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Abstract: This paper presents a proposal for a non-isolated bidirectional converter (NIBC) controlled
by a deep neural network (DNN) to enable vehicle-to-vehicle (V2V) and vehicle-to-grid (V2G)
charging, which contributes to the development of more efficient and sustainable transportation and
energy systems. The DNN controller manages power flow in both directions, making it possible to
charge electric vehicles (EVs) and discharge power from EVs to the grid with improved efficiency
and performance compared to traditional control methods. The non-isolated topology used in this
proposal offers several benefits, including reduced cost, smaller size, and higher efficiency. To train
the DNN controller, a large dataset of simulations was used, and the results were validated with a
hardware setup. The real-time performance of the DNN controller was compared to a proportional-
integral (PI) based controller through simulated results. The findings of the study show that the DNN
controller outperforms traditional PI controllers.

Keywords: 1; Non-isolated bi-directional converter (NIBC) 2; V2V charger 3; Deep learning 4; High
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1. Introduction

In recent times, there has been a significant shift towards using electric vehicles (EVs)
in comparison to traditional fuel-based vehicles. This transition can be attributed to the
limitations of conventional vehicles, such as their harmful impact on the environment due
to increased pollution and reliance on non-renewable energy sources [1],[2]. On the other
hand, EVs have garnered immense popularity due to their eco-friendliness and the ability
to charge them with renewable energy sources, as they can run on a direct DC supply [3].
According to the International Energy Agency (IEA), the number of electric cars on the road
exceeded 15 million in 2022, up from just a few thousand a decade ago. China has become
the largest EV market, accounting for about half of the world’s EV sales [4]]. The United
States and Europe are also experiencing significant growth in EV adoption, with countries
like Norway and the Netherlands leading the charge. In India, the electric vehicle [5],[6]
market has experienced substantial growth, thanks to the implementation of favourable
government policies and programs. It is exciting to note that between 2022 to 2030, we
expect a remarkable compound annual growth rate (CAGR) of 49% for the domestic EV
market in India. Despite this growth, EV adoption in India is still limited, with only 13 lakh
electric vehicles currently on Indian roads as of August 2022.

1.1. Motivation

One of the biggest challenges to EV growth in India is the lack of sufficient charging
stations, which leads to longer charging times and limited options for EV owners. However,
a potential solution to this problem is V2V charging[7]. V2V charging enables EV owners
to transfer charge between two vehicles, reducing the need for charging stations and the
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burden on the grid. This technology is particularly useful in emergencies or when a vehicle
is parked for an extended period. Transferring excess charge from one vehicle to another
can provide a quick and convenient charging solution without requiring a traditional
charging station.

Moreover, V2V charging has several potential benefits, including increasing the range
of electric vehicles while on the road and reducing the need for large-scale charging
infrastructure, which can be expensive and take up space. Various converters are used to
transfer charge between two vehicles to build a V2V charger [8]. One such converter is
the NIBC, which has low losses, high efficiency, and fewer components, making it suitable
for low-voltage-level applications. Apart from V2V charging, these converters are also
helpful for V2G [9] applications, where vehicles can charge from the grid during off-peak
hours and supply power to the grid during peak hours. This technology benefits the grid
and allows EV owners to get paid for transferring the charge to the grid on a kWh basis,
which could incentivize more people to adopt electric vehicles. Overall, V2V charging and
bi-directional converters have the potential to revolutionize the way we charge our EVs
and help accelerate the adoption of EVs in India.
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Figure 1. Comprehensive functions of bi-directional converter .

