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Abstract: The article considers an internal boundary value problem of the distribution of an electro-
static field in a lens formed by two identical semi-infinite circular cylinders coaxially located inside
an infinite external cylinder. The problem is reduced to solving a system of singular Wiener-Hopf
integral equations, which is further solved by the Wiener-Hopf method using factorized Bessel
functions. Solutions to the problem for each region inside the infinite outer cylinder are presented as
exponentially converging series in terms of eigenfunctions and eigenvalues.
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1. Introduction

Electrostatic mirrors have become indispensable structural elements of modern scien-
tific and technological instrumentation, which determine the quality of focusing of such
instruments as time-of-flight mass spectrometers and electron microscopes. In this regard,
electrostatic mirrors of rotational symmetry are of particular interest, since they perform
stigmatic focusing of electron beams, i.e. create the correct electron-optical image of the
object. However, the most studied and highly-demanded in practical implementation are
the designs of mirrors constructed as sets of coaxial circular cylinders. The advantage of
cylindrical electrodes is the possibility of shielding the beam from external electric fields.
In works [1,2] devoted to the study of the focusing properties of electrostatic mirrors with
cylindrical electrodes, the calculation was performed under the assumption that the width
of the gap between the electrodes is infinitely small. However, practical application of
such mirrors in high-voltage electron microscopy [3,4] imposes high requirements on the
width of the gap between the electrodes in terms of ensuring electrostatic strength at high
field intensity. The aim of the work is to calculate the electrostatic field in a lens formed by
two identical semi-infinite coaxially-located circular cylinders, separated by gaps (slits) of
finite width and located inside an infinite outer cylinder. Such an electrode design makes
it possible to simultaneously provide electrostatic strength at high field intensities and
screening of the electron beam from external electric fields at large gap widths between the
internal electrodes.
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In this work, for the first time, the Wiener-Hopf (WH) method is used to solve the
boundary value problem of an electrostatic lens taking into account the slit width in it.
The boundary value problem, as a rule, is reduced to solving pairwise integral equations
with kernels of Bessel functions, which were studied by L.A. Weinstein [5], Titchmarsh [6],
Noble [7], Erdelyi and Sneddon [8] and others.

A comprehensive review of the historical development of pairwise integral equations
is given by Eswaran [9] and Sneddon [10], where they are reduced to a system of algebraic
equations, or to a Fredholm type equation. The methodology for solving paired integral
equations is considered in detail in the works of N.N. Lebedev [11], V.A. Fock, P.L. Kapitsa
and L.A. Weinstein[12].

In these works pairwise integral equations describing the problem of a conducting
hollow cylinder of finite length were reduced to the Fredholm integral equation of the
second kind [13], or solved by the variational method when the length of the cylinder is
large enough compared to its diameter [14,15]. However, the proposed methods are very
cumbersome and require a large amount of computational time.

It is known that the WH method [5,7,9,16-20], like the Riemann method, is a rigorous
method for solving pairwise singular integral equations (SIEs) for semi-infinite structures
whose solutions automatically satisfy the additional Meixner condition or the so-called
condition on sharp edge, which determines the uniqueness of the solution to the problem,
as well as the behavior of the field at small distances from the sharp edge. Note that, as a
rule, this condition is not mentioned in approximate methods.

It should be noted that N.N. Lebedev [11] used the WH method to solve the boundary
value problem of the electrostatic field of an electron lens consisting of a semi-infinite
circular cylinder coaxially located inside an infinite cylinder, which is a key problem for
solving a number of other problems. However, a well-known powerful WH method has
not been used since then, even for an electrode system with two semi-infinite cylinders.

2. Statement of the problem

Let us consider a lens consisting of two thin semi-infinite cylinders of radius a with
given potentials V; and V), coaxially located towards each other inside a shielding infinite
cylinder of radius b, which is at zero potential (Fig. 1).
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Figure 1. A cylinder with a slit

The desired potential ¢(r, z) satisfies the Laplace equation

Ag(r,z) =0
and boundary conditions
p(b,z) =0, ¢az<a)=V, ¢a,z>a)="V,, 1)
¢(a—0,z) —¢(a+0,z) =0, ()

(%go(r—O,z)—%(p(r+0,z))|r=u:0 at z1 <z <z. 3)
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Let us introduce the notation

L(r, ) = T {Jo(vr) (a,b), at0<r<ug;

21n 7]y (vb) Jo(va)(r,b), ata<r<b,
(r,b) = No(vr)Jo(vb) — No(vb)Jo(or),

v=+vVkZ—-w?, Imv >0,

(4)

where Jo(vr), Ng(vr) — are zero-order Bessel and Neumann functions, (7, b) is a combination
of Bessel functions, and search for a solution in the form

o(r,z) = ZL / eisz(r,w)LF((w)dw (5)

771 a,w)

with respect to the desired function F(w).

