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Abstract: This paper presents a proposal for a non-isolated bidirectional converter (NIBC) controlled 1

by a deep neural network (DNN) to enable vehicle-to-vehicle (V2V) and vehicle-to-grid (V2G) 2

charging, which contributes to the development of more efficient and sustainable transportation and 3

energy systems. The DNN controller manages power flow in both directions, making it possible to 4

charge electric vehicles (EVs) and discharge power from EVs to the grid with improved efficiency 5

and performance compared to traditional control methods. The non-isolated topology used in this 6

proposal offers several benefits, including reduced cost, smaller size, and higher efficiency. To train 7

the DNN controller, a large dataset of simulations was used, and the results were validated with a 8

hardware setup. The real-time performance of the DNN controller was compared to a proportional- 9

integral (PI) based controller through simulated results. The findings of the study show that the DNN 10

controller outperforms traditional PI controllers. 11

Keywords: 1; Non-isolated bi-directional converter (NIBC) 2; V2V charger 3; Deep learning 4; High 12

voltage 5; Low voltage 13

1. Introduction 14

In recent times, there has been a significant shift towards using electric vehicles (EVs) 15

in comparison to traditional fuel-based vehicles. This transition can be attributed to the 16

limitations of conventional vehicles, such as their harmful impact on the environment due 17

to increased pollution and reliance on non-renewable energy sources [1],[2]. On the other 18

hand, EVs have garnered immense popularity due to their eco-friendliness and the ability 19

to charge them with renewable energy sources, as they can run on a direct DC supply [3]. 20

According to the International Energy Agency (IEA), the number of electric cars on the road 21

exceeded 15 million in 2022, up from just a few thousand a decade ago. China has become 22

the largest EV market, accounting for about half of the world’s EV sales [4]]. The United 23

States and Europe are also experiencing significant growth in EV adoption, with countries 24

like Norway and the Netherlands leading the charge. In India, the electric vehicle [5],[6] 25

market has experienced substantial growth, thanks to the implementation of favourable 26

government policies and programs. It is exciting to note that between 2022 to 2030, we 27

expect a remarkable compound annual growth rate (CAGR) of 49% for the domestic EV 28

market in India. Despite this growth, EV adoption in India is still limited, with only 13 lakh 29

electric vehicles currently on Indian roads as of August 2022. 30

1.1. Motivation 31

One of the biggest challenges to EV growth in India is the lack of sufficient charging 32

stations, which leads to longer charging times and limited options for EV owners. However, 33

a potential solution to this problem is V2V charging[7]. V2V charging enables EV owners 34

to transfer charge between two vehicles, reducing the need for charging stations and the 35
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burden on the grid. This technology is particularly useful in emergencies or when a vehicle 36

is parked for an extended period. Transferring excess charge from one vehicle to another 37

can provide a quick and convenient charging solution without requiring a traditional 38

charging station. 39

Moreover, V2V charging has several potential benefits, including increasing the range 40

of electric vehicles while on the road and reducing the need for large-scale charging 41

infrastructure, which can be expensive and take up space. Various converters are used to 42

transfer charge between two vehicles to build a V2V charger [8]. One such converter is 43

the NIBC, which has low losses, high efficiency, and fewer components, making it suitable 44

for low-voltage-level applications. Apart from V2V charging, these converters are also 45

helpful for V2G [9] applications, where vehicles can charge from the grid during off-peak 46

hours and supply power to the grid during peak hours. This technology benefits the grid 47

and allows EV owners to get paid for transferring the charge to the grid on a kWh basis, 48

which could incentivize more people to adopt electric vehicles. Overall, V2V charging and 49

bi-directional converters have the potential to revolutionize the way we charge our EVs 50

and help accelerate the adoption of EVs in India. 51

Figure 1. Comprehensive functions of bi-directional converter .

