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Abstract: Mineral prospectivity mapping (MPM), aiming to outline and prioritize mineral exploration targets, 

has been spurred by data-driven machine learning algorithms. Supervised data-driven MPM is a typical few-

shot task, suffering from the scarcity of labeled data, over-fitting of models and uncertainty of predictions. The 

main objective of this contribution is to propose a robust framework of few-shot learning (FSL) combining data 

augmentation and transfer learning, which enables generation of prospectivity models with excellent 

predictive efficiency and low uncertainty. The mineral systems approach was used to transfer a conceptual 

mineral system into mappable exploration criteria. Synthetic minority over-sampling technique (SMOTE) was 

employed to augment and balance the labeled dataset, allowing for model pre-training with a large synthetic 

training dataset of source domain. The knowledge derived from pre-trained models was then transferred to 

the target domain by fine-tuning, and the prospectivity model was generated in light of over-fitting and 

uncertainty assessment. The proposed FSL framework was applied to tungsten prospectivity mapping in 

southern Jiangxi Province. The results indicate that the SMOTE-ed balanced dataset boosts the classification 

accuracy in the training process. The FSL models yield an arch-shaped prediction point pattern favorable for 

focusing potential targets with high probability and low uncertainty. The FSL models achieve a high predictive 

performance (test AUC=0.9172) and the lowest quantitative over-fitting value, compared to the models derived 

from the benchmark algorithms of random forest and support vector machine. Four levels of potential targeting 

zones, considering both predictive efficiency and uncertainty, are extracted from the resulting FSL 

prospectivity map. The final high-potential and low-risk exploration targets only cover 4.27% of the area, but 

capture 41.53% known tungsten deposits, achieving superior predictive performance. This study highlights the 

capability of FSL framework for controlling over-fitting and generating high-confidence exploration targets 

with low uncertainty.  

Keywords: machine learning; mineral prospectivity mapping; few-shot learning; SMOTE; tungsten 

mineralization; southern Jiangxi Province 

 

1. Introduction 

Mineral prospectivity mapping (MPM) is a multi-criteria and computer-aided approach that 

aims to delineate and prioritize favorable exploration targets for discovering new mineral deposits 

of the type sought [1,2]. Advances in geoscientific computer techniques facilitate the collection, 

integration, visualization, and modeling of geo-information representing vital ore-forming processes 

of mineral system [3–8], which builds a sound foundation for MPM. In recent two decades, machine 

learning algorithms boom in the field of mineral potential modeling, among which supervised data-

driven machine learning are the most commonly used [9–14]. Data-driven algorithm generates 

models and assigns evidential weights based on the spatial relationship between evidential maps and 

known mineral deposits [15,16]. This method has flourished in the MPM due to the abundant publicly 
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accessible multi-source data, excellent model performance and easy transfer of the state-of-the-art 

algorithms from other fields. 

Supervised data-driven machine learning-based MPM is faced with three intrinsic challenges, 

that is: (i) scarcity of labeled data; (ii) over-fitting of models; and (iii) uncertainty of predictive results 

[4]. The origin of these challenges roots in that machine learning is data-greedy, requiring a labeled 

dataset consisting of a large number of both positive and negative samples. However, in the MPM 

field, as end-products of rare mineralization events, mineral deposits which serve as positive samples 

are extremely scarce [17]. On the other hand, machine learning algorithms, mostly stem from matured 

industrial field aiming to handle thousands of or even millions of samples, tend to have elaborately 

complex architectures. Introduction of these complex machine learning models on MPM scarce data 

easily induces severe over-fitting problems [18]. Besides, the uncertainty, owing to incomplete 

understanding of mineral systems, bias occurring in the observation and measurement of exploration 

criteria, as well as inherent and stochastic errors when training and applying machine learning 

models [19], inevitably emerges within the whole process of MPM modeling. 

