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Abstract
In this paper we shall arrive at a simple Closed Form Solution that resolves the two roots of following equations over the quaternions:
- 2 - —— - 2 - —— - ) - - -9
f=x +xb + ax = —c=x +xb + ax +ab=t —tv+ vt — v, suchthat
- - - - 1/~ - 1/~
t=x+u; u=7(a+l;) ; v=?(a—I;)
- -2 - 2 - - -y - - - - -
f=w +wy =t —tv+vt —v;w =t+v;y=— 2v; left-handed form.
- -2 - 2 - - - - - - o -
f=w +zw =t —tv+vt —v ; w =t—v; Z=+ 2v; right-handed form.
- - - > - > - > 2 - -
f=yzy +ys +ry = zf=zyzy+zys+zry= x +xb + ax ,such that:
- - - - - -1 - 1~ - (—)—)1)—>—) 1\~ -
x=zy ; b=s ; a=zr—m ; y=—=x ; ax= erzy=(zr =z|y = zry
z Z z Z
The entire argument centers around the expression — tv + vt , which would ordinarily cancel out to zero over the reals and complex
numbers; however, for the quaternions, the expression — tv + vt produces a vector that is orthogonal to both t and v .
- 2 - -

In order to ensure to the referees that this is not a waste of their time, a calculator is provided below for f = x + xb + ax

Enter the f vector in cells T2:W2; a in cells J22M2 and b in cells O2:R2. The two roots appear in cells D2:G2 and D3:G3.
Quadratic Quaternionic Calculator, Closed Form Solution

https://docs.google.com/spreadsheets/d/1X8sKNNuxFg5HLg5gk-93SDVdk6yeh14Xp OV3bVI2Zl/edit?usp=sharing
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Statements and Declarations

I have nothing to declare.

Classifications

11Rxx Algebraic number theory
11R11 Quadratic extensions
11R16 Cubic and quartic extensions
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Theorem 1 The Quadratic Equation , The General Depressed Case
Quadratic Quaternionic Calculator, Closed Form Solution

- 2 - > - >
1let f=x +xb+a

- - >\ - 2 - > - > - - - - -
2 —c=(x+a)(x+b)=x +xb+ax+ab;, —c=f+ab
4 We know that there exists a two dimensional basis in the four dimensional space of quaternions that describes vectors a and b. Namely the bisector of the
5 of the immediate factors (mistakenly known as the Axis of Symmetry) and the straight line that is between the two factors and the bisector.
6 We shall define the bisector as u = %(a + b ) as the first vector of the basis.
7 We now define the locator as v = %(a —-b ) as the second vector of the basis.

x, A
AA L

\

9 EQI Jz%(;+l;)

10 EQ.2 v=%(a—b), compelling a=u+v and b=u-v
11EQ3 Let t =x + u,therefore x =t —u
- 2 - > - > -
12 EQ4a —c=x +xb+ax+ab
- 2 -, - e - - - -
13EQ5 —c= x + x(u—;) + (u+v)x + (u+v)(u—v)
— - 5.2 - - - — — - — - - - -
14 EQ.6 —Cc= (t—u) + (t—u)(u—;) + (u+v)(t—u) + (u+v)(u—v)
- ) e - ) - - -2 > - 2 - - -2 > > 2
15 EQ.7 —c= |t —tu—ut+u + |tu—tv—u +uv| + (|ut—u +vt—vu| + u —uv+vu-—v
- ) - - 2 — —
16EQ8 —c=1¢ —tv +vt —v =(t+1;)(t—;)
> 2 o5 - -2
17 EQ.9a —c=1t —tv +vt —v
- 2 - — - - 2
18 EQ.9b d=t —tv +vt ; d=—c+v .
19 This is the fundamental middle handed form, from which we derive the solution.
20 EQ.10a Let w=t+ v,suchthatt =w — v
- - 2 - - -, > 2
21 EQ11a —c= (w—;) —(w—;)v +v(w—1;)—v
- -2 - - 2 > 2 - 2 2
22 EQ.12a —c=|w —wrv—w+v |—|Wwv—v [+ |(vw—V |-V
- -2 - - - 2 - 2 - 2 2
23 EQ.13a -—c=WwW —wv—w+v —wvr+v +vw—v — v
- -2 e
24 EQ.14a —c=w — 2wv

- -2 e -, >
25 EQ.15a —c=w — 2wv = W(W — 21;)


https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing
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26 EQ.16a Let y=—2v
- -2 - -, > -
27 EQ.17a —c=w +twy = W( w+y ) . This is the second fundamental form, the left-handed form.
- 2 - - 2
28 EQ.9b —c=1t —tv +vt —v (arestatement of EQ 9a)
29 EQ.10b Let z=1t — v,suchthatt = z + v, thence:
30 w=z+2v=2z-Yy
31 z=w—-2v=w+Yy
- - 2 - - -, 2
32 EQ.11b —Cc= (Z+‘l;) — (Z—i—av + v(z+a -V
- 2 —— - 2 - 2 - 2 2
33 EQ.12b —-c=|\z +zv+vz+v | +|—-zv—-v | +|(+tvZz+V |-V
- 2 - 2 - - -\
34 EQ.13b —c=z +2vz=2z —yz= (z — ¥ )z. This is the third fundamental form, the right-handed form.

