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Abstract: Speech emotion recognition is a critical component for achieving natural human-robot interaction. 

The modulation-filtered cochleagram is a feature based on auditory modulation perception, which contains 

multi-dimensional spectral-temporal modulation representation. In this study, we propose an emotion 

recognition framework that utilizes a multi-level attention network to recognize emotions from the 

modulation-filtered cochleagram. The channel-level attention and spatial-level attention modules are used to 

capture emotional saliency maps of channel and spatial feature representations from the 3D convolution 

feature maps, respectively. Furthermore, the temporal-level attention module captures significant emotional 

regions from the concatenated feature sequence of the emotional saliency maps. Our experiments on the 

IEMOCAP dataset demonstrate that the modulation-filtered cochleagram significantly improves the prediction 

performance of categorical emotion compared to other evaluated features. Moreover, our emotion recognition 

framework achieves a better unweighted accuracy of 71% in categorical emotion recognition than several 

existing approaches in the experiments. In summary, our study demonstrates the effectiveness of the 

modulation-filtered cochleagram in speech emotion recognition, and our proposed multi-level attention 

framework provides a promising direction for future research in this field. 

Keywords: categorical emotion recognition; auditory signal processing; modulation-filtered 

cochleagram; multi-level attention 

 

1. Introduction 

The Internet of Everything (IoE) presents a plethora of opportunities for human-robot 

interaction. Speech is the most natural and convenient communication mode between humans and 

robots. Emotion information from speech can effectively help robots understand the speaker’s 

intentions in natural human-robot interaction. Therefore, speech emotion recognition (SER) holds 

immense potential for diverse applications in human-robot interaction, including but not limited to 

intelligent driving, service robotics, online education, telemedicine, and criminal investigations[1]. 

The extraction of emotional features is one of the key technologies in SER. The commonly used 

emotional features mainly include: Hand-crafted low-level descriptor (LLD) and its high-level 

statistical features (HSF)[2], Mel-filter bank features[3], Spectrogam[4][5], etc. However, researchers 

have not identified the best speech features for SER, and still explore the effective features that can 

represent emotional states[6]. Humans can easily perceive emotional information and its changes 

through the auditory system. Sounds reach the auditory cortex after passing through several auditory 

signal processing stages, which then perceives differences in intensity and tone to produce varying 

psychological responses. Therefore, identifying emotions from the perspective of auditory perception 

can be an effective approach. However, the complexity of the human auditory system and its signal 

processing mechanism remain unclear. Researchers have simulated functional models of the auditory 
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system based on its characteristics, such as the models of the cochlear basilar membrane, the inner 

hair cell, the nerve conduction, and the auditory center. These models are mainly applied in a cochlear 

implant, hearing aid, sound source positioning, speech enhancement[7], etc, but there are still few 

studies on auditory perception and understanding. Psychoacoustic research reveals that speech 

signals are decomposed into spectral-temporal components in the cochlea and are subject to spectral-

temporal modulation through the auditory pathway, generating a modulation spectrum[8]. This 

modulation spectrum plays an essential role in speech perception and understanding[9][10]. Several 

studies have used statistical functions on the modulation spectrum to obtain modulation spectral 

features (MSF) for SER tasks [11]. Avila et al.[12] proposed a feature pooling scheme for dimensional 

emotion recognition using combined MSF and 3D spectrum representation. They extracted the 

amplitude envelope of the Gammatone auditory filterbank and applied discrete Fourier transform 

(DFT) to obtain the spectral-temporal modulation representation. However, this method uses DFT to 

convert the envelope signal into the frequency domain before temporal modulation, thus increasing 

the computational complexity. Peng et al. [13] proposed the modulation-filtered cochleagram (MCG) 

feature to extract high-level auditory representations for dimensional emotion recognition. The 

experimental results showed excellent performance in terms of arousal and valence prediction, but 

the effectiveness of this feature in categorical emotion recognition requires further investigation. 