Few-shot learning (FSL), which aims to enable learning from a limited number of samples, is an 

alternative option to address the above-mentioned issues. The methods of few-shot learning can be 

roughly categorized into three threads, namely data augmentation, transfer learning and meta-

learning [20]. To the best of our knowledge, only the former two methods have been applied in the 

MPM field. A straightforward solution of few-shot issues is to enlarge the number of labeled data by 

data augmentation [21]. Synthetic Minority Over-sampling Technique (SMOTE) has been employed 

by many scholars to over-sample labeled data of minor class in the MPM modeling, demonstrating 

the effectiveness of this technique in improving the performance of the models trained by imbalanced 

data [17,22,23]. Learning knowledge from related large data and transferring it to the target scarce 

data is the most intuitive solution for few-shot tasks [20]. However, there are few contributions 

related to application of this method in MPM field, except for an attempt of transferring classic image-

based network models to map mineral potential [24–26]. Such limited application results from a fact 

that it is hard to find a large transferable source dataset that is similar with or related to target 

complex mineralization data. 

A FSL framework combining data augmentation and transfer learning is proposed in this study. 

SMOTE augmented data serve as synthetic source data related to target mineralization dataset, and 

the knowledge learned from the source dataset transfers to map mineral prospectivity via fine-tuning. 

Another focus of this study is to quantitatively evaluate and control the over-fitting and uncertainty, 

generating a robust and low-risk exploration targeting model. This framework has been applied to 

tungsten prospectivity mapping in southern Jiangxi Province, which is a representative brown field 

well-suited for a data-driven prospectivity modeling. 

2. Study Area and Data Used 

2.1. Geological Setting 

The southern Jiangxi Province, situated in the central part of the Cathaysian Block, constitutes 

the eastern segment of the giant Nanling metallogenic belt (Figure 1). The sedimentary successions 

exposed in this area span from Proterozoic to Cenozoic, with absence of Silurian and Triassic units. 

The Proterozoic lower greenschist facies clastic rocks compose the metamorphic basement, which is 

overlain by Paleozoic shallow marine carbonate and siliclastic rocks. Mesozoic volcaniclastics and 

terrigenous red-bed sandstone are preserved in faulted basins [27]. The tectonic framework in this 

region comprises a group of NE-, EW- and NW-trending faults. More than 400 granitic intrusions 

outcrop in this area, occupying an extensive surface area of 14,000 km2 [27]. Four episodes of granitic 

magmatism have been identified, namely Caledonian, Hercynian, Indosinian and Yanshanian, of 

which the Yanshanian intrusions are believed to be responsible for widespread tungsten 

mineralization in this area. The southern Jiangxi Province is well known as a tungsten-producing 

region, characterized by its dominant quartz vein-type wolframite deposits [27,28]. Considerable 

tungsten deposits, including eight large-scale, 18 moderate-scale and numerous small-scale deposits, 
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have been mined or discovered in this area, accumulating a proved tungsten reserve of 1.7 Mt [29]. 

Most of tungsten deposits are located in four ore clustering districts including Chongyi-Dayu-

Shangyou, Ganxian-Yudu, Longnan-Dingnan-Quanan and Ningdu-Xingguo (Figure 1). 

 

Figure 1. Simplified geological map of southern Jiangxi Province, modified from [27,30,31]. 

2.2. Mineral System 

In order to extract reliable targeting criteria for the following prospectivity modeling, a mineral 

systems approach is employed to transfer understandings of tungsten mineral system into a set of 

mappable spatial proxies representing critical ore-forming processes related to source, transport, 

physical trap and chemical deposition [32–35] (Figure 2). 

The hydrothermal mineral systems in many cases have a single source that provides not only 

energy gradient triggering mineralization events but also necessary components required for ore 

formation (e.g., metal, fluids and ligands) [34]. In the study area, the Yanshanian granitic intrusions 

are believed to play such a role that provides ore-related fluids and metals, based on the 

understandings of previous researches. The chronological studies indicate that the formation of 

tungsten orebodies in the study area is temporally identical to their proximal granitic intrusions 

