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Article

Review of Multi-Fidelity Models

M. Giselle Fernández-Godino

Lawrence Livermore National Laboratory; fernandez48@llnl.gov

Abstract: This article provides an overview of multi-fidelity modeling trends. Fidelity in modeling

refers to the level of detail and accuracy provided by a predictive model or simulation. Generally,

models with higher fidelity deliver more precise results but demand greater computational resources.

Multi-fidelity models integrate high-fidelity and low-fidelity models to obtain fast yet accurate

predictions. Their growing popularity is due to their ability to approximate high-fidelity models

with high accuracy and low computational cost. This work classifies publications in multi-fidelity

modeling based on various factors, including application, surrogate selection, fidelity difference,

fidelity combination method, field of application, and year of publication. The study also examines

the techniques used to combine fidelities, focusing on multi-fidelity surrogate models. To accurately

evaluate the advantages of utilizing multi-fidelity models, it is necessary to report the achieved time

savings. This paper includes guidelines for authors to present their multi-fidelity-related savings

in a standard, succinct, yet thorough way to guide future users. According to a select group of

publications that provided sufficient information, multi-fidelity models achieved savings of up to 90%

while maintaining the desired level of accuracy. However, the savings achieved through multi-fidelity

models depend highly on the problem.

Keywords: multi-fidelity; variable-complexity; variable-fidelity; surrogate models; optimization;

uncertainty quantification; review; survey

1. Motivation

In science and engineering, high-fidelity models (HFMs) commonly refer to complex

high-dimensional systems that can make highly accurate predictions. However, the cost of developing

and utilizing such models is often prohibitively high, which limits their practicality for many

applications. Alternatively, low-fidelity models (LFMs), their simpler and cheaper counterparts, offer a

more affordable alternative. LFMs are less accurate due to dimensionality reduction, linearization, use

of simpler physics models, coarser domains, or partially converged results, as depicted schematically

in Figure 1. If a model is considered to have low or high fidelity can only be determined relative to

another. A fully three-dimensional simulation can be considered expensive compared to an analytical

function evaluation but cheap compared to actual experiments. In the early 2000s, multi-fidelity

models (MFMs), which combine multiple fidelities in a single model, gained significant attention due

to their potential to achieve the desired level of accuracy at a lower cost.

MFMs typically involve the construction of surrogate models (SMs) in order to reduce the

computational burden associated with a large number of expensive simulations required for tasks

such as optimization (e.g., [58], [183]) and uncertainty quantification (UQ) (e.g., [136]). SMs are

approximations created to model the behavior of the underlying system. The construction of SM

architectures trained using data from different levels of fidelity is referred to as multi-fidelity surrogate

modeling (MFSM), which is the primary focus of this review. SMs can also be constructed to reduce

the computational cost of individual models. While it is assumed that the reader is familiar with the

concept of surrogate modeling, Appendix B provides a brief overview of the most commonly used

surrogate models in the context of MFMs. It should be noted that the choice of the most appropriate

SM will depend heavily on the specific characteristics of the problem at hand.
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Figure 1. Connection between high-fidelity and low-fidelity models is commonly observed to

be attributed to one or more of the following factors: Dimensionality reduction, grid coarsening,

linearization, partial convergence, reduced complexity in geometry, and simplified physics.

In the framework of computational simulations, the process of fitting an SM to high-fidelity data

may be impeded by the computational resources required to obtain just enough data for an accurate

approximation. In this scenario, a possible approach to circumvent this issue is to rely on lower-cost,

lower-fidelity simulations previously employed to analyze similar problems when computers were

less powerful. Alternatively, SMs may be constructed to approximate LFMs, although they may be

sufficiently inexpensive to warrant direct usage in some instances. A case in point is illustrated by

Nguyen et al., 2013 [138].

The construction of MFSMs by integrating various fidelity levels is not mandatory for MFMs, as

exemplified by Choi et al., 2008 [36]. In their paper, they employed different fidelity types proficiently

through adaptive sampling without constructing an MFSM. This alternative MFM technique is known

as MFHM. Figure 2 illustrates the options for constructing an MFM. The MFM, where a surrogate

model is constructed to combine the fidelities, is termed an MFSM. In contrast, if no surrogate model

is built, and the fidelities are combined hierarchically, the resulting technique is known as MFHM. In

both techniques, HFMs and LFMs or their surrogate models are utilized.

Most of the articles reviewed in this paper have limited the construction of MFMs to two

fidelities. However, it is worth noting that MFMs can be developed using more than two fidelities, as

demonstrated in several studies, including Huang et al., 2006 [76], Forrester et al., 2007 [58], Qian et al.,

2008 [147], Le Gratiet, 2013 [109] and Goh et al., 2013 [66].

Another survey on multi-fidelity modeling is the work of Peherstorfer et al., 2016a [145]. They

focus primarily on methodologies for using MFMs in outer-loop applications, such as optimization,

uncertainty propagation, and inference. In contrast, this survey focuses on the penalty and savings

associated with combining multiple physics-based models, particularly when these models are fused

to create MFSMs. It is worth noting that in this survey, the term multi-fidelity is used only for methods

combining at least two physical models. Therefore, articles that consider a physical model and its SM

as different fidelities are not seen as MFMs in this review. Methods such as multi-level methods, which

replace the HFM with an LFM (with occasional accuracy checks), are not considered as MFMs in this

review either. These model reduction methods speed up processes such as optimization at the cost of

reduced accuracy. In contrast, MFMs aim to balance accuracy and affordability.
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Figure 2. Within the frame of multi-fidelity modeling, surrogate models are commonly used to

integrate information from different fidelities. When constructing a surrogate model that combines

fidelities explicitly, such as co-Kriging, the resulting approach is referred to as a multi-fidelity surrogate

model. In contrast, multi-fidelity hierarchical models combine fidelities without requiring an explicit

multi-fidelity surrogate model architecture. Methods such as importance sampling fall under the

multi-fidelity hierarchical category.

The development of MFM techniques offers the potential to reduce computational costs while

maintaining accuracy in various scientific fields. However, it has been noted that the process of

developing MFMs requires a significant investment of time and effort by the user and that the point at

which the payoff justifies it remains unclear. Hence, one of the goals of this study aims to quantify

the efficacy of MFM techniques in maintaining modeling accuracy while reducing its computational

cost. This study also aims to comprehensively explore the use of MFMs in scientific research. MFMs

will first be introduced, providing information on their field of application, simulation models, year of

publication, and fidelity types gathered from the analysis of over 150 papers. The different fidelities

utilized in MFMs across scientific fields are categorized. The available techniques for combining

fidelities through surrogate models in MFMs are reviewed and evaluated. Sampling strategies used

in constructing MFMs are also investigated. Successful combinations of fidelities that significantly

improve accuracy and cost through MFMs are identified. Finally, a standard and effective reporting

method is suggested to provide readers with a clear understanding of the benefits of MFMs. Papers that

have reported such information to facilitate a better understanding of the potential benefits of MFMs

are discussed. Overall, this study seeks to contribute to a deeper understanding of the advantages and

shortcomings of MFMs in scientific research.

2. Overview

In this study, a comprehensive analysis of various MFM implementations has been carried out, and

a classification scheme based on six key attributes has been constructed. The classification categories

include application, fidelity type, method for constructing the MFSM (i.e., deterministic method

and non-deterministic method), year of publication, paper field, and SM used. Figure 3 presents an

overview of the categories in the reviewed literature.

The reviewed literature focuses on using MFMs in three main applications: optimization (including

inference and inverse problems), uncertainty quantification or UQ, and optimization under uncertainty.