1.2. Literature review 52

The performance of switched-mode DC-DC power converters is dependent on various 53

factors, including a more comprehensive stable operating range, high accuracy in maintain- 54

ing a constant output voltage, and faster dynamic response. Achieving these parameters 55

requires the development of effective control techniques, which can be challenging. Over 56

the years, researchers have developed various control techniques, such as the voltage mode 57

controller [10], current mode controller [11], and sliding mode controller [12]. The most 58

used control technique for NIBC is the proportional integral derivative (PID) based control 59

technique [13], which industries widely use due to its robustness and simple implementa- 60

tion. However, tuning PID control gains can be difficult, and gains of PID control need to be 61

changed by altering the system parameters. Fuzzy logic control [14] is another rule-based 62

technique that has a more comprehensive operating range and is cheaper to implement. 63

However, this technique has a slower response to dynamic changes, which can destabilize 64

the system. In recent years, researchers have shown interest in the ANN-based control 65

technique [15], a data-driven control technique that does not depend on system parameters. 66

This technique decreases inaccuracy and improves the system’s stability, with a faster 67

response to dynamic changes. In [16], the ANN-based control algorithm showed better 68

results than other controlling techniques. With its ability to adapt to different operating 69

conditions, ANN-based control techniques can potentially revolutionize how we control 70

switched-mode DC-DC power converters. 71
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While traditional control techniques such as PID control will continue to be used in 72

industries, data-driven control techniques such as ANN are the future of power converter 73

control. This paper presents a novel approach for V2V and V2G charging using a deep 74

learning neural network (DNN) based controller with a non-isolated bidirectional converter 75

(NIBC). 76

1.3. Key contributions: 77

1. The design of a highly efficient, modular bi-directional converter for V2V charging. 78

2. Design of DNN-based closed-loop control for Bi- directional V2V and V2G charger. 79

3. Elimination of PI control and its comparison with proposed technology. 80

1.4. Organization: 81

This paper presents a comprehensive analysis of a NIBC for V2V charging and is 82

structured as follows: In Section II, the operation of the converter in both charging and 83

discharging modes is explained. Section III outlines the proposed design for the converter’s 84

controller. Section IV presents the simulation results of the bidirectional converter with the 85

PID controller, and we also discuss the real-time implementation of V2V charging using 86

deep learning techniques. 87

2. Section II - Operation of NIBC 88

The NIBC (Non-Isolated Bidirectional Converter) is a circuit that consists of several 89

components, including two switches (Q1 and Q2) with an on-state resistance Rdson , an 90

inductor (L) with an internal resistance of RLP , and capacitors on both sides of the source 91

to filter out voltage variations (CH and CL). The two batteries, HV (High Voltage VH) and 92

LV (Low Voltage VL), are connected at either side of the converter. The HV battery, with an 93

internal resistance of R1, and the LV battery, with an internal resistance of R2, form two 94

voltage sources, V1 and V2, respectively, as shown in Fig 2. The converter can operate in 95

two modes: charging and discharging. In charging mode, the HV side battery charges 96

the LV side battery. In contrast, in discharging mode, the LV side battery charges the HV 97

side battery. Understanding these modes is crucial to developing a control strategy for the 98

NIBC. 99

Figure 2. Circuit diagram of non-isolated bi-directional converter.

The operation of two modes are explained below: 100

2.1. Mode I: 101

During this mode, the HV side battery charges the LV side battery, operating as a buck 102

mode. When the Q1 switch is turned on, inductor L accumulates energy during the on 103

period. Q1 remains on for the DTs period, and the current flows from VH-Q1-L-VL-VH , as 104

illustrated in Fig 3a. When Q1 is turned off, the energy stored in the inductor is transferred 105

to the LV side by turning on the Q2 switch. Q1 remains off for the (1-D) Ts period, and the 106

current flows from L-VL-Q2-L, as illustrated in Fig 3b. 107
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Figure 3. Operation of converter in charging mode (a) switch Q1 on (b) switch Q1 off .