(mainly 170-150 Ma) [36–38]. Spatially, most of the tungsten orebodies are found at the inner- and/or 

out-contacts of Yanshanian granitic intrusions [39,40]. Accordingly, proximity to exposed 
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Yanshanian intrusions, as well as magnetic and gravity anomalies that may infer in-depth intrusions, 

were employed as evidential layers representing source process. 
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Figure 2. Components of tungsten mineral system in the southern Jiangxi Province. 
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Active pathways are essential for transporting ore-forming components from deep source 

regions to shallow trap zones [34]. As mentioned above, the Yanshanian tectono-magmatic activity 

is believed to be responsible for regional tungsten mineralization, while the regional fault system was 

interpreted to provide pathways for the ascent of ore-related magma. It is noteworthy that only those 

faults formed before or in the mineralization era can play the pathway role that promotes the 

mineralization process. By contrast, the faults formed after mineralization usually disconnect pre-

formed ore-bearing structures and thus exerting a negative impact on mineral prospecting. The 

previous spatial analyses indicate that the EW- and NE-trending faults were formed or re-activated 

in the Yanshanian epoch, which serve as metalliferous magma/fluid-conducting conduits [41]. The 

Density of these faults was used to reflect transport process. 

Regarding hydrothermal deposits, physical traps are favorable loci that trap ore-forming fluids. 

These loci are mostly related to dilatational zones induced by ore-related structural activities [42]. In 

the study area, EW- and NE-trending faults in the caprocks constitute transport networks for the 

metalliferous fluids, while the intersections of these faults provide dilatational zones with high 

permeability that are conducive to trap and focus the fluids [41]. 

A hydrothermal deposit is the direct result of massive metal deposition. This critical process 

stems from reduction of metal solubility in fluids, which is induced by a variety of sub-processes 

associated with changes in physical and chemical conditions [34], e.g., fluid mixing, fluid-rock 

reactions, and cooling of fluids. Unfortunately, it is impossible to directly trace these sub-processes 

from the perspective of regional-scale spatial proxies. Instead, we employ geochemical anomalies, 

which are footprints of ore-induced chemical sub-processes, as effective proxies of metal deposition. 

W, Mn and Fe are selected as targeted geochemical elements since they are components of wolframite 

((Fe,Mn)WO4) that dominates the ores in the study area. 

2.3. Input Dataset 

An integral and reliable input dataset is an essential prerequisite for a robust machine learning-

based predictive modeling. For a MPM task, the preparation of input dataset includes data generation 

of evidential layers and target variables. 

The evidential layers are featured predictive maps representing critical ore-forming processes, 

which are employed as judging conditions for predicting mineral potential. As mentioned above, 

eight evidential layers were generated on the basis of analyses of the mineral systems approach 

(Figure 2). The mappable intrusions, faults and geophysical anomalies were derived from the 

Database of Ganzhou Bureau of Geology and Mineral Resources (DGBGMR) based on field 

investigations since 1980s. Geochemical anomalies of W, Mn and Fe were extracted from stream 

sediment data of Nanling Range, which stem from China’s National Geochemical Mapping Project 
with sampling density of one sample per km2 [43,44]. The eight predictor maps were generated by 

rasterizing mappable ore-related features. The rasterizing cell size, i.e., predictive resolution, is 450 

m, which is determined based on resolution of evidential maps and distance of any two nearest 

deposits [9,45,46]. A total of 195, 174 cells were generated covering the whole study area. 

Target variables in the MPM includes positive and negative samples used for training and 

testing models. 118 mines, historic mines and mineralized spots representing known deposit 

locations were derived from DGBGMR and online database of China Geology Survey [31], which 

were employed as positive samples. The negative samples representing non-deposit locations were 

selected based on the criteria proposed by Carranza and Zuo [47,48]. 346 non-deposit locations were 

selected as negative samples in this study, allowing for an experiment of data imbalancing. 

3. Methods 

3.1. Few-Shot Learning Framework 

The proposed few-shot learning framework is composed of two components including data 

augmentation for addressing imbalanced dataset and transfer learning for training prospectivity 

model by limited labeled data, as shown in Figure 3. 
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An imbalanced dataset consists of variable classes that are not approximately equally 

represented [49]. It is widely acknowledged that machine learning algorithms have poor performance 

in highly imbalanced datasets [50]. However, it is a fact that non-deposit sites (negative samples) 

largely outnumber deposit locations (positive samples) in any case study of MPM, arising a severe 

issue of imbalanced dataset. This issue can be addressed by assigning costs to training samples of 

different classes or re-sampling of the original dataset. The latter solution, including over-sampling 

of the minority class and under-sampling of the majority class, is commonly used in machine 

learning-based MPM. SMOTE, proven to be effective in the MPM prediction [17,51], is employed in 

this study to over-sample minor deposits. SMOTE works by generating new synthetic samples from 

the existing samples of minority class based on their nearest neighbors in the feature space. As 

depicted in Figure 4, for a given minority-class sample Xi, k (k=6 in this example) nearest neighboring 

minority-class samples are chosen. X2 is randomly selected from these four samples, and then a 

feature vector along the line segment between Xi and X2 is generated. A synthetic sample Xn is created 

by using equation (1) [52]. 𝑋𝑛 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋2 − 𝑋𝑖) (1) 

