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Abstract

In this paper we shall arrive at a simple Closed Form Solution that resolves the two roots of following equations over the quaternions:

such that;𝑓
→

= 𝑥
→2

+ 𝑥
→

𝑏
→

 +  𝑎
→

𝑥
→

 ⇒  − 𝑐
→

= 𝑥
→2

+ 𝑥
→

𝑏
→

 +  𝑎
→

𝑥
→

 + 𝑎
→

𝑏
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 − 𝑣

→
 2,

 𝑡
→

= 𝑥
→

+ 𝑢
→

  ;      𝑢
→

= 1
2 𝑎

→
+ 𝑏

→( )  ;      𝑣
→

= 1
2 𝑎

→
− 𝑏

→( )

; left-handed form.𝑓
→

= 𝑤
→2

+ 𝑤
→

𝑦
→

  = 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 − 𝑣

→
 2;  𝑤

→
 = 𝑡

→
+ 𝑣

→
 ;  𝑦

→
=− 2𝑣

→

; right-handed form.𝑓
→

= 𝑤
→2

+ 𝑧
→

𝑤
→

  = 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 − 𝑣

→
 2;  𝑤

→
 = 𝑡

→
− 𝑣

→
 ;  𝑧

→
=+ 2𝑣

→

, such that:𝑓
→

= 𝑦
→

𝑧
→

𝑦
→

 + 𝑦
→

 𝑠
→
 + 𝑟

→
 𝑦

→
  ⇒   𝑧

→
 𝑓
→

= 𝑧
→

𝑦
→

𝑧
→

𝑦
→

+ 𝑧
→

𝑦
→

𝑠
→

+ 𝑧
→

𝑟
→
𝑦
→

=  𝑥
→2

+ 𝑥
→

𝑏
→

 +  𝑎
→

𝑥
→

  

𝑥
→

= 𝑧
→

𝑦
→

     ;        𝑏
→

= 𝑠
→
        ;      𝑎

→
= 𝑧

→
𝑟
→ 1

𝑧
→ ;       𝑦

→
= 1

𝑧
→ 𝑥

→
        ;        𝑎

→
𝑥
→

= 𝑧
→

𝑟
→ 1

𝑧
→( )𝑧

→
𝑦
→

= 𝑧
→

𝑟
→( ) 1

𝑧
→ 𝑧

→( )𝑦
→

= 𝑧
→

𝑟
→
𝑦
→

The entire argument centers around the expression , which would ordinarily cancel out to zero over the reals and complex− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

numbers; however, for the quaternions, the expression produces a vector that is orthogonal to both and .− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

𝑡
→

𝑣
→

In order to ensure to the referees that this is not a waste of their time, a calculator is provided below for 𝑓
→

= 𝑥
→2

+ 𝑥
→

𝑏
→

 +  𝑎
→

𝑥
→

Enter the vector in cells T2:W2; in cells J2:M2 and in cells O2:R2. The two roots appear in cells D2:G2 and D3:G3.𝑓
→

𝑎
→

𝑏
→

Quadratic Quaternionic Calculator, Closed Form Solution
https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing
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Theorem 1 The Quadratic Equation , The General Depressed Case

Quadratic Quaternionic Calculator, Closed Form Solution
https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing

1 Let 𝑓
→

= 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

2 − 𝑐
→

= 𝑥
→

+ 𝑎
→

 ( ) 𝑥
→

+ 𝑏
→

 ( ) = 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

+ 𝑎
→

 𝑏
→

;     − 𝑐
→

= 𝑓
→

+ 𝑎
→

𝑏
→

4 We know that there exists a two dimensional basis in the four dimensional space of quaternions that describes vectors and . Namely the bisector of the𝑎
→

𝑏
→

5 of the immediate factors (mistakenly known as the Axis of Symmetry) and the straight line that is between the two factors and the bisector.

6 We shall define the bisector as as the first vector of the basis.𝑢
→

= 1
2 𝑎

→
+ 𝑏

→
 ( )

7 We now define the locator as as the second vector of the basis.𝑣
→

= 1
2 𝑎

→
− 𝑏

→
 ( )

9 EQ.1 𝑢
→

= 1
2 𝑎

→
+ 𝑏

→( )

10 EQ.2 , compelling and𝑣
→

= 1
2 𝑎

→
− 𝑏

→
 ( ) 𝑎

→
= 𝑢

→
+ 𝑣

→
𝑏
→

= 𝑢
→

− 𝑣
→

11 EQ.3 Let , therefore𝑡
→

= 𝑥
→

+ 𝑢
→

𝑥
→

= 𝑡
→

− 𝑢
→

12 EQ.4a − 𝑐
→

= 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

+ 𝑎
→

𝑏
→

13 EQ.5 − 𝑐
→

=             𝑥
→2

                      +            𝑥
→

𝑢
→

− 𝑣
→( )                +          𝑢

→
+ 𝑣

→
 ( )𝑥

→
                 +           𝑢

→
+ 𝑣

→
 ( ) 𝑢

→
− 𝑣

→
 ( ) 

14 EQ.6 − 𝑐
→

=         𝑡
→

− 𝑢
→

 ( )
2
               +       𝑡

→
− 𝑢

→
 ( ) 𝑢

→
− 𝑣

→( )          +     𝑢
→

+ 𝑣
→

 ( )  𝑡
→

− 𝑢
→

 ( )         +          𝑢
→

+ 𝑣
→

 ( ) 𝑢
→

− 𝑣
→

 ( ) 

15 EQ.7 − 𝑐
→

=   𝑡
→2

− 𝑡
→
𝑢
→

− 𝑢
→

𝑡
→

+ 𝑢
→

 2( )  +    𝑡
→
𝑢
→

− 𝑡
→
𝑣
→

− 𝑢
→2

+ 𝑢
→

𝑣
→( )   +     𝑢

→
𝑡
→

− 𝑢
→2

+ 𝑣
→

𝑡
→

− 𝑣
→

𝑢
→( )    +      𝑢

→2
− 𝑢

→
𝑣
→

+ 𝑣
→

𝑢
→

− 𝑣
→2( ) 

16 EQ.8a − 𝑐
→

=  𝑡
→2

− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
 − 𝑣

→2
 = 𝑡

→
+ 𝑣

→( ) 𝑡
→

− 𝑣
→( )

17 EQ.9a − 𝑐
→

=  𝑡
→2

− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
 − 𝑣

→2

18 EQ.9b .𝑑
→

=  𝑡
→2

− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
             ;      𝑑

→
=− 𝑐

→
+ 𝑣

→2

19 This is the fundamental middle handed form, from which we derive the solution.

20 EQ.10a Let , such that𝑤
→

= 𝑡
→

+ 𝑣
→

𝑡
→

= 𝑤
→

− 𝑣
→

21 EQ.11a − 𝑐
→

=             𝑤
→

− 𝑣
→( )

2
           − 𝑤

→
− 𝑣

→( )𝑣
→

 + 𝑣
→

𝑤
→

− 𝑣
→( ) − 𝑣

→2

22 EQ.12a − 𝑐
→

=  𝑤
→2

− 𝑤
→

𝑣
→

− 𝑣
→

𝑤
→

+ 𝑣
→2( ) − 𝑤

→
𝑣
→

− 𝑣
→2( ) + 𝑣

→
𝑤
→

− 𝑣
→2( ) − 𝑣

→2

23 EQ.13a − 𝑐
→

=  𝑤
→2

− 𝑤
→

𝑣
→

− 𝑣
→

𝑤
→

+ 𝑣
→2

− 𝑤
→

𝑣
→

+ 𝑣
→2

+ 𝑣
→

𝑤
→

− 𝑣
→2

− 𝑣
→2

24 EQ.14a − 𝑐
→

=  𝑤
→2

− 2𝑤
→

𝑣
→

25 EQ.15a − 𝑐
→

=  𝑤
→2

− 2𝑤
→

𝑣
→

= 𝑤
→

𝑤
→

− 2𝑣
→( )

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                    

https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-93SDVdk6yeh14Xp_OV3bVl2ZI/edit?usp=sharing


4

26 EQ.16a Let 𝑦
→

=− 2𝑣
→

27 EQ.17a . This is the second fundamental form, the left-handed form.− 𝑐
→

=  𝑤
→2

+ 𝑤
→

𝑦
→

   = 𝑤
→

 𝑤
→

+ 𝑦
→

 ( )

28 EQ.9b (a restatement of EQ 9a)− 𝑐
→

=  𝑡
→2

− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
 − 𝑣

→2

29 EQ.10b Let , such that , thence:𝑧
→

= 𝑡
→

− 𝑣
→

𝑡
→

= 𝑧
→

+ 𝑣
→

30 𝑤
→

= 𝑧
→

+ 2𝑣
→

= 𝑧
→

− 𝑦
→

 

31 𝑧
→

= 𝑤
→

− 2
→

𝑣
→

= 𝑤
→

+ 𝑦
→

32 EQ.11b − 𝑐
→

=           𝑧
→

+ 𝑣
→( )

2
            −    𝑧

→
+ 𝑣

→( )𝑣
→

   +   𝑣
→

𝑧
→

+ 𝑣
→( )  − 𝑣

→2

33 EQ.12b − 𝑐
→

= 𝑧
→2

+ 𝑧
→

𝑣
→

+ 𝑣
→

𝑧
→

+ 𝑣
→2( ) + − 𝑧

→
𝑣
→

− 𝑣
→2( ) + + 𝑣

→
𝑧
→

+ 𝑣
→2( ) − 𝑣

→2

34 EQ.13b . This is the third fundamental form, the right-handed form.− 𝑐
→

= 𝑧
→2

+ 2𝑣
→

𝑧
→

= 𝑧
→2

− 𝑦
→

𝑧
→

=  𝑧
→

− 𝑦
→

 ( )𝑧
→

However, before we can proceed to resolve the roots of , some general definitions and lemmas are in order.𝑑
→