In order to extract high-level feature representations from speech features, deep learning 

methods such as rr neural network (RNN), Transformer, etc., are mainly used for the SER task. CNN 

is often used to extract high-level speech feature representation because of its scale and rotation 

invariance[14]. RNN is often used to capture the sequence dependence[15][16] because of its long-

term dependence in the speech sequence. Recently, attention mechanisms have been incorporated 

into deep learning methods to automatically capture salient emotion features in speech sequences. 

Neumann et al.[3] proposed attentive CNN (ACNN) based on the attention model to identify 

emotions from the log-Mel filterbank features. Mirsamadi et al.[17] introduced attentive RNN 

(ARNN) model recognize emotions from frame-level LLDs with local attention as a weighted pooling 

method. Peng et al.[18] proposed an attention-based sliding recurrent neural network (ASRNN) to 

effectively model auditory representation sequence by mimicking the auditory attention to capture 

salient emotion regions. In addition, the Transformer employs a self-attention mechanism in 

conjunction with RNN-based encoder-decoder architecture to track the context relations in the 

sequence data. Chen et al. [7] introduced Key-Sparse Transformer to dynamically judge the 

importance of each frame in the speech signal, so as to help the model pay attention to the emotionally 

related fragments as much as possible. 

Some novel attention models such as channel attention and spatial attention are proposed for 

image recognition and behavior detection. Channel attention is used to obtain the importance of 

different channels, such as SE-Net[19], SK-Net[20], and ECA-Net[21]. Spatial attention is transformed 

into another space through the spatial conversion module and retains key information, such as A2-

Net[22], DANet[23], and convolutional block attention module(CBAM)[24]. In addition, some studies 

have constructed multi-level attention models from different dimensions. Ma et al.[25] proposed 

TripleNet that uses a hierarchical representation module to construct the representation of context, 

reply and query in multi-turn dialogue, in which the triple attention mechanism is applied to update 

the representation. Liu et al.[26] proposed TANet for object detection by jointly considering the triple 

attention of channel, point and voxel. for speech dialogue and object detection. Jiang et al.[27] 

proposed a convolutional-recurrent neural network with multiple attention mechanisms for SER. 

This method employed the multiple attention layer to calculate the weights for different frames and 

features, and the self-attention layer to calculate the weights from Mel-spectrum features. Liu et al. 

[28] proposed a novel multi-level attention network, which contains a multiscale low-level feature 

extractor and a multi-unit attention module for SER. Zou et al.[29] proposed an end-to-end speech 

emotion recognition system using multi-level acoustic information with a newly designed co-

attention module. These methods used multiple attention models to extract different channel and 

spatial attention maps from LLDs, spectrograms, and waveforms, and then fused these attention 

maps to recognize emotions, without considering capturing significant emotional regions of speech 
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sequences using temporal attention. To address this issue and investigate the effectiveness of MCG 

features in discrete emotion recognition, this paper proposes a categorical emotion recognition 

method that employs a multi-level attention network to extract salient information from modulation-

filtered cochleagram features. Firstly, 3D-CNN is used to extract high-level auditory feature 

representation from modulation-filtered cochleagram. Then, the channel-level attention module is 

used to capture the dependence of the channel structure from the 3D convolution feature map, the 

spatial-level attention module is used to capture the dependence of the spectral-temporal spatial 

structure of spectral-temporal feature representation. Finally, a temporal-level attention module is 

used to capture the significant emotional regions from the concatenated feature sequence of the 

channel and spatial attention map. 

The major contributions of this study are as follows: 

• Using the same convolutional recurrent neural network, the MCG features perform better than 

other evaluation features in categorical emotion recognition. 

• The multi-level attention network is proposed, in which channel-level and spatial-level attention 

modules obtain fused features from MCG features, and temporal-level attention further captures 

significant emotional regions from fused feature sequences, thereby improving emotion 

recognition performance. 

• The proposed method is evaluated on Interactive Emotional Dyadic Motion Capture Database 

(IEMOCAP). It obtains an unweighted accuracy of 71%, showing the effectiveness of our 

approach. 