Where rand(0,1) denotes a random number ranging from 0 to 1. 

The data augmentation is task-specific, yielding the data well-suited for the subsequent training 

tasks. In this study, 20% and 15% deposit samples were randomly selected from the original dataset 

of positive labels. They combined with an equal number of randomly selected non-deposits to 

constitute the test and target domain dataset, respectively. SOMTE was then conducted on the rest 

76 deposits and 304 non-deposits to generate a synthetic balanced dataset of source domain (Figure 

3). 

 

Figure 3. Flow chart of proposed few-shot learning framework. 
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Figure 4. Schematic description of synthetic minority over-sampling technique. 

Essentially, transfer learning is the reuse of pre-trained model on a new domain, which includes 

two key tasks, namely learning knowledge from lots of available labeled data and transferring 

knowledge to a different but related problem. As mentioned above, the difficulty of finding a model 

of similar task transferable for training non-image-based ore-related data is the severest issue that 

impedes the application of transfer learning in the MPM field. In this study, the solution to this issue 

is to pre-train the transferable model based on the large synthetic dataset of source domain. The idea 

of meta-learning was introduced in the process of pre-training. Specifically, N subsets called support 

sets were generated by bootstrapping. Bootstrapping is a sampling procedure that randomly selects 

samples from the original dataset with replacement. A set of neural network models were trained by 

support sets, after which they ensembled to generate a pre-trained model. The model parameters 

were assumed to reach a suboptimal state by multi-task pre-training in the source domain, and then 

a small number of samples in the target domain were used to train the model to achieve the optimal 

state by slight tune of model architecture [53]. Such process is called fine-tuning. By fine-tuning, the 

trained model reached satisfactory performance whilst fitting the data distribution of the target 

domain. The trained model was assessed by test dataset and output the final predictions. 

3.2. Benchmark Machine Learning Algorithms 

Benchmark algorithms allow for comparative study of model performance, which is strongly 

suggested in the data-driven machine learning-based modeling [54]. Two widely applied models, 

namely random forest and support vector machine, were employed as benchmark algorithms in this 

study. 

Random forest, proposed by Breiman [55], is a classic ensemble learning algorithm that 

aggregates a large number of base tree models to perform repeated predictions of a specific 

phenomenon [16,56]. Two key random scenarios are employed to enhance the performance of model. 

Firstly, bootstrapping, as mentioned above, is used to create diverse subsets of original labeled data 

for training each base tree. Secondly, a randomly selected subset of input features is utilized as 

discriminative conditions at each node of the tree in the forest. The algorithm then searches across all 

the nodes to find the optimal one that maximizes the purity of resulting trees. The purity can be 

measured by many indices, e.g., Gini index, Chi-square and Gain ratio [16]. The final prediction is 

made by majority voting of all the base trees in the forest. 

Support vector machine exhibits its great performance in conditional classification, based on 

theories of statistical learning and structural risk minimization [47,57,58]. The algorithm seeks to 

generate an optimal classifier that separates labels of different classes by the widest discriminative 
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boundaries. This algorithm works by finding a hyperplane that has the largest margin in the feature 

space, i.e., the distance between the hyperplane and its closest data points of each class is maximum, 

which allows for generation of the classier with the lowest errors [59,60]. 

Since benchmark algorithms are not the main theme of this study, only a brief introduction is 

presented above. Detailed descriptions of the algorithms can be referred to [47,55–60]. 

3.3. Performance Metric 

The model performance can be evaluated by a set of quantitative measurements. The indices 

employed in this study emphasize their capability in assessing the robustness and predictive 

efficiency of the models. 