- 2 — -
However, before we can proceed to resolve the toots of d = t — tv + vt , some general definitions and lemmas are in order.

65 Definition 1 Orthogonal Imaginary Unit Vector Bases

—_

66 EQ1 ij =—k and Ap =— v ; furthermore that, ji =+ k and pA =+v.
67 EQ2 ik =+j and Av =+ pu ; furthermore that, ki =—j and VA=— .

- -

68 EQ3 jk =—1 and pv =— A ; furthermore that, kj =+ 1 and vu =+ A.

69 If, and only if:

—>_ - - - —). _ i ) _ z, ] _ 2 2 2
1. Let z=zq+zl t2z)] +z3k ; leta—ATANZ(Zl), let B = ATAN2 — ,letM—q/zl+zz+z3

zZ +z
1 72

2. A=+ i(cosa)(cosB) + j(sina)(cosP) + k(sinB) . This is Lambda in respect to z.
3. p= - ?(sina) + ]_')(cosa) + 0k . This is Mu in respect to Z.
4. v =—1i(cosa)(sinB) + j(sina)(sinB) + k(cosB). This is Nu in respect to z.

5. This rigid body rotation of ...
a. i1=1i+ 0j+ 0k to

X
b. j=0i+ 1j+ 0k to p
c. k=0i+0j+ 1k to v

...which maintains the relative spatial property thatvpp = A =—pv ; [— n ] W = [+ 1 ] R such that:

6. z=zoq+M7\+ Op + Ov=zoq+zli +2zj +23k
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100 Definition 6 Hypercomplex Chival Orthogonal Basis Conversion, For the Quaternions

101 EQIf x = c,d+ C1i + czj + c3k = doq + dl)\ + dzu + d3v; €y = dO
102 Since €, = do , we are only concerned with the imaginary bases, thus:

103 EQ.2f y=(x—c0q) =cli+czj+c3k =dl)\+d2u+d3v

104 We already know that:

I a= ATANZ(%); B = ATAN2|——

1 +2
Cl CZ

=+ ?(cosa) (cosB) + j—')(sina) (cosB) + I?sinﬁ
- ?(sina) + f(cosB) + OI?
=— ?(cosa)(sinB) + ]_')(sina) (sinB) + I?COSB

AN
<l=1 >
I

105 Let us rename the above as:

106 EQ.3f 7\=y11i+y12j+y13k
107 EQ4f p= y2,1i + yz,zj + yz’gk

108 EQ.5f v = y31i + y32j + y33k

109 Which yields the system of three linear equations:

- -
l

110 EQ.5 d1y1,1i + dZYZ,ll + dSy&1

N
= C.l
1

111 EQ.6f d1y1,zj + dzyz,zi + d3y3’2j = czj

5
c3k

112 EQ.7f d1y1,3k + d2y213k + dgyg'zk
113 EQ8f  Let I be a 3x3 real matrix whose pairwise entries are equal to Y, .
114 EQ9f Let C be a 1x3 real column matrix whose entries are ¢ 6 and ¢ 3 respectively.

115 EQ10f Let D =I'''C , which is also a 1x3 real column mattix

116 Then dl, dz’ d3 are the respective entries of D from top to bottom.
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Theorem 7 The Lambda Choice Quaternion Eraser
Statement One 0= —tv + vt when both t and v are on the same Great Circle of A .
Statement Two autav= —tv tuvt when both t and v are not on the same Great Circle and apt+avis orthogonal to both ¢ and v.
Proof:
EQ.1 Let v=wvq+ vlk , establishing v as the reference frame, compelling the orthogonal basis {7\, W, ;}, then:
EQ.2 Let t=tq+ t1)‘ ttptty
EQ.3 —tv + vt =— (toq + tlk +tu+ t3v)(v0q + vlk) + (voq + vl?\)(toq + t1)‘ +tu+ t3v)
EQ4 0= (— td— tll) (voq + v17\) + (voq + v17\) (+ tq+ t17\) , since they commute upon the same Great Circle.
EQ.S5 —tv +vt= (— tH— tgv)(voq + vl?\) + (voq + vlk)(+ tu+ t3v)
EQ.6 —tv +vt= (— tzvou - tzvlv - t3v0v + t3‘71l1) + (tzvou + t3v0v - tzvlv + t3v1u)
EQ.7 —tv +vt= Z(tgvlu - tzvlv) , such that — tv + vt is orthogonal to v, vanishing tO and t1 and v, -
Q.E.D.
Likewise we could establish t as the reference frame via: t =, it 17\ , » compelling the orthogonal basis {7\ MV 2}, and the expression
— tv + vt will result in vector that is also orthogonal to t, vanishing the real part and 7\2 part of y , leaving only K, and v, as the remaining dimensions.
Regardless of which reference frame we choose, we know that (— tv + vt ) is orthogonal to both t and v, and, by definition, anything in the form of

- - -

M (pvcose + Vvsine) is strictly orthogonal to v ; howevert, not everything in form of M (uvcose + Vvsinﬂ) is strictly orthogonal to t .