The remainder of this paper is organized as follows. In Section II, we describe the modulation-

filtered cochleagram feature. In Section III, we describe the proposed emotional recognition 

framework with a multi-level attention module. The experiments and results are presented in Section 

IV. Finally, the paper is concluded in Section V. 

2. Modulation-filtered cochleagram 

In this section, we introduce modulation-filtered cochleagram features from spectral-temporal 

modulation representation. 

2.1. Modulation-filtered cochleagram features 

The modulation-filtered cochleagram feature is used to capture the temporal modulation cues 

from emotional speech and achieves significant effects in dimensional emotion prediction. In this 

study, we explore the application of the modulation-filtered cochleagram features in categorical 

emotion recognition. The emotional speech signal 𝑠(𝑡) is first filtered by a bank of Gammatone 

cochlea filters. Then, the temporal envelope of the subchannel signal is extracted using Hilbert 

transform. Furthermore, the m-th modulation filter in the n-th channel envelope signal is used to 

obtain the spectral-temporal modulation signal 𝑠௠௨(𝑛, 𝑚, 𝑖), it is defined as: 𝑠௠௨(𝑛, 𝑚, 𝑖) =  w(𝑡௪) ∙ 𝑠௠(𝑛, 𝑚, (𝑖 − 1) ∙ 𝐿𝑒𝑛௦ + 𝑡௪), (1)

where w(𝑡௪) is the window function, 𝑡௪  is the time window size, and 𝐿𝑒𝑛ୱ  is the frame shift. 𝑠௠௨(𝑛, 𝑚, 𝑖) refer to the 𝑚 th modulation channel and the 𝑛 th cochlea acoustic channel of the 𝑖 th 

modulation unit, and a total of 𝑛 ∗ 𝑚 channel signals are generated, where 1 ≤ 𝑖 ≤ 𝐿, 𝐿 is equal to 𝐿𝑒𝑛୲/𝐿𝑒𝑛ୱ, and 𝐿𝑒𝑛୲ is the total length of the speech signal 𝑠(𝑡). s୫(𝑛, 𝑚, (𝑖 − 1) ∙ 𝐿𝑒𝑛௦ + 𝑡௪) is the 

spectral-temporal modulation signal of the 𝑛  subchannel and the 𝑚  subchannel of the 𝑖 
modulation unit. 𝑠௠௨(𝑛, 𝑚, 𝑖) represent the m modulation subchannel in the n acoustic subchannel. 

The calculation formula is as follows: s୫(𝑛, 𝑚, 𝑡)  =  m୤(m, t)  ∗  sୣ(n, t), 1 ≤  m ≤  M, (2)

where m୤(m, t) is the pulse response of the modulation filterbank, 𝑀 is the number of channels in 

the modulation filterbank, and sୣ(n, t) is calculated by s୥(n, t) as the size of the complex resolution 

signal s୥ෝ (n , t)  = s୥(n, t)  +  j ℋ { s୥(n, t) } . ℋ {∙}  Represents the Hilbert transformation. Therefore, sୣ(n, t) is calculated as follows: 
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sୣ(n, t)  =  หs୥ෝ (n , t)ห  =  ටs୥(n, t)ଶ   + ℋ{s୥(n, t) }ଶ , (3)

The s୥(n, t) represents the speech signal s(t) of the n th channel of the speech signal processed by the 

auditory filter, using the following formula: s୥(n, t)  = g୲(n, t)  ∗  s(t) , 1 ≤  n ≤ N, (4)

where 𝑔୲(𝑛, 𝑡) represents the pulse response of the n th channel of the filterbank, ∗ represents the 

convolution operation, t is the number of samples in the time domain, and 𝑁 is the number of 

channels in the auditory filterbank. The Gammatone filterbank is used to simulate the motion of 

cochlear basilar membrane, and its pulse response is the product of the Gamma distribution and the 

cosine signal: 𝑔୲(𝑛, 𝑡) = A𝑡௡౜ିଵ exp൫−2π𝑤௙𝐸𝑅𝐵ே(𝑓୬)𝑡൯ cos(2𝜋𝑓୬ 𝑡 + φ), (5)

