 2-layer
device had higher parametric gain than the 1-layer device. These results confirm the improved OPA
performance in the SisNs« waveguide by integrating it with 2D GO films. We also note that the hybrid
devices showed greater spectral broadening of the pulsed pump caused by self-phase modulation
(SPM), which is consistent with our previous observations from SPM experiments¥.

Zoom in
= /N signall
)
T 40 ]
s =
& -50- - "-E-
& Idler | 5
2 T
E -60- 1w
- .
-70 . , o o ¥ o TO°8
1530 1540 1550 1560 1570 1580 1 nm / div
(a) Wavelength (nm)
30, IZgo|rn ‘in‘
@ 401
g | >
‘» -901 : “ Idler —————— =
2 : _ o [ o~
g -60_/ Ppeak =S0W j \/\/\‘_El_‘i‘ E
g —— P a = 100 W ] 2
0 ——Ppea = 180 W
1530 1540 1550 1560 1570 1580  1nm/div
(b) Wavelength (nm)
251 —@—GO-0 124
—Q— GO-1
201 9—GO0-2
—_ —_— 9,
Q15 &
E S
O 6.
© 10 3
51 3 —— GO-1
—@— GO-2
O o
30 60 90 120 150 180 30 60 90 120 150 180
(c-i) Poeak (W) (cHii) Poeax (W)

Figure 4. Optical parametric amplification (OPA) using a 180-fs pulsed pump and a continuous-wave
(CW) signal. (a) Measured output optical spectra after propagation through uncoated (GO-0) and
hybrid waveguides with 1 (GO-1) and 2 (GO-2) layers of GO. The peak power of the input pump light
Ppeak was ~180 W. (b) Measured output optical spectra after propagation through the device with 2
layers of GO at different Ppeat. In (a) and (b), the power of the CW signal light was Psignat = ~6 mW, and
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insets show zoom-in views around the signal and idler. (c) Measured (i) parametric gain PG and (ii)
parametric gain improvement APG versus Ppe. .

The values of PG in Figure 4 are the net parametric gain, over and above the waveguide loss
induced by both the GO-coated and uncoated SisNs waveguide segments (see Methods). This is
different to the “on/off” parametric gain often quoted 43, where the waveguide loss is excluded,
resulting in higher values of parametric gain. Here, the on-off gains for the waveguides with 0, 1, and
2 layers of GO were ~13. 2 dB, ~22.3 dB, and ~26.2 dB, respectively, which are only slightly higher
than their corresponding net gains due to the low loss of the SisNs waveguides and the relatively
short GO film length. Although the net gain can be increased closer to the on-off gain by reducing
the waveguide loss via optimization of the fabrication processes, because the differences between the
net and on-off gains are small in our case, there is not much incentive to do this. In the following, we
focus our discussion on the net parametric gain PG. This can also ensure a fair comparison of the
parametric gain improvement, as different waveguides have different waveguide loss.

Figure 4b shows the measured output optical spectra after propagation through the device with
2 layers of GO for different Ppex. Figure 4c-i shows the signal parametric gain PG for the uncoated
and hybrid waveguides versus input pump peak power, and the parametric gain improvement APG
for the hybrid waveguides as compared to the uncoated waveguide is further extracted and shown
in Figure 4c-ii. We varied the input pump peak power from ~30 W to ~180 W, which corresponds to
the same power range used in Figure 2d for loss measurements. The PG is higher for the hybrid
waveguide with 1 layer of GO compared to the uncoated waveguide, and lower than the device with
2 layers of GO. In addition, both PG and APG increase with Ppex, and a maximum APG of ~12.2 dB
was achieved for the 2-layer device at Ppea = ~180 W. Likewise, we observed similar phenomena when
using lower-peak-power picosecond optical pulses for the pump, as shown in Figure S2 of the
Supplementary Information.