— — - — -
However, the most important takeaway is that —tv +vt= Z(tgvlu — tzvlv) , meaning the real part of v, which is Vo has no effect; thus, the

- 2 - — - - - -
equationd =t — tv + vt remains equal to d, no matter the real parts of either t or v, nor the lambda part of t , thus tyt, and v, are erased from

existence, allowing us to reduce the equation to (let M and N be positive reals):

— 2 - —— 2 - —
d=|t —tv+tv|=1t +2N(t3u—t2v); N=v1
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7
144 Theovem 8 The Right Triangle Theorem
- 2 - — - - — -
Thence, the expression: d =t — tv + vt geometrically compels d to be the hypotenuse of a right triangle, since — tv + vt is orthogonal to both t and

- 2
145 its square, as both t and t lay upon the same Great Circle.

146 Although there exists an entire family of right triangles that share d as the hypotenuse, thetre are only two congruent right triangles within this

147 family that satisty t.

- 2 - - - - - - o5 o -
148 EQ.1 d=t —tv+vt; v= v,q + v17\v = [7\”, W, VV}, which is the orthogonal basis in respect to v.
149 EQ.2 —tv+vt = op + va
150 EQ.3 p.vCOSG + Vvsine is orthogonal to (— |J.Vsin9 + VVCOSG) by definition. We shall choose this orthogonality to generate the family of solutions.
151 EQ4 uvcose + Vvsine is orthogonal to (+ uysine - VUCOSG) by definition. We discard this orthogonality in favor of the former.
152 EQ.5 d= doq + d17\v + dz”u + dgvv
153 EQ.6 t= t, g+ tl?\v + tp o+ tv,

7 2 2 2 2\ N - - 2 2 2 2
154 EQ.7 t = (tO - tl - tz - tg)q + ZtOtl)Lv + Ztotzuv + 2t0t3\)v ; dO = (tO - tl - t2 - tg); d1 = Ztotl
155 EQ.8 Let f= dz”u + dsvv
156 EQ.9 Let g==aG (+ uvcosB + vvsinB) = (— tv + tv) = + 2t3v1uv - 2t2v1vv = xp +yv
2 - - - - - - -
157 EQ.10 let t =h=H|—- uvsmB + vvcosB) = + Ztotzuv + 2t0t3vv =wp + 2v
158 EQ.11 f=0Gg + Hh
159 EQ.12 dz“u =+ Guvcose - Huvsme =+ 2t3v1uv + ZtOtZuv = xp + wh
160 EQ.13 d3vv =+ vasme + vacose =— 2t2v1vv + 2t0t3vv =yv +tzv
2 - - - = =

161 EQ.14 t =d—g = t=x"\d-—-g
162 The above relationship provides us with enough information to brute the roots of the quadratic equation by simply comparing every value of the angular

5
163 argument of B against the real number magnitude of error from the return on d in a preliminary search, and then converge rapidly upon the roots via bisection.

164 In fact, it was by empirical observation of the roots (using the above rapidly convergent algorithm) that I was able to resolve the closed form solution. We
165 shall first simplify the quadratic equation further in lieu of those empirical results.
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Theorvem 9 The Orthogonal Basis Rotation Theorem; The Relative Frame Theorem

- - - - - - > — - _ 2 2
166 EQ.1 let d= doq + d1}‘v + dz“v + dg",, = A(qcosa + )\vsma) + Q(uvcosd) + vvsmcl)), QO =~ /dz + d3
167 EQ.2a W, =+ uvcosd) + vvsinq)
168 EQ.2b v, == uvsincl) + vvcoscl)
169 EQ.3 d= doq + dl)\v + dz“u + d3vv = A(qcosa + )Lvsina) + Quz + Ov2

- > - o o>

170 We are able to perform this basis conversion because all we did was rotate [p.v, Vv] about 7\v ; hence, (7\”, Ky VZ) preserves the multiplicative relationships

171 expected in the original basis. In fact, there is no preferred frame of reference for the p and v axes for an Observer on the Great Circle of A, only A is

172 absolute from the Observer’s perspective. The Observer is free to rotate the {uv, Vv] axes in any manner that simplifies the existing problem.

2 — - -
t

173 Thus, in the equation d =t — tv + vt , the v variable establishes A , and the d variables establishes p ) and v .

Theovem 10 The Fully Depressed Case of the Quadratic Equation
186 We now combine Theorems 14 and 15 to yield the fully depressed case of the quadratic equation.

- 2 — - 2 -, - — - -\ - - -
188 EQ.1a d=t —tv+vt=t — t(voq + N?\) + (voq + N?\)t , where 7\17 is in respect to V.
- 2 -, - - >
189 EQ.1b d=t — t(N)L) + (N)L)t
190 EQ.1c d=dg+dA+opn +wyv , where (p.v, Vv) is the initial orthogonal basis in respect to v .

191 EQ.2a Lt Q=qfo + o

w
192 EQ.2b Let ¢ = ATANZ(TZ)
1
193 EQ.2c Let W, =+ uvcosqn + vvsinq)
194 EQ.2d Let v, =— uvsinc]) + vvcosc])
195 EQ.2e Let d= doq + d1}‘ + Quz + OV2
196 EQ.3a t=tq + tl}\ T, + Ly,
197 EQ3b C (o) g4 2eeht 26t + 26ty
Q a ( 0 1 2 3)q 01 o2z 0'3V2
198 EQ.3c - t(NA) + (N)\)t = 2Nt u, — 2Nt v, (Lambda Choice Quaternion Eraser)
2 2 2 2
199 EQ.4a d0 = (to -t -t - t3)
200 EQ.4b d1 = 2t t,
201 EQ4c Q=2tt + 2Nt
202 EQ.4d 0 =2tt, — 2Nt,

Lemma 11 The Mu Part and Nu Part Equivalence.