2.2. Mode II: 108

During this mode of operation, the LV side battery charges the HV side battery in a 109

boost mode of operation. Inductor L accumulates energy from the LV side battery when 110

Q2 is turned on. During this period, the CH capacitor charges the HV side battery. The 111

Q2 switch remains on for the duration of DTs. The current path during this period is 112

VL-L-Q2-VL and CH-VH-CH , as depicted in Fig 4a. When Q2 is turned off, the energy stored 113

in the inductor and the LV side battery combine to charge the HV side battery by turning 114

on the Q1 switch. The Q2 switch remains off for the duration of (1-D) Ts. The current path 115

during this period is VL-L-Q1-VH-VL, as shown in Fig 4b. 116

Figure 4. Operation of converter in discharging mode (a) switch Q2 on (b) switch Q2 off.

Designing a controller requires the small-signal modelling of the converter. The small- 117

signal model for a DC-DC converter is a linearized representation of the converter around 118

an operating point. It is used to design control systems that can regulate the converter’s 119

output and achieve the desired performance. 120
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To create a small-signal model for a DC-DC converter, we typically begin with the 121

nonlinear equations that describe the converter’s behaviour, such as the current and voltage 122

equations for the inductor and capacitor. We then linearize these equations around an 123

operating point, which is usually the steady-state point of the converter. 124

From the above modes of operation, whether in charging or discharging mode, only 125

two sub-intervals take place when Q1 and Q2 are on. The nonlinear equations for the two 126

modes are similar. Therefore, the steady-state representation of the charging mode is: 127

Buck Mode(On): 128

L
diL
dt

+ iL(Rdson + RLP) = V1 −V2

Rdson + RLP = RP

diL
dt

=
−iL

L
(RP) +

V1

L
− V2

L
(1)

CH
dV1

dt
= −iL +

V1 −VH
R1

dV1

dt
= − iL

CH
+

V1

R1 · CH
− VH

R1 · CH
(2)

CL
dV2

dt
= iL −

V2 −VL
R2

dV2

dt
=

iL
CL
− V2

CL · R2
+

VL
CL · R2

(3)

 ˙iL
V̇1
V̇2

 =

−
RP
L

1
L − 1

L
− 1

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL

 ·
 iL

V1
V2

+

 0 0
− 1

R1·CH
0

0 1
R2·CL

 · [VH
VL

]

Buck mode(Off): 129

L
diL
dt

+ iL(Rdson + RLP) = −V2

Rdson + RLP = RP

diL
dt

=
−iL

L
(RP)−

V2

L
(4)

CH
dV1

dt
=

V1 −VH
R1

dV1

dt
=

V1

CH · R1
− VH

CH · R1
(5)
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CL
dV2

dt
= iL −

V2 −VL
R2

dV2

dt
=

iL
CL
− V2

R2 · CL
+

VL
R2 · CL

(6)
130 ˙iL

V̇1
V̇2

 =

−
RP
L 0 − 1

L
0 1

R1·CH
0

1
CL

0 − 1
R2·CL

 ·
 iL

V1
V2

+

 0 0
− 1

R1·CH
0

0 1
R2·CL

 · [VH
VL

]

By averaging the two, 131

Ẋ =
(

Aon · d(t) + Ao f f · (1− d(t))
)
· x(t) +

(
Bon · d(t) + Bo f f · (1− d(t))

)
· u(t)

diL
dt

=

(
−iL

L
· RP +

V1

L
− V2

L

)
· (d) +

(
−iL

L
· RP −

V2

L

)
· (1− d)

diL
dt

= − iL
L
· RP +

V1

L
· d− V2

L
(7)

dV1

dt
=

(
−iL
CH

+
V1

R1 · CH
− VH

R1 · CH

)
· (d) +

(
V1

R1 · CH
− VH

R1 · CH

)
· (1− d)

dV1

dt
= − iL

CH
· d +

V1

R1 · CH
− VH

R1 · CH
(8)

dV2

dt
=

(
iL
CL

+
V2

R2 · CL
− VL

R2 · CL

)
· (d) +

(
iL
CL
− V2

R2 · CL
− VL

R2 · CL

)
· (1− d)

dV2

dt
=

iL
CL
− V2

R2 · CL
− VL

R2 · CL
(9)