To evaluate the OPA performance, we conducted experiments where we varied the wavelength
detuning, CW signal power, and GO film length. Except for the varied parameters, all other
parameters are the same as those in Figure 4. In Figure 5a, the measured signal parametric gain PG
and parametric gain improvement APG are plotted against the wavelength detuning AA, which is
defined as the difference between the CW signal wavelength Asigni and the pump center wavelength
Apump. It is observed that both the PG and APG increase as AA changes from -12 nm to -22 nm. In Figure
5b, the PG and APG are plotted against the CW signal power Psigna, showing a slight decrease as Psigna
increases, which is primarily due to the fact that an increase in Psigna can result in a decrease in PG as
per its definition (i.e., PG = Poutsignat / Pinsignai, see Methods). Figure 5¢ shows the PG and APG versus
GO film length. By measuring devices with various GO film lengths, ranging from ~0.2 mm to ~1.4
mm, we observed that those with longer GO films exhibited greater PG and APG values. The PG
achieved through the optical parametric process is influenced by several factors, such as the applied
powers, optical nonlinearity, dispersion, and loss of the waveguides. These factors will be
comprehensively analyzed in the following section.
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Figure 5. (a) Measured (i) parametric gain PG and (ii) parametric gain improvement APG versus
wavelength detuning AA. (b) Measured (i) PG and (ii) APG versus input CW signal power Psignal. (c)
Measured (i) PG and (ii) APG versus GO film length Lco. In (a) — (c), the peak power of the 180-fs
pulsed pump centered around 1557 nm was Ppeak = ~180 W. Except for the varied parameters, all other
parameters are kept the same as AA = ~-22 nm, Psigna = ~6 mW, and Lco = ~1.4 mm.

Analysis and discussion

Optical nonlinearity of hybrid waveguides and GO films. We used the theory from Refs.!05870
to model the OPA process in the fabricated devices (see Methods). By fitting the measured PG with
theory, we obtained the nonlinear parameter y of the uncoated and hybrid waveguides. The fit y for
the uncoated SisNs waveguide is ~1.11 W-'m!, which is consistent with the previously reported values
in the literature7182, Figure 6a shows the fit y of the hybrid waveguides as a function of pulse peak
power Ppea.  For both devices with different GO film thickness, the lack of any significant variation
in y with Ppe indicates that the applied power has a negligible effect on the properties of the GO
films. This is in contrast to the effects of light with high average optical powers, which can lead to
changes in GO’s properties via photo-thermal reduction?3%. The fit values of y for the devices with 1
and 2 layers of GO are ~14.5 and ~27.3 times greater than the value for the uncoated SisNswaveguide.
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These agree with our earlier work®* and indicate a significant improvement in Kerr nonlinearity for
the hybrid waveguides.

Based on the fit y for the hybrid waveguides, we further extracted the Kerr coefficient n2 of the
GO films (see Methods), as shown in Figure 6b. The extracted n2 values for the films with 1 and 2
layers are similar, with the former being slightly higher than the latter. The lower 2 for thicker films
is likely caused by an increase in inhomogeneous defects within the GO layers and imperfect contact
between multiple GO layers. The n2 values for the films with 1 and 2 layers are about 5 orders of
magnitude higher than that of SisN4 (~2.62 x 10-*m2/W, obtained by fitting the result for the uncoated
SisNswaveguide), highlighting the tremendous third-order optical nonlinearity of the GO films.
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Figure 6. (a) Nonlinear parameter y of hybrid waveguides with 1 (GO-1) and 2 (GO-2) layers of GO
as a function of pump peak power Ppek. (b) Kerr coefficient n2 of films with 1 (GO-1) and 2 (GO-2)
layers of GO versus Ppuk. (c) Effective interaction length Ly and (d) figure of merit FOM versus
waveguide length L for the uncoated (GO-0) and hybrid waveguides with 1 (GO-1) and 2 (GO-2)
layers of GO. (e) Parametric gain PG and (f) parametric gain improvement APG versus waveguide
length L for the uncoated SisNs waveguide (GO-0) and the hybrid waveguides uniformly coated with
1 (GO-1) and 2 (GO-2) layers of GO. In (e) and (f), the pump peak power, CW signal power, and the
wavelength detuning are Ppeak = ~180 W, Psignat = ~6 mW, and AA = ~-22 nm, respectively.