In cases where papers describe a generic procedure without a specific application, such as analytic

functions, they are classified as none. The nature of the fidelities in the model, referred to as the

types of fidelity, can be classified into four categories. The first category is physics, which accounts

for differences in the assumptions and considerations in the physical model. The second category is
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numerical solution accuracy, which accounts for different levels of discretization in space or time and

partially converged solutions. The third category is numerical models, which refers to instances where

the same physical model and assumptions are used, but the method of computing the results varies.

Finally, the fourth category is sim+exp, which refers to the combination of simulations, usually as LFM,

and experiments, usually as HFM, in constructing an MFM.

The criterion used to fit the data in the MFSM construction is referred to as the method, which

can be classified into two categories: deterministic or DM and non-deterministic or NDM. Papers that

use MFHMs where no MFSM is constructed are classified as none. The paper’s year of publication

is referred to as the year published. The area of application of the problem addressed in the paper is

referred to as the field. The most common fields observed in the reviewed literature were fluid mechanics

and solid mechanics. Finally, the type of SM used to construct the MFSM is referred to as the surrogate

model. Papers that use MFHMs without constructing an MFSM are classified as none.

Figure 3. Proportion of different attributes considered in the multi-fidelity model papers reviewed, the

charts are based on 157 papers.

Figure 3a shows that the most common application found for MFMs is optimization, followed by

UQ and optimization under uncertainty. These applications are introduced as outer-loop applications

by Peherstorfer et al., 2016a [145] and extensively discussed in sections 5, 6, and 7 of their work. The

fact that optimization is the main application is understandable because UQ and optimization under
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uncertainty are relatively new subjects. However, it is expected that more publications will appear in

these applications. Figure 3b shows the distribution of papers by the type of fidelities used; these are

discussed in Section 3.

Figure 3c shows that the proportion of papers that use DMs or NDMs to construct an MFSM

is similar. The category none refers to papers that present MFMs without constructing an MFSM,

called MFHMs. This approach is frequently observed in fields such as optimization, where LFMs are

initially utilized to narrow down the domain of interest, followed by the implementation of HFMs to

achieve more accurate information about the optimum location, see Rodriguez et al., 2001 [161] and

Peherstorfer et al., 2016b [144]. The most common methods used to combine fidelities in the MFM

context are presented in Section 4. Section 4.3 presents a further study of the time distribution of DMs

and NDMs.

Figure 3d shows that the use of MFMs seems to be expanding since its beginning in the late

’80s. Finally, the distribution of MFMs applications across various fields is presented in Figure 3e. It

indicates that most of the reviewed papers implement MFMs in fluid mechanics and solid mechanics.

However, other fields, such as electronics, aeroelasticity, and thermodynamics, also feature in the

reviewed literature. Furthermore, some papers do not have any specific application, but rather use

mathematical functions like Hartman or Rosenbrock to test the methods.

Figure 3f displays the distribution of papers by surrogate type used for constructing MFSMs. The

study found that basis function regression and Kriging surrogates are the two most commonly used

types for constructing an MFSM. The category others includes artificial neural networks, moving least

squares, support vector machines, radial basis interpolation, and proper orthogonal decomposition,

each with a usage of less than 1%. In addition, the research reveals that some MFMs do not require

the construction of an MFSM, referred to as MFHM, which is included in the category none. For

instance, Choi et al., 2008 [36] proposes a hierarchical MFM approach for optimization, utilizing HFMs

selectively to rectify inadequacies of LFMs. As mentioned, this technique does not involve constructing

MFSMs or explicitly integrating fidelities. Other examples are Kalivarapu and Winer, 2008 [84], where

an MFM is used for interactive modeling of advective and diffusive contaminant transport with no

MFSM construction. Giunta et al., 1995 [64], and Zahir et al., 2013 [199] are other examples of such

cases.

Section 5 provides a detailed analysis of the computational cost and accuracy associated with

using MFMs. Additionally, it offers guidelines for authors on how to present cost savings and accuracy

improvements. Sampling methods used for MFSM construction are discussed in Appendix A, while

Appendix B introduces the most commonly used surrogate methods in MFSM research.

3. Types of Fidelity

The current study aimed to review the literature and identify different types of fidelities commonly

associated with three principal categories: model, accuracy and source (Figure 4). Model involves

simplifying the mathematical representation of the physical phenomenon, typically by simplifying

the differential equations being solved or the numerical model. Accuracy refers to changes on the

discretization of the model, such as using smaller grid elements or shorter time steps for HFMs. Source

is associated with the incorporation of experimental results in addition to simulations, which are

regarded as having the highest level of fidelity.

Authors may explicitly state the superiority of one fidelity over another, as in the scenario

involving a refined grid as opposed to a coarser grid if the same model is used. Nevertheless, in cases

such as comparing a one-dimensional model with a refined grid against a three-dimensional model

with a coarser grid, the comparative superiority of fidelities may not be apparent. Peherstorfer et al.,

2016a [145] classified LFMs in three categories: simplified models, data-fit models, and projection-based

models. Their simplified models’ category includes the differences between fidelities discussed in this

study. In contrast, data-fit models and projection-based models are included in this review as surrogate

modeling techniques in Appendix B.
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Figure 4. Main differences between fidelities found in the literature.

This survey identified two main fields where MFMs are used, fluid mechanics and solid mechanics.

In fluid mechanics, the primary fidelity types were analytical expressions, empirical relations, numerical

linear approximations, potential flow, numerical non-linear non-viscous approximations (Euler), numerical

non-linear viscous approximations (RANS), coarse vs. refined analysis, and simulations vs. experiments. A

detailed listing of the papers that employed these types of fidelities as LFMs and HFMs is provided in

Table 1.

Table 1. Categorization of fluid mechanics-focused papers based on the methodologies employed

as high- and low-fidelity models. The analysis techniques used in these studies were analyzed and

categorized into six distinct categories: analytical approach (An), empirical methods (Em), linear

analysis (Li), potential flow models (PF), Euler analysis (Eu), and Reynolds-averaged Navier-Stokes

techniques (RANS).

Fluid mechanics

Reference An Em Li PF Eu RANS

[68] [179] LF - HF - - -

[7] [22] [26] [38] [57] [58] - LF HF - -

[129] [130] [138] [180] - LF - - - HF

[27] [46] [60] [94] [104]
[121] [122] [141] [151]

- - LF - HF -

[35] [43] [175] [204] [205] LF HF

[9] [85] [135] [191] - - - LF - HF

[3] [63] [72] [77] [140] [154] - - - LF HF

Other types of fidelities, that were not included in the table, were found in the literature. These

included simplifying physics found in Castro et al., 2006 [29], where an earth penetrator problem

is simplified by assuming a rigid penetrator and in Goldfeld et al., 2005 [67], where the physics are

simplified by assuming constant instead of variable material properties; using different geometries in

Forrester et al., 2010 [56], where the LFM is a RANS simulation with simplified geometry and the HFM

is a RANS simulation with full geometry; and using different numbers of Monte Carlo samples in

Keane, 2012 [88]. In fluid mechanics, additional categories were also found including dimensionality

(e.g., 2D/3D), coarse vs. refined analysis, simulations vs. experiments, transient vs. steady, and

semiconverged vs. converged solutions (Table 2).

Several types of fidelities were identified in the literature but not included in Table 2. For instance,

Castro et al., 2006 [29] simplified a physics problem by assuming a rigid penetrator, while Goldfeld

et al., 2005 [67] simplified the physics by assuming constant material properties instead of variable

ones. Forrester et al., 2010 [56] used RANS simulations with simplified and complete geometries for

the LFM and HFM, respectively. Additionally, Keane, 2012 [88] varied the number of Monte Carlo

samples used. In the field of fluid mechanics, various additional fidelity categories were also found,
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such as dimensionality, level of analysis refinement, simulation versus experimentation, transient

versus steady states, and semiconverged versus fully converged solutions. Table 2 presents a detailed

summary of these categories.