 ˙iL
V̇1
V̇2

 =

−
RP
L

d
L − 1

L
− d

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL

 ·
 iL

V1
V2

+

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

 · [VH
VL

]
132 iL

V1
V2

 =

1 0 0
0 1 0
0 0 1

 ·
 iL

V1
V2



Ẋ = A ·

 iL
V1
V2

+ B ·
[

VH
VL

]
& Y = C.

 iL
V1
V2



A =

−
RP
L

d
L − 1

L
− d

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL

; B =

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

& C =

1 0 0
0 1 0
0 0 1


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Dynamic model consists of steady state representation and small signal model Now 133

substituting : 134

d = D + d̂; iL = IL + îL; V1 = V1 + V̂1; V2 = V2 + V̂2;

 ˙iL + îL
˙V1 + v̂1
˙V2 + v̂2

 =


− RP

L
D+d̂

L − 1
L

− (D−d̂)
CH

1
R1·CH

0
− 1

CL
0 − 1

R2·CL


 iL + îL

V1 + v̂1
V2 + v̂2

+

 0 0
− 1

R1CH
0

0 − 1
R2CL

[VH + v̂H
VL + v̂L

]

Now, differentiation of steady state values is zero and product of small signal models 135

are neglected i.e., 136

˙iL, V̇1, & V̇2 = 0

and 137

d̂.îL, d̂.v̂1 & d̂.v̂2 ∼= 0

then the state space representation becomes: 138 ˙̂iL
˙̂v1
˙̂v2

 =

−
RP
L

D
L − 1

L
− D

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL


 iL

V1
V2

+

−
RP
L

D
L − 1

L
− D

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL


 îL

v̂1
v̂2

+
 0 d̂

L 0
d̂

CH
0 0

0 0 0


 iL

V1
V2

+

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

[VH
VL

]
+

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

[v̂H
v̂L

]


 ˙̂iL

˙̂v1
˙̂v2

 =

−
RP
L

D
L − 1

L
− D

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL


 îL

v̂1
v̂2

+

 0 iL
L 0

V1
CH

0 0
0 0 0

d̂+

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

[VH
VL

]
+

 0 0
− 1

R1·CH
0

0 − 1
R2·CL

[v̂H
v̂L

]


 ˙̂iL

˙̂v1
˙̂v2

 =

−
RP
L

D
L − 1

L
− D

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL


 îL

v̂1
v̂2

+

 0 0 IL
L

− 1
R1·CH

0 V1
CH

0 − 1
R2·CL

0


v̂H

v̂L
d̂


so, the above state space is represented as: 139

Ẋ = AX + BU
0 = AX + BU
X = −A−1BU

X(s) = (SI − A)−1BU
Y(s) = C.(SI − A)−1BU(s)


îL

d̂
=

1 0 0
0 1 0
0 0 1

.


S 0 0

0 S 0
0 0 S

−
−

RP
L

D
L − 1

L
− D

CH
1

R1·CH
0

1
CL

0 − 1
R2·CL



−1

IL
L

V1
CH
0


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îL

d̂
=

1 0 0
0 1 0
0 0 1

.