We also quantitatively compare the nonlinear optical performance of the SisNs waveguide and
the hybrid waveguides by calculating their nonlinear figure of merit FOM. The FOM is determined
by balancing a waveguide’s nonlinear parameter against its linear propagation loss, and can be
expressed as a function of waveguide length L given by:
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FOM (L) = y x Ly (L) (1)
where y is the waveguide nonlinear parameter and Ley (L) = [1 - exp (-axL)] /a is the effective
interaction length, with @ denoting the linear loss attenuation coefficient. Note that the nonlinear
figure of merit defined in Eq. (1) allows for comparison of the nonlinear optical performance of optical
waveguides made from different materials. This is distinct from the nonlinear figure of merit
commonly used for comparing the nonlinear optical performance of a single material, which is
defined as n2/(A-prra)’, with nz, A, and prra denoting the Kerr coefficient, wavelength, TPA coefficient,
respectively.

Figure 6¢ shows Les versus L for the SisN4 waveguide and the hybrid waveguides with 1 and 2
layers of GO. The SisNs waveguide has a higher L due to its comparably lower linear propagation
loss. Figure 6d shows the FOM versus L for the three waveguides. Despite having a lower Leg, the
hybrid waveguides exhibit a higher FOM than the SisNs waveguide, owing to the significantly
improved nonlinear parameter y for the hybrid waveguides. This indicates that the impact of
enhancing the optical nonlinearity is much greater than the degradation caused by the increase in
loss, resulting in a significant improvement in the device’s overall nonlinear optical performance.

For the hybrid waveguides that we measured in the OPA experiments, only a specific section of
the waveguides was coated with GO films. In Figures 6e and 6f, we compare PG and APG versus
waveguide length L for the hybrid waveguides uniformly coated with GO films, respectively, which
were calculated based on the fit y values (at Ppes = ~180 W) in Figure 6a. The pump peak power, CW
signal power, and wavelength detuning were Ppeax = ~180 W, Psigna = ~6 mW, and AA = ~-22 nm,
respectively — the same as those in Figure 4a. The corresponding results for the uncoated SisNa
waveguide are also shown for comparison. The 2-layer device has higher PG and APG values for L <
~5.7 mm but lower values for L > ~5.7 mm, reflecting the trade-off between the increase in optical
nonlinearity and waveguide loss. At L = 1.4 mm, the 1-layer and 2-layer devices achieve PG of ~10.5
dB and ~15.6 dB, respectively. When compared to waveguides that have patterned GO films of the
same length as those used in our OPA experiments, their total PG (including those provided by both
the ~1.4-mm-long GO-coated section and the ~18.6-mm-long uncoated section) are ~20.4 dB and ~24.0
dB, respectively. This highlights the dominant role of the GO-coated section in providing the
parametric gain, as well as the fact that a further improvement in APG could be obtained by increasing
the length of the GO-coated segments.

Performance improvement by optimizing parameters. Based on the OPA modeling (see
Methods) and the fit parameters in Figure 6, we further investigate the margin for performance
improvement by optimizing the parameters.

Figure 7a shows the calculated PG for the hybrid waveguides versus pulse peak power Ppex and
CW signal power Psigna. The corresponding results for APG are shown in Figure 7b. In each figure, (i)
and (ii) show the results for the devices with 1 and 2 layers of GO, respectively. The black points mark
the experimental results in Figure 4, and the black crossings mark the results corresponding to the
maximum values of PG or APG. As can be seen, both PG and APG increase with Py but decrease
with Psignal, showing agreement with the trends observed in the experimental results. For the device
with 1 layer of GO, the maximum PG of ~32.7 dB and APG of ~10.7 dB are achieved at Pyt = 400 W
and Psignat = 1 mW. Whereas for the device with 2 layers of GO, the maximum PG and APG are ~36.9
dB and ~15.0 dB at the same Py and Psignat, respectively. This reflects that there is a large room for
improvement by further optimizing the pulse peak power and the CW signal power. In our
experiments, the maximum output power of our FPL limited the applied pulse peak power. In
addition, we opted to avoid using excessively low CW signal power due to two reasons. First, the
CW signal power does not exert a significant influence on PG. Second, as the power of the output
pulsed signal diminishes with the decrease of the input CW signal power, it becomes increasingly
challenging to extract PG accurately.
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Figure 7. (a) Simulated parametric gain PG versus input pump peak power Py and CW signal power
Psignat. (b) Simulated parametric gain improvement APG versus Ppeat and Psignal. In (a) and (b), (i) and (ii)
show the results for the hybrid waveguides with 1 and 2 layers of GO (GO-1, GO-2), respectively. The
black points mark the OPA experimental results, and the black crossing mark the results
corresponding to the maximum values of PG and APG. The wavelength detuning and the GO film
length are AA =-22 nm and Lco = 1.4 mm, respectively.