1.2. Literature review

The performance of switched-mode DC-DC power converters is dependent on various
factors, including a more comprehensive stable operating range, high accuracy in maintain-
ing a constant output voltage, and faster dynamic response. Achieving these parameters
requires the development of effective control techniques, which can be challenging. Over
the years, researchers have developed various control techniques, such as the voltage mode
controller [10], current mode controller [11], and sliding mode controller [12]. The most
used control technique for NIBC is the proportional integral derivative (PID) based control
technique [13], which industries widely use due to its robustness and simple implementa-
tion. However, tuning PID control gains can be difficult, and gains of PID control need to be
changed by altering the system parameters. Fuzzy logic control [14] is another rule-based
technique that has a more comprehensive operating range and is cheaper to implement.
However, this technique has a slower response to dynamic changes, which can destabilize
the system. In recent years, researchers have shown interest in the ANN-based control
technique [15], a data-driven control technique that does not depend on system parameters.
This technique decreases inaccuracy and improves the system’s stability, with a faster
response to dynamic changes. In [16], the ANN-based control algorithm showed better
results than other controlling techniques. With its ability to adapt to different operating
conditions, ANN-based control techniques can potentially revolutionize how we control
switched-mode DC-DC power converters.
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While traditional control techniques such as PID control will continue to be used in
industries, data-driven control techniques such as ANN are the future of power converter
control. This paper presents a novel approach for V2V and V2G charging using a deep
learning neural network (DNN) based controller with a non-isolated bidirectional converter
(NIBC).

1.3. Key contributions:

1. The design of a highly efficient, modular bi-directional converter for V2V charging.
2. Design of DNN-based closed-loop control for Bi- directional V2V and V2G charger.
3. Elimination of PI control and its comparison with proposed technology.

1.4. Organization:

This paper presents a comprehensive analysis of a NIBC for V2V charging and is
structured as follows: In Section II, the operation of the converter in both charging and
discharging modes is explained. Section III outlines the proposed design for the converter’s
controller. Section IV presents the simulation results of the bidirectional converter with the
PID controller, and we also discuss the real-time implementation of V2V charging using
deep learning techniques.

2. Section II - Operation of NIBC

The NIBC (Non-Isolated Bidirectional Converter) is a circuit that consists of several
components, including two switches (Q1 and Q) with an on-state resistance Rjsy, , an
inductor (L) with an internal resistance of Ry p , and capacitors on both sides of the source
to filter out voltage variations (Cy and Cp). The two batteries, HV (High Voltage V) and
LV (Low Voltage V), are connected at either side of the converter. The HV battery, with an
internal resistance of Ry, and the LV battery, with an internal resistance of R, form two
voltage sources, V; and V;, respectively, as shown in Fig 2. The converter can operate in
two modes: charging and discharging. In charging mode, the HV side battery charges
the LV side battery. In contrast, in discharging mode, the LV side battery charges the HV
side battery. Understanding these modes is crucial to developing a control strategy for the
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Figure 2. Circuit diagram of non-isolated bi-directional converter.
The operation of two modes are explained below:

2.1. Mode I:

During this mode, the HV side battery charges the LV side battery, operating as a buck
mode. When the Q; switch is turned on, inductor L accumulates energy during the on
period. Qq remains on for the DTs period, and the current flows from Vy-Q1-L-V;-Vy, as
illustrated in Fig 3a. When Q) is turned off, the energy stored in the inductor is transferred
to the LV side by turning on the Q5 switch. Q remains off for the (1-D) Ts period, and the
current flows from L-V} -Q;-L, as illustrated in Fig 3b.
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Figure 3. Operation of converter in charging mode (a) switch Q; on (b) switch Q; off .

2.2. Mode II:

During this mode of operation, the LV side battery charges the HV side battery in a
boost mode of operation. Inductor L accumulates energy from the LV side battery when
Q> is turned on. During this period, the Cy capacitor charges the HV side battery. The
Q> switch remains on for the duration of DTs. The current path during this period is
V1-L-Q»-V} and Cy-Vy-Ch, as depicted in Fig 4a. When Q> is turned off, the energy stored
in the inductor and the LV side battery combine to charge the HV side battery by turning
on the Q; switch. The Q, switch remains off for the duration of (1-D) Ts. The current path
during this period is V;-L-Q1-Vy-V}, as shown in Fig 4b.
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Figure 4. Operation of converter in discharging mode (a) switch Q; on (b) switch Q; off.

Designing a controller requires the small-signal modelling of the converter. The small-
signal model for a DC-DC converter is a linearized representation of the converter around
an operating point. It is used to design control systems that can regulate the converter’s
output and achieve the desired performance.
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To create a small-signal model for a DC-DC converter, we typically begin with the
nonlinear equations that describe the converter’s behaviour, such as the current and voltage
equations for the inductor and capacitor. We then linearize these equations around an
operating point, which is usually the steady-state point of the converter.