where 𝐴，𝑛௙ and 𝑤௙  are the amplitude, order and bandwidth of the filter, A𝑡௡౜ିଵ exp൫−2π𝑤௙𝐸𝑅𝐵ே(𝑓୬)𝑡൯ is the amplitude term of the Gamma distribution representation, 𝑓୬ is 

the central frequency of the n th channel of the filter, and 𝐸𝑅𝐵ே(𝑓୬) is the equivalent rectangular 

bandwidth of 𝑓୬, which is a psychoacoustic measure of the width of the auditory filter at each point 

along the cochlea. The calculation formula is provided as follows: 𝐸𝑅𝐵௡(𝑓௡)  =  ௙೙ொ೐ೌೝ  +  𝐵௠௜௡, (6)

where f୬ is the central frequency of the n th filter, 
௙೙ொ೐ೌೝ is the quality factor, which approximates the 

filtering quality of the high frequency band, and B୫୧୬ is the minimum bandwidth, representing the 

approximation of the filtering quality of the low frequency band. 𝑄௘௔௥ and 𝐵௠௜௡ generally adopt the 

values proposed in the literature [30], with 9.26449 and 24.7, respectively. 𝑀𝐶𝐺(𝑐, 𝑖) results from the convolution operation of each modulation unit: 

𝑀𝐶𝐺(𝑐, 𝑖) = ෍ 𝑠௠௨(𝑐, 𝑖) ∗ 𝑠௠௨(𝑐, 𝑖)௅ିଵ
௜ୀ଴ . (7)

2.2. MCG feature representation of different emotions 

In the MCG feature, the weight of emotions expressed by different channels is different, mainly 

focusing on low-modulation frequency channels of about 4 Hz, in which neutral emotion and sadness 

are expressed at the lower modulation frequency, while anger and happiness are opposite [10]. Figure 

1 shows examples of the MCG feature of the first modulation channel in different emotion speech on 

the IEMOCAP dataset [31]. The x axis represents the speech sequence, and the y axis is the number 

of acoustic channels n (n=16). Panels (a) to (d) in Figure 1 show the modulation-filtered cochleagram 

of sadness, anger, neutral emotion, and happiness, respectively. From these panels, we can find that 

the different emotion has a different acoustic channel, suggesting they could be discriminated from 

each other from MCG features. From the cochleagram, the energy of sadness is concentrated in the 

slow acoustic channel, and the energy of anger and happiness is concentrated in the higher acoustic 

channel. However, compared with happiness, the energy distribution of anger is relatively 

concentrated in higher acoustic channels. This shows that different emotions characterized by the 

acoustic channels are significantly different in the MCG features. We can capture the distinctive 

characteristics of different emotions from the MCG features. 
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(a) Sadness (c) Neutral emotion 

(b) Anger (d) Happiness 
 

Figure 1. Modulation-filtered cochleagram feature representation of different emotions. 

3. Emotional recognition model 

In this section, we introduce multi-level attention-based emotion recognition model using the 

modulation-filtered cochleagrams. 

3.1. Overview of the emotion recognition model 

The proposed emotion recognition model is shown in Figure 2. Firstly, MCG features are 

extracted by auditory signal processing of the speech signal, and fed into the 3D convolution to obtain 

the high-level feature representation 𝐹ଷ஽ , with a shape of W×H×T×C in which W, H, T, and C 

represent the acoustic representation, modulation representation, temporal and channel respectively. 

Subsequently, the multi-level attention module (MAM) is used to capture significant emotional 

segment information. The MAM extracts emotional information from three dimensions, namely 

channel (C), space (W×H), and time (T), accurately locating areas with significant emotions. The 

channel-level attention module is used to capture the dependence of the channel structure from the 

3D convolution feature map, the spatial-level attention module is used to capture the dependence of 

the spectral-temporal spatial structure of spectral-temporal feature representation, the temporal-level 

attention module is used to capture the significant emotional regions from the concatenated feature 

sequence of the channel and spatial attention map. Among them,the channel level attention and 

spatial level attention are responsible to capture the dependencies between the channel and spatial 

dimension of the feature map in a parallel mode, respectively. Finally, attention-based feature 

representations are obtained through temporal-level attention and further passed to a softmax layer 

to generate the emotional state distribution. 