Figure 8a shows the calculated PG and APG versus wavelength detuning AA. The dashed curves
were calculated based on the fit result at AA =-22 nm, and the data points mark the measured results
in Figure 5a. The curves with an ‘M’ shape are consistent with the results in Refs.3101, reflecting the
anomalous dispersion of these waveguides. The experimental data points match closely with the
simulation curves, thereby confirming the consistency between our experimental results and theory.
For the device with 1 layer of GO, the maximum PG of ~34.7 dB and APG of ~14.7 dB are achieved at
AA = ~-67 nm and ~-80 nm, respectively. Whereas for the 2-layer device, the maximum PG of ~37.6
dB and APG of ~17.3 dB are achieved at AA = ~-61.8 nm and ~-57.8 nm, respectively. These results
highlight the significant potential for improvement through further optimization of the wavelength
detuning. In our experiments, the range of wavelength detuning was limited by the operation
bandwidth of the erbium-doped fiber amplifier used to amplify the CW signal power.
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Figure 8. (a) Simulated (i) parametric gain PG and (ii) parametric gain improvement APG versus
wavelength detuning AA. (b) Simulated (i) PG and (ii) APG versus GO coating length Lco. In (a) and
(b), the measured and fit results are shown by the data points and the dashed curves, respectively.
The pump peak power and the signal power are Ppeax = 180 W and Psignat = 6 mW, respectively. In (a),
Lco=1.4 mm. In (b), AL =-22 nm.

We also investigate the performance improvement by optimizing the GO film length Lco. Figure
8b shows the calculated PG and APG versus Lco. The dashed curves were calculated based on the fit
result at Lco = 1.4 mm, and the data points mark the measured results in Figure 5a. For the device
with 1 layer of GO, the maximum PG of ~26.3 dB and APG of ~19.9 dB are achieved at Lco = ~7 mm
and ~9.7 mm, respectively. Whereas for the device with 2 layers of GO, the maximum PG of ~27.0 dB
and APG of ~17.2 dB are achieved at Lco = ~3.3 mm and ~3.9 mm, respectively. These results suggest
that the OPA performance can be improved by further optimizing the length of the GO film. In our
experiments, the lengths of the GO films were restricted by the size of the opened windows on the
silica cladding (as shown in Figure 1d). Aside from optimizing the GO film length, we would
anticipate even higher values of PG and APG for devices with an increased number of GO layers at
Lco = 1.4 mm, similar to what we observed in our previous nonlinear optics experiments>. This is
due to the considerably increased optical nonlinearity of devices with thicker GO films. However,
such an increase in optical nonlinearity is accompanied by a rise in loss, making it imperative to
balance the trade-off between them.

We investigate the performance by optimizing both AA and Lco simultaneously (see Figure S4
of the Supplementary Information), finding that the 1-layer device has a maximum PG of ~37.4 dB
and maximum APG of ~31.5 dB, while the 2-layer device reaches PG up to ~37.8 dB and APG up to
~27.3 dB. In addition, by further increasing the pump peak power from 180 W to 400 W, even higher
performance is achieved, with the 1-layer device reaching a maximum PG of ~43.7 dB and maximum
APG of ~40.1 dB, and the 2-layer device a maximum PG of ~43.8 dB and maximum APG of ~37.3 dB
(see Figure S5 of the Supplementary Information). According to these simulation results, it is found
that if both AA and Lco are optimized simultaneously, there is not much difference between the
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maximum PG for the 1- and 2- layer devices. However, the 1-layer device still yields a slightly higher
APG because of its lower loss compared with the 2-layer device. For this reason, devices coated with
more GO layers will have lower maximum APG.