S + RP
L −D

L
1
L

D
CH

S− 1
R1·CH

0
− 1

CL
0 S + 1

R2·CL


−1

IL
L

V1
CH
0


The linearized equations resulting from the small signal model provide a description 140

of the converter’s behavior near the operating point, enabling the design of a controller to 141

regulate the inductor current. Typically, the controller adjusts the converter’s duty cycle 142

based on the difference between the desired and actual current, to achieve the desired 143

response. 144

The small signal model is represented by a transfer function that relates the converter’s 145

duty cycle to the desired output. This transfer function can be used to design a controller 146

using control theory techniques, such as pole placement or optimal control. 147

3. Controller design 148

We have designed a control system based on a deep neural network (DNN), as depicted 149

in Figure 5, to enable bidirectional flow in the converter. This controller produces a duty 150

cycle based on the HV side battery voltage, LV side battery voltage, and current reference. 151

The microcontroller then feeds this duty cycle to the converter [17]. The converter generates 152

two complementary pulses based on the received duty cycle using the driver, which 153

drives the switches in the converter, enabling them to work as intended. This DNN-based 154

control design offers several benefits, such as improved accuracy, faster response time, and 155

enhanced stability, making it an excellent option for various applications. By integrating 156

the latest developments in deep learning and control systems design, this control technique 157

opens up opportunities for more efficient and dependable converter operation 158

The DNN network comprises three inputs and one output, with the output being 159

dependent on these three inputs, as shown in Equation (10): 160

D = f (ire f , V1, V2) (10)

The power flow through the converter heavily relies on the duty cycle and direction of 161

the current. Therefore, we have implemented a DNN-based control design to determine 162

the duty cycle required for efficient converter operation. The duty cycle is based on two 163

instances, which are discussed below 164

Figure 5. Implementation of DNN based bi-directional converter.
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The first instance involves setting high and low limits for the two battery voltages. 165

The DNN generates the duty cycle based on these limits, and the converter operates either 166

in charging or discharging mode, depending on the battery voltages. The converter is in 167

charging mode when the HV side battery voltage is higher than VHhigh , and the LV side 168

battery voltage is lower than VLlow . Conversely, if the HV side battery voltage is lower 169

than VHlow , and the LV side battery voltage is higher than VLhigh . the converter operates 170

in discharging mode. However, this instance is rare, as the converter’s operation mainly 171

depends on the current reference. 172

In the second instance, the DNN generates the duty cycle based on the current ref- 173

erence, which determines the mode of operation. If the current reference is positive, the 174

converter operates in a buck or charging mode, with the HV side battery charging the LV 175

side battery. On the other hand, if the current reference is negative, the converter operates in 176

boost or discharging mode, with the LV side battery charging the HV side battery. Therefore, 177

the DNN-based control design ensures that the bi-directional converter operates smoothly 178

and efficiently, with minimal loss of power during the transition between different modes 179

of operation. 180

3.1. Training and testing of proposed DNN controller: 181

To design a controller capable of managing a broader operating range and delivering 182

a quicker dynamic response to the system, it is essential to consider datasets that reflect 183

uncertainties and disturbances present in real-world scenarios. Although datasets created 184

with past historical data can be helpful, they may not accurately reflect the uncertainties in 185

real-time setups. To overcome this limitation, we used MATLAB software to simulate the 186

converter and generate datasets that incorporate all uncertainties and disturbances present 187

in the system. By incorporating this data into our models, we can design more robust and 188

effective controllers that perform well in real-world situations. The generated datasets 189

include both normal and abnormal data, enabling us to develop more comprehensive 190

models that can handle a wide range of scenarios. 191

3.1.1. Hyper parameter selection: 192

Hyperparameter selection involves choosing the appropriate number of epochs, ac- 193

tivation function, weight update rule, and network architecture parameters to train an 194

effective neural network model that minimizes error. The activation function introduces 195

nonlinearities in the system and improves the trained model’s efficiency for non-linear 196

systems. Among the available activation functions,sigmoid (As), tanh (At) and ReLU (Ar) 197

are the most used. 198

TThe weight update policy minimizes the error between the obtained and reference 199

output. Optimizers such as stochastic gradient descent (SGD), adaptive moment estimation 200