203 EQ5a 0 = 2t — 2Nt
204 EQ5b 0=tt — Nt
Nt
205 EQ5c t =—2
. 0=
206 EQ.6a =2t + 2Nt
207 EQ.6b Q- 2Nt =2t
Q-2Nt
3
208 EQ.6c t =——

0 2t2
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9
Nt Q-2Nt,

209 EQ.7a RET
2 2
210 EQ.7b 2Nt = Qt, — 2Nt
2
2 Qt,—2Nt;
211 EQ7c t s T TN

Lemma 12 The Real Part and Nu Part Equivalence.

212 EQla 0 =2t — 2Nt
213 EQIb 0=tt — Nt
tt
214 EQ2a t =—2
. , =N
215 EQ2b Q=2tt + 2Nt
216 EQ2c Q- 2Nt = 2tt
0-2nt,
217 EQ2d t, = T
e s tt,  O-2Nt,
Q3a N2t
2 2
219 EQ3b 26t = QN — 2Nt
2
2 QN—-2N t3
220 EQ3c t, = 2]
1 2t3
221 EQ3d — =

2 2
t, QN-2N t,

Lemma 13 The Lambda Part Identity

222 EQI d = 2tt,
d
223 EQ.2 t =—
: 1 2t
2 d 2t, 2d't,
224 EQ3 t = = — =
Q 1 4t(2) 4 QN—2N2t3 4QN—8N2t3

Lemma 14 The Real Part 1dentity

2 2 2 2
225 EQ.1 do—(to—tl—tz—t3)
226 EQ2 d—tz—d—i—tz—tz
Q‘ 0 - 0 4t§ 2 3
ON-2N*t 2d°t at,—2Nt: 2
227 EQJ3 d = = — = 2 ¢
Q 0 ( 2t, 40N-8N"t, 2N
ON-2N*t 2d°t at,—2Nt: 2
228 EQ4 d = = — = =+t
Q 0 2t, 4ON-8N"t, 2N
p aN-2N’t, 2d't, at,
229 EQ.5 = — — =
Q 0 2t, 40N-8N"t, ( 2N )
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230 EOG p QN2—2N3t3—Qt§ Zdjr3
Q 0o 2Nt, - 4QN—8N2t3
an*—2n’t —at” 2Nt 2d’t
231 EQ7 d = — - = =
Q 0 ZNt3 2N1,‘3 4QN—8N2t3
- 4 aN’-2N’t —ar’ aNd’t:
EQ.8 = _
Q 0 2Nt, 89.N2t3—16N3t§
4QN—-8N’t | [ an*—2N’t —at® 4Nd’t
233 EQJY d=( 23){ i _ 1332
0 (4QN—8N t3) \ 2Nt, BAN’t ~16N"t
4QZN3—89N4t3—4QZNt§—8QN4t3+16N5t§+89N2t§—4Ndft§
234 EQ.10 d = s M
0 BAN"t,~16N"t,
+89N2t2+(16N5—4Ndf—492N t§—169.N4t3+49.2N3
235 EQ.11 d = M
0 BAN't,~16N't,
236 EQ.12 8ONd t, — 16N'd t. =+ BONt, + (16N5 — 4Nd; — 4QZN)t§ — 160Nt + 4Q°N’
237 EQ.13 0 = 8aN’t, + (16N5 — 4Nd. - 4QZN)t§ — 160Nt + 4Q°N’ — BONd t, + 16Nd t.
238 EQl4 0 =8AN'E + (16N5 + 16N°d, — 4Nd’ — 4QZN)t§ _ (1691\14 + 8QN2do)t3 + 407N
239 EQ.15 0 = 20N’t, + (4N5 + 4N’d - Nd, — QZN)ti - (mzv4 + 20N°d 0)t3 + O°N°
240 EQ.16 0 = 20Nt + (41v4 +4N°d, - d) - Qz)tj - (4QN3 + ZQNdO)t3 + Q°N°
3 2
241 EQ.17 0= At3 + Bt3 + Ct3 + D
242 EQ.17a A =+ 2QN
4 2 2 2
243 EQ.17b B =+ 4N + 4N dO — dl -0
3
244 EQ.17c C =— 40N -— ZQNdO
2 2
245 EQ.17d D =+Q°N

Definition 15 Cardano’s Theorem: The Real Cubic Identsty of the Nu Part
246 We now use the Cardano Method to depress the Cubic of the Nu Part.

247 EQl 0 =At, + Bt.+ Ct + D

Z3+pi+q

o
Il

248 EQ2

— B
249 EQ3 (=t +=5;

2
3AC-B
250 EQ4 ==
Qb p =5
3 2
251 EQJS5 q= 28 _9ABC:27A 2 Completing Cardano’s depression of the Cubic. We now implement Vieta’s Substitution:

27A
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Definition 16 Vieta’s Theovem: The Resolution of the Nu Part.

