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Abstract:  The purpose of this research is to present a thorough evaluation of the energy manage-

ment system, which consists of hybrid energy storage systems, and its control algorithms, which 

may be used in electric vehicles. This paper outlines the characteristics of electric vehicles, research 

methods, analysis of the hybrid energy storage system architecture, converter topology, and energy 

management techniques. The strength and co-occurrence of keywords over the past ten years are 

shown in this study using a systematic research framework for performing a literature review and 

using keyword analysis techniques. The study reveals a pattern of recently and frequently used 

terms in works of literature. Consequently, their suitability, benefits, and drawbacks are assessed. 

In this study, the hybrid energy storage system and converter circuit architecture are evaluated and 

rated. Non-isolate DC-DC converter converter connected to SC is a suitable configuration for the 

hybrid converter because it is simple to build, reliable, and has minimal loss/weight/cost, which 

improves vehicle performance. In terms of the application of control strategies, it is shown that de-

terministic and fuzzy rule-based control techniques are successfully assessed using real-scale vehi-

cle experiments and selected for manufacturing. On the other hand, real-time optimization-based 

energy management techniques have been effectively shown in lab-scale tests and may be used in a 

future real-scale vehicle.  

Keywords: electric vehicle; lithium-ion battery; supercapacitor; power converter; hybrid energy 

storage system; energy management system 

 

1. Introduction 

The electric vehicle (EV) is distinguished by two characteristics. The first distinguish-

ing characteristic is its portable energy source or energy storage, which is created by elec-

trochemical, electrostatic, and electromechanical mechanisms such as battery/fuel cell/so-

lar cell, SC, and flywheel. An EV's second distinguishing characteristic is its electric motor, 

which generates tractive effort for propulsion [1]. A fuel cell (FC) cannot, in general, re-

ceive regenerative power when braking. Furthermore, excessive power demand generates 

a substantial voltage drop and air starvation in FC [2]. As a result, FC is intended to pro-

vide unidirectional power flow to a modest and steady load. In most cases, the battery is 

employed as a basic source to provide and save regenerative braking with a suitable dy-

namic response. However, its lifetime can be significantly reduced by supplying and ab-

sorbing high current in acceleration and deceleration resepectively. These cause a high 

internal battery resistance thus reducing the milage and performance of the vehicle.  

For supplying and absorbing high repetitive peak power from the propulsion load, 

an energy storage device such as supercapacitor (SC) should be employed because of its 

fast response mechanism for storing the energy.  The working principle of SC is based on 

electric charge movement, which is highly reversible permitting it to be charged and dis-

charged easily and efficiently millions of times [3].  Another energy storage for high re-

petitive propulsion load is flywheel; the energy storage that can supply or receive pulse 

power by electromechanical means.  However, the spinning flywheel is like an explosive 
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device that is inherently dangerous [4].  From this point of view, SC is an applicable solu-

tion to buffer high repetitive load of EV propulsion.  Therefore, the combination of battery 

and SC is one of the best promising solutions of hybrid energy storage system (HESS) that 

provides a good performance in terms of energy and power supply [5]. 

To manage the HESS, an energy management strategy (EMS) that is consistent with 

its topology must be developed. According to ISO 50001, the goal of an energy manage-

ment system is to build an efficient system and take the required actions to improve en-

ergy performance [6]. The primary focus of this study is on the energy management sys-

tem for battery hybrid electric vehicle (BHEV) employing SC: the first is the HESS config-

uration schemes, and the second is the energy management strategy for the energy stor-

ages. These factors motivated us to investigate over the last decades what is the most ef-

fective option for HESS employed in BHEV applications. 

This research looks at energy management systems for electric vehicle applications 

that use battery/supercapacitor hybrid energy storage technology. The research approach, 

as described in Section 2, is presented to provide a defined work phase and processes. In 

section 3, we looked at several battery/supercapacitor combinations and evaluated their 

characteristics for application recommendations. Section 4 proposes and explains a con-

verter design for merging SC and batteries in an electric vehicle. Section 5 investigates and 

tabulates rule-based and optimization-based energy management control systems to es-

tablish their applicability in real electric vehicles. The research discussion of major results 

and conclusions is drawn in the last sections. 