(ADAM), and root mean square propagation (RMSprop) are generally used for weight 201

updating policy. 202

Selecting the right hyperparameters is crucial for developing efficient deep-learning 203

models. Root mean square error (RMSE) is a commonly used metric for evaluating the 204

models’ performance, which measures the difference between the predicted and actual 205

values. Choosing the optimal combination of optimization techniques and activation 206

functions is essential for optimal performance. Table 1 provides a list of RMSE values 207

for different combinations of these techniques and functions, with each epoch consisting 208

of a single weight update. The RMSE values are reported for 50, 100, and 150 epochs, 209

providing a comprehensive overview of each combination’s performance. By selecting the 210

combination with the lowest RMSE value, we can determine the optimal hyperparameters 211

for our deep-learning model. 212

According to Table 1, the ReLU activation function with SGD optimization function 213

gives a lower RMSE compared to other combinations. 214

The collected dataset contains a diverse range of values, and normalizing the data 215

between -1 to +1 or 0 to 1 is necessary for accurate and reliable analysis. The normalization 216
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Table 1. Hyperparameter Selection

Epochs Optimizer Activation function

50
Sigmoid ReLU Tanh

Adam 0.02256 0.00082 0.003549
RMSprop 0.03945 0.00652 0.00701

SGD 0.15299 0.00091 0.00752

100
Adam 0.00707 0.00049 0.00089

RMSprop 0.03002 0.00278 0.00291
SGD 0.08281 0.00028 0.00457

150
Adam 0.00501 0.00161 0.00191

RMSprop 0.00635 0.00381 0.00514
SGD 0.04432 0.00060 0.00402

process is typically done using standard scalar and min-max functions. In our case, we 217

opted for the min-max function to normalize the data from 0 to 1 to enhance our data 218

analysis and interpretation. 219

The scaled input is given in (11) 220

Scaled input =
Vx −Vxmin

Vxmax −Vxmin
(11)

where Vx represents the current input value of parameter x 221

Vxmin represents the minimum value of x and 222

Vxmax represents the maximum value of x 223

After scaling the data, we divided it into three sections for optimal utilization. The 224

training process used 70% of the data, while 15% was used for validation and another 15% 225

for testing. This approach helped us achieve an optimal balance between training the model, 226

validating its performance, and testing its accuracy, ensuring the model’s predictions were 227

reliable. 228

3.2. Algorithm 229

The DNN model comprises four layers, with one input layer consisting of three 230

input nodes denoted as "In", while two hidden layers with ten nodes each represented as 231

"Han" and "Hbn," respectively. The output layer with one output node is indicated as "On". 232

The weight parameters between "In" and "Han," "Han" and "Hbn," and "Han" and "On,"are 233

represented by m1, m2, and m3, respectively, as shown in Figure 6. 234

To predict the output Ôi, the proposed model begins by learning parameters of mn, bi, 235

and α, which are used as initial conditions. Equations (12), (13), and (14) show the output 236

prediction. 237

The model is trained using the ReLU activation function and SGD optimization 238

function, which yields better results compared to other combinations. 239

S1 = m1 ∗ In + b1; Han = f (S1) (12)
240

S2 = m2 ∗ Han + b2; Hbn = f (S2) (13)
241

S3 = m3 ∗ Hbn + b3; On = f (S3) = Ôi (14)

The RMSE metric is used for performance evaluation of proposed model and is shown 242

in (15) 243

RMSE =

√√√√ 1
P

P

∑
i=1

(Oi − Ôi)2 (15)

The cost function is used to minimize RMSE between predicted and output value and 244

is shown in (16) 245
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Figure 6. DNN model with 1.Input layer 2. Two hidden layers and 3. output layer.