252 EQ.1 ({=w -+

253 EQ2 0=w’+q--L

254 EQ.J3 0= W6 + qw3 - L

255 EQ.4 y=w

256 EQ.S5 0=y"+ qy T

2
257 EQ6  y=—-L+ 44/l +L

3 2 3
258 EQ.7 w = \/— -g- + _q4_ + '% , either sign of the square root shall suffice.
B _ -2
259 EQ.8 t,+or=w -2+
-5 __r
260 EQ.9 t,=— 55+ w—
261

262
dl
263 EQ11 t =
Q 1 2t
0
2
Ot 3—2N t,
264 EQ.12 t2 =+ N
265 Of course, we have a serious dilemma. Which of the three real roots do we accept for t3? Which sign of the above squares do we choose in

265 unison? Only the polar form of solution will elucidate which root of £ 5 to accept, and then how to produce t o b and t,.
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Theorem 17 The Offset Circle Theorem
Nt O-2Nt
2 3

266 For the moment, let us suppose we know which cubic root to select as ta then we now examine the following relationship: P . This
3
267 equation informs us that the coordinate tu, +t.v, lays upon a circle, with a radius of % , offset from the origin by + % .
268 Let tu, +ty, = M(uzcose + stine) , then the Law of Cosines reveals that:
2 (a) a\? Q)2
269 EQ.1 M = (W) + (W) - Z(W) co0s20
2 Q \?
20 EQ2 M= z(w) (1 — cos28)
271 EQ3 M= (2—‘}V)sine , upholding the Law of Sines.
Nt,
272 We now examine the relationship tO = "
3

_ Mcos6
273 EQ.4 tO = Nmie
274 EQ.S5 t, = Ncoto

dl dl
275 EQ.6 tl = 2, = Wtane
2 2 2 2

276 EQ.7 d, = (to —t =t - t3)

dZ
277 EQ.8 d, = N’cot’® — 4—1\;2tan26 — M’cos’® — M’sin’0

& 2
278 EQJ9 d = Ncot’® — —12tan26 - Mz(cosze + sinze) ; M’ = (Q—Z)sinze; (cosze + sinze) =1

0 4N 4N

279 EQ.10 d0 = N’cot’® — #(dimnze + stinze) , which leads to a nasty degtee six equation with 6 pairs of conjugate solutions for 6.

- -
280  Before we proceed, the below image is the geometric appearance of the question at hand in WV, space.

281 In the following url link, q is Omega, N is N, and t is theta: https://www.desmos.com/calculator/g2bfcbs7wq

desmos

10 & + @
s

1®
2
I
I

0 &
S

1®
N
i
e

()

@

»=tan)x{ (i sinr)cos() < < o’}

(2]

y=—cot(t)x+ col(f)q{qcosz)‘<,\ < q}

282 However, when we yield the roots of the cubic to produce t, we can solve for theta without any of the hassle that the polar form introduces.

283 EQ.11 th, +ty, = M(uzcose + vzsme)
284 EQ12 t, = Msin®
= (2 ) ein?
285 EQ.13 t, = (ZN )sm 0
2N, [28e,
286 EQ.14 — = sin 0 ; o= sin®
_ 2Nt
287 EQ.15 0 = Arcsine|+ 7| We know to take the positive root, since the (tz’ tg) coordinate resides in the first quadrant, since both

288 magnitude variables, N and (), are positive by definition, forcing the red circle (in the above image) in the upper two quadrants. We also both angles for the

2 s s

289 Arcsine function. This is not because we cannot resolve the ambiguity; rather, both 0 solutions fulfilld = t — tv + vt simultaneously. Hence:

2Nt - - 2 -
290 EQ.16 0 = Arcsine(+ Ts), 0 , = (T[ - 61) ; yielding the empirically observed form: t =t v, + VW, where ¥ has no v, part.
291 With both values of theta known, we simply use the identities above to yield t v vt
200 EQITa t = Ncot;t =—tv ¢ = (i)sine cos0
Ql7a £y, = v C11 2t 21 \2N 177

01
d

. _ 1 — (2 \; . — . - . - . —
Ncotel, t1,2 = tz,2 = (2N )Sln9200362 ; 150’1 = to,z’ t1,1 tl,Z’ t2,1 tz,z’ t3,1 t3’2. Q.E.D.