Table 2. Distinct types of fidelity implemented in research papers on fluid mechanics, which differ

from those based on analysis type. The classifications include dimensionality (2D/3D), analysis

resolution (coarse vs. refined), type of study (simulations vs. experiments), state of flow (transient vs.

steady), and degree of solution convergence (semiconverged vs. converged). Each paper’s physical

model is designated by the following abbreviations: Em (empirical), Li (linear), PF (potential flow),

Eu (Euler), RANS (Reynolds-averaged Navier-Stokes), URANS (unsteady RANS), TM (turbulence

method), MHD (magnetohydrodynamics), AE (aeroelastic equations), MPF (multiphase flow), and TM

(thermomechanical equations).

Fluid mechanics

Fidelity type Reference

Dimensionality

[57] 2D/3D Eu, [82] 1D/3D RANS+TM, [85]
2D/3D URANS, [108] 2D/3D, [147] 1D/2D

RANS, [158] 1D/2D Li, [178] 1D/3D RANS, [190]
1D/3D RANS, [207] 1D,2D/3D RANS

Coarse/Refined

[5] Eu, [25] RANS, [34] Eu, [35] Eu, [36] Li/Eu,
[83] RANS, [89] MPF, [92] MHD, [99] Eu, [100],
Eu[103] Eu, [116] Eu, [120] RANS, [155] RANS,

[173] RANS, [199] Eu/RANS

Exp./Sim.
[53] Euler/MHD, [56] PF/Em, [105] RANS, [174]

RANS

Semiconverged/Converged [83], RANS[100] Eu

Steady/Transient [20] AE, [62] Eu, [173] TM

Table 3 presents the common types of fidelities employed in the domain of solid mechanics. These

types comprise of mesh density, material models, and temperature. However, the investigation revealed

other fidelity types that were not included in Table 3. For example, Kim et al., 2007 [91] employed

isothermal and non-isothermal analyses for LFM and HFM, respectively. In addition to these, several

more categories of fidelities were discovered in solid mechanics, such as dimensionality (e.g., 2D/3D),

coarse vs. refined, simulations vs. experiments, and boundary condition simplification (e.g., infinite plate vs.

finite plate), and are presented in Table 4.

Table 3. Categorization of papers within the domain of solid mechanics, according to the fidelity type

employed in their analyses. The four fidelity types included are: analytical (An), empirical (Em), linear

(Li), and non-linear (NL).

Solid mechanics

Reference An Em Li NL

[165] LF - HF -

[181] [182] - LF HF -

[182] - LF - HF

[6] [8] [45] [78] [151] [161]
[184] [187]

- - LF HF

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2023                   doi:10.20944/preprints202304.1264.v1

https://doi.org/10.20944/preprints202304.1264.v1


8 of 33

Table 4. Categorization of solid mechanics research papers according to the type of fidelity used. The

fidelity categories are defined based on dimensionality (i.e., 2D/3D), degree of refinement (i.e., coarse

vs. refined), and simplification of boundary conditions (i.e., infinite plate vs. finite plate). Each paper is

associated with the corresponding model employed, with Li indicating the use of linear models and

NL representing non-linear models.

Solid mechanics

Fidelity type Reference

Dimensionality
[111] 1D/2D Li, [113] 1D/3D, [124] 2D/3D, [125]

2D/3D Li, [166] 2D/3D Li, [168] 2D/3D NL

Coarse/Refined
[12] Li, [21] NL, [23] Li, [24] NL, [31] Li, [114] Li,

[123] Li, [169] NL, [170] NL, [189] Li, [197] Li,
[198] Li

Boundary conditions [185] Li, [188] Li

In addition, papers from other fields such as electronics and robotics, and papers based on

analytical functions were reviewed. In electronics, the most common method utilized was coarse vs.

refined analysis, although some papers, such as Absi and Mahadevan, 2016 [1], employed steady

vs. transient models. In robotics, Winner et al., 2000 [192], determined the fidelities based on the

complexity of the robot’s resources. Several academic papers have utilized mathematical functions

to examine the effectiveness of different methods, including analytical function versus analytical

approximations of the function. These studies include the works of Robinson et al., 2006 [157][159],

Zimmermann and Han, 2010 [206], Ng et al., 2012 [136], Le Gratiet, 2013 [110], Raissi and Seshaiyer,

2013 [149], Raissi and Seshaiyer, 2014 [150], and Goh et al., 2013 [66]. Lastly, the category of methods

for uncertainty analyses with no particular application, includes Burton and Hajela, 2003 [28], Eldred,

2009 [50], Perdikaris et al., 2015 [146], Peherstorfer et al., 2016b [144], and Chaudhuri and Willcox,

2016 [32]. In Burton and Hajela, 2003, Eldred, 2009, and Perdikaris et al., 2015, the types of fidelity

pertained to less and more accurate uncertainty analysis. Peherstorfer et al., 2016b [144] utilized LF

models to aid in the construction of the biasing distribution for importance sampling and a small

number of HF samples to obtain an unbiased estimate. Chaudhuri and Willcox, 2016 [32], employed an

iterative method that used low-fidelity surrogate models (LFSMs) to estimate coupling variables and

adaptively sampled the HF system to enhance the SM, while retaining a comparable level of precision

in uncertainty analysis as the fully coupled HF multidisciplinary system.

4. Methods for Combining Fidelities

This section discusses different methods for combining fidelities. Fidelity refers to the level

of detail and accuracy of the model or simulation, where a higher fidelity model provides more

accurate results but requires more computational resources. The goal of combining fidelities is to take

advantage of the strengths of each model and create an accurate, computationally efficient model.

The focus will be on two main categories of methods: MFSMs and MFHMs. MFSMs use an algebraic

surrogate to correct LFMs using HFM predictions, while MFHMs use different fidelities based on some

criterion (see Figure 2). This survey also examines the four principal correction techniques employed in

MFSMs: multiplicative correction, additive correction, comprehensive correction, and space mapping.

Furthermore, this article encompasses various illustrations and applications of these techniques.

4.1. Multi-Fidelity Surrogate Models vs. Multi-Fidelity Hierarchical Models

This article provides a comparative analysis between MFSMs and MFHMs based on the literature

reviewed. Out of the total of 157 papers surveyed, 67% focused on MFSMs, while the remaining 33%

utilized MFHMs (see Figure 5). The latter approach combines different fidelities using a criterion to

optimize a process, instead of constructing a surrogate model architecture where information from both

is considered. Examples of such techniques include Burton and Hajela, 2003 [28], Choi et al., 2005 [34],
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and Singh and Grandhi, 2010 [168]. For instance, Christen and Fox, 2005 [37] used predictions from

the LFM for Markov Chain Monte Carlo sampling and only employed the HFM when the acceptance

criterion was met, whereas Rethore et al., 2011 [155] utilized simpler/faster cost functions with coarse

discretization and increased the resolution of the domain and complexity of models where needed.

Other examples include the work by Narayan et al., 2014 [134] which employed a stochastic collocation

approach to select data points for HFM construction based on LFMs, and Peherstorfer et al., 2016b

[144] which used an importance sampling method based on an LFM to choose sampling points for

HFSM construction.

Figure 5. Among the 157 papers that were scrutinized, a total of 105 studies were found to have

developed a multi-fidelity surrogate model that explicitly integrates the different levels of fidelities.

The remaining papers, however, have introduced multi-fidelity hierarchical models.

In their 2016 survey, Peherstorfer et al. 2016 classified techniques for integrating multiple fidelities

into three categories: adaptation, fusion, and filtering. The adaptation approach improves the LFM

by incorporating information from the HFM during computation, with the SM being adjusted in

each iteration. Fusion methods combine information from both LFMs and HFMs by evaluating them

separately, as in the case of the co-Kriging method [55]. Filtering methods, on the other hand, employ

the HFM after the LFM has been evaluated by a filter, using the HFM only when the LFM is inaccurate

or when the candidate point satisfies some criterion based on the LFM assessment. Peherstorfer et al.,

2016 classified MFHMs under adaptation and filtering management methods. This survey’s MFSMs

category, on the other hand, was included in their fusion methods category. For more information,

interested readers can refer to their work [145].