=  𝑡
→2

− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
  

65 Definition 1 Orthogonal Imaginary Unit Vector Bases

66 EQ.1 and ; furthermore that, and .𝑖
→
 𝑗
→
 =− 𝑘

→
λ
→

µ
→

=− ν
→

𝑗
→
 𝑖
→

=+ 𝑘
→

µ
→

λ
→

=+ ν
→

67 EQ.2 and ; furthermore that, and .𝑖
→
 𝑘
→

 =+ 𝑗
→

λ
→

ν
→

=+ µ
→

𝑘
→

 𝑖
→

=− 𝑗
→

ν
→

λ
→

=− µ
→

68 EQ.3 and ; furthermore that, and .𝑗
→
 𝑘
→

 =− 𝑖
→

µ
→

ν
→

=− λ
→

𝑘
→

 𝑗
→

=+ 𝑖
→

ν
→

µ
→

=+ λ
→

69 If, and only if:

1. Let ; let ; let ; let𝑧
→

= 𝑧
0
𝑞
→

+ 𝑧
1
𝑖
→
 + 𝑧

2
𝑗
→
 + 𝑧

3
𝑘
→

α = 𝐴𝑇𝐴𝑁2
𝑧

2

𝑧
1

( ) β = 𝐴𝑇𝐴𝑁2
𝑧

3

𝑧
1
2+𝑧

2
2( ) 𝑀 = 𝑧

1
2 + 𝑧

2
2 + 𝑧

3
2

2. . This is Lambda in respect to .λ
→

=+ 𝑖
→
 𝑐𝑜𝑠α( ) 𝑐𝑜𝑠β( ) + 𝑗

→
𝑠𝑖𝑛α( ) 𝑐𝑜𝑠β( ) + 𝑘

→
𝑠𝑖𝑛β( ) 𝑧

→

3. . This is Mu in respect to .µ
→

=          − 𝑖
→
 𝑠𝑖𝑛α( ) + 𝑗

→
𝑐𝑜𝑠α( )          + 0𝑘

→
𝑧
→

4. . This is Nu in respect to .ν
→

=− 𝑖
→
 𝑐𝑜𝑠α( ) 𝑠𝑖𝑛β( ) + 𝑗

→
𝑠𝑖𝑛α( ) 𝑠𝑖𝑛β( ) + 𝑘

→
𝑐𝑜𝑠β( ) 𝑧

→

5. This rigid body rotation of …

a. to𝑖
→

= 1𝑖
→

+ 0𝑗
→

+ 0𝑘
→

λ
→

b. to𝑗
→

= 0𝑖
→

+ 1𝑗
→

+ 0𝑘
→

µ
→

c. to𝑘
→

= 0𝑖
→

+ 0𝑗
→

+ 1𝑘
→

ν
→

…which maintains the relative spatial property that , such that:ν
→

 µ
→

 = λ
→

=− µ
→

 ν
→

  ;   − µ 
→[ ]4𝐿

ν
→

 = + µ 
→[ ]4𝑅

ν
→

6. 𝑧
→

= 𝑧
0
𝑞
→

+ 𝑀λ
→

+ 0µ
→

+ 0ν
→

= 𝑧
0
𝑞
→

+ 𝑧
1
𝑖
→
 + 𝑧

2
𝑗
→
 + 𝑧

3
𝑘
→

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                    



5

100 Definition 6 Hypercomplex Chiral Orthogonal Basis Conversion, For the Quaternions

101 EQ.1f 𝑥
→

= 𝑐
0
𝑞
→

+ 𝑐
1
𝑖
→

+ 𝑐
2
𝑗
→

+ 𝑐
3
𝑘
→

= 𝑑
0
𝑞
→

+ 𝑑
1
λ
→

+ 𝑑
2
µ
→

+ 𝑑
3
ν
→

 ;      𝑐
0

= 𝑑
0

102 Since , we are only concerned with the imaginary bases, thus:  𝑐
0

= 𝑑
0

103 EQ.2f 𝑦
→

= 𝑥
→

− 𝑐
0
𝑞
→

 ( ) = 𝑐
1
𝑖
→

+ 𝑐
2
𝑗
→

+ 𝑐
3
𝑘
→

 = 𝑑
1
λ
→

+ 𝑑
2
µ
→

+ 𝑑
3
ν
→

104 We already know that:

1. ;α = 𝐴𝑇𝐴𝑁2
𝑐

2

𝑐
1

( ) β = 𝐴𝑇𝐴𝑁2 3

𝑐
1
2+𝑐

2
2( )

2. λ
→

=+ 𝑖
→
 𝑐𝑜𝑠α( ) 𝑐𝑜𝑠β( ) + 𝑗

→
𝑠𝑖𝑛α( ) 𝑐𝑜𝑠β( ) + 𝑘

→
𝑠𝑖𝑛β

3. µ
→

=           − 𝑖
→
 𝑠𝑖𝑛α( ) + 𝑗

→
𝑐𝑜𝑠β( )            + 0𝑘

→

4. ν
→

=− 𝑖
→
 𝑐𝑜𝑠α( ) 𝑠𝑖𝑛β( ) + 𝑗

→
𝑠𝑖𝑛α( ) 𝑠𝑖𝑛β( ) + 𝑘

→
𝑐𝑜𝑠β

105 Let us rename the above as:

106 EQ.3f λ
→

= γ
1,1

𝑖
→

+ γ
1,2

𝑗
→

+ γ
1,3

𝑘
→

107 EQ.4f µ
→

= γ
2,1

𝑖
→

+ γ
2,2

𝑗
→

+ γ
2,3

𝑘
→

108 EQ.5f ν
→

= γ
3,1

𝑖
→

+ γ
3,2

𝑗
→

+ γ
3,3

𝑘
→

109 Which yields the system of three linear equations:

110 EQ.5f 𝑑
1
γ

1,1
𝑖
→

+ 𝑑
2
γ

2,1
𝑖
→

+ 𝑑
3
γ

3,1
𝑖
→
 =  𝑐

1
𝑖
→

111 EQ.6f 𝑑
1
γ

1,2
𝑗
→

+ 𝑑
2
γ

2,2
𝑗
→

+ 𝑑
3
γ

3,2
𝑗
→
 =  𝑐

2
𝑗
→

112 EQ.7f 𝑑
1
γ

1,3
𝑘
→

+ 𝑑
2
γ

2,3
𝑘
→

+ 𝑑
3
γ

3,2
𝑘
→

 = 𝑐
3
𝑘
→

113 EQ8f Let 𝚪 be a 3x3 real matrix whose pairwise entries are equal to .γ
𝑚,𝑛

114 EQ9f Let be a 1x3 real column matrix whose entries are and respectively.𝐂 𝑐
1
,  𝑐

2
𝑐

3

115 EQ10f Let =𝚪-1 , which is also a 1x3 real column matrix𝐃 𝐂

116 Then are the respective entries of from top to bottom.𝑑
1
, 𝑑

2
, 𝑑

3
𝐃
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117 Theorem 7 The Lambda Choice Quaternion Eraser

118 Statement One when both and are on the same Great Circle of .0
→

=  − 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

𝑡
→

𝑣
→

λ
→

119 Statement Two when both and are not on the same Great Circle and is orthogonal to both and .α
1
µ
→

+ α
2
𝑣
→

=  − 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

𝑡
→

𝑣
→

α
1
µ
→

+ α
2
𝑣
→

𝑡
→

𝑣
→

120 Proof:

121 EQ.1 Let , establishing as the reference frame, compelling the orthogonal basis , then:𝑣
→

= 𝑣
0
𝑞
→

+ 𝑣
1
λ
→

𝑣
→

λ
→

,  µ
→

,  ν
→{ }

122 EQ.2 Let 𝑡
→

= 𝑡
0
𝑞
→

+ 𝑡
1
λ
→

+ 𝑡
2
µ
→

+ 𝑡
3
ν
→

123 EQ.3 − 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

=− 𝑡
0
𝑞
→

+ 𝑡
1
λ
→

+ 𝑡
2
µ
→

+ 𝑡
3
ν
→( ) 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) + 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) 𝑡

0
𝑞
→

+ 𝑡
1
λ
→

+ 𝑡
2
µ
→

+ 𝑡
3
ν
→( )

124 EQ.4 , since they commute upon the same Great Circle.0
→

= − 𝑡
0
𝑞
→

− 𝑡
1
λ
→( ) 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) + 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) + 𝑡

0
𝑞
→

+ 𝑡
1
λ
→( )

125 EQ.5 − 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

= − 𝑡
2
µ
→

− 𝑡
3
ν
→( ) 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) + 𝑣

0
𝑞
→

+ 𝑣
1
λ
→( ) + 𝑡

2
µ
→

+ 𝑡
3
ν
→( )

126 EQ.6 − 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

= − 𝑡
2
𝑣

0
µ
→

− 𝑡
2
𝑣

1
ν
→

− 𝑡
3
𝑣

0
ν
→

+ 𝑡
3
𝑣

1
µ
→( ) + 𝑡

2
𝑣

0
µ
→

+ 𝑡
3
𝑣

0
ν
→

− 𝑡
2
𝑣

1
ν
→

+ 𝑡
3
𝑣

1
µ
→( )

127 EQ.7 , such that is orthogonal to , vanishing and and .− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

= 2 𝑡
3
𝑣

1
µ
→

− 𝑡
2
𝑣

1
ν
→( ) − 𝑡

→
𝑣
→

 + 𝑣
→

𝑡
→

𝑣
→

𝑡
0

𝑡
1

𝑣
0

Q.E.D.

