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Abstract: The article considers an internal boundary value problem of the distribution of an electro-
static field in a lens formed by two identical semi-infinite circular cylinders coaxially located inside
an infinite external cylinder. The problem is reduced to solving a system of singular Wiener-Hopf
integral equations, which is further solved by the Wiener-Hopf method using factorized Bessel
functions. Solutions to the problem for each region inside the infinite outer cylinder are presented as
exponentially converging series in terms of eigenfunctions and eigenvalues.

Keywords: time-of-flight mass spectrometer; electron microscope; electrostatic lens; electrostatic
mirror; relativistic effect; system of singular integral equations; factorized functions; eigenfunctions;
eigenvalues.

1. Introduction

Electrostatic mirrors have become indispensable structural elements of modern scien-
tific and technological instrumentation, which determine the quality of focusing of such
instruments as time-of-flight mass spectrometers and electron microscopes. In this regard,
electrostatic mirrors of rotational symmetry are of particular interest, since they perform
stigmatic focusing of electron beams, i.e. create the correct electron-optical image of the
object. However, the most studied and highly-demanded in practical implementation are
the designs of mirrors constructed as sets of coaxial circular cylinders. The advantage of
cylindrical electrodes is the possibility of shielding the beam from external electric fields.
In works [1,2] devoted to the study of the focusing properties of electrostatic mirrors with
cylindrical electrodes, the calculation was performed under the assumption that the width
of the gap between the electrodes is infinitely small. However, practical application of
such mirrors in high-voltage electron microscopy [3,4] imposes high requirements on the
width of the gap between the electrodes in terms of ensuring electrostatic strength at high
field intensity. The aim of the work is to calculate the electrostatic field in a lens formed by
two identical semi-infinite coaxially-located circular cylinders, separated by gaps (slits) of
finite width and located inside an infinite outer cylinder. Such an electrode design makes
it possible to simultaneously provide electrostatic strength at high field intensities and
screening of the electron beam from external electric fields at large gap widths between the
internal electrodes.
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In this work, for the first time, the Wiener-Hopf (WH) method is used to solve the
boundary value problem of an electrostatic lens taking into account the slit width in it.
The boundary value problem, as a rule, is reduced to solving pairwise integral equations
with kernels of Bessel functions, which were studied by L.A. Weinstein [5], Titchmarsh [6],
Noble [7], Erdelyi and Sneddon [8] and others.

A comprehensive review of the historical development of pairwise integral equations
is given by Eswaran [9] and Sneddon [10], where they are reduced to a system of algebraic
equations, or to a Fredholm type equation. The methodology for solving paired integral
equations is considered in detail in the works of N.N. Lebedev [11], V.A. Fock, P.L. Kapitsa
and L.A. Weinstein[12].

In these works pairwise integral equations describing the problem of a conducting
hollow cylinder of finite length were reduced to the Fredholm integral equation of the
second kind [13], or solved by the variational method when the length of the cylinder is
large enough compared to its diameter [14,15]. However, the proposed methods are very
cumbersome and require a large amount of computational time.

It is known that the WH method [5,7,9,16–20], like the Riemann method, is a rigorous
method for solving pairwise singular integral equations (SIEs) for semi-infinite structures
whose solutions automatically satisfy the additional Meixner condition or the so-called
condition on sharp edge, which determines the uniqueness of the solution to the problem,
as well as the behavior of the field at small distances from the sharp edge. Note that, as a
rule, this condition is not mentioned in approximate methods.

It should be noted that N.N. Lebedev [11] used the WH method to solve the boundary
value problem of the electrostatic field of an electron lens consisting of a semi-infinite
circular cylinder coaxially located inside an infinite cylinder, which is a key problem for
solving a number of other problems. However, a well-known powerful WH method has
not been used since then, even for an electrode system with two semi-infinite cylinders.