4.2. Multi-Fidelity Surrogate Models

This article focuses on MFSMs that incorporate fidelities into a single SM. MFSMs utilize an

algebraic SM to improve the accuracy of LFMs with the aid of HFMs. Four main correction techniques

are utilized in MFSMs, namely multiplicative correction, additive correction, comprehensive correction,

and space mapping. In some cases, the parameters of the LFM differ from those of the HFM, requiring

problem-specific conversion from LF to HF parameters. Examples are provided in Robinson et al.,

2008 [158] and Koziel et al., 2009 [101]. In conventional mathematical techniques, convergence can be

ensured if the LFM and HFM meet first-order consistency (i.e., their derivatives are equal). For example,

studies by Alexandrov et al., 2000 [3] and Alexandrov et al., 2001 [5] fulfill first-order consistency. If
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second-order consistency is obtained, convergence rates can be increased, as shown by Eldred et al.,

2004 [49]. However, meta-heuristic optimization, which is not mathematically rigorous and typically

has lower accuracy and slower convergence rates, is favored in global optimization, as described in

Kaveh and Talatahari, 2010 [87].

4.2.1. Additive and Multiplicative Corrections

One possible approach to enhance the accuracy of LFMs is to construct a SM of the discrepancy

or ratio between HFMs and LFMs. These surrogate models are known as additive or multiplicative

corrections, respectively.

The MFSM, which estimates the HFM using an additive correction, can be expressed as:

ŷHF = yLF(x) + δ(x), (1)

where yLF denotes the LFM, which may be substituted with an LFSM if the cost is prohibitive.

Additionally, δ(x) refers to an additive correction or discrepancy function, which is an SM that

accounts for the difference between the HFM and the LFM.

Alternatively, the MFSM using a multiplicative correction can be expressed as:

ŷHF = ρ(x) · yLF(x), (2)

where ρ(x) is the multiplicative correction, which is an SM constructed using the ratio between the

HFM and LFM. Note that if the LFM is not cheap enough, it can be replaced by an LFSM.

MFSMs have been widely used in aerodynamic optimization problems to reduce computational

costs. Various correction techniques have been proposed to construct MFSMs, including additive and

multiplicative corrections. Alexandrov et al., 2001 utilized MFSM with multiplicative corrections

for aerodynamic optimization problems. Balabanov et al., 1998 compared the performance of

MFSMs constructed using additive and multiplicative corrections for a similar optimization problem.

Forrester et al., 2006 used an additive correction based on fully converged results to correct partially

converged results. The literature provides more references to MFSMs constructed using additive and

multiplicative corrections, which are presented in Tables 5 and 6 in Section 4.3.

To illustrate the concepts of additive and multiplicative corrections, a simple algebraic

one-dimensional problem is presented. Consider two analytical functions, yLF and yHF, given by

Equations (3) and (4), respectively:

yLF = 5x + sin(11x) + 12 (3)

and

yHF = 5x + sin(10x + 2) + exp(x) + 10 (4)

where x ∈ [1, 2], yHF is the HFM and yLF represents the LFM. In practice, LFM and HFM may be

unavailable, and surrogate models are used instead. For this toy problem, is assumed the functions

are accesible, but due to cost constraints, only three samples from the HFM can be afforded. Evenly

distributed samples are chosen, specifically [x1, x2, x3] = [1.1, 1.5, 1.9], from two models, and the

objective is to estimate the output of the HFM while minimizing expenses by utilizing LFM for

prediction. To achieve this, additive and multiplicative corrections are introduced, as shown in Figure 6.

The ratio yHF/yLF or the difference yHF-yLF at the sampling points xi are used to fit the multiplicative or

additive corrections, respectively. In simpler terms, the sampling points [yHF(xi)/yLF(xi)] for i ∈ 1, 2, 3

are used to fit the multiplicative correction ρ(x), whereas the sampling points [yHF(xi) − yLF(xi)]

for i ∈ 1, 2, 3 are used to fit the additive correction δ. The functions ρ(x) and δ(x) (Eqs. (1) and

(2), respectively) are obtained using basis function regression by fitting a linear combination of

second-order polynomial basis functions where the polynomial coefficients are optimized to minimize
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the residuals ([52,202]). Figure 6 displays the original HFM and LFM within the interval [1,2], alongside

the additive and multiplicative corrections and the sample locations. Although the performance

appears to be similar in this particular case, it is important to note that for more complex systems, there

can be significant variations in performance that may favor one approach over the other. Additional

information regarding the methodology employed to generate Figure 6 may interest readers and can

be found in the supplementary material.

Figure 6. One-dimensional, analytic example that illustrates the performance of additive and

multiplicative corrections.

To further illustrate the use of correction factors, consider a scenario in which only 20 HFM and

200 LFM data points can be performed to build an MFSM. Step 1 is to build an SM to approximate the

discrepancy or ratio between the LFM and HFM based on the 20 shared data points. Two options are

available for Step 2: (a) building an LFSM using the 200 LFM analyses and summing or multiplying it

with the surrogate from the first step (as done in the analytic example from the previous section), or (b)

using the SM from the first step to estimate the discrepancy or ratio at the 180 points where only LFM

data is available. Then we calculate the predicted HFM results at these 180 data points by summing

or multiplying to the corresponding 180 LFM results. We now have HFM data at 20 sampling points,

and we have estimated HFM data at 180 points. We treat them equally and fit an SM to the 200 points

using this surrogate as an MFSM.

It is worth noting that the choice between these two options can lead to noticeable differences when

using regression rather than interpolation. Specifically, the first option may result in larger differences

between the MFSM predictions and the HFM data at points where HFM data is available, whereas

the second option may result in smaller differences, which can be further reduced by employing a

weighted least squares approach with higher weights for the HFM data.

4.2.2. Comprehensive Corrections

A comprehensive correction involves the use of both additive and multiplicative corrections in

the same MFSM. One widely used comprehensive correction is defined as follows:

ŷHF = ρ(x) · yLF(x) + δ(x) (5)

where ρ(x) represents the multiplicative correction surrogate and δ(x) represents the additive

correction surrogate. The literature review indicates that the most common approach is to set the

multiplicative factor ρ as a constant and to use an SM to approximate the additive correction, as

has been demonstrated in previous studies such as Keane, 2012[88] and Perdikaris et al., 2015[146]

and [202]. However, Qian et al., 2008 [147] proposed a comprehensive correction method with a

non-constant ρ(x).
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The literature also provides a comprehensive correction technique known as the hybrid method,

which was devised by Gano et al. in 2005 [59]. This method can be described as follows:

ŷHF = w(x) · ρ(x) · yLF(x) + (1 − w(x))[yLF(x) + δ(x)], (6)

where w(x) is a weight function. A weight function is employed to assign greater importance or

preference to specific data points while training an SM. This technique has been widely adopted in

numerous research studies, including those conducted by Zheng et al., 2013 [203] and Fischer et al.,

2017 [54].

The Space Mapping technique is a comprehensive correction method that offers an alternative

approach to directly modifying the output of the LFM. Instead, it involves establishing a connection

between the original input variables and a new set of input variables as shown in (7). This new set of

variables, when evaluated in the LFM, approximates the response of the HFM.

This approach has been shown to be a viable alternative for achieving the desired corrections.