From the above modes of operation, whether in charging or discharging mode, only
two sub-intervals take place when Q1 and Q2 are on. The nonlinear equations for the two
modes are similar. Therefore, the steady-state representation of the charging mode is:

Buck Mode(On):
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Dynamic model consists of steady state representation and small signal model Now

substituting :
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Now, differentiation of steady state values is zero and product of small signal models
are neglected i.e.,
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The linearized equations resulting from the small signal model provide a description
of the converter’s behavior near the operating point, enabling the design of a controller to
regulate the inductor current. Typically, the controller adjusts the converter’s duty cycle
based on the difference between the desired and actual current, to achieve the desired
response.

The small signal model is represented by a transfer function that relates the converter’s
duty cycle to the desired output. This transfer function can be used to design a controller
using control theory techniques, such as pole placement or optimal control.

3. Controller design

We have designed a control system based on a deep neural network (DNN), as depicted
in Figure 5, to enable bidirectional flow in the converter. This controller produces a duty
cycle based on the HV side battery voltage, LV side battery voltage, and current reference.
The microcontroller then feeds this duty cycle to the converter [17]. The converter generates
two complementary pulses based on the received duty cycle using the driver, which
drives the switches in the converter, enabling them to work as intended. This DNN-based
control design offers several benefits, such as improved accuracy, faster response time, and
enhanced stability, making it an excellent option for various applications. By integrating
the latest developments in deep learning and control systems design, this control technique
opens up opportunities for more efficient and dependable converter operation

The DNN network comprises three inputs and one output, with the output being
dependent on these three inputs, as shown in Equation (10):

D= f(iref/ Vi, VZ) (10)

The power flow through the converter heavily relies on the duty cycle and direction of
the current. Therefore, we have implemented a DNN-based control design to determine
the duty cycle required for efficient converter operation. The duty cycle is based on two
instances, which are discussed below

o

FEN

l
1+

Bi-Directional DC-DC
L Converter )

Figure 5. Implementation of DNN based bi-directional converter.
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The first instance involves setting high and low limits for the two battery voltages.
The DNN generates the duty cycle based on these limits, and the converter operates either
in charging or discharging mode, depending on the battery voltages. The converter is in
charging mode when the HV side battery voltage is higher than Vp,, ,, and the LV side
battery voltage is lower than V, . Conversely, if the HV side battery voltage is lower
than Vp,  , and the LV side battery voltage is higher than V. the converter operates
in discharging mode. However, this instance is rare, as the converter’s operation mainly
depends on the current reference.

In the second instance, the DNN generates the duty cycle based on the current ref-
erence, which determines the mode of operation. If the current reference is positive, the
converter operates in a buck or charging mode, with the HV side battery charging the LV
side battery. On the other hand, if the current reference is negative, the converter operates in
boost or discharging mode, with the LV side battery charging the HV side battery. Therefore,
the DNN-based control design ensures that the bi-directional converter operates smoothly
and efficiently, with minimal loss of power during the transition between different modes
of operation.

3.1. Training and testing of proposed DNN controller:

To design a controller capable of managing a broader operating range and delivering
a quicker dynamic response to the system, it is essential to consider datasets that reflect
uncertainties and disturbances present in real-world scenarios. Although datasets created
with past historical data can be helpful, they may not accurately reflect the uncertainties in
real-time setups. To overcome this limitation, we used MATLAB software to simulate the
converter and generate datasets that incorporate all uncertainties and disturbances present
in the system. By incorporating this data into our models, we can design more robust and
effective controllers that perform well in real-world situations. The generated datasets
include both normal and abnormal data, enabling us to develop more comprehensive
models that can handle a wide range of scenarios.

3.1.1. Hyper parameter selection:

Hyperparameter selection involves choosing the appropriate number of epochs, ac-
tivation function, weight update rule, and network architecture parameters to train an
effective neural network model that minimizes error. The activation function introduces
nonlinearities in the system and improves the trained model’s efficiency for non-linear
systems. Among the available activation functions,sigmoid (A;), tanh (A;) and ReLU (A,)
are the most used.