2. Statement of the problem

Let us consider a lens consisting of two thin semi-infinite cylinders of radius a with
given potentials V1 and V2, coaxially located towards each other inside a shielding infinite
cylinder of radius b, which is at zero potential (Fig. 1).

z1 z2

z

a 

b 

V1 V2

Figure 1. A cylinder with a slit

The desired potential φ(r, z) satisfies the Laplace equation

△φ(r, z) = 0

and boundary conditions

φ(b, z) = 0, φ(a, z < a) = V1, φ(a, z > a) = V2, (1)

φ(a − 0, z)− φ(a + 0, z) = 0, (2)(
∂
∂r φ(r − 0, z)− ∂

∂r φ(r + 0, z)
)∣∣

r=a = 0 at z1 < z < z2. (3)
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Let us introduce the notation

L(r, w) =
π

2 ln a
b J0(vb)

{
J0(vr)(a, b), at 0 ≤ r ≤ a;
J0(va)(r, b), at a ≤ r ≤ b,

(r, b) = N0(vr)J0(vb)− N0(vb)J0(vr),

v =
√

k2 − w2, Imv > 0,

(4)

where J0(vr), N0(vr) – are zero-order Bessel and Neumann functions, (r, b) is a combination
of Bessel functions, and search for a solution in the form

φ(r, z) =
1

2πi

∞∫
−∞

eiwzL(r, w)
F(w)

L(a, w)
dw (5)

with respect to the desired function F(w).
For electrostatic problems, k should be assumed to have a vanishingly small positive

imaginary part, and we transfer to the limit |k| → 0 only in finite expressions.
The cuts of the function L in (4) are located in the plane of the complex variable w on

the curves Imv = 0 (see Fig. 2).
Due to the properties of the Bessel functions and boundary conditions (1) and (3), we

obtain a system of singular integral equations (SIE)

1
2πi

∞∫
−∞

eiwzF(w)dw = V1, z ≤ z1, (6)

1
2πi

∞∫
−∞

eiwzF(w)dw = V2, z ≥ z2, (7)

∞∫
−∞

eiwzL−1(a, w)F(w)dw = 0, z1 < z < z2. (8)

The last equation (8) can be obtained from the boundary condition (3) due to the property
of the Bessel functions

∂

∂r

(
J0(vr)(a, b)

J0(vb)
− J0(va)(r, b)

J0(vb)

)∣∣∣∣
r=a

≡ − 2
πa

,

.

3. Solution of a system of integral equations

The solution of SIE (6 – 8) is constructed by the Wiener-Hopf method in the form [21]

F(w) = L−(a, w)
(

A1
+(w) + B1

+(w)
)

e−iwz1 +

+L+(a, w)
(

A2
−(w) + B2

−(w)
)

e−iwz2 . (9)

Here, the functions with subscripts ’+’ correspond to holomorphic functions in the upper
half-plane (UHP) Imw ≥ 0 and do not have zeros and poles there, while those with indices
“–” satisfy the same conditions in the lower half-plane (LHP) Imw ≤ 0, the functions L+

and L− are factorized functions, L = L− · L+ [5,7].
It should be noted that for the SIE solution to be unique, the desired function must

satisfy the Meixner condition [22,23] on the edge or the so-called sharp edge condition
(Ez, Er ∼ ρ−1/2, Eϕ ∼ √

ρ), which is equivalent to the behavior of the function F(|w|) ∼
|w|−3/2 at infinity |w| → ∞.
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Note that L+ has zeros at the points −wa
n, −wc

n and poles −wb
n (n = 1, 2, . . . ) in the

LHP of the complex variable w. The function L− has the same zeros and poles only in the
UHP, due to the property of factorized functions

L+(a,−w) = L−(a, w). (10)

The roots of the functions J0(va), J0(vb), and (a, b) with respect to the variable v in (4)
are va

n = γn/a; vb
n = γn/b and vc

n = δn/(b − a) (n = 1, 2, . . . ), where γn and δn denote the
corresponding roots [24] of the equations

J0(γ) = 0,

N0
( aδ

b−a
)
J0
( bδ

b−a
)
− N0

( bδ
b−a
)
J0
( aδ

b−a
)
= 0.

Relation (6) will be satisfied due to the function A1
+ if the function F(w) is holomorphic

everywhere in LHP (Imw ≤ 0) except for a single simple pole at the point w = −k and
uniformly tends to zero as |w| → ∞. Therefore, the remaining poles contained in the LHP
at the points w = −wb

n(n = 1, 2, . . . ) of the function L+ must be compensated using the
function B1

+(w).
To find a solution to equation (7), we require the same conditions for the functions

A2
−(w) and B2

−(w) in the UHP (Imw ≥ 0).
Thus, using the theory of residues to calculate the integrals (6) and (7), as well as

compensating all singular points inside the integration contour (IC), except for the poles
±k, we obtain the desired functions in (9):

A1
+(w) = − V1

w + k
, (11)