For electrostatic problems, k should be assumed to have a vanishingly small positive
imaginary part, and we transfer to the limit |k| — 0 only in finite expressions.

The cuts of the function L in (4) are located in the plane of the complex variable w on
the curves Imv = 0 (see Fig. 2).

Due to the properties of the Bessel functions and boundary conditions (1) and (3), we
obtain a system of singular integral equations (SIE)

1 [ee]
5 - S U F(w)dw =V;, z<z, (6)
[ee]
% J U F(w)dw = Va, 2> 25, 7)
(e}
[ e L~ Ya,w)F(w)dw =0, z <z< z. (8)

The last equation (8) can be obtained from the boundary condition (3) due to the property
of the Bessel functions

a(]o(?”) (a,b) ]o(vﬂ)(fxb)>
or\  Jo(uvb) Jo(vb)

2

7

ta

r=a

3. Solution of a system of integral equations
The solution of SIE (6 - 8) is constructed by the Wiener-Hopf method in the form [21]

F(w) = L_(a,w) (A}r(w) T B}F(w))e*"wzl L
+L+(a,w) (Az_(w) + Bz_(w))g*iWZz' ©)

Here, the functions with subscripts "+’ correspond to holomorphic functions in the upper
half-plane (UHP) Imw > 0 and do not have zeros and poles there, while those with indices
“~" satisfy the same conditions in the lower half-plane (LHP) Imw < 0, the functions L4
and L_ are factorized functions, L = L_ - Ly [5,7].

It should be noted that for the SIE solution to be unique, the desired function must
satisfy the Meixner condition [22,23] on the edge or the so-called sharp edge condition
(E;, E; ~ p’l/ 2, Ey ~ /p), which is equivalent to the behavior of the function F(|w|) ~

|w|~3/2 at infinity |w| — 0.
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Note that L has zeros at the points —w?, —w¢, and poles —w? (n = 1,2,...) in the
LHP of the complex variable w. The function L_ has the same zeros and poles only in the
UHP, due to the property of factorized functions

Ly(a,—w) =L_(a,w). (10)

The roots of the functions Jo(va), Jo(vb), and (a, b) with respect to the variable v in (4)
are o8 = v, /a; 0% = vy, /band o5, =6, /(b —a) (n = 1,2,...), where 7, and 8, denote the
corresponding roots [24] of the equations

Jo(y) =0,
No(722)Jo(#5) — No(525)10 (%) = 0.

Relation (6) will be satisfied due to the function Al if the function F(w) is holomorphic
everywhere in LHP (Imw < 0) except for a single simple pole at the point w = —k and
uniformly tends to zero as |w| — oo. Therefore, the remaining poles contained in the LHP
at the points w = —w!(n = 1,2,...) of the function L must be compensated using the
function B! (w).

To find a solution to equation (7), we require the same conditions for the functions
A?% (w) and B? (w) in the UHP (Imw > 0).

Thus, using the theory of residues to calculate the integrals (6) and (7), as well as
compensating all singular points inside the integration contour (IC), except for the poles
+k, we obtain the desired functions in (9):

Vi

1 - _
A2 (w) = w‘f - (0<Im(k), [k~ 0), (12)
e b(z,— * b
o @) L (g, —wh) 2 b
Bilw) = 112::1 (w + wh) L—(a,—ZUZ)(Ai( wn) +B=(~wn). (13)
[ izl — * b
5 glwn(zz 1) L_(g/wn) 1 b 1 b
- A B ,
B,(w) n;l (w_wlr,l) L+(a,wl,’l)( Jr(wn)+ +(wn))
where
Lo, —w) = lim (w-+ )L (0,u) =
wW—r—w.
= — lim (w—wh)L_(a,w) = —L* (a,wh).
w—wh

The validity of the obtained solution of SIE (6) — (8) can be checked directly by substi-
tuting it into the equation and closing the IC in the LHP or UHP w, according to the Jordan
lemma, then calculating the residues at all poles of the integrand inside this IC.