128 Likewise we could establish as the reference frame via: , compelling the orthogonal basis , and the expression𝑡
→

𝑡
→

= 𝑡
2,0

𝑞
→

+ 𝑡
2,1

λ
→

2
λ
→

2
, µ

→

2
, ν

→

2{ }
129 will result in vector that is also orthogonal to , vanishing the real part and part of , leaving only and as the remaining dimensions.− 𝑡

→
𝑣
→

 + 𝑣
→

𝑡
→

𝑡
→

λ
→

2
𝑦
→

µ
→

2
ν
→

2

130 Regardless of which reference frame we choose, we know that is orthogonal to both and , and, by definition, anything in the form of− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→
 ( ) 𝑡

→
𝑣
→

131 is strictly orthogonal to ; however, not everything in form of is strictly orthogonal to .𝑀(µ
𝑣

→
𝑐𝑜𝑠θ + ν

→

𝑣
𝑠𝑖𝑛θ) 𝑣

→
𝑀(µ

𝑣

→
𝑐𝑜𝑠θ + ν

→

𝑣
𝑠𝑖𝑛θ) 𝑡

→

141 However, the most important takeaway is that , meaning the real part of , which is , has no effect; thus, the− 𝑡
→
𝑣
→

 + 𝑣
→

𝑡
→

= 2 𝑡
3
𝑣

1
µ
→

− 𝑡
2
𝑣

1
ν
→( ) 𝑣

→
𝑣

0

142 equation remains equal to , no matter the real parts of either or , nor the lambda part of , thus and are erased from𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

𝑑
→

𝑡
→

𝑣
→

𝑡
→

𝑡
0
, 𝑡

1
𝑣

0

143 existence, allowing us to reduce the equation to (let and be positive reals):𝑀 𝑁

 𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑡
→
𝑣
→( ) =  𝑡

→2
+ 2𝑁 𝑡

3
µ
→

− 𝑡
2
ν
→( ) ;    𝑁 = 𝑣

1
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144 Theorem 8 The Right Triangle Theorem

Thence, the expression: geometrically compels to be the hypotenuse of a right triangle, since is orthogonal to both and𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

𝑑
→

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

𝑡
→

145 its square, as both and lay upon the same Great Circle.𝑡
→

𝑡
→2

146 Although there exists an entire family of right triangles that share as the hypotenuse, there are only two congruent right triangles within this𝑑
→

147 family that satisfy .𝑡
→

148 EQ.1 , which is the orthogonal basis in respect to .𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 ;       𝑣

→
= 𝑣

0
𝑞
→

+ 𝑣
1
λ
→

𝑣
   ⇒  λ

→

𝑣
, µ

→

𝑣
, ν

→

𝑣{ } 𝑣
→

149 EQ.2 − 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 = αµ

→

𝑣
+ βν

→

𝑣

150 EQ.3 is orthogonal to by definition. We shall choose this orthogonality to generate the family of solutions.µ
→

𝑣
𝑐𝑜𝑠θ + ν

→

𝑣
𝑠𝑖𝑛θ − µ

→

𝑣
𝑠𝑖𝑛θ + ν

→

𝑣
𝑐𝑜𝑠θ( )

151 EQ.4 is orthogonal to by definition. We discard this orthogonality in favor of the former.µ
→

𝑣
𝑐𝑜𝑠θ + ν

→

𝑣
𝑠𝑖𝑛θ + µ

→

𝑣
𝑠𝑖𝑛θ − ν

→

𝑣
𝑐𝑜𝑠θ( )

152 EQ.5 𝑑
→

=                                    𝑑
0
𝑞
→

+        𝑑
1
λ
→

𝑣
+      𝑑

2
µ
→

𝑣
 +      𝑑

3
ν
→

𝑣
 

153 EQ.6 𝑡
→

=                                     𝑡
0
𝑞
→

+       𝑡
1
λ
→

𝑣
 +      𝑡

2
µ
→

𝑣
  +       𝑡

3
ν
→

𝑣
  

154 EQ.7 𝑡
→2

=     𝑡
0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( )𝑞

→
+ 2𝑡

0
𝑡

1
λ
→

𝑣
 + 2𝑡

0
𝑡

2
µ
→

𝑣
 + 2𝑡

0
𝑡

3
ν
→

𝑣
  ;         𝑑

0
=   𝑡

0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( );    𝑑

1
= 2𝑡

0
𝑡

1

155 EQ.8 Let 𝑓
→

= 𝑑
2
µ
→

𝑣
+ 𝑑

3
ν
→

𝑣
 

156 EQ.9 Let 𝑔
→

= 𝐺 + µ
→

𝑣
𝑐𝑜𝑠β + ν

→

𝑣
𝑠𝑖𝑛β( ) = − 𝑡

→
𝑣
→

 + 𝑡
→
𝑣
→

 ( ) =  + 2𝑡
3
𝑣

1
µ
→

𝑣
  − 2𝑡

2
𝑣

1
ν
→

𝑣
 = 𝑥µ

→

𝑣
+ 𝑦ν

→

𝑣

157 EQ.10 Let 𝑡
→2

= ℎ
→

= 𝐻 − µ
→

𝑣
𝑠𝑖𝑛β + ν

→

𝑣
𝑐𝑜𝑠β( )                                =  + 2𝑡

0
𝑡

2
µ
→

𝑣
 + 2𝑡

0
𝑡

3
ν
→

𝑣
   = 𝑤µ

→

𝑣
+ 𝑧ν

→

𝑣

158 EQ.11 𝑓
→

= 𝐺𝑔
→

 + 𝐻ℎ
→

 

159 EQ.12 𝑑
2
µ
→

𝑣
=+ 𝐺µ

→

𝑣
𝑐𝑜𝑠θ − 𝐻µ

→

𝑣
𝑠𝑖𝑛θ =+ 2𝑡

3
𝑣

1
µ
→

𝑣
+ 2𝑡

0
𝑡

2
µ
→

𝑣
= 𝑥µ

→

𝑣
+ 𝑤µ

→

𝑣

160 EQ.13 𝑑
3
ν
→

𝑣
=+ 𝐺ν

→

𝑣
𝑠𝑖𝑛θ + 𝐻ν

→

𝑣
𝑐𝑜𝑠θ =− 2𝑡

2
𝑣

1
ν
→

𝑣
 + 2𝑡

0
𝑡

3
ν
→

𝑣
= 𝑦ν

→

𝑣
+ 𝑧ν

→

𝑣

161 EQ.14 𝑡
→2

= 𝑑
→

− 𝑔
→

    ⇒     𝑡
→

=± 𝑑
→

− 𝑔
→

162 The above relationship provides us with enough information to brute the roots of the quadratic equation by simply comparing every value of the angular

163 argument of against the real number magnitude of error from the return on in a preliminary search, and then converge rapidly upon the roots via bisection.β 𝑑
→

164 In fact, it was by empirical observation of the roots (using the above rapidly convergent algorithm) that I was able to resolve the closed form solution. We
165 shall first simplify the quadratic equation further in lieu of those empirical results.
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Theorem 9 The Orthogonal Basis Rotation Theorem; The Relative Frame Theorem

166 EQ.1 Let 𝑑
→

= 𝑑
0
𝑞
→

+ 𝑑
1
λ
→

𝑣
+ 𝑑

2
µ
→

𝑣
+ 𝑑

3
ν
→

𝑣
 = 𝐴 𝑞

→
𝑐𝑜𝑠α + λ

→

𝑣
𝑠𝑖𝑛α( ) + Ω µ

→

𝑣
𝑐𝑜𝑠ϕ + ν

→

𝑣
𝑠𝑖𝑛ϕ( );   Ω = 𝑑

2
2 + 𝑑

3
2

167 EQ.2a µ
2

→
=+ µ

→

𝑣
𝑐𝑜𝑠ϕ + ν

→

𝑣
𝑠𝑖𝑛ϕ 

168 EQ.2b ν
2

→
=− µ

→

𝑣
𝑠𝑖𝑛ϕ + ν

→

𝑣
𝑐𝑜𝑠ϕ 

169 EQ.3 𝑑
→

= 𝑑
0
𝑞
→

+ 𝑑
1
λ
→

𝑣
+ 𝑑

2
µ
→

𝑣
+ 𝑑

3
ν
→

𝑣
 = 𝐴 𝑞

→
𝑐𝑜𝑠α + λ

→

𝑣
𝑠𝑖𝑛α( ) + Ωµ

→

2
+ 0ν

→

2

170 We are able to perform this basis conversion because all we did was rotate about ; hence, preserves the multiplicative relationshipsµ
→

𝑣
, ν

→

𝑣{ } λ
→

𝑣
λ
→

𝑣
, µ

→

2
, ν

→

2( )
171 expected in the original basis. In fact, there is no preferred frame of reference for the and axes for an Observer on the Great Circle of , only isµ

→
ν
→

λ
→

λ
→

172 absolute from the Observer’s perspective. The Observer is free to rotate the axes in any manner that simplifies the existing problem.µ
→

𝑣
, ν

→

𝑣{ }

173 Thus, in the equation , the variable establishes , and the variables establishes and .𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

𝑣
→

λ
→

𝑑
→

µ
→

2
ν
→

2

Theorem 10 The Fully Depressed Case of the Quadratic Equation
186 We now combine Theorems 14 and 15 to yield the fully depressed case of the quadratic equation.

188 EQ.1a , where is in respect to .𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

= 𝑡
→2

− 𝑡
→

𝑣
0
𝑞
→

+ 𝑁λ
→( ) + 𝑣

0
𝑞
→

+ 𝑁λ
→( )𝑡

→
λ
→

𝑣
𝑣
→

189 EQ.1b 𝑑
→

= 𝑡
→2

− 𝑡
→

𝑁λ
→( ) + 𝑁λ

→( )𝑡
→

190 EQ.1c , where is the initial orthogonal basis in respect to .𝑑
→

= 𝑑
0
𝑞
→

+ 𝑑
1
λ
→

+ ω
1
µ
→

𝑣
+ ω

2
ν
→

𝑣
µ
→

𝑣
, ν

→

𝑣( ) 𝑣
→

191 EQ.2a Let Ω = ω
1
2 + ω

2
2

192 EQ.2b Let ϕ = 𝐴𝑇𝐴𝑁2
ω

2

ω
1

( )
193 EQ.2c Let µ

→

2
=+ µ

→

𝑣
𝑐𝑜𝑠ϕ + ν

→

𝑣
𝑠𝑖𝑛ϕ

194 EQ.2d Let ν
→

2
=− µ

→

𝑣
𝑠𝑖𝑛ϕ + ν

→

𝑣
𝑐𝑜𝑠ϕ

195 EQ.2e Let 𝑑
→

= 𝑑
0
𝑞
→

+ 𝑑
1
λ
→

+ Ωµ
→

2
+ 0ν

→

2

196 EQ.3a 𝑡
→

= 𝑡
0
𝑞
→

 + 𝑡
1
λ
→

+ 𝑡
2
µ
→

2
+ 𝑡

3
ν
→

2

197 EQ.3b 𝑡
→2

= 𝑡
0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( )𝑞

→
+ 2𝑡

0
𝑡

1
λ
→

+ 2𝑡
0
𝑡

2
µ
→

2
+ 2𝑡

0
𝑡

3
ν
→

2

198 EQ.3c (Lambda Choice Quaternion Eraser)− 𝑡
→

𝑁λ
→( ) + 𝑁λ

→( )𝑡
→

= 2𝑁𝑡
3
µ
→

2
− 2𝑁𝑡

2
ν
→

2

199 EQ.4a 𝑑
0

= 𝑡
0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( )

200 EQ.4b 𝑑
1

= 2𝑡
0
𝑡

1

201 EQ.4c Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3

202 EQ.4d 0 = 2𝑡
0
𝑡

3
− 2𝑁𝑡

2

Lemma 11 The Mu Part and Nu Part Equivalence.