Bandler et al. [15][14] introduced Space Mapping for the first time in early ’90s. The fundamental

concept behind this technique is to generate an appropriate transformation of the vector of HF input

parameters, xHF, to the vector of LF input parameters, xLF, such that:

xLF = F(xHF). (7)

The purpose of this iterative process is to allow the vectors xHF and xLF to have varying

dimensions. Although it is not necessary, it is desirable for F to be invertible. The objective is to

ensure that the response of the HFM, yHF(xHF), and the response of the LFM, yLF(xLF), fulfill the

following condition:

‖yHF(xHF)− yLF(xLF)‖ ≤ ǫ (8)

within some local region, where ‖·‖ is a suitable norm and ǫ is a tolerance setting. Space Mapping has

been only been found in publications using DMs.

The first review paper of the Space Mapping method was published ten years after its

implementation [17], and the second one was published two decades later [152]. The concept of

Space Mapping has been expanded to include other techniques, such as Aggressive Space Mapping

[16], Trust Regions [10], Artificial Neural Networks [11], Implicit Space Mapping [18], Neural-Based

Space Mapping [200][201], Inverse Problems[153], Corrected Space Mapping [158], and Tuning Space

Mapping [101]. Further literature regarding the utilization of Space Mapping to construct MFSMs can

be found in Table 5 of Section 4.3.

In Tables 5 and 6 presented in Section 4.3, the interested reader can locate additional references

which illustrate the construction of MFSMs utilizing comprehensive corrections.

4.3. Deterministic Methods vs. Non-Deterministic Methods

The present study categorizes MFSMs into DMs and NDMs, based on the model used to estimate

the MFSM parameters. DMs assume a set of basis functions and determine their coefficients by

minimizing the discrepancy between the data and the function [65,186], whereas NDMs assume either

the function or the coefficients to be uncertain and utilize samples to reduce the uncertainty [111].

Although DMs do not require an uncertainty structure and can be applied to any surrogate, prior

research has revealed that NDMs demonstrate superior accuracy over DMs [88,142]. The schematic

diagram in Figure 7 shows the differences between DMs and NDMs, depending on the assumptions

made about the unknown parameters.
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Figure 7. Multi-fidelity surrogate models’ parameters are inferred utilizing either deterministic or

non-deterministic methodologies contingent upon the underlying presumptions of the unknown

parameters.

In the context of outer-loop applications, specifically uncertainty quantification, NDMs need

a method of statistical inference in order to treat parameter uncertainties, thus avoiding the costly

standard Monte Carlo simulations [156] [71]. A prevalent non-deterministic methodology in statistical

inference is the Bayesian framework, which employs Bayes’ theorem to derive the posterior distribution

for the model’s unknown parameters. This distribution is conditioned on both the prior distribution

for the parameters and the likelihood of the observed data. Gaussian processes have become a popular

and widely used class of SMs due to their flexibility and convenience in incorporating prior knowledge

about the data [90]. However, alternative methods to the Gaussian process have also been proposed,

such as the approach presented by Koutsourelakis, 2009 [96], where non-Gaussian distributions are

used to model the uncertainties. While Gaussian process-based models have been successful in

low-dimensional contexts, they are not regarded as suitable for tackling high-dimensional problems or

large datasets.

In contrast, for DMs, the parameters are estimated by minimizing the difference between the

predictions of the LFSM (ŷLF) and the HFSM (ŷHF) at the high-fidelity data points. On the other hand,

NDMs such as Bayesian discrepancy or co-Kriging estimate parameters that simplify the discrepancy

function δ as much as possible, even if this leads to an increase in its magnitude. By simplifying δ, the

accuracy of the discrepancy surrogate can be improved beyond that achieved by simply minimizing

the discrepancy [143]. This approach offers an alternative method for handling parameter uncertainties

in outer-loop applications.

Calibration is a widely-used technique in engineering to enhance simulation predictions by

adjusting physical parameters to attain better agreement with experiments. Numerous studies in

the engineering community, such as Kosonen and Shemeikka, 1997 [95], Owen et al., 1998 [139],

Lee et al., 2008 [117], McFarland et al., 2008 [126], Coppe et al., 2012 [40], and Yoo and Choi, 2013

[195], have employed calibration to improve simulation predictions. Although pure calibration is

not considered an MFM, Kennedy and O’Hagan, 2001 [90] introduced a popular Bayesian calibration

method that views calibration from a different perspective. Bayesian calibration involves treating

calibration parameters in the same way as other non-physical hyper-parameters. It is worth noting

that the calibrated physical parameters obtained through this approach may deviate from their true

values. This technique, known as calibration along with comprehensive correction is considered an MFM.
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Several studies, including Qian et al., 2008 [147] and Biehler et al., 2015 [21], have investigated the

potential applications of this methodology.

Figure 8 indicates that 55% of the studies that construct an MFSM utilize deterministic methods

(DMs), while 45% employ non-deterministic methods (NDMs). Additionally, the figure provides

insight into the distribution of each method employed for MFSM construction, as outlined in Section

4.2. An inference that can be made from the data is that multiplicative methods are predominantly

utilized in DMs, while comprehensive corrections are the prevailing approach in NDMs.

Figure 8. Proportion of deterministic and non-deterministic methods utilized for the construction of

multi-fidelity surrogate models based on the literature. The chart also displays the distribution

of the combination methods introduced in Section 4.2 within each category, deterministic and

non-deterministic methods.

The 20th-century publications were predominantly characterized by the use of DMs. However,

there has been a notable surge in interest towards NDMs within the statistical community in the early

21st century. Several examples of NDMs that have been widely embraced include Kriging [93], which

entails spatial dependence estimation in geostatistics, co-Kriging models [123], an expansion of Kriging

to multiple-fidelity datasets, and related MFSMs such as Kennedy and O’Hagan’s Bayesian-based

calibration models [90]. Figure 9 displays histograms illustrating the distribution of published papers

related to DMs and NDMs over different yearly intervals.

In the context of MFSMs, the uncertainty prediction in Kriging surrogates can be modeled using

techniques such as Generalized Least Squares or Gaussian Process (GP). A GP can be defined as a

collection of random variables having the property that the joint distribution of any finite subset follows

a Gaussian distribution. Kriging surrogates constructed using a GP kernel have gained popularity

in recent years, as evidenced by their application in Kennedy and O’Hagan, 2000 [89], as well as in

LeGratiet, 2012 [111], LeGratiet, 2013 [110], and LeGratiet, 2014 [113].

Numerous popular MFSMs, such as co-Kriging and Bayesian-based comprehensive corrections,

employ GP to model each fidelity response and its corresponding prediction uncertainty. However,

MFSMs are typically based on certain assumptions, and if these assumptions are not met, the accuracy
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of the models could be impacted. For instance, the most prevalent assumption in GP-based techniques

is the independence of the predictive uncertainty among fidelities.

Figure 9. Frequency of publication over time for both deterministic and non-deterministic methods.

Tables 5 and 6 have been designed to systematically arrange the reviewed literature that employs

DMs and NDMs, respectively, within the four categories of combining methods discussed in Section 4.

The four categories are additive correction, multiplicative correction, comprehensive correction and

space mapping.

Table 5. Papers that use deterministic methods for the construction of multi-fidelity surrogate models.

Deterministic methods

Combining method Reference

Additive correction
[12] [13] [27] [50] [67] [94] [141] [157] [159]

[162] [165] [166] [170] [169] [177] [184] [188]

Multiplicative correction

[4] [5][12] [13] [26] [27] [31] [67] [70] [74] [78]
[86] [120] [125] [134] [157] [159] [165] [166]

[170] [169] [177] [181] [182] [185] [187] [188]
[189]

Comprehensive correction [48] [63] [91] [136] [160] [197] [198]

Space mapping [29] [83] [103] [154] [158]

Table 6. Papers that use non-deterministic methods to construct multi-fidelity surrogate models.