It should be noted that the resulting solution (9) automatically satisfies (8), since the
integrand turns out to be holomorphic inside the corresponding IC.
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3.1. Solution of a system of functional equations

The exact solution of the system of functional equations (13) can be represented in the

form of rapidly convergent infinite series

Bl (w) — _ V- < - 8m S 8m8m8ns
+( ) 2 nZ: ( + w%)l(l) 711,7122:,”3 <w+ w'za)l(s)
> Hil 11 Sk ) ( ad 8ni18n
+ - e (14)
n1,.~2,n:2i4 (w+wh; )11 Tt;z (w +w}, )12
5 SmEnSndn 5 i )
nq,np,Nn3,My (w + w54)l(4) ny,...,No; (w + wgi)l(ZZ)
B2 (w) = V1( _8m §m8m8ns
; (w —wh )! 1(1) nl,nzz‘fns w—w23)l(3)
> Hil 11 8k > < d 8n,18n
+ + V 1 2 15
”1,--;21‘71 (w+w2i—l)l(21 2 ? ”1,2”2 (w - wh )1(2) ( )
s 8n18ny8nz8ny - ITk 18k >
+ s — |,
nlr”2/2n3/n4 (w wb )l( ) n ;"21‘ ( B Zi)l(ZI)
where the following notations are used
* b
o = L* (ﬂ/ wZ>ein(zz—zl),
L+(ﬂ, wn)
10 = wh (wh, +wh,) - (wh, | +wh), (16)
k
n=12,...,k=12,....

Factorized function L* (a,w!) is calculated by formula (23). Indeed, system (13) can be
easily divided into separate recursive equations

[e)
Bl =-W — 8 - b gnlggnz o T
Z (w+wn1 wy,1 nl,%:l (wwn, ) (wi, +wiy ) wi,
gnlgnz 1 b
+ Z (w+wh, ) (wh, +wh )B+(w”2)’
ny,np= 1 1 1
o o (17)
8n 8nq8n
BX(w) =V, — b=+ V) R T
nlzzl (w— wnl)wnl nl,nZz:l (w*wnl)(wnl +wnz)wnZ
8ny 8ny 2 b
+ o ki B (=W, )s
"11% 1 (w— wn1 w,,ler,,Z) Wn,

from which we directly obtain solutions in (17), cyclically using the equation itself in its

right side.

4. Potential distribution in the lens

Substituting the resulting solution F into (5) and calculating the integral along the real

axis w using the residue theory, we determine the potential ¢.
Let us consider each case for different cylinder regions separately.
1.2<z1,0<r<a.
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In this case, the IC should be closed in the LHP w. After making calculations and
passing to the limit k — 0, we obtain the potential distribution inside the semi-infinite
cylinder

p(r,z) =V — ZXV:JOJE)(UT{L (a, w)(A1 (w )+Bi(w))eiw(z—zl)}w:7wﬁ =

N
oy e J0(g) 0 gl (i
Vi 112:16 L@ )(Vl—i—z Bl (i )). (18)

Here we took into account that

Jo(—wha) = lim (w+wh)p(oa) = —if; (04b) = —iJ1 (7n) (19)

w——wh

and the property of factorized functions L+ in (10).

2.z2<z,a<r<b.

Integration along the real axis w in this case must also be closed, according to the
Jordan lemma, in the LHP, then the integral can be easily transformed into a series of
residues

11‘1% - (T’,b) 1 1 iw(z—z1)
plrz) = Vlln% 7,;_1 { (a,b)*Lf(a'w) (A3 () + By (w))e 1 }_wﬁ B
Int 7N Jo(e )]o(f"b)
Vi—r - 2 ) I (Np(20)Jo(22) — No(2b)o(22)) 0
n? 2 B - (L) "
1) . n (o
L+(a,1b5”a)<V1 + bl_naB}r(—zh@ﬂ))ebfu(z z1),
Note that there is a transformation
(a,0)* o = lim (w+w) a,b) =
n w——ws
o (@b @) 20-a) [T To(G)
17172 ((a’,a) (h’b,)>‘0$, =—i 00n (JO(a 11) IO(%) ’ (21)

where in the derivation the Wronskian (Z/,z) = 2/ 7tz [24].

3.21 <z<2,0<r<h.