The classification accuracy is used to rapidly appraise the effect of parameter optimization. It 

can be calculated by the ratio of the number of correctly classified samples to the total number of the 

samples, however, this index fails to evaluate the predictive performance of the model. The receiver 

operating characteristic (ROC) curve and success-rate curve are used to measure the overall 

predictive performance. There curves are drawn based on the varying discriminative thresholds the 

define the predictive results of a binary classification system [61,62]. A cell with probability value 

greater or lower than the discriminative threshold is predicted as a deposit or non-deposit. The 

sensitivity and specificity are computed by equations (2) and (3) [63]. 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (2) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (3) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁+𝐹𝑃 (3) Where TP represents a result that a deposit is correctly predicted as a 

deposit; FN means that a deposit is incorrectly predicted as a non-deposit; TN depicts a result that a 

non-deposit is correctly predicted as a non-deposit; FP represents a result that a non-deposit is 

incorrectly predicted as a deposit. The ROC curve is generated by plotting sensitivity on the y-axis 

against (1-specificity) on the x-axis at gradually decreasing discriminative thresholds. The closer the 

ROC curve towards the upper left corner, the better the model performs [64]. Such criteria can be 

quantified by the area under the curve (AUC), which ranging from 0 (the poorest performance) to 1 

(perfect prediction). The success rate is the ratio of the number of deposits contained in the targeting 

regions to the total number of deposits. The success-rate curve is generated by plotting the success 

rate on the y-axis against the area percentage of targeting regions on the x-axis at gradually 

decreasing discriminative thresholds. 

In this study, the over-fitting of a predictive model is quantified by two indices, i.e., bias and 

variance. Bias is linked to the ability of a model to fit the labeled data of training dataset, while 

variance is related to the ability of a model to correlate with those labeled samples excluded from 

training dataset [4,65,66]. Given that the AUC is used to assess overall predictive performance, the 

values of (1-AUC) calculated on the training and test dataset are used to estimate bias and variance, 

respectively. The difference between bias and variance can be regarded as a quantitative 

measurement of over-fitting [66]. In order to measure the uncertainty of predictive results, 10-time 

randomly split of original data together with bootstrapping were implemented, resulting in 10 

predictive models. The mean and standard deviation of predictive values in each cell were considered 

as modulated predictive values and quantitative uncertainty. 

Information gain (IG) was used to quantify the contribution of each featured layer to the trained 

model, which can be calculated by the following formula [67]. 𝐼𝐺(𝑌, 𝐹𝑖) = 𝐻(𝑌) − 𝐻(𝑌|𝐹𝑖) (4) 

Where Y is output class (deposit or non-deposit); Fi represents a specific featured layer; H(Y) is the 

entropy value of Y; H(Y|Fi) is the entropy value Y after associating the feature values of Fi (see [67] 

for details). 
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4. Results 

4.1. Data Imbalancing Analysis of SMOTE Augmentation 

SMOTE was used in this study to augment minor positive samples for balancing the training 

dataset. In order to reveal the effectiveness of data augmentation and determine the optimum 

composition of training dataset, a grid search procedure was implemented on 182 SMOTE-ed training 

datasets involving variable over-sampling and under-sampling rates. The accuracies of trained 

models were calculated to measure their performance, as shown in Figure 5a. 

 

Figure 5. Results of data imbalancing analyses: (a) classification accuracies of model trained by 

various combinations of over-sampling and under-sampling rate; (b) accuracy curve regarding 

varying over-sampling rate; (c) accuracy curve regarding varying under-sampling rate; (d) accuracy 

curve regarding positive/negative rate. 