203 EQ.5a 0 = 2𝑡
0
𝑡

3
− 2𝑁𝑡

2

204 EQ.5b 0 = 𝑡
0
𝑡

3
− 𝑁𝑡

2

205 EQ.5c 𝑡
0

=
𝑁𝑡

2

𝑡
3

206 EQ.6a Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3

207 EQ.6b Ω − 2𝑁𝑡
3

= 2𝑡
0
𝑡

2

208 EQ.6c 𝑡
0

=
Ω−2𝑁𝑡

3

2𝑡
2
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209 EQ.7a
𝑁𝑡

2

𝑡
3

=
Ω−2𝑁𝑡

3

2𝑡
2

210 EQ.7b 2𝑁𝑡
2
2 = Ω𝑡

3
− 2𝑁𝑡

3
2

211 EQ.7c .𝑡
2
2 =

Ω𝑡
3
−2𝑁𝑡

3
2

2𝑁

Lemma 12 The Real Part and Nu Part Equivalence.

212 EQ.1a 0 = 2𝑡
0
𝑡

3
− 2𝑁𝑡

2

213 EQ.1b 0 = 𝑡
0
𝑡

3
− 𝑁𝑡

2

214 EQ.2a 𝑡
2

=
𝑡

0
𝑡

3

𝑁

215 EQ.2b Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3

216 EQ.2c Ω − 2𝑁𝑡
3

= 2𝑡
0
𝑡

2

217 EQ.2d 𝑡
2

=
Ω−2𝑁𝑡

3

2𝑡
0

218 EQ.3a
𝑡

0
𝑡

3

𝑁 =
Ω−2𝑁𝑡

3

2𝑡
0

219 EQ.3b 2𝑡
0
2𝑡

3
= Ω𝑁 − 2𝑁2𝑡

3

220 EQ.3c 𝑡
0
2 =

Ω𝑁−2𝑁2𝑡
3

2𝑡
3

221 EQ.3d
1

𝑡
0
2 =

2𝑡
3

Ω𝑁−2𝑁2𝑡
3

Lemma 13 The Lambda Part Identity

222 EQ.1 𝑑
1

= 2𝑡
0
𝑡

1

223 EQ.2 𝑡
1

=
𝑑

1

2𝑡
0

224 EQ.3 𝑡
1
2 =

𝑑
1
2

4𝑡
0
2 =

𝑑
1
2

4

2𝑡
3

Ω𝑁−2𝑁2𝑡
3

( ) =
2𝑑

1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

Lemma 14 The Real Part Identity

225 EQ.1 𝑑
0

= 𝑡
0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( )

226 EQ.2 𝑑
0

= 𝑡
0
2 −

𝑑
1
2

4𝑡
0
2 − 𝑡

2
2 − 𝑡

3
2( )

227 EQ.3 𝑑
0

=
Ω𝑁−2𝑁2𝑡

3

2𝑡
3

−
2𝑑

1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

−
Ω𝑡

3
−2𝑁𝑡

3
2

2𝑁 − 𝑡
3
2( )

228 EQ.4 𝑑
0

=
Ω𝑁−2𝑁2𝑡

3

2𝑡
3

−
2𝑑

1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

−
Ω𝑡

3
−2𝑁𝑡

3
2

2𝑁 + 𝑡
3
2( )

229 EQ.5 𝑑
0

=
Ω𝑁−2𝑁2𝑡

3

2𝑡
3

−
2𝑑

1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

−
Ω𝑡

3

2𝑁( )
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230 EQ.6 𝑑
0

=
Ω𝑁2−2𝑁3𝑡

3
−Ω𝑡

3
2

2𝑁𝑡
3

−
2𝑑

1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

231 EQ.7 𝑑
0

=
Ω𝑁2−2𝑁3𝑡

3
−Ω𝑡

3
2

2𝑁𝑡
3

−
2𝑁𝑡

3

2𝑁𝑡
3

2𝑑
1
2𝑡

3

4Ω𝑁−8𝑁2𝑡
3

( )
232 EQ.8 𝑑

0
=

Ω𝑁2−2𝑁3𝑡
3
−Ω𝑡

3
2

2𝑁𝑡
3

−
4𝑁𝑑

1
2𝑡

3
2

8Ω𝑁2𝑡
3
−16𝑁3𝑡

3
2

233 EQ.9 𝑑
0

=
4Ω𝑁−8𝑁2𝑡

3( )
4Ω𝑁−8𝑁2𝑡

3( )
Ω𝑁2−2𝑁3𝑡

3
−Ω𝑡

3
2

2𝑁𝑡
3( ) −

4𝑁𝑑
1
2𝑡

3
2

8Ω𝑁2𝑡
3
−16𝑁3𝑡

3
2

234 EQ.10 𝑑
0

=
4Ω2𝑁3−8Ω𝑁4𝑡

3
−4Ω2𝑁𝑡

3
2−8Ω𝑁4𝑡

3
+16𝑁5𝑡

3
2+8Ω𝑁2𝑡

3
3−4𝑁𝑑

1
2𝑡

3
2

8Ω𝑁2𝑡
3
−16𝑁3𝑡

3
2

235 EQ.11 𝑑
0

=
+8Ω𝑁2𝑡

3
3+ 16𝑁5−4𝑁𝑑

1
2−4Ω2𝑁( )𝑡

3
2−16Ω𝑁4𝑡

3
+4Ω2𝑁3

8Ω𝑁2𝑡
3
−16𝑁3𝑡

3
2

236 EQ.12 8Ω𝑁2𝑑
0
𝑡

3
− 16𝑁3𝑑

0
𝑡

3
2 =+ 8Ω𝑁2𝑡

3
3 + 16𝑁5 − 4𝑁𝑑

1
2 − 4Ω2𝑁( )𝑡

3
2 − 16Ω𝑁4𝑡

3
+ 4Ω2𝑁3

237 EQ.13 0 = 8Ω𝑁2𝑡
3
3 + 16𝑁5 − 4𝑁𝑑

1
2 − 4Ω2𝑁( )𝑡

3
2 − 16Ω𝑁4𝑡

3
+ 4Ω2𝑁3 − 8Ω𝑁2𝑑

0
𝑡

3
+ 16𝑁3𝑑

0
𝑡

3
2

238 EQ.14 0 = 8Ω𝑁2𝑡
3
3 + 16𝑁5 + 16𝑁3𝑑

0
− 4𝑁𝑑

1
2 − 4Ω2𝑁( )𝑡

3
2 − 16Ω𝑁4 + 8Ω𝑁2𝑑

0( )𝑡
3

+ 4Ω2𝑁3

239 EQ.15 0 = 2Ω𝑁2𝑡
3
3 + 4𝑁5 + 4𝑁3𝑑

0
− 𝑁𝑑

1
2 − Ω2𝑁( )𝑡

3
2 − 4Ω𝑁4 + 2Ω𝑁2𝑑

0( )𝑡
3

+ Ω2𝑁3

240 EQ.16 0 = 2Ω𝑁𝑡
3
3 + 4𝑁4 + 4𝑁2𝑑

0
− 𝑑

1
2 − Ω2( )𝑡

3
2 − 4Ω𝑁3 + 2Ω𝑁𝑑

0( )𝑡
3

+ Ω2𝑁2

241 EQ.17 0 = 𝐴𝑡
3
3 + 𝐵𝑡

3
2 + 𝐶𝑡

3
+ 𝐷

242 EQ.17a 𝐴 =+ 2Ω𝑁

243 EQ.17b 𝐵 =+ 4𝑁4 + 4𝑁2𝑑
0

− 𝑑
1
2 − Ω2

244 EQ.17c 𝐶 =− 4Ω𝑁3 − 2Ω𝑁𝑑
0

245 EQ.17d 𝐷 =+ Ω2𝑁2

Definition 15 Cardano’s Theorem: The Real Cubic Identity of the Nu Part

246 We now use the Cardano Method to depress the Cubic of the Nu Part.

247 EQ.1 0 = 𝐴𝑡
3
3 + 𝐵𝑡

3
2 + 𝐶𝑡

3
+ 𝐷

248 EQ.2 0 = ζ3 + 𝑝ζ + 𝑞

249 EQ.3 ζ = 𝑡
3

+ 𝐵
3𝐴

250 EQ.4 𝑝 = 3𝐴𝐶−𝐵2

3𝐴2

251 EQ.5 Completing Cardano’s depression of the Cubic. We now implement Vieta’s Substitution:𝑞 = 2𝐵3−9𝐴𝐵𝐶+27𝐴2𝐷

27𝐴3
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Definition 16 Vieta’s Theorem: The Resolution of the Nu Part.