Closing the IC in (5) for terms with an exponential factor ¢®(?~%1) according to the
Jordan lemma in the UHP, and with a factor ¢®(2-22) in the LHP w, taking into account all
the contributions of the poles inside the IC, we similarly find the potential distribution in
the slit region

L* (a,w )(( Vi /wh + BL (w ))eiwz(z_zl)Jr
(Va/wh, + B%(—wﬁ))e_iwb(z_m),
or it can be written as

1 Y o(vng)Jo(yng) ) m
p(r,z) = — —L Ya,iZmy (e G2 (v —
2;1;1 VR ! ( (

uBl (i92)) + e 53) (v — B2 (—i%))), (22)
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using the properties of the Bessel functions

(a’ b)vz o (b,’ b)vz 2

]o(?n%) - Nl _7T’Yn]1(7n)’

in the expression for

. i ]2(')/71@)
L* (a,w?) = lim (w—w?)L_(a,w) = ! 0 '7b . 23
(a, wy) w_wz( n)L—(a,w) bInE 72 (yn) Ly (0, ) (23)

4.z, <z,0<r<a.
Similarly, closing the IC in the UHP of the complex variable w, we get

N Jo(vng)
rz)=Vy— Y e a(zmz) 0 Thal 1 T
#lrz) =72 ,1;1 () 2 @)

(V2+i%B2,(i%)). (24)

5.2 <z,a<r<h.
Deforming the IC upwards, we also obtain

53

In

N
r T - ~
¢(r,z) = Vzln > 2 %(M: | )LJr(cl,zbﬂ)(r’,lv)|7;f1

QRS

))e P, 25)

5. Discussion

Thus, the exact solution (9) of the boundary value problem for the potential ¢ in (5)
is found, where the auxiliary functions B} and B? are represented as rapidly convergent
infinite series, as well as the factorized Bessel functions (see Appendix A).

As expected, when passing to the limit zy — —oo, when the end of the first semi-
infinite cylinder is shifted by a considerable distance to the left, the expressions for the
potential (22) — (25) coincide with the final results of N.N. Lebedev [11].

The numerical implementation of the factorized Bessel functions can be performed
optimally using formula (A5) with a given accuracy, which is expressed through the
functions P and Q [11] (Appendix A).
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Figure 2. Potential distribution along the lens axis
b=6:a=1isasolid line, a = 2 is a dash-dotted line, a = 3 is a dashed line
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Figure 3. Influence of the outer cylinder radius on the potential distribution
a = 3: b= 6isasolid line, b = 12 is a dashed line

It should be noted that the potential distribution is ultimately expressed by a real
function ¢ expressed in the form of exponentially convergent series in (18) — (25).

Let us consider the distribution of the potential along the lens axis calculated by
formulas (18), (22) and (24).

As can be seen from Fig. 2, as the radius of the semi-infinite cylinder increases, the
steepness of the curve decreases.

It should be noted, as calculations show (see Fig. 3), that the radius of an infinite
cylinder b has an insignificant effect on the potential distribution along the z axis.
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Abbreviations

The following abbreviations are used in this manuscript:
WH  Wiener-Hopf

SIE Singular integral equation

UHP  Upper half-plane

LHP Lower half-plane

IC Integration contour

Appendix A. Factorization of Bessel functions

Using a standard decomposition of integer functions into factorized functions, we can
represent the Bessel functions and their combinations as

L(a,w) = L(a,w)+L(a,w)_,
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where [5,7]
(1 + %)e*%H (1 + —C)e*%

L(ﬂ w)+ _ n=1 n n=1 n e—iw(T/n+(b—u)S)

, 00 w _w 4
[T+ gg)e ™ a

n=
_ R 1
T=alna+ (b—a)ln(b—a)—blnb, S= n;l(gn - 7;1)’

As the function Ly in its poles and zeros, which are imaginary, takes real values, it is
convenient to express it through the gamma function

r I'(3+al)
T(§+af)T(1+ab20)

L(a,a)y =
-1

R 1—|—rxb5;n” 1+(x% A2
I1 T+ac ' (42)

b— b
n=1 1+0CT7:1 1+D(%

Here, as can be seen, the fast convergence in infinite products occurs due to the asymptotics
of the roots of the Bessel functions 7}, = 7(n —}) and 6, = 7n (n = 1,2,...). For
convenience, denoting the infinite products in (A2) as

o 14 X o

P(x) = Hl_’_z :expz (ln(1+%)*1n(1+,72)), (A3)
n=1 v n=1
o 14 X [<9)

Qx)=T] o — exp Y (In(1+ ) —In(1+ ), (A4)

1+ %

n=1 n=1

we finally obtain the optimal formula for the numerical calculation with sufficient accuracy:

o I3 +al)  Plaa)Q((b—a)a)

T3 +al)r(1+ab0) P(ba) (A5)
(L(a,+w)+ = L(a, —w)=).

L(a,a)4 =
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