295 EQITb t,


https://www.desmos.com/calculator/q2bfcbs7wq
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Theovem 18 Which Root Theorem
- 2 - -
297 We shall use the randomly generated components of f = x + xb + ax seen below to demonstrate that all three roots of t 5 are valid by symmetry.
208 a=— 6.198q — 0.877i + 7.020j + 8.469k
209 b=+ 6.472q — 7.628i + 5.019] + 1.531k
300 f=—8.299¢ + 5.952{ + 6.088] + 2.996k
301 x, =+ 1.1457138q + 1.5397790i + 1.6404340] — 0.1822954k
302 x,=— 1.4197138q — 4.1986025] — 3.0201749] — 2.0290342k
- 2 — —
303 'The resultant equationd =t — tv + vt; Q = 91.20815237; N = 4.942566287
d =— 87.5983675q + 36.5451060i + 70.9961880] — 44.7808970k = — 87.5983675q + 7.89969368971A + Qu + Ov,
v =— 6.33500000q + 3.3755000i + 1.0005000j + 3.4690000k = — 6.33500000q + NA+ O, + Ov,
A = 0q + 0.6829448113( + 0.2024252062) + 0.7018621094k
b, = 0q + 0.3415270497i + 0.7608650002) — 0.551764194k
v, = 0q — 0.6457132948( + 0.6165293888] + 0.4504951205k
Has the roots, accepting the angular argument of 8, = 1.316874331 radians; 6, = m — 6 = 1.824718323radians
304t =+ 1.282713777q + 3.079289328) + 2.243471181p + 8.644566873v,
305 t,=— 1.282713777q — 3.079289328X — 2.243471181p + 8.644566873v,
Theta 1 Theta 2 Lambda Frame tl q tl lamhbda t2 t3 nu?
1.316874331 1824718323 Boot 1 1282713777 3079289328 2243471181 8644566873
1.092856303 0.9368974962 02802512416 . Root 2 1282713777 -3.079239328 -2.243471181 3644366873
306 The three roots for t3 are as follows: t3 =+ 10.08356777,+ 8.644566873, — 2.585822472
2Nt
307 8, = Arcsine(+ T) = (% - 0.300194i), (1.316874331 + 0i), (0 + 0.5073412535i)
308 t .= Ncotb;t = Ltcme' t. . = (L)sine cosB ; t. = (i)sine ?
01 1’ "1,1° 2N ’ 21 \2N 1 1 21 \2N 1
309 t01 = 0+ 1.4407i; t11 = 0 — 2.7416i; t21 = 0 + 2.93926i; t31 = 10.08356 + 0i for 91 = (% — 0.3001941')
t,, = 1.28277 + 0; t = 3.07928 + Oi; t, = 2.24347 + Oi; t, = 8.64456 + Oifor0 = (1.31687 + 0i)
t,, = 0—10.5639; t =0+ 0.37389i; t, =0 + 5.52678(; t, =— 2.58582 + Oifor® = (0 + 0.50734i)
310 d, =— 87.5983675 = (1.44070)°  — (- 2.74160)" — (2.93926()° — (10.08356)° =— 2.0756 + 7.5163 + 8.6392 — 101.6781
d, =— 87.5983675 = (1.28277)" — (3.07928)" — (2.24347)° — (8.64456)° =+ 1.6454 — 9.4819 — 5.0332 — 74.7284
d, =— 87.5983675 = (— 10.56391)" — (0.373891)" — (5.52678()° — (— 2.58582)" =— 111.59 + 0.1397 + 30.545 — 6.68646
311 d| = 7.89969 = 2t t = 2(0 + 1.44070)(0 — 2.74160) = 2(1.28277)(3.07928) = 2(0 — 10.56391)(0 + 0.373891)
312 d, = 91.2081 = 0 = 2t t + 2Nt, =  2(1.44070)(2.939260) + 2(4.9425)(10.0835) =— 8.4691 + 99.6753
d,=91.2081 = Q = 2tt + 2Nt =  2(1.28277)(2.24347) + 2(4.9425)(8.64456) =+ 5.7557 + 85.4514
d,=91.2081 = Q = 2t t + 2Nt = 2(— 10.56390)(5.526781) + 2(4.9425)(— 2.58582) =+ 116.7687 — 25.5608
0=2tt + 2Nt =  2(144070)(10.0835) — 2(4.9425)(2.93926i) = 29.054i — 29.054i
0=2tt + 2Nt =  2(1.28277)(8.64456) — 2(4.9425)(2.24347) = 22.177i — 22.177i
0 =2t + 2Nt = 2(— 10.56390)(— 2.58582) — 2(4.9425)(5.52678() = 54.632i — 54.632i
313 That is, all three Arcsine arguments of £ 3 produce the same d vector after recombination. In other words, a Quadratic Equation over the Quaternions has

- 5 o

5
one pair of roots with four real coefficients, and two pairs of roots with three purely imaginary coefficients for g, A, K, and one pure real coefficient for v,

However, the geometric meaning of complex coefficients remains unclear. For now, we accept the guaranteed real argument for 0 1 Q.E.D.
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Theorvem 19 The Closed Form Solution for a General Quadratic Equation for the Quaternions.

314 We now combine all of the steps to solve original query:

- 2 - - - -
315 EQ1 f=x +xb+a
316 EQ2 let—c=f+ab
- 2 - - - - - -
317 EQ.3 —c=x +xb+ax+ab
- 1/
318 EQ4 u= T(a + Q
- 1/~ -
319 EQS5 v = 7(a - b)
320 EQ.6 Let t =x + u, therefore x =t —u
- 2 - > - -9
321 EQ.7 —c=t —tv+vt—v
322 EQ.8 Let d=—c+v = do,oq + dl‘ol + dz’oj + d3,0k
- 2 - > -
323 EQ.9 d=t —tv+uvt
324 EQ.10 V=17, .4 + Vol + LN + vs,ok
v
325 EQ.I1 a = ATANZ(V—Z)
1
v
326 EQI12 B = ATAN?2 :
v1+v§
327 EQ.13 A =+ i(cosa)(cosB) + j(sina)(cosP) + k(sinP) = Y, 1i + y1zi +y, 3k
328 EQ.14 W = —i(sina) + j(cosa) + 0k = yz,1i + yz,zj + yz,sk
329 EQ.15 v, == i (cosa)(sinB) + j(sina)(sinf) + k(cosPB) = Y, 1i + Yng Ty, 3k
330 EQ.16  LetI be a 3x3 real matrix whose pairwise entries are equal to Yo
331 EQ.17  Let A be a 1x3 real column matrix whose entries ate V.o Yso and v, , respectively.
332 EQ18  Let B be a 1x3 real column matrix whose entries are d, . d, andd 5 Fespectively.
333 EQ.19 LetV =I'A, which is also a 1x3 real column matrix, let it the results be named N, 0,0 . N is our first primary variable.