The models with the lowest accuracies are those trained by datasets with low positive over-

sampling rates and high negative under-sampling rates, mostly occupying the upper left corner of 

the graph. In contrast, the models with the highest accuracies generally have high positive over-

sampling rates, occurring in the right half of the graph. The impact of individual sampling rate on 

model performance was further delineated by statistical results of model accuracies that takes a 

specific positive over-sampling rate or negative under-sampling rate (Figures 5b and 5c). The results 

indicate that the accuracies generally increase as the positive over-sampling rate increases, whereas 

the models’ performance becomes more unfavorable with the increasing of the negative under-
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sampling rate. More specifically, the rates of positive samples to negative samples were grouped into 

eight intervals to test reasonable positive/negative ratio employed in training dataset. The result 

indicates that the accuracies consistently increase as the positive/negative rate increases at the interval 

between 0.25 and 1, after which the models’ accuracies achieve a stably high level (Figure 5d). Based 

on the above results, it suggests that models trained by datasets with high positive to negative ratios, 

i.e., greater than 1, tend to be more accurate and stable. In light of the criteria inferred from previous 

data-balancing studies [17], 1:1 balanced positive and negative samples generalize better model 

performance. Therefore, a dataset including 228 positive samples and 209 negative samples, which 

yields the best model accuracy of 94.44% in this study (Figure 5a), was employed to train the FSL 

models. 

4.2. Assessment of Model Precision and Generalization 

Random data-split procedure was iterated 10 times to create 10 different sub-datasets, which 

allows for measuring the overall performance and stochastic uncertainty of few-shot learning models 

in a robust way. RF and SVM models, served as benchmark models in this study, were also generated 

from 10 random selected training datasets. For each algorithm, the resulted probability and 

uncertainty values of 10 trained models were normalized to a [0, 1] range (Figures 6–10), allowing for 

a comparative analysis. 

 

Figure 6. Predictive maps showing average probability yielded by: (a) few-shot learning models; (b) 

random forest models; (c) support vector machine models. 
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Figure 7. Model performance of few-shot learning models: (a) scatter plot showing probability versus 

their quantified uncertainty; (b) ROC curves for training datasets; (c) ROC curves for test datasets; (d) 

measurement of over-fitting on different datasets. 

 

Figure 8. Model performance of random forest models: (a) scatter plot showing probability versus 

their quantified uncertainty; (b) ROC curves for training datasets; (c) ROC curves for test datasets; (d) 

measurement of over-fitting on different datasets. 
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Figure 9. Model performance of support vector machine models: (a) scatter plot showing probability 

versus their quantified uncertainty; (b) ROC curves for training datasets; (c) ROC curves for test 

datasets; (d) measurement of over-fitting on different datasets. 

FSL and RF models output arch-shaped point patterns in the graph of uncertainty versus 

probability (Figures 7a and 8a). This pattern reflects that the cells with low uncertainty either have 

high mineralization probability or retain to low prospectivity zones, whereas those cells with 

moderate probability have high uncertainty. The points derived from SVM models are irregular. The 

cells with low uncertainty have varying probability values from 0 to 1, with no clustering trends 

towards to the lowest- or the highest-probability zones (Figure 9a). For a mineral explorer, the arch-

shaped point pattern is more favorable for the prospectivity mapping, since their attentions focus on 

high-probability cells, which are first-order targets of future exploration, as well as low-probability 

cells that should be excluded from target selection, while these focused cells with low uncertainty are 

deemed robust and low-risk targets. 

The ROC curves for the three machine learning algorithms show marked differences (Figures 7–
9). Two patterns of ROC curves are identified when the models are verified by training datasets, i.e., 

a perfect predictive curve with AUC equal to 1 (for RF and SVM models, shown in Figures 8b and 9b) 

and a step-shaped curve with AUC varying from 0.9 to 1 (for FSL models, shown in Figure 7b). In 

contrast, all the three algorithms yield step-shaped curves when trained by test datasets. These 

patterns clearly show that RF and SVM models fall into the trap of over-fitting, which exhibits a 

perfect predictive performance on training datasets but fails to completely generalize over test 

datasets. Although the ROC curves of FSL models on both training and test datasets show step-

shaped patterns, these models also suffer from over-fitting given that the AUCs of training datasets 

are greater than those of test datasets (Figures 7b,c). The over-fitting is quantified by bias and variance, 

as depicted in Figures 7d, 8d, 9d and Table 1. RF models have the lowest average variance, implying 

the superior performance of RF models on test datasets (average AUC=0.9292), followed by FSL 

models which also achieve high AUCs on test datasets (average AUC=0.9172). FSL models have the 

lowest measured value of over-fitting (0.0313), which is far lower than that of RF (0.0708) and SVM 

models (0.1801). 
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Table 1. Comparison of model generalization. 