Auditory 
signal 

processing s(t)
3D CNN

⊗

⊕

Channel-level attention module

Spatial-level attention module

[   ,   ]

Modulation-filtered 
cochleagram

BLSTM
BLSTM

BLSTM

⊗

aL

a1

ai

Softm
ax

Temporal-level attention module

.
.
.

⊕
F3D

F'3D

F''3D

F'3D F''3D

C3D

S3D

 

Figure 2. Overview of multi-level attention-based emotion recognition model. 
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3.2. Channel-level attention 

A channel-level attention module is used to calculate the channel-wise attention map from the 

3D convolution feature map. Channel-level attention adaptively recalibrates the weights of each 

channel to focuses on what is an informative part. The channel-level attention module is designed 

similarly to CBAM. The main difference between channel-level attention and CBAM is that we insert 

two 3D convolutional layers to characterize spatial and temporal information of feature maps for 

channel-wise features. To compute the channel-level attention efficiently, we squeeze the spatial and 

temporal dimension of the input feature map. The channel-level attention module is shown in Figure 

3. Channel-level attention map is first obtained by adaptive learning, and then element-level 

multiplication with the input feature map 𝐹ଷ஽ to obtain a refined feature map 𝐹ଷ஽ᇱ . The calculation 

formula is provided as follows: 𝐹ଷ஽ᇱ  =  𝐶ଷ஽(𝐹ଷ஽)⨂𝐹ଷ஽, (8)

where 𝐶ଷ஽  represents the channel-level attention map, ⨂  representing the element-level 

multiplication. 

We first aggregate spatial information of a feature map 𝐹ଷ஽ by using both average-pooling and 

max-pooling operations, generating two different spatial context descriptors: 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹ଷ஽)  and 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹ଷ஽) , which denote adaptive average-pooling features and max-pooling features 

respectively. 

Both descriptors are then fed into two 3D convolutional layers with a Relu function. 

Subsequently, the features are fused using element-wise summation, and the sigmoid activation 

function is applied to obtain the channel attention map 𝐶ଷ஽ ∈ 𝑅ଵ×ଵ×ଵ×஼. The channel-level attention 

map indicates how important each channel is for the emotion recognition results. The calculation 

formula is as follows: 𝐶ଷ஽(𝐹ଷ஽)  = 𝜎( 𝐶𝑜𝑛𝑣ଶ(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣ଵ(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹ଷ஽))))  +                                      𝐶𝑜𝑛𝑣ଶ(𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣ଵ(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹ଷ஽))))), (9)

where 𝐶𝑜𝑛𝑣ଵ and 𝐶𝑜𝑛𝑣ଶ represent the first and second 3D convolution operations, respectively, and 𝜎 denotes a sigmoid operation. Both convolutions are 1x1x1 convolution kernels, the number of 

output channels is 
஼௥  and 𝐶, r is the dimensionality reduction coefficient in the channel-level 

attention, with a value of 16. The batch normalization after the channel feature map 𝐶ଷ஽ is used to 

obtain the same network input distribution and improve the effectiveness of different channels on 

the feature maps. 

Maxpool

F3D

Input feature Avgpool 3D Conv1 3D Conv2

⊗⊕
C3D

Relu Refined feature

BN 

F'3D

 

Figure 3. The channel-level attention module. 

3.3. Spatial-level attention 

A spatial-level attention module is used to calculate the spatial-wise attention map from the 3D 

convolution feature map. Different from channel-level attention, spatial attention focuses on where 

is an informative part of feature maps, which is complementary to channel-level attention. The 

spatial-level attention module is shown in Figure 4. The spatial-level attention map generated by the 

spatial-level attention is used element-level multiplication with the 𝐹ଷ஽ to obtain a refined feature 

map 𝐹ଷ஽ᇱᇱ . The calculation formula is provided as follows: 
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𝐹ଷ஽ᇱᇱ  =  𝑆ଷ஽(𝐹ଷ஽)⨂𝐹ଷ஽, (10)

where 𝑆ଷ஽  represents a spatial-level attention map, ⨂ representing element-level multiplication. 