252 EQ.1 ζ = 𝑤 − 𝑝
3𝑤

253 EQ.2 0 = 𝑤3 + 𝑞 − 𝑝3

27𝑤3

254 EQ.3 0 = 𝑤6 + 𝑞𝑤3 − 𝑝3

27

255 EQ.4 𝑦 = 𝑤3

256 EQ.5 0 = 𝑦2 + 𝑞𝑦 − 𝑝3

27

257 EQ.6 𝑦 =− 𝑞
2 ± 𝑞2

4 + 𝑝3

27

258 EQ.7 , either sign of the square root shall suffice.𝑤 =
3

− 𝑞
2 ± 𝑞2

4 + 𝑝3

27

259 EQ.8 𝑡
3

+ 𝐵
3𝐴 = 𝑤 − 𝑝

3𝑤

260 EQ.9  𝑡
3

=− 𝐵
3𝐴 + 𝑤 − 𝑝

3𝑤

261 We now use the identities from to yield and .𝑡
3

𝑡
0
,  𝑡

1
𝑡

2

262 EQ.10 𝑡
0

=±
Ω𝑁−2𝑁2𝑡

3

2𝑡
3

263 EQ.11 𝑡
1

=
𝑑

1

2𝑡
0

264 EQ.12 𝑡
2

=±
Ω𝑡

3
−2𝑁𝑡

3
2

2𝑁

265 Of course, we have a serious dilemma. Which of the three real roots do we accept for ? Which sign of the above squares do we choose in𝑡
3

265 unison? Only the polar form of solution will elucidate which root of to accept, and then how to produce and .𝑡
3

𝑡
0
, 𝑡

1
𝑡

2
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Theorem 17 The Offset Circle Theorem

266 For the moment, let us suppose we know which cubic root to select as , then we now examine the following relationship: . This𝑡
3

𝑁𝑡
2

𝑡
3

=
Ω−2𝑁𝑡

3

2𝑡
2

267 equation informs us that the coordinate lays upon a circle, with a radius of , offset from the origin by .𝑡
2
µ
→

2
+ 𝑡

3
ν
→

2
Ω

4𝑁 + Ω
4𝑁

268 Let , then the Law of Cosines reveals that:𝑡
2
µ
→

2
+ 𝑡

3
ν
→

2
= 𝑀 µ

→

2
𝑐𝑜𝑠θ + ν

→

2
𝑠𝑖𝑛θ( )

269 EQ.1 𝑀2 = Ω
4𝑁( )2

+ Ω
4𝑁( )2

− 2 Ω
4𝑁( )2

𝑐𝑜𝑠2θ

270 EQ.2 𝑀2 = 2 Ω
4𝑁( )2

1 − 𝑐𝑜𝑠2θ( )

271 EQ.3 , upholding the Law of Sines.𝑀 =  Ω
2𝑁( )𝑠𝑖𝑛θ

272 We now examine the relationship .𝑡
0

=
𝑁𝑡

2

𝑡
3

273 EQ.4 𝑡
0

=  𝑁 𝑀𝑐𝑜𝑠θ
𝑀𝑠𝑖𝑛θ

274 EQ.5 𝑡
0

=  𝑁𝑐𝑜𝑡θ

275 EQ.6 𝑡
1

=
𝑑

1

2𝑡
0

=
𝑑

1

2𝑁 𝑡𝑎𝑛θ

276 EQ.7 𝑑
0

= 𝑡
0
2 − 𝑡

1
2 − 𝑡

2
2 − 𝑡

3
2( )

277 EQ.8 𝑑
0

= 𝑁2𝑐𝑜𝑡2θ −
𝑑

1
2

4𝑁2 𝑡𝑎𝑛2θ − 𝑀2𝑐𝑜𝑠2θ − 𝑀2𝑠𝑖𝑛2θ

278 EQ.9 𝑑
0

= 𝑁2𝑐𝑜𝑡2θ −
𝑑

1
2

4𝑁2 𝑡𝑎𝑛2θ − 𝑀2 𝑐𝑜𝑠2θ + 𝑠𝑖𝑛2θ( )   ;        𝑀2 = Ω2

4𝑁2( )𝑠𝑖𝑛2θ ;   𝑐𝑜𝑠2θ + 𝑠𝑖𝑛2θ( ) = 1

279 EQ.10 , which leads to a nasty degree six equation with 6 pairs of conjugate solutions for .𝑑
0

= 𝑁2𝑐𝑜𝑡2θ − 1

4𝑁2 𝑑
1
2𝑡𝑎𝑛2θ + Ω2𝑠𝑖𝑛2θ( ) θ

280 Before we proceed, the below image is the geometric appearance of the question at hand in space.µ
→

2
, ν

→

2

281 In the following url link, is Omega, N is N, and t is theta: https://www.desmos.com/calculator/q2bfcbs7wq𝑞

282 However, when we yield the roots of the cubic to produce we can solve for theta without any of the hassle that the polar form introduces.𝑡
3

283 EQ.11 𝑡
2
µ
→

2
+ 𝑡

3
ν
→

2
= 𝑀 µ

→

2
𝑐𝑜𝑠θ + ν

→

2
𝑠𝑖𝑛θ( )

284 EQ.12 𝑡
3

= 𝑀𝑠𝑖𝑛θ

285 EQ.13 𝑡
3

= Ω
2𝑁( )𝑠𝑖𝑛2θ

286 EQ.14
2𝑁𝑡

3

Ω = 𝑠𝑖𝑛2θ               ;     
2𝑁𝑡

3

Ω = 𝑠𝑖𝑛θ

287 EQ.15 . We know to take the positive root, since the coordinate resides in the first quadrant, since bothθ = 𝐴𝑟𝑐𝑠𝑖𝑛𝑒 +
2𝑁𝑡

3

Ω( ) 𝑡
2
, 𝑡

3( )
288 magnitude variables, and , are positive by definition, forcing the red circle (in the above image) in the upper two quadrants. We also both angles for the𝑁 Ω

289 Arcsine function. This is not because we cannot resolve the ambiguity; rather, both solutions fulfill simultaneously. Hence:θ 𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→

290 EQ.16 ; yielding the empirically observed form: , where has no part.θ
1

= 𝐴𝑟𝑐𝑠𝑖𝑛𝑒 +
2𝑁𝑡

3

Ω( );   θ
2

= π − θ
1( ) 𝑡

→
= 𝑡

3
ν
→

2
± Ψ2 Ψ ν

→

2

291 With both values of theta known, we simply use the identities above to yield 𝑡
0
,  𝑡

1
, 𝑡

2

292 EQ.17a 𝑡
0,1

=  𝑁𝑐𝑜𝑡θ
1
;  𝑡

1,1
=

𝑑
1

2𝑡
0,1

;  𝑡
2,1

= Ω
2𝑁( )𝑠𝑖𝑛θ

1
𝑐𝑜𝑠θ

1

293 EQ.17b . Q.E.D.𝑡
0,2

=  𝑁𝑐𝑜𝑡θ
1
;  𝑡

1,2
=

𝑑
1

2𝑡
0,1

;  𝑡
2,2

= Ω
2𝑁( )𝑠𝑖𝑛θ

2
𝑐𝑜𝑠θ

2
  ;   𝑡

0,1
=− 𝑡

0,2
 ; 𝑡

1,1
=− 𝑡

1,2
 ;  𝑡

2,1
=− 𝑡

2,2
 ;   𝑡

3,1
= 𝑡

3,2
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Theorem 18 Which Root Theorem

297 We shall use the randomly generated components of seen below to demonstrate that all three roots of are valid by symmetry.𝑓
→

= 𝑥
→2

+ 𝑥
→

𝑏
→

+ 𝑎
→

𝑥
→

𝑡
3

298 𝑎
→

=− 6. 198𝑞
→

 − 0. 877𝑖
→

+ 7. 020𝑗
→

+ 8. 469𝑘
→

299 𝑏
→

=+ 6. 472𝑞 
→

− 7. 628𝑖
→

+ 5. 019𝑗
→

+ 1. 531𝑘
→

300 𝑓
→

=− 8. 299𝑞 
→

+ 5. 952𝑖
→

+ 6. 088𝑗
→

+ 2. 996𝑘
→

301 𝑥
→

1
=+ 1. 1457138𝑞 

→
+ 1. 5397790𝑖

→
+ 1. 6404340𝑗

→
− 0. 1822954𝑘

→

302 𝑥
→

2
=− 1. 4197138𝑞 

→
− 4. 1986025𝑖

→
− 3. 0201749𝑗

→
− 2. 0290342𝑘

→

303 The resultant equation 𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
 ;   Ω = 91. 20815237 ;  𝑁 = 4. 942566287

𝑑
→

=− 87. 5983675𝑞
→

+ 36. 5451060𝑖
→

+ 70. 9961880𝑗
→

− 44. 7808970𝑘
→

 =   − 87. 5983675𝑞
→

+ 7. 89969368971λ
→

+ Ωµ
2

→
+ 0ν

→

2

𝑣
→

=− 6. 33500000𝑞
→

+    3. 3755000𝑖
→

+   1. 0005000𝑗
→

+ 3. 4690000𝑘
→

    =   − 6. 33500000𝑞
→

+                              𝑁λ
→

+  0µ
2

→
+ 0ν

→

2

λ
→

= 0𝑞
→

+ 0. 6829448113𝑖
→

+ 0. 2024252062𝑗
→

+ 0. 7018621094𝑘
→

µ
→

2
= 0𝑞

→
+ 0. 3415270497𝑖

→
+ 0. 7608650002𝑗

→
− 0. 551764194𝑘

→

ν
→

2
= 0𝑞

→
− 0. 6457132948𝑖

→
+ 0. 6165293888𝑗

→
+ 0. 4504951205𝑘

→

Has the roots, accepting the angular argument of θ
1

= 1. 316874331 𝑟𝑎𝑑𝑖𝑎𝑛𝑠;   θ
2

= π − θ
1

= 1. 824718323𝑟𝑎𝑑𝑖𝑎𝑛𝑠

304 𝑡
→

1
=+ 1. 282713777𝑞 

→
+ 3. 079289328λ

→
+ 2. 243471181µ

→

2
+ 8. 644566873ν

→

2

305 𝑡
→

2
=− 1. 282713777𝑞 

→
− 3. 079289328λ

→
− 2. 243471181µ

→

2
+ 8. 644566873ν

→

2

306 The three roots for are as follows:𝑡
3

𝑡
3

=+ 10. 08356777, +  8. 644566873, − 2. 585822472

307 θ
1

= 𝐴𝑟𝑐𝑠𝑖𝑛𝑒 +
2𝑁𝑡

3

Ω( ) =   π
2 − 0. 300194𝑖( ),   1. 316874331 + 0𝑖( ) , 0 + 0. 5073412535𝑖( )