Cost (J) =
1

2P

P

∑
i=1

∣∣∣Ôi −Oi

∣∣∣2 (16)

Stochastic Gradient Descent (SGD) selects a small subset of training data
∣∣β∣∣ from the 246

entire training state space randomly. As a result, the time taken for a single weight update 247

iteration in SGD is significantly lower compared to gradient descent (GD). 248

In general, the weight update for Input and hidden layer is (16) 249

m← m− α∣∣β∣∣ ∑
i∈β

Hi

(
mT · Hi + bi −Oi

)
(17)

The weight update for bias is given in (17) 250

m← m− α∣∣β∣∣ ∑
i∈β

(
mT · Hi + bi −Oi

)
(18)

To ensure the accuracy and robustness of a DNN model, the model parameters are 251

typically trained over multiple epochs. After the training is complete, the resulting model is 252

tested and validated to assess its performance on new, unseen data. This iterative training, 253

testing, and validation process allows fine-tuning of the model to achieve better results and 254

improve its predictive power. 255

4. Results 256

In this section, we evaluate the performance of a bi-directional converter using two 257

different controllers, namely PID and DNN. The performance of the bi-directional converter 258

with the PID controller was simulated using MATLAB Simulink. Meanwhile, a real-time 259

setup was used to evaluate the bi-directional converter with the DNN controller. We discuss 260

the performance of these two different controllers in detail below. 261
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4.1. PID Controller: 262

A MATLAB simulation was conducted on a bi-directional converter with a PID con- 263

troller for both charging to discharging and discharging to charging operations. For the 264

charging operation, we used a positive current reference, and for the discharging operation, 265

we used a negative current reference. The simulation results are presented below: 266

4.1.1. Charging to discharging mode: 267

In this case, by altering the current reference from -2A to 2A, we successfully transi- 268

tioned the operation of the bi-directional converter from charging to discharging mode 269

using the PID controller. The inductor current in the bi-directional converter reached the 270

new reference value in a mere 138ms, as shown in Figure 7. 271

Figure 7. Inductor current for mode transistion from charging to discharging using PID controller.

4.1.2. Discharging to charging mode: 272

Upon implementing the PID controller for the bi-directional converter, we adjusted the 273

current reference from 2A to -2A, which caused the converter to switch from discharging 274

to charging mode. The time taken by the inductor current to reach the reference current 275

during this transition is illustrated in the figure 8 , and it was measured to be 140 ms. 276

Figure 8. Inductor current for mode transistion from discharging to charging using PID controller.

4.2. DNN Controller: 277

The real-time implementation of a bi-directional converter featuring two batteries, 278

which are replicas of those found in two vehicles, is presented. The setup showcases a 279

higher voltage on one end and a lower voltage on the other end of the converter, as depicted 280

in Figure 9. This innovative approach is crucial in ensuring efficient and reliable energy 281

transfer between the two batteries. The successful implementation of this setup represents a 282
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significant step towards improving the efficiency and reliability of bi-directional converters 283

in real-world applications. 284

Figure 9. Real-time setup of DNN based bi-directional converter.

Real-time implementation of a bi-directional converter with a DNN controller can 285

facilitate smooth transitions from charging to discharging and vice versa. To demonstrate 286

the effectiveness of this setup, we have included the inductor current for both mode 287

transitions, as well as the voltage across the two batteries. The results showcase the 288

seamless transition between the two modes, further emphasizing the importance and 289

efficiency of DNN controllers in the bi-directional converter setup. 290

4.2.1. Charging to discharging mode: 291

Inductor Current: 292

In this case, we performed a charging-to-discharging mode transition in a bi-directional 293

converter by changing the current reference from 2.1A to -2.1A. Figure 10 shows the 294

waveform of the inductor current during the transition from charging to discharging mode. 295

Impressively, the inductor current reached the new reference value in approximately 975us, 296

significantly faster than what the PID controller achieved. This outcome highlights the 297

superior performance of the DNN controller over the PID controller in achieving a new 298

reference value for the inductor current. 299

Figure 10. Inductor current during mode transition from charging to discharging using DNN.
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HV Battery (V1) : 300

In this case, we discuss the voltage behavior of an HV side battery during the mode 301

transition from charging to discharging operations. When the converter is in charging 302

mode, the HV side battery will discharge and charge the LV side battery. The voltage 303

across the HV side battery in this mode is around 24.48V. However, when the converter 304

switches from charging to discharging operation, the HV side battery is charged by the LV 305

side battery, causing a slight increase in the HV side battery voltage to around 24.75V. To 306

accurately depict these slight changes in voltage, we used a voltage scale of 0.34/Div, as 307

shown in Figure 11. 308

Figure 11. Voltage of HV battery during mode transition from charging to discharging using DNN.