Dataset 

ID 

Few-shot learning  Random forest  Support vector machine 

Bias Variance 
Over-

fitting 

 
Bias Variance 

Over-

fitting 

 
Bias Variance 

Over-

fitting 

1 0.0523 0.0764 0.0241  0 0.0469 0.0469  0 0.2517 0.2517 

2 0.0855 0.1493 0.0638  0.0001 0.0677 0.0677  0 0.1372 0.1372 

3 0.0771 0.1198 0.0427  0 0.0799 0.0799  0 0.1615 0.1615 

4 0.0287 0.0503 0.0216  0 0.0868 0.0868  0 0.2153 0.2153 

5 0.0355 0.0712 0.0357  0 0.0764 0.0764  0 0.0556 0.0556 

6 0.0314 0.0382 0.0068  0 0.0486 0.0486  0 0.1997 0.1997 

7 0.0602 0.0660 0.0058  0 0.0764 0.0764  0 0.3368 0.3368 

8 0.0590 0.1059 0.0469  0 0.0920 0.0920  0 0.2257 0.2257 

9 0.0317 0.0660 0.0343  0 0.0590 0.0590  0 0.1684 0.1684 

10 0.0534 0.0851 0.0317  0 0.0747 0.0747  0 0.0486 0.0486 

Average 0.0515 0.0828 0.0313  0 0.0708 0.0708  0 0.1801 0.1801 

4.3. Targets of Predictive Modeling 

Aiming to generate a robust prospectivity map with lowest uncertainty, the FSL models are 

chosen as final predictive models. However, it is still a challenging task to extract the optimal 

exploration targets from resulting FSL models. Excessively extensive prospective zones would 

greatly increase the exploration cost, whereas too limited targeting zones would reduce the success 

rate of prospecting. Therefore, predictive efficiency considering both success rate and delineated area 

is essential for the targeting task. A success-rate curve is employed here to measure the predictive 

efficiency of proposed models, as shown in Figure 10. Four segments of success-rate curves are clearly 

identified, with fitting coefficients greater than 0.92. Given that the slope of the fitting curve indicates 

the ratio of successfully predicted deposits versus the delimited area, it can be employed as an 

effective means to quantify the predictive efficiency. The first segment of success-rate curve 

represents the predictive efficiency of those cells with top probabilities, thus reflecting the most 

important aspect of model’s predictive efficiency. The slope of the first segment of success-rate curve 

is 8.293, representing that 61.86% of known mineral deposits are captured within 7% of the study 

area. This result is superior to the best predictive efficiency of 6.7797 yielded from previous MPM 

modeling in this region [9]. 

Different slopes of success-rate curves suggest different predictive efficiencies. Thus, the 

intersections of different segments of success-rate curves imply possible threshold values for 

classification of different prospectivity levels. In this regard, four levels of mineral prospectivity, 

namely high potential, moderate potential, low potential, and barren zones, are identified from 

Figure 10, based on which a prospectivity map is generated (Figure 11). Uncertainty is employed to 

further estimate the reliability of predictive results, reducing exploration risk. However, there is no 

common criteria for selecting threshold value for masking high uncertain cells [4]. In this study, four 

levels of uncertainty, namely very high, high, medium and low, are determined based on the 

threshold values of three quartiles of uncertainty values. Considering both predictive efficiency and 

exploration risk, the final targets for future exploration fall on the cells with high potential and low 

uncertainty, as shown with the brown filled zone in Figure 12. The final low-risk exploration targets 

only cover 4.27% of the area, but capture 41.53% of known tungsten deposits (Figure 11), achieving 

the best predictive efficiency of 9.7155. 
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Figure 10. Success-rate curve of few-shot learning predictive model. 

 

Figure 11. Prospectivity map showing different potential areas and low-risk exploration targets. 
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Figure 12. Zoning of scatter plot based on threshold values of both probability and uncertainty. 

5. Discussion 

The objective of MPM in this study is to generate a robust predictive model with low uncertainty, 

thus reducing the future exploration risk to the maximum extent. To achieve this goal, three aspects 

of scenarios have been implemented. 