308 .𝑡
0,1

=  𝑁𝑐𝑜𝑡θ
1
;  𝑡

1,1
=

𝑑
1

2𝑁 𝑡𝑎𝑛θ;  𝑡
2,1

= Ω
2𝑁( )𝑠𝑖𝑛θ

1
𝑐𝑜𝑠θ

1
;  𝑡

2,1
= Ω

2𝑁( )𝑠𝑖𝑛θ
1

2 

309 for𝑡
0,1

=    0 + 1. 4407𝑖;  𝑡
1,1

=   0 − 2. 7416𝑖;  𝑡
2,1

= 0 + 2. 93926𝑖;  𝑡
3,1

= 10. 08356 + 0𝑖 θ
1

=  π
2 − 0. 300194𝑖( )

for𝑡
0,1

= 1. 28277 + 0𝑖;  𝑡
1,1

= 3. 07928 + 0𝑖;  𝑡
2,1

= 2. 24347 +  0𝑖;  𝑡
3,1

= 8. 64456   + 0𝑖 θ
1

=  1. 31687 + 0𝑖( )

for𝑡
0,1

=  0 − 10. 5639𝑖;  𝑡
1,1

= 0 + 0. 37389𝑖;  𝑡
2,1

= 0 + 5. 52678𝑖;  𝑡
3,1

=− 2. 58582 + 0𝑖 θ
1

=  0 + 0. 50734𝑖( )

310 𝑑
0

=− 87. 5983675 = 1. 4407𝑖( )2      − − 2. 7416𝑖( )2 − 2. 93926𝑖( )2 − 10. 08356( )2  =− 2. 0756 + 7. 5163 + 8. 6392 − 101. 6781

𝑑
0

=− 87. 5983675 = 1. 28277( )2     − 3. 07928( )2   − 2. 24347( )2 − 8. 64456( )2     =+ 1. 6454 − 9. 4819 − 5. 0332 − 74. 7284

𝑑
0

=− 87. 5983675 = − 10. 5639𝑖( )2 − 0. 37389𝑖( )2 − 5. 52678𝑖( )2 − − 2. 58582( )2 =− 111. 59 + 0. 1397 + 30. 545 − 6. 68646

311 𝑑
1

= 7. 89969 = 2𝑡
0
𝑡

1
= 2 0 + 1. 4407𝑖( ) 0 − 2. 7416𝑖( ) = 2 1. 28277( ) 3. 07928( ) = 2 0 − 10. 5639𝑖( ) 0 + 0. 37389𝑖( )

312 𝑑
2

= 91. 2081 = Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3
=        2 1. 4407𝑖( ) 2. 93926𝑖( ) + 2 4. 9425( ) 10. 0835( )    =− 8. 4691     + 99. 6753

𝑑
2

= 91. 2081 = Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3
=         2 1. 28277( ) 2. 24347( ) + 2 4. 9425( ) 8. 64456( )    =+ 5. 7557     + 85. 4514

𝑑
2

= 91. 2081 = Ω = 2𝑡
0
𝑡

2
+ 2𝑁𝑡

3
= 2 − 10. 5639𝑖( ) 5. 52678𝑖( ) + 2 4. 9425( ) − 2. 58582( ) =+ 116. 7687 − 25. 5608

0 = 2𝑡
0
𝑡

3
+ 2𝑁𝑡

2
=        2 1. 4407𝑖( ) 10. 0835( )     − 2 4. 9425( ) 2. 93926𝑖( ) = 29. 054𝑖 − 29. 054𝑖

0 = 2𝑡
0
𝑡

3
+ 2𝑁𝑡

2
=         2 1. 28277( ) 8. 64456( )   − 2 4. 9425( ) 2. 24347( )   = 22. 177𝑖 − 22. 177𝑖

0 = 2𝑡
0
𝑡

3
+ 2𝑁𝑡

2
= 2 − 10. 5639𝑖( ) − 2. 58582( ) − 2 4. 9425( ) 5. 52678𝑖( ) = 54. 632𝑖 −  54. 632𝑖

313 That is, all three Arcsine arguments of produce the same vector after recombination. In other words, a Quadratic Equation over the Quaternions has𝑡
3

𝑑
→

one pair of roots with four real coefficients, and two pairs of roots with three purely imaginary coefficients for and one pure real coefficient for .𝑞
→

,  λ
→

,  µ
→

2
ν
→

2

However, the geometric meaning of complex coefficients remains unclear. For now, we accept the guaranteed real argument for Q.E.D.θ
1
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Theorem 19 The Closed Form Solution for a General Quadratic Equation for the Quaternions.

314 We now combine all of the steps to solve original query:

315 EQ.1 𝑓
→

= 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

316 EQ.2 Let − 𝑐
→

= 𝑓
→

+ 𝑎
→

 𝑏
→

317 EQ.3 − 𝑐
→

= 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

+ 𝑎
→

 𝑏
→

318 EQ.4 𝑢
→

= 1
2 𝑎

→
+ 𝑏

→( )

319 EQ.5 𝑣
→

= 1
2 𝑎

→
− 𝑏

→
 ( )

320 EQ.6 Let , therefore𝑡
→

= 𝑥
→

+ 𝑢
→

𝑥
→

= 𝑡
→

− 𝑢
→

321 EQ.7 − 𝑐
→

= 𝑡
→2

− 𝑡
→
 𝑣
→

+ 𝑣
→

 𝑡
→

− 𝑣
→

 2

322 EQ.8 Let    𝑑
→

=− 𝑐
→

+ 𝑣
→2

= 𝑑
0,0

𝑞
→

+ 𝑑
1,0

𝑖
→

+ 𝑑
2,0

𝑗
→

+ 𝑑
3,0

𝑘
→

323 EQ.9 𝑑
→

= 𝑡
→2

− 𝑡
→
 𝑣
→

+ 𝑣
→

 𝑡
→

324 EQ.10 𝑣
→

= 𝑣
0,0

𝑞
→

+ 𝑣
1,0

𝑖
→

+ 𝑣
2,0

𝑗
→

+ 𝑣
3,0

𝑘
→

325 EQ.11 α = 𝐴𝑇𝐴𝑁2
𝑣

2

𝑣
1

( )
326 EQ.12 β = 𝐴𝑇𝐴𝑁2

𝑣
3

𝑣
1
1+𝑣

2
2( )

327 EQ.13 λ
→

 =+ 𝑖
→
 𝑐𝑜𝑠α( ) 𝑐𝑜𝑠β( ) + 𝑗

→
𝑠𝑖𝑛α( ) 𝑐𝑜𝑠β( ) + 𝑘

→
𝑠𝑖𝑛β( ) = γ

1,1
𝑖
→

+ γ
1,2

𝑗
→

+ γ
1,3

𝑘
→

328 EQ.14 µ
→

1
 =          − 𝑖

→
 𝑠𝑖𝑛α( ) + 𝑗

→
𝑐𝑜𝑠α( )          + 0𝑘

→
        = γ

2,1
𝑖
→

+ γ
2,2

𝑗
→

+ γ
2,3

𝑘
→

329 EQ.15 ν
→

1
 =− 𝑖

→
 𝑐𝑜𝑠α( ) 𝑠𝑖𝑛β( )  + 𝑗

→
𝑠𝑖𝑛α( ) 𝑠𝑖𝑛β( ) + 𝑘

→
𝑐𝑜𝑠β( ) =  γ

3,1
𝑖
→

+ γ
3,2

𝑗
→

+ γ
3,3

𝑘
→

330 EQ.16 Let 𝚪 be a 3x3 real matrix whose pairwise entries are equal to .γ
𝑚,𝑛

331 EQ.17 Let be a 1x3 real column matrix whose entries are and respectively.𝐀 𝑣
1,0

,  𝑣
2,0

𝑣
3,0

332 EQ.18 Let be a 1x3 real column matrix whose entries are and respectively.𝐁 𝑑
1,0

,  𝑑
2,0

𝑑
3,0

333 EQ.19 Let 𝐕 =𝚪 , which is also a 1x3 real column matrix, let it the results be named . is our first primary variable.𝐀 𝑁, 0, 0 𝑁
334 EQ.20 Let =𝚪 , which is also a 1x3 real column matrix, let it the results be named𝐃 𝐁 𝑑

1,1
, 𝑑

2,1
, 𝑑

3,1

335 We do not require the inverse Gamma Matrix for this process.
𝚪 Gamma Matrix Matrix Matrix 𝚪 = Matrix 𝚪 = Matrix𝐀 𝐁 𝐀 𝐕 𝐁 𝐃

γ
1,1

γ
1,2

γ
1,3

𝑣
1,0

𝑑
1,0

N 𝑑
1,1

γ
2,1

γ
2,2

γ
2,3

𝑣
2,0

𝑑
2,0

0 𝑑
2,1

γ
3,1

γ
3,2

γ
3,3

𝑣
3,0

𝑑
3,0

0 𝑑
3,1

336 EQ.21 ϕ = 𝐴𝑇𝐴𝑁2
𝑑

3,1

𝑑
2,1

( );   Ω = 𝑑
2,1
2 + 𝑑

3,1
2

337 EQ.22 µ
→

2
=+ µ

→

1
𝑐𝑜𝑠ϕ + ν

→

1
𝑠𝑖𝑛ϕ =+ 𝑖

→
− 𝑠𝑖𝑛α 𝑐𝑜𝑠ϕ − 𝑐𝑜𝑠α 𝑠𝑖𝑛β 𝑠𝑖𝑛ϕ( ) + 𝑗

→
+ 𝑐𝑜𝑠α 𝑐𝑜𝑠ϕ + 𝑠𝑖𝑛α 𝑠𝑖𝑛β 𝑠𝑖𝑛ϕ( ) + 𝑘

→
𝑐𝑜𝑠β 𝑠𝑖𝑛ϕ( )