A2
−(w) =

V2

w − k
(
0 < Im(k), |k| → 0

)
, (12)


B1
+(w) = −

∞

∑
n=1

eiwb
n(z2−z1)

(w + wb
n)

L∗
+(a,−wb

n)

L−(a,−wb
n)

(
A2
−(−wb

n) + B2
−(−wb

n)
)
,

B2
−(w) = −

∞

∑
n=1

eiwb
n(z2−z1)

(w − wb
n)

L∗
−(a, wb

n)

L+(a, wb
n)

(
A1
+(w

b
n) + B1

+(w
b
n)
)
,

(13)

where

L∗
+(a,−wb

n) = lim
w→−wb

n

(w + wb
n)L+(a, w) =

= − lim
w→wb

n

(w − wb
n)L−(a, w) = −L∗

−(a, wb
n).

The validity of the obtained solution of SIE (6) – (8) can be checked directly by substi- 100

tuting it into the equation and closing the IC in the LHP or UHP w, according to the Jordan 101

lemma, then calculating the residues at all poles of the integrand inside this IC. 102

It should be noted that the resulting solution (9) automatically satisfies (8), since the 103

integrand turns out to be holomorphic inside the corresponding IC. 104
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3.1. Solution of a system of functional equations

The exact solution of the system of functional equations (13) can be represented in the 106

form of rapidly convergent infinite series 107

B1
+(w) = −V2

( ∞

∑
n1

gn1

(w + wb
n1
)l(1)

+
∞

∑
n1,n2,n3

gn1 gn2 gn3

(w + wb
n3
)l(3)

+ . . .

+
∞

∑
n1,...,n2i−1

∏2i−1
k=1 gk

(w + wb
2i−1)l

(2i−1)

)
− V1

( ∞

∑
n1,n2

gn1 gn2

(w + wb
n2
)l(2)

+

∞

∑
n1,n2,n3,n4

gn1 gn2 gn3 gn4

(w + wb
n4
)l(4)

+ . . .
∞

∑
n1,...,n2i

∏2i
k=1 gk

(w + wb
2i)l

(2i)

)
,

(14)

B2
−(w) = V1

( ∞

∑
n1

gn1

(w − wb
n1
)l(1)

+
∞

∑
n1,n2,n3

gn1 gn2 gn3

(w − wb
n3
)l(3)

+ . . .

+
∞

∑
n1,...,n2i−1

∏2i−1
k=1 gk

(w + wb
2i−1)l

(2i−1)

)
+ V2

( ∞

∑
n1,n2

gn1 gn2

(w − wb
n2
)l(2)

+

+
∞

∑
n1,n2,n3,n4

gn1 gn2 gn3 gn4

(w − wb
n4
)l(4)

+ . . .
∞

∑
n1,...,n2i

∏2i
k=1 gk

(w − wb
2i)l

(2i)

)
,

(15)

where the following notations are used

gn =
L∗
−(a, wb

n)

L+(a, wb
n)

eiwb
n(z2−z1),

l(k) = wb
n1
(wb

n1
+ wb

n2
) · · · (wb

nk−1
+ wb

nk
)︸ ︷︷ ︸

k

,

nk = 1, 2, . . . , k = 1, 2, . . . .

(16)

Factorized function L∗
−(a, wb

n) is calculated by formula (23). Indeed, system (13) can be
easily divided into separate recursive equations

B1
+(w) = −V2

∞

∑
n1=1

gn1
(w+wb

n1 )w
b
n1

− V1

∞

∑
n1,n2=1

gn1 gn2
(w+wb

n1 )(w
b
n1+wb

n2 )w
b
n2
+

+
∞

∑
n1,n2=1

gn1 gn2
(w+wb

n1 )(w
b
n1+wb

n2 )
B1
+(w

b
n2
),

B2
−(w) = V1

∞

∑
n1=1

gn1
(w−wb

n1 )w
b
n1

+ V2

∞

∑
n1,n2=1

gn1 gn2
(w−wb

n1 )(w
b
n1+wb

n2 )w
b
n2
+

+
∞

∑
n1,n2=1

gn1 gn2
(w−wb

n1 )(w
b
n1+wb

n2 )
B2
−(−wb

n2
),

(17)

from which we directly obtain solutions in (17), cyclically using the equation itself in its 112

right side. 113

4. Potential distribution in the lens

Substituting the resulting solution F into (5) and calculating the integral along the real 115

axis w using the residue theory, we determine the potential φ.
Let us consider each case for different cylinder regions separately.
1. z ≤ z1, 0 ≤ r ≤ a.
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In this case, the IC should be closed in the LHP w. After making calculations and 119

passing to the limit k → 0, we obtain the potential distribution inside the semi-infinite 120

cylinder 121

φ(r, z) = V1 −
N

∑
n=1

J0(va
nr)