TThe weight update policy minimizes the error between the obtained and reference
output. Optimizers such as stochastic gradient descent (SGD), adaptive moment estimation
(ADAM), and root mean square propagation (RMSprop) are generally used for weight
updating policy.

Selecting the right hyperparameters is crucial for developing efficient deep-learning
models. Root mean square error (RMSE) is a commonly used metric for evaluating the
models’ performance, which measures the difference between the predicted and actual
values. Choosing the optimal combination of optimization techniques and activation
functions is essential for optimal performance. Table 1 provides a list of RMSE values
for different combinations of these techniques and functions, with each epoch consisting
of a single weight update. The RMSE values are reported for 50, 100, and 150 epochs,
providing a comprehensive overview of each combination’s performance. By selecting the
combination with the lowest RMSE value, we can determine the optimal hyperparameters
for our deep-learning model.

According to Table 1, the ReLU activation function with SGD optimization function
gives a lower RMSE compared to other combinations.

The collected dataset contains a diverse range of values, and normalizing the data
between -1 to +1 or 0 to 1 is necessary for accurate and reliable analysis. The normalization
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Table 1. Hyperparameter Selection

Epochs  Optimizer Activation function
Sigmoid ReLU Tanh

50 Adam 0.02256 0.00082 0.003549
RMSprop  0.03945 0.00652 0.00701

SGD 0.15299 0.00091 0.00752

Adam 0.00707 0.00049 0.00089

100 RMSprop  0.03002 0.00278 0.00291
SGD 0.08281 0.00028 0.00457

Adam 0.00501 0.00161 0.00191

150 RMSprop  0.00635 0.00381 0.00514
SGD 0.04432 0.00060 0.00402

process is typically done using standard scalar and min-max functions. In our case, we
opted for the min-max function to normalize the data from 0 to 1 to enhance our data
analysis and interpretation.

The scaled input is given in (11)

Vx - mein

Vemax — mein

Scaled input = (11)
where V, represents the current input value of parameter x
Vimin represents the minimum value of x and
Vimax represents the maximum value of x

After scaling the data, we divided it into three sections for optimal utilization. The
training process used 70% of the data, while 15% was used for validation and another 15%
for testing. This approach helped us achieve an optimal balance between training the model,
validating its performance, and testing its accuracy, ensuring the model’s predictions were
reliable.

3.2. Algorithm

The DNN model comprises four layers, with one input layer consisting of three
input nodes denoted as "I;;", while two hidden layers with ten nodes each represented as
"Hg," and "Hp,,," respectively. The output layer with one output node is indicated as "O,,".
The weight parameters between "I," and "Hyy," "Hap" and "Hy,,," and "Hgy," and "Oy,"are
represented by m1, m2, and m3, respectively, as shown in Figure 6.

To predict the output O;, the proposed model begins by learning parameters of 1, b;,
and &, which are used as initial conditions. Equations (12), (13), and (14) show the output
prediction.

The model is trained using the ReLU activation function and SGD optimization
function, which yields better results compared to other combinations.

51 =mq* I, + bl; H,, = f(Sl) (12)
Sy = my * Hyy + by; Hy, = f(SZ) (13)
Sy = my % Hy, +b3; Oy = f(S3) = O; (14)

The RMSE metric is used for performance evaluation of proposed model and is shown
in (15)

i=1

18 .
RMSE = \l P Y (0i = 0;)? (15)

The cost function is used to minimize RMSE between predicted and output value and
is shown in (16)
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(16)

1 &~
Cost (J) = == Z‘Oi -0

Stochastic Gradient Descent (SGD) selects a small subset of training data |B| from the
entire training state space randomly. As a result, the time taken for a single weight update
iteration in SGD is significantly lower compared to gradient descent (GD).

In general, the weight update for Input and hidden layer is (16)

m(—m—izHi(mT~Hi+bi—Oi) (17)
}/3| icp
The weight update for bias is given in (17)
a T i
Mmé—m— — m* - Hj+b;—0O (18)
i iezﬁ( i+ —0')

To ensure the accuracy and robustness of a DNN model, the model parameters are
typically trained over multiple epochs. After the training is complete, the resulting model is
tested and validated to assess its performance on new, unseen data. This iterative training,
testing, and validation process allows fine-tuning of the model to achieve better results and
improve its predictive power.