338 EQ.23 µ
→

2
= µ

1
𝑖
→

+ µ
2
𝑗
→

+ µ
3
𝑘
→

339 EQ.24 ν
→

2
=− µ

→

1
𝑠𝑖𝑛ϕ + ν

→

1
𝑐𝑜𝑠ϕ =+ 𝑖

→
+ 𝑠𝑖𝑛α 𝑠𝑖𝑛ϕ − 𝑐𝑜𝑠α 𝑠𝑖𝑛β 𝑐𝑜𝑠ϕ( ) + 𝑗

→
− 𝑐𝑜𝑠α 𝑠𝑖𝑛ϕ + 𝑠𝑖𝑛α 𝑠𝑖𝑛β 𝑐𝑜𝑠ϕ( ) + 𝑘

→
𝑐𝑜𝑠β 𝑐𝑜𝑠ϕ( )

340 EQ.25 ν
→

2
= ν

1
𝑖
→

+ ν
2
𝑗
→

+ ν
3
𝑘
→
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341 EQ.26 𝑣
→

= 1
2 𝑎

→
− 𝑏

→
 ( ) = 𝑣

0,0
𝑞
→

+ 𝑁λ
→

  + 0µ
→

1
   + 0ν

→

1
    = 𝑣

0,0
𝑞
→

+ 𝑁λ
→

 + 0µ
→

2
+ 0ν

→

2

342 EQ.27 𝑑
→

= 𝑑
0,0

𝑞
→

+ 𝑑
1,1

λ
→

+ 𝑑
2,1

µ
→

1
+ 𝑑

3,1
ν
→

1
= 𝑑

0,0
𝑞
→

+ 𝑑
1,1

λ
→

+ Ωµ
→

2
+ 0ν

→

2

343 EQ.28 𝐴 =+ 2Ω𝑁

344 EQ.29 𝐵 =+ 4𝑁4 + 4𝑁2𝑑
0,0

− 𝑑
1,1
2 − Ω2

345 EQ.30 𝐶 =− 4Ω𝑁3 − 2Ω𝑁𝑑
0,0

346 EQ.31 𝐷 =+ Ω2𝑁2

347 EQ.32 0 = 𝐴𝑡
3
3 + 𝐵𝑡

3
2 + 𝐶𝑡

3
+ 𝐷

348 EQ.33 0 = ζ3 + 𝑝ζ + 𝑞

349 EQ.34 ζ = 𝑡
3

+ 𝐵
3𝐴

350 EQ.35 𝑝 = 3𝐴𝐶−𝐵2

3𝐴2

351 EQ.36 𝑞 = 2𝐵3−9𝐴𝐵𝐶+27𝐴2𝐷

27𝐴3

352 EQ.37 ζ = 𝑤 − 𝑝
3𝑤

353 EQ.38 0 = 𝑤3 + 𝑞 − 𝑝3

27𝑤3

354 EQ.39 0 = 𝑤6 + 𝑞𝑤3 − 𝑝3

27

355 EQ.40 𝑦 = 𝑤3

356 EQ.41 0 = 𝑦2 + 𝑞𝑦 − 𝑝3

27

357 EQ.42 𝑦 =− 𝑞
2 ± 𝑞2

4 + 𝑝3

27

358 EQ.43 , either sign of the square root shall suffice, and any cube root will suffice.𝑤 =
3

− 𝑞
2 ± 𝑞2

4 + 𝑝3

27

359 EQ.44 𝑡
3

+ 𝐵
3𝐴 = 𝑤 − 𝑝

3𝑤

360 EQ.45 . All roots will be real. 𝑡
3

=− 𝐵
3𝐴 + 𝑤 − 𝑝

3𝑤

361 EQ.46 . If is a complex number, then is the imaginary unit.θ = 𝐴𝑟𝑐𝑠𝑖𝑛 +
2𝑁𝑡

3

Ω( ) θ λ
→

362 We evaluate for all three roots of and select the real-valued argument. Hopefully someone will elucidate the meaning of the complexθ 𝑡
3

362 arguments in due time, for I dare not feign knowledge of their geometric interpretation.

364 EQ.47 𝑡
→

1
=+ 𝑞

→
𝑁𝑐𝑜𝑡θ + λ

→ 𝑑
1,,1

2𝑁 𝑡𝑎𝑛θ + µ
→

2
Ω

2𝑁( )𝑠𝑖𝑛θ𝑐𝑜𝑠θ + ν
→

2
Ω

2𝑁( )𝑠𝑖𝑛2θ = 𝑡
0,1

𝑞
→

+ 𝑡
1,1

λ
→

+ 𝑡
2,1

µ
→

2
+ 𝑡

3,1
ν
→

2

365 EQ.48 𝑡
→

2
=− 𝑞

→
𝑁𝑐𝑜𝑡θ − λ

→ 𝑑
1,,1

2𝑁 𝑡𝑎𝑛θ − µ
→

2
Ω

2𝑁( )𝑠𝑖𝑛θ𝑐𝑜𝑠θ + ν
→

2
Ω

2𝑁( )𝑠𝑖𝑛2θ = 𝑡
0,2

𝑞
→

+ 𝑡
1,2

λ
→

+ 𝑡
2,2

µ
→

2
+ 𝑡

3,2
ν
→

2

366 The above two equations are the roots in the proper orthogonal basis of , however we must now convert back to .λ
→

,  µ
→

2
, ν

→

2
𝑖
→
,  𝑗

→
,  𝑘

→
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367 EQ.49 𝑡
0,1

𝑞
→

+ 𝑡
1,1

λ
→

+ 𝑡
2,1

µ
→

2
+ 𝑡

3,1
ν
→

2
= 𝑡

0,3
𝑞
→

+ 𝑡
1,3

𝑖
→

+ 𝑡
2,3

𝑗
→

+ 𝑡
3,3

𝑘
→

368 EQ.50 𝑡
0,3

= 𝑡
0,1

369 EQ.51 𝑡
1,3

= 𝑡
1,1

γ
1,1

+ 𝑡
2,1

µ
1

+ 𝑡
3,1

ν
1

370 EQ.52 𝑡
2,3

= 𝑡
1,1

γ
1,2

+ 𝑡
2,1

µ
2

+ 𝑡
3,1

ν
2

371 EQ.53 𝑡
2,3

= 𝑡
1,1

γ
1,3

+ 𝑡
2,1

µ
3

+ 𝑡
3,1

ν
3

EQ.54 𝑡
0,2

𝑞
→

+ 𝑡
1,2

λ
→

+ 𝑡
2,2

µ
→

2
+ 𝑡

3,2
ν
→

2
= 𝑡

0,4
𝑞
→

+ 𝑡
1,4

𝑖
→

+ 𝑡
2,4

𝑗
→

+ 𝑡
3,4

𝑘
→

372 EQ.55 𝑡
0,4

= 𝑡
0,2

373 EQ.56 𝑡
1,4

= 𝑡
1,2

γ
1,1

+ 𝑡
2,2

µ
1

+ 𝑡
3,2

ν
1

374 EQ.57 𝑡
2,4

= 𝑡
1,2

γ
1,2

+ 𝑡
2,2

µ
2

+ 𝑡
3,2

ν
2

375 EQ.58 𝑡
2,4

= 𝑡
1,2

γ
1,3

+ 𝑡
2,2

µ
3

+ 𝑡
3,2

ν
3

376 Recall that and therefore and that .𝑡
→

= 𝑥
→

+ 𝑢
→

𝑥
→

= 𝑡
→

− 𝑢
→

𝑢
→

= 1
2 𝑎

→
+ 𝑏

→( )

377 EQ.59 𝑡
→

1
= 𝑥

→

1
+ 𝑢

→
= 𝑡

0,3
𝑞
→

+ 𝑡
1,3

𝑖
→

+ 𝑡
2,3

𝑗
→

+ 𝑡
3,3

𝑘
→

378 EQ.60 𝑡
→

2
= 𝑥

→

2
+ 𝑢

→
= 𝑡

0,4
𝑞
→

+ 𝑡
1,4

𝑖
→

+ 𝑡
2,4

𝑗
→

+ 𝑡
3,4

𝑘
→

379 EQ.61 𝑢
→

= 𝑢
0
𝑞
→

+ 𝑢
1
𝑖
→

+ 𝑢
2
𝑗
→

+ 𝑢
3
𝑘
→

380 EQ.62 𝑥
→

1
= 𝑡

0,3
− 𝑢

0( )𝑞
→

+ 𝑡
1,3

− 𝑢
1( )𝑖

→
+ 𝑡

2,3
− 𝑢

2( )𝑗
→

+ 𝑡
3,3

− 𝑢
3( )𝑘

→

381 EQ.63 𝑥
→

2
= 𝑡

0,4
− 𝑢

0( )𝑞
→

+ 𝑡
1,4

− 𝑢
1( )𝑖

→
+ 𝑡

2,4
− 𝑢

2( )𝑗
→

+ 𝑡
3,4

− 𝑢
3( )𝑘

→

382 The above two equations satisfy the original query , proving that all Quadratic Equations over the Quaternions𝑓
→

= 𝑥
→2

+ 𝑥
→

 𝑏
→

+ 𝑎
→

 𝑥
→

383 adhere to the same closed form solution.
Q.E.D.
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Appendix B: The M-th Root of N-Unity for Class of Algebraic Hypercomplex Numbers of Even Dimensions, The Great Circle Theorem

393 Assuming that we are in a Hypercomplex Space that is Cayley Algebraic, then let be the function that returns the principal root
𝑛, 𝑚

𝑥
→

𝑚𝑡ℎ

394 unity for .𝑥
→

395 EQ.11d Let be the observation vector.𝑞
→

396 EQ.12d Let be the set of pairwise orthogonal imaginary unit vectors, and must be odd, such that is even.𝐃 𝐃| | = 𝑛 𝑛 𝐃 ∪  𝑞
→