The feature map 𝐹ଷ஽ integrates the feature map through maximum pooling and average pooling, 

respectively, to obtain global information. 3D convolution with a kernel size 3x3x1 is used to obtain 

spatial regions of emotionally significant spectral-temporal space, thus obtaining spatial-level 

attention map 𝑆ଷ஽ ∈ 𝑅ௐ×ு×ଵ×ଵ. The spatial-level attention the map represents the importance of each 

region in the feature map 𝐹ଷ஽. The calculation formula is provided as follows: 𝑆ଷ஽(𝐹ଷ஽)  = 𝜎(𝑓ଷ×ଷ×ଵ([𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹ଷ஽), 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹ଷ஽)]), (11)

where 𝑓ଷ×ଷ×ଵ is a convolution kernel of size 3x3x1. 

Maxpool

F3D

Input feature Avgpool 3D Conv

⊗

Refined feature

BN 
S3D

F''3D

 

Figure 4. The spatial-level attention module. 

3.4. Temporal-level attention 

Because many speech frames are unrelated to the expressed emotion, such as silence, temporal-

level attention is mainly used to focus on the significant emotional regions from the concatenation 

feature of the channel attention map 𝐹ଷ஽ᇱ  and the spatial attention map 𝐹ଷ஽ᇱᇱ .The temporal-level 

attention module is shown in Figure 5. Specifically, we use a bidirectional LSTM (BLSTM) network 

in this study, where the sequence of received signals is once fed in the forward direction into one 

LSTM cell, and once fed backward into another LSTM cell. We concatenate the last state of the 

forward and backward LSTM cells to produce a sequence of ℎ௜. Subsequently, a ReLU is used to 

produce non-linear transformations ℛ(ℎ௞). ℛ(ℎ௜) = 𝑈௜𝑅𝑒𝐿𝑈(𝑊௜ℎ௜ + 𝑏௜), (12)

where 𝑊௜ , 𝑈௜ are the trainable parameter matrices, 𝑏௜ is the bias vector. We use the non-linear 

function of the ReLU due to its good convergence performance. For each ℎ௜, the 𝛼௜ can be computed 

as follows: 𝛼௜ = 𝑒𝑥𝑝(ℛ(ℎ௜))∑ 𝑒𝑥𝑝(ℛ(ℎ௜))௅௜ୀଵ , (13)

We then obtain the attention weights 𝛼௜ of each sequence from the attention model. The output 

of the attention layer, 𝑎𝑡𝑡_𝑠𝑢𝑚, is the weighted sum of ℎ. 𝑎𝑡𝑡_𝑠𝑢𝑚 = ∑ 𝛼௜ℎ௜௅௜ୀଵ . (14)
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Figure 5. The temporal-level attention module. 

4. Experimental results and analysis 

In this section, we introduce the categorical emotion datasets and experimental results analysis 

in this study. 

4.1. Dataset description 

In this study, the IEMOCAP database is used in the experiment for categorical emotion 

recognition. Only four emotional categories are used in this database: happy, sad, angry, and neutral. 

Since the speech from scripted data may contain an undesired relationship between linguistic 

information and the emotion labels, we only use the improvised data. We calculate MCG features 

from the speech signal in IEMOCAP and split those MCG features into 2-second segments. Segments 

split from one sentence uses the same emotion label as the original sentence. The 2-second segment 

is performed during the training stage, while the entire sentence is used for evaluation during the 

testing stage. The data distribution is shown in Figure 6, where neutral, happy, angry and sad are 

1099, 947, 289, 608, respectively. Because the class distribution of IEMOCAP database is not balanced, 

the number of utterances belonging to happy/neutral is more than 3 times that of angry. In this paper, 

unweighted accuracy (UA) is used as the performance metric of the proposed model to avoid the bias 

towards the larger class. 