Finally, we also investigate the improvement in PG and APG by optimizing the coating position
of the GO films (see Figure S6 of the Supplementary Information), as well as the influence of the SA
of GO on the OPA performance (see Figure S7 of the Supplementary Information). We find that
although optimizing the coating position can lead to further improvements in PG and APG, the extent
of these improvements is not as substantial as those achieved through optimization of AA and Lco. In
addition, we find that the SA of GO has a positive impact on enhancing PG and APG, especially for
devices with thicker GO films. These results have significant implications for devices involving
microcombs®-13 that require high on-chip parametric gain, as well as linear, nonlinear 1315 and
potentially quantum!®-17 optical chips.

Conclusion

In summary, we experimentally demonstrate significantly improved OPA performance in SisNa4
waveguides integrated with 2D GO films compared to uncoated waveguides. We fabricate GO-SisNa
hybrid waveguides with precise control of the thickness, length, and position of the GO films.
Detailed OPA measurements are performed for the fabricated devices using a pulsed pump and CW
signal. The results show that up to ~24.0 dB parametric gain is achieved for the hybrid devices,
representing a ~12.2 dB improvement relative to the device without GO. Based on the experimental
results, the influence of the pump / signal power, wavelength detuning, and GO film thickness /
length on the OPA performance is theoretically analyzed, showing that further improvement can be
achieved by optimizing these parameters. We calculate that a parametric gain of ~37.8 dB and a
parametric gain improvement of ~31.5 dB should be possible by optimizing the wavelength detuning
and GO film length, and even higher to 43.8 dB by increasing the pump peak power to 400 W. Our
study provides valuable insights into the promising potential of on-chip integration of 2D GO films
for enhancing the OPA performance of photonic integrated devices, of benefit to many nonlinear
optical applications.

Materials and methods

Fabrication of SisN: waveguides. The SisN4 waveguides were fabricated via CMOS compatible
processes”. First, a SisN4 film was deposited on a silicon wafer with a 3-um-thick wet oxidation layer
on its top surface, using a low-pressure chemical vapor deposition (LPCVD) method. The deposition
was carried out in two steps involving a twist-and-grow process, resulting in a crack-free film. Next,
waveguides were created using 248-nm deep ultraviolet lithography followed by fluorocarbon-based
dry etching with CFs/CHFs/Ar, which resulted in a low sidewall surface roughness for the
waveguides. After waveguide patterning, we employed a multi-step, chemical-physical, in-situ
annealing sequence using Hz, Oz, and N: to further reduce the loss of the SisN« waveguides.
Subsequently, a silica upper cladding was deposited to encapsule the SisN+ waveguides via multi-
step low-temperature oxide deposition at 400 °C. This was achieved through a low-rate deposition of
a liner, followed by the filling of the silica layer using high-density plasma enhanced chemical vapor
deposition (HD-PECVD). Finally, we employed lithography and dry etching to create windows on
the silica cladding extending to the top surface of the SisNs waveguides.

Synthesis and coating of GO films. Before GO film coating, a GO solution with small GO flack
size (< 100 nm) was prepared by using a modified Hummers method followed by vigorous sonication
via a Branson Digital Sonifiers2. The coating of 2D layered GO films was then achieved by using a
transfer-free method that allows for layer-by-layer GO film deposition with precise control of the film
thickness, as we did previously'7172. During the coating process, four steps for in-situ assembly of
monolayer GO films were repeated to construct multi-layered films on the fabricated SisN4 chips with
opened windows, including (i) immerse substrate into a 2.0% (w/v) aqueous PDDA (Sigma-Aldrich)
solution; (ii) rinse with a stream of deionized distilled water and dry with N; (iii) immerse the PDDA-


https://doi.org/10.20944/preprints202305.0082.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 May 2023

15

coated substrate into GO solution; and (iv) rinse with a stream of deionized water and dry with No.
After the film coating, the chip was dried in a drying oven.