Non-deterministic methods

Combining method Reference

Additive correction [21] [57] [72] [92] [122] [123] [144] [147] [151]

Multiplicative correction [33] [56] [121]

Comprehensive correction
[7] [24] [25][58] [66] [77] [88] [89] [105] [110]
[109] [111] [113] [115] [146] [172] [174] [196]

Calibration +
comprehensive correction

[19] [53] [75] [90]

5. Accuracy and Cost Reporting for Multi-Fidelity Papers

5.1. Reporting Assessment

The primary objectives of employing MFMs are cost and time savings. Thus, a comprehensive

account of the savings achieved is critical. Despite this, the current body of literature that reports on
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cost versus accuracy analyses of MFMs is somewhat limited. An exemplary instance of proficient

reporting can be observed in the work conducted by Park et al., 2017 [142] on the Hartmann 6 function

example. Their research findings showcase a potential for achieving cost savings while maintaining

high levels of accuracy. Specifically, the study reveals that maximum cost savings of up to 86% can be

achieved while ensuring the same level of accuracy. Furthermore, it was demonstrated that maximum

accuracy improvements of up to 51% can be attained while maintaining the same level of cost.

However, the savings offered by MFMs are highly dependent on the problem at hand. Thus,

unless one is dealing with a class of problems of similar structure, the savings that a researcher reports

for one problem may differ significantly from those obtained for other problems, even when the same

methodology is employed. This issue becomes even more severe when the savings are attributed not

solely to the SM construction but to the entire optimization process. For example, convergence results

attained with first-order corrections can ensure global convergence of some algorithms, implying

that the algorithm will converge to a local optimum of a problem, regardless of the initial guess.

Nonetheless, the convergence rate will depend on the relative properties of the LFM and HFM. A more

detailed examination of these issues can be found in Eldred et al. [49] and Peherstorfer et al. [145].

The accuracy of SMs is a critical factor in their selection for design optimization tasks.

Cross-validation error (CVE) is a popular and effective measure for SM selection, which can be

applied to both DMs and NDMs. In a study by Park et al., 2017 [142], the authors evaluated the efficacy

of different MFSMs for a given design of experiments using CVE and compared the results with their

actual rank based on the root mean squared error (RMSE). The study investigated eleven cases of six

different MFSMs, including co-Kriging and NDM calibration with and without a discrepancy function,

with various options. The results of the study showed that while CVE was not a reliable measure for

selecting a good MFSM candidate, it was useful in identifying the worst candidate. Another measure

for SM selection is the model likelihood, which gives different weights based on the MFSM uncertainty

estimation. However, this measure is only valid for an MFSM that uses NDMs, such as co-Kriging.

It would be also informative to include the accuracy of LFMs, HFMs, and MFMs obtained at

equivalent computational cost, as well as the cost of HFMs and MFMs obtained for the same level

of accuracy, if available. Such an analysis has been carried out by Peherstrofer et al., 2016 [144], who

account for accuracy in the calculation of the quantity of interest by presenting a plot of the RMSE as a

function of the number of samples used. This plot provides an answer to the question of the accuracy

of the MFM relative to the LFMs and HFMs at the same computational cost. Additionally, a second

plot is included in the analysis, which reports time savings for multiple sample options. This plot

provides an answer to the question of the savings associated with the implementation of the MFMs

relative to the HFMs for the same level of accuracy.

Notwithstanding the challenges encountered, Table 7 summarizes the cost of MFMs versus HFMs

based on reported data to give readers a general idea of the savings that MFMs may offer. Furthermore,

the table is divided based on the application field, enabling MFM users to identify where MFMs have

been more successful.

Table 7. MFM/HFM cost ratio. The references are divided also per field, given by fluid mechanics,

solid mechanics and other. Other includes electronics, aeroelasticity, thermodynamics and analytical

functions.

MFM cost/HFM cost

Percentage Fluid mechanics Solid mechanics Other

0% - 20% [36] [140] [154] [137] [186] [89] [102] [144] [171]

21% - 40%
[3] [5] [140] [172]

[174]
[28] -

41% - 60% [5] [92] [157] [159] [147] [79] [131]

61% - 80% [83] [94] [158] - [30] [199] [207]

81% - 90% - [12] [97]
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The expectation is that computational efficiencies are enhanced when low-fidelity models LFMs

incur significantly lower costs than their high-fidelity counterparts HFMs. To validate this hypothesis,

an empirical investigation was carried out by analyzing data obtained from prior studies that utilized

MFSMs for optimization tasks. Figure 10 presents data extracted from 18 out of 120 reviewed papers

that conducted optimization procedures, wherein both the LFM/HFM cost ratio for a single analysis

(LFA/HFA cost ratio) and the MFM/HFM cost ratio for a complete optimization process (MFO/HFO

cost ratio) were explicitly reported. The dashed line in the figure represents the threshold, points below

which do not benefit from speed ups from using MFMs.

The results depicted in Figure 10 indicate that there is no noticeable correlation between the

LFA/HFA and the MFO/HFO cost ratios. This outcome may be attributed to the problem-dependent

nature of savings, as previously noted, as well as to the relationship between the cost and accuracy

of the LFM. Specifically, less expensive models may exhibit lower levels of precision, delaying the

optimization convergence. Additionally, the complexity of the MFM model may also increase the cost

of optimization.

Figure 10. Cost ratio between a single analysis of the low-fidelity model and a single analysis of the

high-fidelity model (LFA/HFA cost ratio) vs. cost ratio between the optimization process using an

MFSM and the optimization process using an HFM (MFO/HFO cost ratio). The dashed line is the

threshold line, below which the points indicate no speed ups from using multi-fidelity models.

In summary, the utilization of MFMs has the potential to enhance computational efficiency.

However, the extent of benefits attained highly relies on the cost and accuracy of the LFM employed

and the particularities of the optimization problem at hand. As a result, the choice of model should be

made carefully, considering the trade-off between cost and accuracy and the specific attributes of the

optimization problem under investigation.

5.2. Reporting Recommendations

The present study suggests that authors who employ MFMs in their research should provide a

comprehensive account of cost, savings, and accuracy comparisons between said models and other

models utilized in their investigations. While the inclusion of such information is occasionally present

in the manuscripts, its presentation is often hidden, posing difficulties for the readers in assessing

the benefits and shortcomings of implementing multi-fidelity models. As a solution to this matter,

this work advised authors to consider presenting the pertinent information in a tabular format that

encompasses the following constituents, when applicable:

1. Basic information

(a) Differentiation between low-fidelity and high-fidelity models.
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(b) Details of surrogate models constructed, if any.
(c) Description of the process or method employed to combine fidelities.

2. Cost

(a) Cost comparison between low-fidelity and high-fidelity models.
(b) Cost comparison between multi-fidelity and high-fidelity models.
(c) Accuracy comparison between low-fidelity, high-fidelity, and multi-fidelity models at equivalent

costs.
(d) Cost comparison between multi-fidelity and high-fidelity models for the same level of accuracy.

3. Cost-benefit analysis

(a) Cost comparison between low-fidelity and high-fidelity surrogate models (if surrogates are

constructed).
(b) Cost comparison between high-fidelity surrogate models and high-fidelity models (if surrogates are

constructed).
(c) Time and resources invested in constructing the multi-fidelity model.

5.3. Example of Good Reporting

The implementation of MFMs has the potential to provide benefits in terms of both time savings

and accuracy improvements. However, the usefulness of such implementations is often difficult to

ascertain from research papers. To address this issue, Section 5.2 includes a guidance for authors on

how to report of the cost, savings, and accuracy associated with the use of MFMs in their research.

Padrón et al. [140] provides a thorough investigation into the optimization of an airfoil, serving as an

exemplary illustration. The study employs computational fluid dynamics (CFD) RANS simulations as

HFM and Eulerian CFD simulations as LFM, and the use of a stochastic polynomial chaos expansion

as SM combined through additive correction. Future authors are encouraged to follow Padrón et

al.’s approach and include the information presented in Table 8, which provides an overview of the

essential elements that must be included in any study related to MFM.