 
Figure 6. Distribution of the experimental data. 
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4.2. Experimental setup 

The deep learning model is trained using leave-one-session-out cross-validation with a batch 

size of 50. We implement our methods with the TensorFlow deep learning framework. Our approach 

is implemented through the TensorFlow framework. The models were trained in all experiments 

using the Adam optimizer with a learning rate of 1e-4 to minimize the chance of having a cross-

entropy objective. Moreover, we used a ReLU as the activation function, which brought the non-

linearity into the networks. To avoid overfitting when training our networks, we used a dropout rate 

of 0.5 after the recurrent layer. 

4.3. Experimental results analysis 

To compare the performance of speech emotion recognition on MCG features and multi-level 

attention, two types of experimental comparisons are designed. Firstly, we investigate the emotional 

recognition performance of traditional acoustic features (MFCC, emobase2010, IS09[32]), 

spectrograms, MSF, and MCG under the same deep model. Acoustic features are obtained by 

calculating the HSF using the openSMILE toolkit[33]. The spectrogram is obtained by dividing the 

speech signal into frames and performing windowing, zero padding, and Fast Fourier Transform 

(FFT) on each frame. Cochleagram, simulating the frequency selective characteristics of the human 

cochlea, is generated using a gammatone filterbank having 64 channels from frequency 50 to 8000 Hz 

from speech signal. MSF is obtained by calculating the spectral centroid, flatness, skewness, kurtosis, 

and other statistical features from temporal modulation representation. All features are first 

normalized by specific z-normalization. For each feature set, we train convolutional recurrent neural 

networks (CRNN) to recognize the speech emotion. The CRNN model consists of two convolutional 

blocks, one bidirectional LSTM block, and a fully connected layer. Each of the convolutional block 

consists of a convolutional layer with a convolutional kernel of 3*3 followed by a Batch Normalization 

(BN) layer, a ReLU activation function layer, and a max-pooling layer. Table 1 shows the performance 

comparison of the seven features on the IEMOCAP database. The MFCC features yielded the worst 

results at 58.5% compared to IS09, emobase2010, and MSF, possibly due to the least number of 39-

dimensional MFCC features. The best result in IEMOCAP was generated on MCG features with an 

accuracy of 63.8%, indicating that MCG features can effectively capture emotional information under 

the same model. 

We compare our approach with several baselines. 1) 3D CRNN-max-pooling. Similar to the 

CRNN model in hierarchical structure, but each convolutional block uses 3D convolution operations 

instead of 2D operations to extract high-level feature representations from MCG features. The max-

pooling operation is used on the output of LSTM network, and then is fed into the fully connected 

layer for classifying. 2) 3D CRNN-attention. Different from our proposed 3D CRNN-max-pooling, 

the max-pooling operation is replaced with a temporal attention layer. 2) Triple-attention. The 

channel, spatial, and temporal attention modules obtain their respective weights of feature map in 

parallel, and then the concatenated attention maps are fed into the LSTM network. The results 

obtained for each method are shown in Table 2. The results show that 3D convolution has a significant 

improvement in recognition performance compared to 2D convolution, indicating that 3D 

convolution obtains more spectral time spatial information. The use of attention method has a higher 

recognition rate than deep model with the max-pooling operation, indicating that attention can 

capture discriminative emotional information from high-dimensional spatial information. The results 

also show that the multi-level attention network achieves the best performance with 71.0% in UA 

measures. This indicates that multi-level attention methods can use a channel and spatial attention 

to obtain complementary attention maps and use temporal attention to obtain significant emotional 

regions. 

Table 1. Performance comparison between different features on the IEMOCAP database (%). 

FEATURE UA 

MFCC 58.5 
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emobase2010 60.9 
IS09  58.4 
MSF 59.7 
Spectrogram 61.6 
Cochleagram 62.1 
MCG 63.8 

Table 2. Performance comparison between different architectures on the IEMOCAP database (%). 

METHOD UA  

3D CRNN-max-pooling 67.5 

3D CRNN-attention 67.8 

Triple-attention 69.4 

Proposed method 71.0 

The confusion matrix is shown in Figure 7. The experimental results show that the proposed 

method obtains the highest recognition rate on Sad and the lowest recognition rate on Neutral 

emotion. Sad is easily confused with Neutral emotion and vice versa. Anger is more easily confused 

with Happy than Happy is confused with Anger. In general, the ability of the multi-level attention 

model based on MCG features to recognize emotions is the same as that of the human auditory 

system. 