Extracting parametric gain from the measured optical spectra. We used the same methods as
those in Refs. 143 to extract the signal parametric gain from the measured optical spectra we obtained
through OPA experiments. The peak power of the pulsed signal after propagation through the
fabricated devices was derived from the measured output optical spectra according to:

ff Psignul, out(A)dA

Psignal, peak = (2)
frep x T

where Psignal, ot (A) is the average output power spectrum of the signal as a function of wavelength A,
frep is the repetition rate of the FPL, and T is the pulse width. In our calculation of Psignal, peat, the power
residing in the CW signal line was subtracted from the spectrum of Psignat, out (A).

After deriving Psignal, peak, the signal parametric gain PG was calculated as:

PG (dB) = 10 x loguo (Psignai, peak | Psignat) (3)
where Psigna is the CW signal power at the input of the waveguide. According to Eq. (3), the PG in our
discussion is the net gain over and above the waveguide loss (including that induced by both the
SisNs waveguide and the GO film). In contrast, the on/off parametric gain is defined as'#

PGon-of (AB) = 10 x log10 (Psignat, peak / Psigna, out) 4)
where Psignaout is the CW signal power at the output of the waveguide when the pump is turned off.
The parametric gain calculated using Eq. (4) is higher than that calculated using Eq. (3) since Psiguatout
is lower than Psignal.

OPA Modeling. The third-order optical parametric process in the GO-coated SisNs waveguides
was modeled based on the theory from Refs.!%%70, Assuming negligible depletion of the pump and
signal powers due to the generation of the idler, and considering only the short wavelength idler, the
coupled differential equations for the dominant degenerate FWM process can be given by106

D% )iy, [ @ 2@ P2 @] A, @)
+ ]2y, Ay (2)A @A EJexp(jAB2) (5)
B _% 0 +iy, 1@ P2, @ 2@ F] A
+ 7 A DA @exp(-jApz) (6)
RO % a@ v, [Ia@P2/A,@[ 21,@F] A
+ 7 A@A @exp(Ap2) )

where Ay are the amplitudes of the pump, signal and idler waves along the z axis, which is defined
as the light propagation direction, aysi are the loss factor including both the linear loss and the SA-
induced nonlinear loss, A = fs + i —2fp is the linear phase mismatch, with Bysi denoting the
propagation constants of the pump, signal and idler waves, and s are the waveguide nonlinear
parameters. In our case, where the wavelength detuning range was small (< 10 nm), the linear loss
and the nonlinear parameter are assumed to be constant, i.e., ap-as-ai-a, yp-ys-=yi=y.

In Egs. (5) - (7), the dispersions fpsi were calculated via commercial mode solving software using
the refractive index n of layered GO films measured by spectral ellipsometry. Given that the photo-
thermal changes are sensitive to the average power in the hybrid waveguides, which was below 2
mW for the femtosecond optical pulses studied here, they were considered negligible. By numerically
solving Eqs. (5) — (7), the PG was calculated via

PG (dB) =10 x logo[ | As(L) 12/1 As(0) 12] 8)
where L is the length of the SisNswaveguide (i.e., 20 mm). For our devices with patterned GO films,
the waveguides were divided into uncoated SisN4 (without GO films) and hybrid (with GO films)
segments with different @, y and Bpsi. The differential equations were solved for each segment, with
the output from the previous segment as the input for the subsequent segment.

Extracting n2 of GO films. The Kerr coefficient 72 of the layered GO films is extracted from the
nonlinear parameter y of the hybrid waveguides according to:%70

do0i:10.20944/preprints202305.0082.v1
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¢ [ﬂD no(x, y)Sdedy]
where A. is the pulse central wavelength, D is the integral of the optical fields over the material
regions, S: is the time-averaged Poynting vector calculated using Lumerical FDTD commercial mode

©)

solving software, no(x, y) and n2(x, y) are the linear refractive index and nz profiles over the waveguide
cross section, respectively. The values of n: for silica and SisN4 used in our calculation were 2.60 x 10
20 m2/W3 and 2.62 x 102 m?/W, respectively, the latter obtained by fitting the experimental results
for the uncoated SisNswaveguide.
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