334 EQ.20 Let D =I'B, which is also a 1x3 real column matrix, let it the results be named d Ly d 5y d 31

335 We do not require the inverse Gamma Matrix for this process.
I' Gamma Matrix A Matrix B Matrix I'A = V Matrix I'B = D Matrix

_ 4y . _ 2 2
336 EQ.21 d = ATANZ(dZ'1 0 Q= w/dz,1 + dgj1

337 EQ22 p, =+ ulcoscl) + vlsincl) =+ i(— sinacosp — cosasinf sind) + j(+ cosacosd + sinasinf sind) + k(cosp sind)
338 EQ23 p, = uli + uzj + u3k
339 EQ24 v, =— ulsinq) + vlcosq) =+ i(+ sinasind — cosa sinf3 cosP) + j(— cosa sind + sina sinf cosd) + k(cosf cosd)

340 EQ25 v, =vi+v,j +v3k
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- 1 - - - - - - - - - -
341 EQ26 v = T(a - b ) = V4 + NA + Ou1 + Ov1 = V4 + NA + Ouz + Ov2
342 EQ.27 d:do,oq+d1,1)‘+d2,1”1+d3,1v1 =d0'0q+d1'17\+ Quz + 0\)2
343 EQ.28 A =+ 2QN
344 Q29 B=+4N"+4N'd —d. -0’
345 BQ30 C =— 4aN’ - 20Nd |

2 2

346 EQJ31 D=+QN

347 EQ32 0= At, + Bt,+ Ct,+ D

348 BQ33  0=0 +pl+q

349 EQM (=t +-
350 EQ.35 _ 3ac-8”
: p A

3
351 EQ36 q=—7S

352 EQ37 (=w -

353 EQ38 0=w +q——£=
27w
3

354 BQ39 0 =w+ qw — =73

355  EQ40 y=w3

356 EQ4l 0=y + qy - L

y=—L4 <
357  EQ42 =— - =+ L

2 3
358 EQ43 w = \/— % + 4 % , either sign of the square root shall suffice, and any cube root will suffice.

T4
359 EQ44 b 4+ ——=w —
Q 3T 32 =W T G
—_ B _ ;
360 EQ.45 t3 ===y tw Ty All roots will be real.
. 2Nt, -
361 EQ46 0 = Arcsin{+ [~ |. 1f 0 isacomplex number, then A is the imaginary unit.

362 We evaluate O for all three roots of t3 and select the real-valued argument. Hopefully someone will elucidate the meaning of the complex

362 arguments in due time, for I dare not feign knowledge of their geometric interpretation.

364 EQ47 t =+ qNcotd + ?\—tane + ( )smecose +v (2(11\/ )Sln 0 = t, q + t A+ t u + t v

—

365 EQ.48 t, =—chot9—7\ tane—u( )Slnecose +v(2(}v)5m6—t q+t ?\+t u +t v

- o5 o - 5 o

366 The above two equations are the roots in the proper orthogonal basis of A, [ A however we must now convert back to i, j, k .
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367 EQ.49 t0’1q+t1,1)\+t2'1u2+t3‘1v2=t0,3q+t1'3l+t2‘3]+t3’3k

368 EQ.50 1:0‘3 = t0,1

369 EQ.51 t1’3 = t1,1y1,1 + t2,1u1 + 15311\)1
370 EQ.52 1:2,3 = t1,1y1,2 + t2,1”2 + 153‘1v2
371 EQ.53 t2'3 = t1,1y1'3 + t2,1”3 + t3‘1v3

EQ.54 to,zq + t1,2)‘ + t2,2u2 + t3'2v2 = t0,4q + tml + t2'4] + t3’4k

372 EQ.55 150’4 = to,z

373 EQ.56 1:1,4 = t1,2y1,1 + t2,2”1 + 153,2v1
374  EQ.57 t2'4 = t1,2y1'2 + tz,z”z + t3'2v2
375 EQ.58 t2,4 = t1,2y1,3 + t2’2u3 + tmv3

376 Recall thatt = x + u and therefore x =t — u and thatu = %(a + E)

T R P U
378 EQO0 £ =x tu=t 0'4; +t 1‘4?+ ¢ 2,47+ ¢ 3}41?
379 EQ.61 1: = uoc_l) + u1?+ u27+ u3l:t)
380 EQ62 ;1 - (to,3 B uo)67 + (t1,3 B u1)?+ (t2,3 B u2)7 + (t3,3 B u3)l€
381 EQ63 J_C)z - (t0,4 N uo); + (t1,4 N ul)?-l_ (t2,4 N uz)}) + (t3,4 N u3);
5 2 55 5o
382 The above two equations satisfy the original query f = x + x b + a x, proving that all Quadratic Equations over the Quaternions

383 adhere to the same closed form solution.