J∗0(−wa
na)
{

L−(a, w)
(

A1
+(w) + B1

+(w)
)
eiw(z−z1)

}
w=−wa

n
=

V1 −
N

∑
n=1

e
γn
a (z−z1)

J0(γn
r
a )

γnJ1(γn)
L+(a, i γn

a )
(

V1 + i
γn

a
B1
+(−i γn

a )
)

. (18)

Here we took into account that

J∗0(−wa
na) = lim

w→−wb
n

(w + wb
n)

−1J0(va) = −iJ1(v
b
nb) = −iJ1(γn) (19)

and the property of factorized functions L± in (10).
2. z ≤ z1, a ≤ r ≤ b.
Integration along the real axis w in this case must also be closed, according to the 125

Jordan lemma, in the LHP, then the integral can be easily transformed into a series of 126

residues 127

φ(r, z) = V1
ln b

r

ln b
a
−

N

∑
n=1

{ (r, b)
(a, b)∗

L−(a, w)
(

A1
+(w) + B1

+(w)
)
eiw(z−z1)

}
−wc

n
=

V1
ln b

r

ln b
a
− π

2

N

∑
n=1

J0(
δna
b−a )J0(

δnb
b−a )

J2
0(

δnb
b−a )− J2

0(
δna
b−a )

(
N0(

δnr
b−a )J0(

δnb
b−a )− N0(

δn
b−a b)J0(

δnr
b−a )

)
L+(a, i δn

b−a )
(

V1 +
iδn

b − a
B1
+(−i δn

b−a )
)

e
δn

b−a (z−z1).

(20)

Note that there is a transformation

(a, b)∗−wc
n
= lim

w→−wc
n
(w + wc

n)
−1(a, b) =

−i 2
πc

n

(
(a′ ,b)
(a′ ,a) −

(a,b′)
(b,b′)

)
vc

n
= −i 2(b−a)

πδn

(
J0(

δnb
b−a )

J0(
δna
b−a )

− J0(
δna
b−a )

J0(
δnb
b−a )

)
, (21)

where in the derivation the Wronskian (z′, z) = 2/πz [24].
3. z1 ≤ z ≤ z2, 0 ≤ r ≤ b.
Closing the IC in (5) for terms with an exponential factor eiw(z−z1) according to the

Jordan lemma in the UHP, and with a factor eiw(z−z2) in the LHP w, taking into account all 132

the contributions of the poles inside the IC, we similarly find the potential distribution in 133

the slit region 134

φ(r, z) =
N

∑
n=1

J0(γn
r
b )

J0(γn
a
b )

L∗
−(a, wb

n)
((

−V1/wb
n + B1

+(w
b
n)
)
eiwb

n(z−z1) +

(
V2/wb

n + B2
−(−wb

n)
)
e−iwb(z−z2)

)
,

or it can be written as

φ(r, z) =
1

ln b
a

N

∑
n=1

J0(γn
r
b )J0(γn

a
b )

γ2
n J2

1(γn)
L−1
+ (a, i γn

b )
(

e−
γn
b (z−z1)

(
V1 −

iγn
b B1

+(i
γn
b )
)
+ e

γn
b (z−z2)

(
V2 − iγn

b B2
−(−i γn

b )
))

, (22)
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using the properties of the Bessel functions

(a, b)vb
n

J0(γn
a
b )

=
(b′, b)vb

n

J1(γn)
= − 2

πγnJ1(γn)
,

in the expression for

L∗
−(a, wb

n) = lim
w→wb

n

(w − wb
n)L−(a, w) =

i
b ln a

b

J2
0(γn

a
b )

γnJ2
1(γn)L+(a, wb

n)
. (23)

4. z2 ≤ z, 0 ≤ r ≤ a.
Similarly, closing the IC in the UHP of the complex variable w, we get

φ(r, z) = V2 −
N

∑
n=1

e−
γn
a (z−z2)

J0(γn
r
a )