Table 8. Padrón et al., 2016 [140] cost, savings and accuracy report as a model for authors.

Property Value Comments

Cost LF/HF 0.07 LF= Euler, HF= RANS

Error LF/HF 0.18 -

Cost MF/HF 0.13 MF= 1 HF + 17 LF

Error MF/HF 0.05 -

6. Conclusions

The versatility of the multi-fidelity modeling approach makes it a promising method open to

improvement and development, as evidenced by its diverse applications in various fields. This

study provides an exhaustive review of multi-fidelity models and their remarkable characteristics,

with optimization being the most prevalent application in 70% of the reviewed publications.

Fidelity-management strategies in multi-fidelity models consist of two approaches: creating a surrogate

model that blends the different fidelities or utilizing the various fidelity models in a hierarchical

manner according to a specific criterion. The former method is more commonly used, as evidenced

by 67% of the examined literature. In the late 1990s, deterministic methods were favored; however,

non-deterministic methods are currently preferred due to their ability to provide uncertainty estimates.

Gaussian Process-like surrogates have replaced basis function regression as the most common surrogate

model for constructing multi-fidelity models. Despite the potential for cost and time savings, there

was no clear correlation between the cost ratio of low-fidelity and high-fidelity analysis and the cost

ratio of multi-fidelity and high-fidelity optimization. This lack of correlation may be attributed to

the problem and model-specific characteristics of the considered analysis. Reporting of cost and time
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savings metrics was often absent or unclear in the reviewed literature, so this paper recommends

standardizing reporting to enable better understanding of multi-fidelity model efficacy in various

fields.
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Nomenclature

The following abbreviations are used in this manuscript:

Analysis A single evaluation of a model, or process.

Data The outcome of multiple analyses.

Data fit Process of using available data points to construct a surrogate model.

Data point Information used to train a surrogate model. Exchangeable with sampling point.

Datum The outcome of a single analysis.

DM

Deterministic method. The multi-fidelity model is constructed assuming basis

functions and finding their coefficients by minimizing discrepancy between the data

and the functions.

Experiment A real-world test.

Fidelity Level of accuracy.

HFA High-fidelity analysis. A single evaluation of a high-fidelity model.

HFM
High-fidelity model. Model that estimates the output with the accuracy that is

necessary for the current task [145].

HFSM
High-fidelity surrogate model. Surrogate model constructed using a high-fidelity

model. After its construction it may be also treated a high-fidelity model.

LFA Low-fidelity analysis. A single evaluation of a low-fidelity model.

LFM

Low-fidelity model. Model that estimates the output with a lower accuracy than the

high-fidelity model typically in favor of lower costs than the costs of the high-fidelity

model [145].

LFSM
Low-fidelity surrogate model. Surrogate model constructed using data points from a

low-fidelity model. After its construction it may be also treated a low-fidelity model.

Model Representation of physical phenomenon using a mathematical approximation.

MFHM
Multi-fidelity hierarchical model. A multi-fidelity model where no multi-fidelity

surrogate model is constructed and the fidelity is chosen following a criterion 1.

MFM
Multi-fidelity model. A model constructed using the information of multiple models

with different levels of accuracy.
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MFSM

Multi-fidelity surrogate model. Surrogate model constructed using the information of

multiple models with different levels of accuracy. These models can also be surrogate

models by themselves. Multi-fidelity surrogate model construction in multi-fidelity

modeling is optional and it can be done by using a deterministic or a non-deterministic

method. After its construction it may be treated as a multi-fidelity model.

NDM

Non-deterministic method. The multi-fidelity surrogate model is constructed assuming

that either the function or the function coefficients are uncertain, and use samples to

reduce the uncertainty.

Outer-loop

application

Computational application that forms outer loops around a model where in each

iteration an input is received and the corresponding model output is computed, and an

overall outer-loop result is obtained at the termination of the outer loop. Examples of

these are optimization, uncertainty propagation, and inference [145].

Point
Value that a variable can take, which is the input for an analysis, along with its

correspondent output.

Response Exchangeable with analysis.

Sampling

point
Information used to train a surrogate model. Exchangeable with data point.

Simulation
Imitation of a real-world process or system usually by running a computer code.

Performing a simulation first requires the development of a model.

SM

Surrogate model. Algebraic approximation fitted to available data points. They are

usually built because the data is too expensive to obtain or because there are regions

where the data is not available.

Appendix A. Design of Experiments Strategies for Multi-Fidelity Surrogate Models

The construction of SMs needs the adoption of a suitable sampling approach for the generation of a

representative set of sample points. The choice of sampling methodology is crucial to the accuracy that

the SM will attain, as illustrated in the work of Dribusch et al., 2010 [44]. Grid-based sampling methods,

such as the full factorial design (FFD), entail the sampling of each factor or variable at a fixed number

of levels, and are generally used for problems of low dimensionality (typically involving less than three

variables), as depicted in Figure A1a. Its utilization can be observed in the work of Fernández-Godino

et al., 2016 [51]. On the other hand, the central composite design (CCD) method extends the two-level

FFD by augmenting it with the minimum required number of points for each variable to provide

three levels, enabling the fitting of a quadratic polynomial. This method is frequently employed for

problems with three to six design variables, as shown in Figure A1b. For high-dimensional problems,

only a subset of the vertices of the CCD is utilized in the so-called small composite design (SCD), as

described in the work of Myers and Montgomery, 1995, pp. 351-355 [132]. It should be noted that FFD,

CCD, and SCD are inflexible with regard to the number of sampling points and domain shape.

Figure A1. This is a figure, Schemes follow the same formatting. If there are multiple panels, they

should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is

contained in the second panel. Figures should be placed in the main text near to the first time they are

cited. A caption on a single line should be centered.
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Design of experiments that allow for any number of samples are frequently based on an optimality

criterion. For instance, the D-optimal design approach [42] selects a subset of a grid in any domain

shape by minimizing the determinant of the Fisher information matrix [127], which reduces the impact

of noise on the fitted polynomial and often results in most of the points being located at the boundary

of the domain. An example of the application of the D-optimal criterion in a nested sampling design

for MFMs is illustrated in Figure A2.

Space filling methods, such as Monte Carlo and Latin hypercube sampling, are more commonly

employed when the noise in the data is not a concern and the points need to be more uniformly

distributed in the domain. In such cases, it is preferable to use an optimality criterion method to

sample near the domain boundaries. The most popular variant of Latin hypercube sampling attempts

to maximize the minimum distance between points, also known as the maximin criterion [81], to

promote uniformity.

When dealing with MFSMs, the relationship between the sampling points of the LFMs and HFMs

is an additional issue. The nested design sampling strategy generates HFM points as a subset of LFM

points or LFM points as a superset of HFM points. It was initially developed as a space filling method

for generating additional datasets to complement existing ones using a criterion. For example, Jin et

al., 2005 [80] used three optimality criteria: maximin distance criterion, entropy criterion, and centered

L2 discrepancy criterion.

The combination of the original sampling points and additional points results in the sampling

points for an LFSM, with the additional subset reserved for the HFSM [142]. Nested design sampling

has been proposed by Haaland and Quian, 2010 for categorical and mixed factors [69]. Zheng et al.,

2015 compared the effects of nested and non-nested design sampling on modeling accuracy [204].

Incorporating the HFM points as a subset of LFM points simplifies the parameter estimation

process for discrepancy function-based methods. However, if the HFM points are not a subset of

the LFM points, the parameter estimation of the discrepancy function becomes reliant on the LFSM

parameter determination. For instance, the co-Kriging method utilizes GP to model uncertainties for

both the LFSM and the discrepancy function. If the design of experiments satisfies the nested sampling

condition, the parameters of each GP model can be estimated independently.

Although not all MFSMs adhere to this approach, some, such as those used for combining

computer simulation results, allow for the control of input settings and the satisfaction of the nested

condition.