LV Battery (V2): 309

In this case, we will discuss the voltage behavior of an LV side battery during the 310

mode transition from charging to discharging operations. When the converter operates 311

in charging mode, the HV side battery charges the LV side battery. The voltage across 312

the LV side battery in this mode is approximately 12.7V. However, when the converter 313

switches from charging to discharging operation, the LV side battery discharges and charges 314

the HV side battery, leading to a decrease in LV side battery voltage to about 12.39V. To 315

precisely depict these slight changes in voltage, we used a voltage scale of 0.125V/Div, as 316

demonstrated in Figure 12. 317

Figure 12. Voltage of LV battery during mode transistion from charging to discharging using DNN.
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4.2.2. Discharging to charging mode: 318

Inductor Current: 319

In this case, we conducted a mode transition from discharging to charging in a bi- 320

directional converter. We achieved this by changing the current reference from -1.5A to 321

2.1A. Figure 13 illustrates the waveform of the inductor current during the transition. 322

Impressively, the inductor current reached the new reference value in roughly 960us, which 323

is considerably quicker than what the PID controller accomplished. This outcome highlights 324

the DNN controller’s superior performance over the PID controller in achieving a new 325

reference value for the inductor current. 326

Figure 13. Inductor current during mode transition from discharging to charging using DNN.

HV Battery (V1) : 327

In this case, we will discuss the voltage behavior of an HV side battery during the mode 328

transition from discharging to charging operations. When the converter is in discharging 329

mode, the HV side battery charges by the LV side battery. The voltage across the HV 330

side battery in this mode is around 24.9V. However, when the converter switches from 331

discharging to charging operation, the HV side battery discharges and charges the LV side 332

battery, causing a slight decrease in voltage to around 24.2V. To accurately depict these 333

slight changes in voltage, we used a voltage scale of 0.34/Div, as shown in figure 14. 334

Figure 14. Voltage of HV battery during mode transistion from discharging to charging using DNN
controller.
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LV Battery (V2) : 335

In this case, we will be discussing the voltage behavior of the LV side battery during the 336

transition from discharging to charging operations in a bi-directional converter. While the 337

converter is in discharging mode, the LV side battery discharges and charges the HV side 338

battery. During which, the voltage across the LV side battery is around 12.36V. However, 339

when the converter switches from discharging to charging operation, the LV side battery 340

will be charged by the HV side battery, resulting in a slight increase in the voltage of the LV 341

side battery to around 12.6V. To accurately display these slight voltage changes, we used a 342

voltage scale of 0.125V/Div, as shown in Figure 15. 343

Figure 15. Voltage of LV battery during mode transition from discharging to charging using DNN
Controller.

5. Conclusion 344

This paper presents the significance of V2V and V2G charging and proposes a novel 345

approach that employs a DNN-based non-isolated bi-directional converter. We conducted 346

a hardware experiment of our proposed controller and compared the transition time of 347

inductor current with a traditional PID controller using MATLAB Simulink software. The 348

results demonstrate that the DNN controller yields a faster response time than the PI 349

controller. Additionally, we analyzed the behavior of HV and LV side battery voltages 350

during the transition from charging to discharging and vice versa. The results show that the 351

DNN-based controller outperforms conventional PID controllers in terms of performance. 352

These findings demonstrate the potential benefits of using DNN-based controllers for V2V 353

and V2G charging systems. 354
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