Q.E.D.
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Appendix B: The M-th Root of N-Unity for Class of Algebraic Hypercomplex Numbers of Even Dimensions, The Great Circle Theovem

nmfl—
h
393  Assuming that we are in a Hypercomplex Space that is Cayley Algebraic, then let \/; be the function that returns the m' principal root

394 unity for x.

395 EQ.11d  Let g be the observation vector.

-

396 EQ.12d  Let D be the set of pairwise orthogonal imaginary unit vectors, |D| = n and n must be odd, such that |D U { q }| is even.

Z=n

397 EQ13d  lLetx = o,q + > aZdZ such that Vz, o € R
z=1
z=n 5 N
398 EQ14d  Letf =+ > a, which is the real number magnitude of the imaginary part of x .
z=1
2 Z=n 2 N
399 EQ.15d Tety =+ o, + > o, which is the real number magnitude of x .
z=1

400 EQ16d LetA = %(x —aq ) , compelling A to be a unit vector.

401 EQ.17d  Lett = %0( o > giving us the ratio between the magnitudes of the real part and the imaginary part.

402 EQ.18d Let©® = ATAN 2(%) = ACOTANZ2(7) , that is, the four-quadrant arccotagent of T.

- -

403 EQ.19d x = y(qcose + Xsine)
404 EQ.20d \[ = ({W)(qcos(w%) + Ksin((m%)), Vim,n)€Z m<n

405 Appendix B2: Corollary: The Square Root of a Quaternion, The Well Defined Positive and Negative Square Roots

- - - - -

406 For a quaternion x = a q + O(li + 0(2]' + O(3k , the square root is given by:

407 EQ.21d

L

+\x = (+ \/as + ai + (xi + ai) qcos|0 + %ATANZ

+rfol o - -
10T )) + 1 (x —aq )sin(O + %ATANZ
+

Z+ 2+ 2
O(1 aZ O(3

2 2 2
+ a1+(xz+a3

o

2 2 2
+ a1+(x2+a3

o

-

_ 2 2 2 2\[ > 1
—\x = (+ \/0(0 o toa + 0(3) qcos(n + —ATAN2

+ 0(2+0c2—i-012
1 "2 3

I

T + —ATAN2

1 (> N .
+ X —aq )sm
)) +1/ai+a;+a§ \ 0 (
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Appendix C: The Quadratic Equation , The Trivial Case of Symmetric Roots, For All Hypercomplex Dimensions

- 2 —— —>— -

408 EQle —C=x + xy + yx can be readily solved for x even if C and y are not on the same Great Circle.

409 EQ.2e Let ;= (; + }7), such that ; = (;— )7)

2

- -, —>)

410 EQ3e - C = ((-y) + (C-y)y+y(t-vy

- 2 — — 2 —— ) — 2
411 BQde —C=(t —ty —yt+y |+ (y—y )+ |yt -y

412 EQ5e —C =

413 EQ.6e

e —)2 e - —)2 e
414 EQ.7¢ t=x\y —-C <=>(x+y=i y —C
- - 2 -
415 EQ.8¢ x= —yx\y —C
e e —)2 e - —)2 el Bl - - —)2 - -
416 EQ.%¢ 0=|-yx\Vy = C| +|—-yx Ny = Cly+y|l—yx Ny —C|+C QE.D

417 Itis our goal to transform the eatlier equation, — ¢ = w + wy , into the Symmetric Case via a series of additional substitutions.

- 2 - - -
418 The Symmetric Case occurs when —-C=x + ([y ]4L + [y ]4R)x .
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Appendix D: Depressing a Quadratic Equation, General Case

A quadratic equation is defined as:

-5 -5

EQ.1a - C = (AxB + CyD (ExF + GyH That is, we start with the worst case scenario.
EQIb  —c = AXxBExF + AxBGyH + CyDExF + CyDGyH
EQle - ¢ = xBEXF + xBGyH + +CyDExF + <CyDGyH
FQId = et = xBEx + xBGyH=+ + +CyDEx + =CyDGyH=
EQ.2a %;% = 22
EQ.2b b= 55;17%
EQ.2¢ a= %E;EE
EQ.2d g =-LCyDGyHL

A F
FQ2e z=BE
EQ2f  —c =xm4xb+ax+g

EQ.3a c,tg=c

EQ.3b —Cc,=xzx + xb + ax
EQ.4a —zc, = zxzx + zxb + zax
EQ.4b za= =a
2 2
EQ.4c —zc, = zxzx + zxb + zax = zxzx + zxb + a 22X ;5 0,z =za=z = za
zZ
EQ.4d zc,=c, ; W=2zx
- -2 - - -
EQ.4e —Cc,=w +Wb+a2W
EQ.5a €, =¢,— azb
— -2 - - - - > — — —
EQ.5b —C =W +Wb+a2W+ b=(w+a2)(w+b
- 2 - - 2 - - - - 1 1
EQ.5¢ —cs=t—tv+vt—v; t=w+u; u= 7( +I?); =7(a—l;)
- - 2
EQ.6a —d= c.—v
- —2 - -
EQ.6b d=t —tv+ vt , then proceed with the Closed Form Solution to this most fundamental form.
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