4. Results

In this section, we evaluate the performance of a bi-directional converter using two
different controllers, namely PID and DNN. The performance of the bi-directional converter
with the PID controller was simulated using MATLAB Simulink. Meanwhile, a real-time
setup was used to evaluate the bi-directional converter with the DNN controller. We discuss
the performance of these two different controllers in detail below.
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4.1. PID Controller:

A MATLAB simulation was conducted on a bi-directional converter with a PID con-
troller for both charging to discharging and discharging to charging operations. For the
charging operation, we used a positive current reference, and for the discharging operation,
we used a negative current reference. The simulation results are presented below:

4.1.1. Charging to discharging mode:

In this case, by altering the current reference from -2A to 2A, we successfully transi-
tioned the operation of the bi-directional converter from charging to discharging mode
using the PID controller. The inductor current in the bi-directional converter reached the
new reference value in a mere 138ms, as shown in Figure 7.

[ [ [ ‘ | —=rmoa)
[ ircueor Guren.
3 -

Inductor Current Current :1A/Div

Time :0.25/Div 7
| 1

Figure 7. Inductor current for mode transistion from charging to discharging using PID controller.

4.1.2. Discharging to charging mode:

Upon implementing the PID controller for the bi-directional converter, we adjusted the
current reference from 2A to -2A, which caused the converter to switch from discharging
to charging mode. The time taken by the inductor current to reach the reference current
during this transition is illustrated in the figure 8 , and it was measured to be 140 ms.

;= T T T T
Inductor Current Current :1A/Div

24 L

A —

Ofset=0

Figure 8. Inductor current for mode transistion from discharging to charging using PID controller.

4.2. DNN Controller:

The real-time implementation of a bi-directional converter featuring two batteries,
which are replicas of those found in two vehicles, is presented. The setup showcases a
higher voltage on one end and a lower voltage on the other end of the converter, as depicted
in Figure 9. This innovative approach is crucial in ensuring efficient and reliable energy
transfer between the two batteries. The successful implementation of this setup represents a
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significant step towards improving the efficiency and reliability of bi-directional converters
in real-world applications.

Bi-Directional
Converter

Figure 9. Real-time setup of DNN based bi-directional converter.

Real-time implementation of a bi-directional converter with a DNN controller can
facilitate smooth transitions from charging to discharging and vice versa. To demonstrate
the effectiveness of this setup, we have included the inductor current for both mode
transitions, as well as the voltage across the two batteries. The results showcase the
seamless transition between the two modes, further emphasizing the importance and
efficiency of DNN controllers in the bi-directional converter setup.

4.2.1. Charging to discharging mode:
Inductor Current:

In this case, we performed a charging-to-discharging mode transition in a bi-directional
converter by changing the current reference from 2.1A to -2.1A. Figure 10 shows the
waveform of the inductor current during the transition from charging to discharging mode.
Impressively, the inductor current reached the new reference value in approximately 975us,
significantly faster than what the PID controller achieved. This outcome highlights the
superior performance of the DNN controller over the PID controller in achieving a new
reference value for the inductor current.

v |

Inductor Current

Current: 1A/Div

e =2.1A
B Time: 960ms/Div

an

960ms. 1925 2885 3885 4805 5765 672s 7685 s6as

Figure 10. Inductor current during mode transition from charging to discharging using DNN.
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HYV Battery (V1) :

In this case, we discuss the voltage behavior of an HV side battery during the mode
transition from charging to discharging operations. When the converter is in charging
mode, the HV side battery will discharge and charge the LV side battery. The voltage
across the HV side battery in this mode is around 24.48V. However, when the converter
switches from charging to discharging operation, the HV side battery is charged by the LV
side battery, causing a slight increase in the HV side battery voltage to around 24.75V. To
accurately depict these slight changes in voltage, we used a voltage scale of 0.34/Div, as
shown in Figure 11.