γnJ1(γn)
L+(a, i γn

a )(
V2 + i

γn

a
B2
−(i

γn
a )
)

. (24)

5. z2 ≤ z, a ≤ r ≤ b.
Deforming the IC upwards, we also obtain

φ(r, z) = V2
ln b

r

ln b
a
− π

2

N

∑
n=1

J0(
δna
b−a )J0(

δnb
b−a )

J2
0(

δnb
b−a )− J2

0(
δna
b−a )

L+(a, i δn
b−a )(r, b)

∣∣
vc

n(
V2 +

iδn

b − a
B2
−(i

δn
b−a )

)
e−

δn
b−a (z−z2). (25)

5. Discussion

Thus, the exact solution (9) of the boundary value problem for the potential φ in (5) 142

is found, where the auxiliary functions B1
+ and B2

− are represented as rapidly convergent
infinite series, as well as the factorized Bessel functions (see Appendix A).

As expected, when passing to the limit z1 → −∞, when the end of the first semi-
infinite cylinder is shifted by a considerable distance to the left, the expressions for the
potential (22) – (25) coincide with the final results of N.N. Lebedev [11].

The numerical implementation of the factorized Bessel functions can be performed
optimally using formula (A5) with a given accuracy, which is expressed through the
functions P and Q [11] (Appendix A).
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Figure 2. Potential distribution along the lens axis
b = 6 : a = 1 is a solid line, a = 2 is a dash-dotted line, a = 3 is a dashed line
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Figure 3. Influence of the outer cylinder radius on the potential distribution
a = 3: b = 6 is a solid line, b = 12 is a dashed line

It should be noted that the potential distribution is ultimately expressed by a real
function φ expressed in the form of exponentially convergent series in (18) – (25).

Let us consider the distribution of the potential along the lens axis calculated by
formulas (18), (22) and (24).

As can be seen from Fig. 2, as the radius of the semi-infinite cylinder increases, the
steepness of the curve decreases.

It should be noted, as calculations show (see Fig. 3), that the radius of an infinite
cylinder b has an insignificant effect on the potential distribution along the z axis.
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Appendix A. Factorization of Bessel functions

Using a standard decomposition of integer functions into factorized functions, we can
represent the Bessel functions and their combinations as

L(a, w) = L(a, w)+L(a, w)−,
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where [5,7]

L(a, w)+ =

∞

∏
n=1

(
1 +

w
wa

n

)
e
− w

wa
n

∞

∏
n=1

(
1 +

w
wc

n

)
e
− w

wc
n

∞

∏
n=1

(
1 +

w
wb

n

)
e
− w

wb
n

e−iw
(

T/π+(b−a)S
)

,

T = a ln a + (b − a) ln (b − a)− b ln b, S =
∞

∑
n=1

( 1
δ n −

1
γ n

).

(A1)

As the function L+ in its poles and zeros, which are imaginary, takes real values, it is 174

convenient to express it through the gamma function 175

L(a, α)+ =
eα T

π Γ( 3
4 + α b

π )

Γ( 3
4 + α a

π )Γ(1 + α b−a
π )

∞

∏
n=1

(
1 + α a

γn

1 + α a
γ′

n

)(
1 + α b−a

δn

1 + α b−a
πn

)1 + α b
γn

1 + α b
γ′

n

−1

. (A2)

Here, as can be seen, the fast convergence in infinite products occurs due to the asymptotics 176

of the roots of the Bessel functions γ′
n = π(n − 1

4 ) and δ′n = πn (n = 1, 2, . . . ). For 177

convenience, denoting the infinite products in (A2) as 178

P(x) =
∞

∏
n=1

1 + x
γn

1 + x
γ′

n

= exp
∞

∑
n=1

(
ln(1 + x

γn
)− ln(1 + x

γ′
n
)
)
, (A3)

Q(x) =
∞

∏
n=1

1 + x
δn

1 + x
πn

= exp
∞

∑
n=1

(
ln(1 + x

δn
)− ln(1 + x

πn )
)
, (A4)

we finally obtain the optimal formula for the numerical calculation with sufficient accuracy: 179

L(a, α)+ =
eα T

π Γ( 3
4 + α b

π )

Γ( 3
4 + α a

π )Γ(1 + α b−a
π )

P(aα)Q
(
(b − a)α

)
P(bα)

(L(a,+w)± = L(a,−w)∓).

(A5)
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