Geologically, the mineral systems approach was employed to translate our understanding of the 

tungsten mineral system into mappable exploration criteria, resulting in 8 evidential maps that 

represent source, transport, physical trap and chemical deposition processes critical for ore formation. 

The feature weights of evidential layers, measured by information gain, imply that most of selected 

evidences make major or significant contributions to the final predictions (Figure 13). As a direct 

indication of targeted mineralization, W anomalies impose the greatest influence on the predictive 

results. Proximity to Yanshanian intrusions and density of fault intersections, corresponding to 

spatial proxies of ore-forming parent magmatic rocks and regional structural that have been well 

recognized as ore-controlling factors, exert important influences on the predictions. It is interesting 

to observe that Mn anomalies make equal contribution to prediction as above-mentioned well-

recognized elements, which is consistent with our previous study [9], implying that Mn derived from 

host rocks may exert a significant control on wolframite precipitation. Magnetic anomalies, fault 

density and Fe anomalies make secondary contributions to predictions. It is worth noting that gravity 

anomalies are interpreted to contribute little to predictive results, implying their failure in spatially 

representing buried intrusions. This arises a limitation problem of this study based on 2D maps, that 

is, lacking of evidential layers that can effectively portray ore-related processes at depth. Integrating 

such evidences in future work would improve the effectiveness of predictor maps and boost the 

performance of predictive models. 

Algorithmically, a FSL framework jointly employing data augmentation and transferring was 

proposed, which appears to be effective for controlling the over-fitting regarding model assessment 

(Figure 7 and Table 1). On the one hand, 10-time random data split were implemented, and 

bootstrapping was carried out based on the augmented data derived from robust SMOTE algorithm. 

This multi-round random scenario not only provides a means for quantifying uncertainty and 

reducing fluctuation of predictive results, but also greatly increases the diversity of input datasets 
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and pre-trained models, thus prevents the models from excessively over-fitting. On the other hand, 

the augmented synthetic data creates a data-rich source domain, meanwhile, they are intrinsically 

correlated with labeled data in the target domain, which benefits to transfer the knowledge obtained 

from source domain to the target domain, thereby enhancing the generalization capability of these 

models. In this regard, the FSL model is considered as the optimal one that can be well generalized 

for further exploration targeting. 

 

Figure 13. Feature weights obtained by information gain. 

Practically, this study employed the performance metrics linking predictive results to realistic 

mineral exploration activity. The confusion matrix-based indices are usually employed to assess the 

accuracy of binary classification. However, in this study, they are only used to rapidly measure the 

effect of parameter optimization, but are not taken into account for performance evaluation. The 

reason is that the confusion matrix of binary classification takes 0.5 as a common threshold. The cell 

greater or lower than 0.5 is labeled as positive or negative. In MPM field, such criterion leads to 

excessively extensive “favorable regions” (often beyond 30% of the study area), which conflicts with 

one of the basic principles of mineral exploration, that is, narrowing down the area of exploration 

targets. Instead, performance metrics based on varying discriminative thresholds, i.e., ROC curve 

and success-rate curve, are employed in this study, and attention is especially focused on the high-

probability and low-uncertainty zones. The final targets, capturing 49 out of 118 known deposits 

within only 4.27% of the total area, allow for an efficient and realistic exploration plan for future 

tungsten prospecting in this area. 

6. Conclusions 

Prospectivity map generated from a robust modeling process is crucial for an efficient 

exploration targeting. In this study, a FSL framework, combining the mineral systems approach, 

SMOTE augmentation algorithm, transfer learning and performance metrics linking to realistic 

mineral exploration, was proposed and applied in tungsten prospectivity mapping of southern 

Jiangxi Province. The resulting predictive model generates an arch-shaped point distribution pattern 

in the scatter plot of probability and uncertainty, favorable for focusing potential targets with high 

probability and low uncertainty, and achieves a high AUC value of 0.9172 on test dataset, as well as 

yields the lowest quantitative over-fitting value compared to benchmark machine learning 

algorithms. The predictive results demonstrate the excellent performance of the proposed framework 
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in controlling over-fitting and generating high-potential, low-risk exploration targets. The final 

exploration targets only cover 4.27% of the area, but capture 41.53% known tungsten deposits, 

providing significant reference for further tungsten prospecting in the study area. 
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