ﬂ HYV Battery m‘;v
i Voltage: 0.34V/Div

350V

326

24.75V

24.48V

B8OV

a6V

Time: 960ms/Div

1:) sams s s sees asos s1es ons s seas

Figure 11. Voltage of HV battery during mode transition from charging to discharging using DNN.

LV Battery (V,):

In this case, we will discuss the voltage behavior of an LV side battery during the
mode transition from charging to discharging operations. When the converter operates
in charging mode, the HV side battery charges the LV side battery. The voltage across
the LV side battery in this mode is approximately 12.7V. However, when the converter
switches from charging to discharging operation, the LV side battery discharges and charges
the HV side battery, leading to a decrease in LV side battery voltage to about 12.39V. To
precisely depict these slight changes in voltage, we used a voltage scale of 0.125V /Div, as
demonstrated in Figure 12.

] sard
LV Battery ~

12.7V Voltage: 0.125V/Div = =7y

|

‘ ‘ 1239V sy

12208910V

12623880V

v—
Hp—
Time: 960ms/Div

a7y

11708958V

Figure 12. Voltage of LV battery during mode transistion from charging to discharging using DNN.
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4.2.2. Discharging to charging mode:
Inductor Current:

In this case, we conducted a mode transition from discharging to charging in a bi-
directional converter. We achieved this by changing the current reference from -1.5A to
2.1A. Figure 13 illustrates the waveform of the inductor current during the transition.
Impressively, the inductor current reached the new reference value in roughly 960us, which
is considerably quicker than what the PID controller accomplished. This outcome highlights
the DNN controller’s superior performance over the PID controller in achieving a new
reference value for the inductor current.

m <

Inductor Current

Current:1A/Div “

Time: 960ms/Div

960 ms. 1925 2885 3845 as0s s76s 6n2s 685 a64s

Figure 13. Inductor current during mode transition from discharging to charging using DNN.

HV Battery (V;) :

In this case, we will discuss the voltage behavior of an HV side battery during the mode
transition from discharging to charging operations. When the converter is in discharging
mode, the HV side battery charges by the LV side battery. The voltage across the HV
side battery in this mode is around 24.9V. However, when the converter switches from
discharging to charging operation, the HV side battery discharges and charges the LV side
battery, causing a slight decrease in voltage to around 24.2V. To accurately depict these
slight changes in voltage, we used a voltage scale of 0.34/Div, as shown in figure 14.

14

'1 HYV Battery |
‘ Voltage: 0.34V/Div
24.9V
24.2V
Time: 960ms/Div

Figure 14. Voltage of HV battery during mode transistion from discharging to charging using DNN
controller.
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LV Battery (V,) :

In this case, we will be discussing the voltage behavior of the LV side battery during the
transition from discharging to charging operations in a bi-directional converter. While the
converter is in discharging mode, the LV side battery discharges and charges the HV side
battery. During which, the voltage across the LV side battery is around 12.36V. However,
when the converter switches from discharging to charging operation, the LV side battery
will be charged by the HV side battery, resulting in a slight increase in the voltage of the LV
side battery to around 12.6V. To accurately display these slight voltage changes, we used a
voltage scale of 0.125V /Div, as shown in Figure 15.

n |

LV Battery

12748809 v

Voltage: 0.125V/Div

12.6V v
% 12.36V R

1212325V

Time: 960ms/Div

@ woms Los 2 sats wsos sios o . soes

Figure 15. Voltage of LV battery during mode transition from discharging to charging using DNN
Controller.

5. Conclusion

This paper presents the significance of V2V and V2G charging and proposes a novel
approach that employs a DNN-based non-isolated bi-directional converter. We conducted
a hardware experiment of our proposed controller and compared the transition time of
inductor current with a traditional PID controller using MATLAB Simulink software. The
results demonstrate that the DNN controller yields a faster response time than the PI
controller. Additionally, we analyzed the behavior of HV and LV side battery voltages
during the transition from charging to discharging and vice versa. The results show that the
DNN-based controller outperforms conventional PID controllers in terms of performance.
These findings demonstrate the potential benefits of using DNN-based controllers for V2V
and V2G charging systems.
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