 
Figure 7. Confusion matrix of the multi-level attention-based emotion recognition model on the 

IEMOCAP dataset, where each row presents the confusion of the ground-truth emotion. 

To show the benefit of the proposed model, we compare our results with the studies presented 

in Table 3. In [29], the authors proposed an end-to-end speech emotion recognition system using 

multi-level acoustic information including MFCC, spectrogram, and wav2vec2 with a newly 

designed co-attention module. In [34], the authors used Log-Mel filterbank features as the input to 

the autoencoder and used attentive CNN for representation learning. In [35], the authors used a 3D 

attention-based CRNN to learn discriminative features for SER, where the Mel-spectrogram with 

deltas and delta-deltas are used as input. In [36], the authors proposed a parallel network based on a 

connection attention mechanism (AMSNet) for multi-scale SER. Compared to these studies, we are 

achieving a better result of 71% on the IEMOCAP using a multi-level attention module from MCG 

features. This indicates that the MCG features can provide spectral-temporal representations, and the 

multi-level attention module can effectively extract emotional information for emotion recognition. 
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Table 3. The results of various approaches on the IEMOCAP database (%). 

Literature Features Models UA 

Ramet et al.[34]  LLDs ARNN 63.7 

Mirsamadi et 

al.[17] 

MFCC and spectrum  ARNN 58.8 

Chen et al.[35] Spectrogram ACRNN 64.74±5.44 

Peng et al. [18] Modulation spectrum ASRNN 62.6 

Zou et al.[29] wav2vec2 Co-attention 68.65 

Jiang et al.[27] Mel-spectrum CRNN-MA 60.6 

Chen et al. [36] Spectrogram and 

LLDs 

AMSNet 70.51 

Our work MCG MAM 71.0 

4.4. Ablation experiment 

To evaluate the effectiveness of the multi-level attention-based emotion recognition framework, 

this study carried out four ablation experiments on different attention modules. 

MAM: the multi-level attention model with channel-level, spatial-level, and temporal-level 

modules. 

STM: the attention model with spatial-level and temporal-level modules. 

CTM: the attention model with channel-level and temporal-level modules. 

SCM: the attention model with spatial-level and channel-level modules. 

 
Figure 8. Results of ablation experiments. 

The results are shown in Figure 8. Channel-level attention and spatial-level attention have 

similar effects on emotion recognition, while temporal-level attention has more influence on emotion 

recognition than the former two attention models. However, channel-level attention and spatial-level 

attention have the effect of complementary information to some extent, thus strengthening the 

expression ability of auditory features and improving the model performance. Comparative analysis 

through ablation experiments shows that the multi-level attention model has better emotion 

recognition performance and can acquire a more general representation of auditory emotion features. 

The bar chart trends in Figure 8 clearly show that the proposed emotion recognition model with the 

multi-level attention strategy offers a better approach in improving detection performance on all 

datasets and enhancing accurate measurements. Meanwhile, it is found in Figure 8 that the results of 
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the proposed model are improved significantly, indicating the effectiveness of all the structures of 

the multi-level attention networks. 

5. Conclusions 

Speech emotion recognition is critical in enabling natural human-computer interaction. In this 

paper, we propose a multi-level attention-based framework that utilizes modulation-filtered 

cochleagram features for categorical emotion recognition. Our approach takes into account channel, 

spatial, and temporal relationships in speech features, with channel-level and spatial-level attention 

used to capture emotional saliency maps of channel and spatial feature representations from the 3D 

convolution feature maps, and temporal-level attention capturing significant emotion regions. The 

experimental results demonstrate that our approach significantly outperforms the baseline model on 

unweighted accuracy, highlighting the effectiveness of multi-level attention in SER. Furthermore, our 

proposed framework addresses the variability in emotional characteristics across time, which is an 

improvement over existing models. Future work will explore the extension of our multi-level 

attention mechanism to capture emotions that exhibit varying characteristics over time. 
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