Multiple options exist for nested designs, including generating the LFM design of experiments

first and then selecting a subset using a specific criterion. This approach was used in Balabanov et

al., 1998, where 2107 points were generated in a 29-dimensional space using SCD for LFM sampling

points, and then 101 sampling points were selected using the D-optimality criterion [12]. Another

method involves generating LFM points as a superset of the HFM points.

Figure A2. Example of a nested sampling design, where the teal colored bubbles represent LFM points

and the pink colored bubbles represent HFM points selected using the D-optimal design criterion.

In Le Gratiet’s study from 2013 [110], the generation of sampling points from both, the LFM

and HFM, were conducted independently. Subsequently, the nearest LFM point to each HFM point
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was moved onto their corresponding nearest neighbor, as depicted in Figure A3. This technique is

commonly known as nearest neighbor sampling.

Figure A3. Nearest neighbor sampling. High-fidelity model points (teal bubbles) and low-fidelity

model points (pink bubbles) are sampled independently, then the low-fidelity model nearest neighbor

point to each high-fidelity model point is moved on top of it (black bubbles)

Adaptive sampling methods are commonly utilized SM strategies that aim to minimize the

number of simulations required to construct a model to a specified accuracy by utilizing efficient

interpolation and sampling techniques. These methods are widely employed and can be found in

various scientific literature. Specifically, in a study by Mackman et al. in 2013 [119], two adaptive

sampling strategies for generating SMs based on Kriging and radial basis function interpolation were

compared. The authors found that both strategies outperformed traditional space filling methods.

Recently, the use of LFMs and reduced order methods in local searches of parameter space for

optimal placement of new design points has become popular, as evidenced in studies by Robinson et

al. in 2006 [157] and Raissi and Seshaiyer in 2014 [150].

Appendix B. Surrogate Models

Surrogate models are mathematical approximations developed from a set of available data that

capture the relationship between input variables and the output quantity of interest. SMs are commonly

utilized in MFM context to reduce computational costs. In some instances, SMs are developed for

each fidelity separately in an MFHM, as seen in Nelson et al., 2007 [135], and Koziel and Leifsson,

2013 [100]. The MFM method allows for the efficient construction and application of SMs in order to

achieve significant savings. Alternatively, an MFSM can include information from different types of

fidelities into a single surrogate, as demonstrated in Giunta et al., 1995 [64], Qian et al., 2008 [147], and

Padrón et al., 2016 [140].

Most SMs are algebraic models developed by fitting a limited set of computationally expensive

simulations to predict a quantity of interest. The accuracy of an SM depends on several factors, such as

the design of experiments used to select data points, the size of the domain of interest, the accuracy of

the simulations at the data points, and the number of available samples used to construct the SM [167].

Peherstorfer et al. [145] provide a comprehensive review of projection-based models and data-fit

models in their appendix, which enables readers to supplement their understanding of these topics.

Basis function regression, also known as response surface modeling, which are the most commonly

employed surrogate modeling technique in engineering design, are the oldest form of surrogate

modeling. Basis function regression are constructed via linear regression, which is simple and

inexpensive as it only requires solving a set of linear algebraic equations. In this method is assumed

that the functional behavior, such as a second order polynomial, is accurate, but the response data

points are subject to noise. In the context of MFMs, basis function regression have been extensively

utilized, as evidenced by numerous research papers, including Chang et al. [31], Burgee et al. [27],

Venkatarman et al. [182], Balabanov et al. [12], Balabanov et al. [13], Mason et al. [125], Vitali et al.

[185], Knill et al. [94], Vitali et al. [186], Umakant et al. [179], Venkatarman et al. [181], Choi et al. [36],

Sharma et al. [165], Sharma et al. [166], Sun et al. [169], Goldsmith et al. [68], and Chen et al. [33].

Polynomial chaos expansion (PCE) has gained popularity in the 21st century as a method for analyzing
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aleatory uncertainties using probabilistic approaches in uncertainty quantification (UQ)[61,164,193].

This review includes PCE as a basis function regression. In PCE, a polynomial function is constructed

to map uncertain inputs to the outputs of interest, and the statistics of the outputs are approximated.

The chaos coefficients are estimated by projecting the system onto a set of basis functions (e.g., Hermite,

Legendre, Jacobi). PCE has been applied in the context of MFM in several studies, such as Eldred,

2009 [50], Ng and Eldred, 2012 [136], Padrón et al., 2014 [141], Padrón et al., 2016 [140], and Absi and

Mahadevan, 2016 [1].

Recent advances in computer power have led to the development of more expensive surrogate

models (SMs) that perform better for highly nonlinear and multimodal functions. Examples of such

SMs include Kriging, artificial neural networks (ANNs), moving least squares (MLS), and support

vector regression. Kriging SM estimates the value of a function as the sum of a trend function

(e.g., polynomial) representing low-frequency variation and a systematic departure representing

high-frequency variation components [148]. Unlike basis function regression, Kriging assumes that the

data points response is correct, but the functional behavior is uncertain.

Kriging has gained significant popularity as a surrogate model, particularly for applications in

MFSM. This may be attributed to its uncertainty structure, which is conducive to probabilistic MFSM,

as demonstrated in Section 4. Various studies have employed Kriging methods in the context of MFM,

such as those by Leary et al., 2003 [114], Forrester et al., 2007 [58], Goh et al., 2013 [66], Huang et al.,

2013, 2014 [77], Biehler et al., 2015 [21], and Fidkowski et al., 2014 [53].

Co-Kriging, which extends Kriging to incorporate MFMs, is regarded as a technique to combine

fidelities and enable the construction of an HFM approximation enhanced by data from LFMs. Relevant

studies on co-Kriging methods can be found in Chung and Alonso, 2002 [39], Forrester et al., 2008 [55],

Yamazaki et al., 2010 [194], and Han et al., 2013 [73]. Laurenceau and Sagaut, 2008 [107] compared the

performance of Kriging and co-Kriging.

The concept of ANNs was initially introduced in the 1980s by Rumelhart and colleagues [163].

However, ANNs have only recently gained popularity due to the increased computational power that

allows the handling of the massive amount of data they require. ANNs are constructed with a layered

architecture consisting of individual neurons that calculate a weighted sum of input values. Activation

functions are employed to generate non-linear transformations of the output of these neurons. Note

that the absence of activation functions at the output of an ANN layer would result in purely linear

operations, rendering the network incapable of effectively modeling non-linearities. Minisci and Vasile,

2013 [129] provide an example of ANNs’ application in MFM, where it is used in the optimization

process to correct the aerodynamic forces in the simplified LFM using CFD simulations as HFM model.

The LFM is utilized to generate samples globally across the design parameter range, while the HFM is

used to refine the ANN surrogate model locally in later optimization stages.

MLS surrogate is a technique first proposed by Lancaster and Salkauskas in 1981 [106] and

extensively discussed by Levin in 1998 [118]. MLS is an improvement over the weighted least-squares

(WLS) method, which was first introduced by Aitken in 1935 [2]. WLS recognizes that not all design

points are equally important in estimating the polynomial coefficients, and thus, a WLS model is a

straightforward polynomial, but with the fit biased toward points with a higher weighting. In an MLS

model, the weightings are varied depending on the distance between the point to be predicted and

each observed data point. Several studies have implemented MLS in MFM for various applications

such as multi-point optimization [176], multi-fidelity analysis [20,197,198], and aerodynamic shape

optimization [170].

Traditional SMs typically predict scalar responses, whereas some nontraditional SMs, such as

proper orthogonal decomposition based SM, are used to obtain the entire solution field to a partial

differential equation. Toal in 2014 [172], Roderick et al. in 2014 [160], and Mifsud et al. in 2016 [128]

have explored the MFM proper orthogonal decomposition method in fluid mechanics.
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