 { }| |
397 EQ.13d Let such that𝑥

→
= α

0
𝑞
→

+
𝑧=1

𝑧=𝑛

∑ α
𝑧
𝑑
→

𝑧
∀𝑧,  α

𝑧
∈ ℝ

398 EQ.14d Let , which is the real number magnitude of the imaginary part of .β =+
𝑧=1

𝑧=𝑛

∑ α
𝑧
2 𝑥

→

399 EQ.15d Let , which is the real number magnitude of .γ =+ α
0
2 +

𝑧=1

𝑧=𝑛

∑ α
𝑧
2 𝑥

→

400 EQ.16d Let , compelling to be a unit vector.λ
→

= 1
β 𝑥

→
− α

0
𝑞
→

 ( ) λ
→

401 EQ.17d Let , giving us the ratio between the magnitudes of the real part and the imaginary part.τ = 1
β α

0

402 EQ.18d Let , that is, the four-quadrant arccotagent of .θ = 𝐴𝑇𝐴𝑁2 1
τ( ) = 𝐴𝐶𝑂𝑇𝐴𝑁2 τ( ) τ

403 EQ.19d 𝑥
→

= γ 𝑞
→

𝑐𝑜𝑠θ + λ
→

𝑠𝑖𝑛θ( )

404 EQ.20d
𝑛, 𝑚

𝑥
→

= 𝑛 γ( ) 𝑞
→

𝑐𝑜𝑠 θ+2π𝑚
𝑛( ) + λ

→
𝑠𝑖𝑛 θ+2π𝑚

𝑛( )( ),  ∀ 𝑚, 𝑛( ) ∈ ℤ,  𝑚 ≤ 𝑛

405 Appendix B2: Corollary: The Square Root of a Quaternion, The Well Defined Positive and Negative Square Roots

406 For a quaternion , the square root is given by:𝑥
→

= α
0
𝑞
→

+ α
1
𝑖
→

+ α
2
𝑗
→

+ α
3
𝑘
→

 

407 EQ.21d

+ 𝑥
→

= + α
0
2 + α

1
2 + α

2
2 + α

3
2( ) 𝑞

→
𝑐𝑜𝑠 0 + 1

2 𝐴𝑇𝐴𝑁2
+ α

1
2+α

2
2+α

3
2

α
0( )( ) + 1

+ α
1
2+α

2
2+α

3
2

𝑥
→

− α
0
𝑞
→

 ( )𝑠𝑖𝑛 0 + 1
2 𝐴𝑇𝐴𝑁2

+ α
1
2+α

2
2+α

3
2

α
0( )( )( )

− 𝑥
→

= + α
0
2 + α

1
2 + α

2
2 + α

3
2( ) 𝑞

→
𝑐𝑜𝑠 π + 1

2 𝐴𝑇𝐴𝑁2
+ α

1
2+α

2
2+α

3
2

α
0( )( ) + 1

+ α
1
2+α

2
2+α

3
2

𝑥
→

− α
0
𝑞
→

 ( )𝑠𝑖𝑛 π + 1
2 𝐴𝑇𝐴𝑁2

+ α
1
2+α

2
2+α

3
2

α
0( )( )( )
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Appendix C: The Quadratic Equation , The Trivial Case of Symmetric Roots, For All Hypercomplex Dimensions

408 EQ.1e can be readily solved for even if and are not on the same Great Circle.− 𝐶
→

= 𝑥
→2

+ 𝑥
→

𝑦
→

+ 𝑦
→

𝑥
→

𝑥
→

𝐶
→

𝑦
→

409 EQ.2e Let , such that𝑡
→

= 𝑥
→

+ 𝑦
→( ) 𝑥

→
= 𝑡

→
− 𝑦

→( )

410 EQ.3e − 𝐶
→

=              𝑡
→

− 𝑦
→

 ( )
2
        +  𝑡

→
− 𝑦

→
 ( )𝑦

→
+ 𝑦

→
𝑡
→

− 𝑦
→

 ( )

411 EQ.4e − 𝐶
→

= 𝑡
→2

− 𝑡
→
𝑦
→

 − 𝑦
→

𝑡
→

+ 𝑦
→2( ) + 𝑡

→
𝑦
→

− 𝑦
→

 2( ) + 𝑦
→

𝑡
→

− 𝑦
→2

 ( )
412 EQ.5e − 𝐶

→
= 𝑡

→2
− 𝑦

→2

413 EQ.6e 𝑡
→2

= 𝑦
→2

− 𝐶
→

414 EQ.7e 𝑡
→

=± 𝑦
→2

− 𝐶
→

     ⇔ 𝑥
→

+ 𝑦
→( ) =± 𝑦

→2
− 𝐶

→
  

415 EQ.8e 𝑥
→

=  − 𝑦
→

± 𝑦
→2

− 𝐶
→

 

416 EQ.9e Q.E.D0
→

=  − 𝑦
→

± 𝑦
→2

− 𝐶
→( )2

+ − 𝑦
→

± 𝑦
→2

− 𝐶
→( )𝑦

→
+ 𝑦

→
− 𝑦

→
± 𝑦

→2
− 𝐶

→( ) + 𝐶
→

417 It is our goal to transform the earlier equation, , into the Symmetric Case via a series of additional substitutions.− 𝑐
→

= 𝑤
→2

+ 𝑤
→

𝑦
→

418 The Symmetric Case occurs when .− 𝐶
→

= 𝑥
→2

+  𝑦
→

 [ ]4𝐿
+  𝑦

→
 [ ]4𝑅( )𝑥

→
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Appendix D: Depressing a Quadratic Equation, General Case

A quadratic equation is defined as:

EQ.1a . That is, we start with the worst case scenario.− 𝑐
→

= 𝐴
→

𝑥
→

𝐵
→

+ 𝐶
→

𝑦
→

𝐷
→( ) 𝐸

→
𝑥
→

𝐹
→

+ 𝐺
→

𝑦
→

𝐻
→( )

EQ.1b − 𝑐
→

= 𝐴
→

𝑥
→

𝐵
→

𝐸
→

𝑥
→

𝐹
→

+ 𝐴
→

𝑥
→

𝐵
→

𝐺
→

𝑦
→

𝐻
→

+ 𝐶
→

𝑦
→

𝐷
→

𝐸
→

𝑥
→

𝐹
→

+ 𝐶
→

𝑦
→

𝐷
→

𝐺
→

𝑦
→

𝐻
→

EQ.1c − 1

𝐴
→ 𝑐

→
= 𝑥

→
𝐵
→

𝐸
→

𝑥
→

𝐹
→

+ 𝑥
→

𝐵
→

𝐺
→

𝑦
→

𝐻
→

+ 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐸
→

𝑥
→

𝐹
→

+ 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐺
→

𝑦
→

𝐻
→

EQ.1d − 1

𝐴
→ 𝑐

→ 1

𝐹
→ = 𝑥

→
𝐵
→

𝐸
→

𝑥
→

+ 𝑥
→

𝐵
→

𝐺
→

𝑦
→

𝐻
→ 1

𝐹
→ + 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐸
→

𝑥
→

+ 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐺
→

𝑦
→

𝐻
→ 1

𝐹
→

EQ.2a 1

𝐴
→ 𝑐

→ 1

𝐹
→ = 𝑐

→

2

EQ.2b 𝑏
→

= 𝐵
→

𝐺
→

𝑦
→

𝐻
→ 1

𝐹
→

EQ.2c 𝑎
→

= 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐸
→

EQ.2d 𝑔
→

= 1

𝐴
→ 𝐶

→
𝑦
→

𝐷
→

𝐺
→

𝑦
→

𝐻
→ 1

𝐹
→

EQ.2e 𝑧
→

= 𝐵
→

𝐸
→

EQ.2f − 𝑐
→

2
= 𝑥

→
𝑧
→

𝑥
→

+ 𝑥
→

𝑏
→

+ 𝑎
→

𝑥
→

+ 𝑔
→

EQ.3a 𝑐
→

2
+ 𝑔

→
= 𝑐

→

3

EQ.3b − 𝑐
→

3
= 𝑥

→
𝑧
→

𝑥
→

+ 𝑥
→

𝑏
→

+ 𝑎
→

𝑥
→

EQ.4a − 𝑧
→

𝑐
→

3
= 𝑧

→
𝑥
→

𝑧
→

𝑥
→

+ 𝑧
→

𝑥
→

𝑏
→

+ 𝑧
→

𝑎
→

𝑥
→

EQ.4b 𝑧
→

𝑎
→ 1

𝑧
→ = 𝑎

→

2

EQ.4c − 𝑧
→

𝑐
→

3
= 𝑧

→
𝑥
→

𝑧
→

𝑥
→

+ 𝑧
→

𝑥
→

𝑏
→

+ 𝑧
→

𝑎
→

𝑥
→

= 𝑧
→

𝑥
→

𝑧
→

𝑥
→

+ 𝑧
→

𝑥
→

𝑏
→

+ 𝑎
→

2
𝑧
→

𝑥
→

   ;     𝑎
→

2
𝑧
→

= 𝑧
→

𝑎
→ 1

𝑧
→ 𝑧

→
= 𝑧

→
𝑎
→

EQ.4d 𝑧
→

𝑐
→

3
= 𝑐

→

4
  ;     𝑤

→
= 𝑧

→
𝑥
→

 

EQ.4e − 𝑐
→

4
= 𝑤

→2
+ 𝑤

→
𝑏
→

+ 𝑎
→

2
𝑤
→

EQ.5a 𝑐
→

5
= 𝑐

→

4
− 𝑎

→

2
𝑏
→

EQ.5b − 𝑐
→

5
= 𝑤

→2
+ 𝑤

→
𝑏
→

+ 𝑎
→

2
𝑤
→

+ 𝑎
→

2
𝑏
→

= 𝑤
→

+ 𝑎
→

2( ) 𝑤
→

+ 𝑏
→( )

EQ.5c − 𝑐
→

5
= 𝑡

→2
− 𝑡

→
𝑣
→

+ 𝑣
→

𝑡
→

− 𝑣
→2

 ;    𝑡
→

= 𝑤
→

+ 𝑢
→

 ;   𝑢
→

= 1
2 𝑎

→

2
+ 𝑏

→( ) ;  𝑣
→

= 1
2 𝑎

→

2
− 𝑏

→( )

EQ.6a − 𝑑
→

= 𝑐
→

5
− 𝑣

→2

EQ.6b , then proceed with the Closed Form Solution to this most fundamental form.𝑑
→

= 𝑡
→2

− 𝑡
→
𝑣
→

+ 𝑣
→

𝑡
→
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