2. Research methodology 

The research framework for this study is depicted in Figure 1. We classified the most 

recent work with specified keywords in the subscription and open access online databases 

of IEEExplore, SCOPUS, and ScienceDirect based on the keywords of "energy manage-

ment," "battery/supercapacitor," and "electric vehicle applications." The linked literature 

of 71 papers was carefully picked and analyzed between 2006 and 2023. The selected terms 

were then entered into a reference management system, which produced a research infor-

mation system file format for keyword analysis. The VOSviewer program was used to 

create networks of scientific keywords connected by a co-occurrence link, which is a con-

nection between two terms. The magnitude and strength of the co-occurrence were deter-

mined by the size of the word and circle in the result, as illustrated in Figure 2. Following 

that, the most important with high scores were assessed, as well as their recent appear-

ances in publications, to present prospects and trends. 

1. IEEExplore
2. SCOPUS
3. ScienceDirect

1. Bibliometrics in 
reference management 
software
2. Research information 
system development

VOSviewer 
software

High impact and 
recently co-
occurrence terms 

Discussion & 
Conclusion 

Online database Raw data Keywords analysis Review development Draw summary

 

Figure 1. The research approach used in this study. 

Figure 2 displays the most essential phrases and their interrelationship during the 

previous decade. The most recent and co-occurring keywords in the time frame are "elec-

tric vehicle(s)," "hybrid energy storage system," which is not our search phrase, "battery," 

and "energy management." The findings show that the hybrid energy storage system is a 

hot topic for many researchers, yet it was overlooked in our study. Consider terms such 

as "design optimization," "microgrid," "sizing," "dynamic programming," and “battery/ul-

tracapacitor,” to mention a few. These exciting themes may have a high co-occurence for 

future study due to the advancement of computer technology and electricity generating. 

"Power control," "DC-DC power converter," and "fuzzy logic control," among others, are 
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of interest for phrases appearing in the middle of the considering period and with medium 

co-occurence. Some traditional control algorithms and converters were still being studied 

by researchers for the HESS use in EV. As a result, we can effortlessly link the trend of 

these influencing keywords with our study topic. However, because we are concentrating 

on the most important technologies for electric vehicle applications in our work, the hy-

brid energy storage system and energy management are limiting considerations. 

 

Figure 2. Keyword intensity in our field of interest during the past decade. 

3. Battery and supercapactior in hybrid energy storage system 

The combination between the battery and SC produces an excellence energy storage 

system for improving EV performances in terms of battery stress reductions and utiliza-

tion of regenerative braking energy [7],[8]. There are several possible configurations of 

hybridization between the battery and SC as presented in [9,10].  Figure 3 (a) shows the 

direct parallel connection of the two energy sources supplying the propulsion unit. This 

configuration permits SC voltage, 𝑣𝑆𝐶 , to vary according to the battery voltage, 𝑣𝑏𝑎𝑡 ; the 

power flow is proportionally shared depending on their internal resistances.  This config-

uration is easy to implement, but the utilization of SC is low by the stiff DC bus [11].  Fig-

ure 3 (b) shows the direct parallel connection of two energy sources to a bi -directional DC-

TO-DC converter supplying to the propulsion unit.  This configuration maintains DC bus 

voltage, 𝑣𝑏𝑢𝑠, and the inverter efficiency.  However, the SC stored energy is inefficiently 

discharged because of its small operating voltage range due to the small variation in the 

state of charge (SOC) of the battery.  In addition, this scheme uses a full size converter to 

manage the whole power [9,12].  The reliability of this HESS mainly depends on the con-

verter.  To control power flow of the SC, a converter is used to connect it to the DC bus, as 

shown in Figure 3 (c) [11,13–17].  This scheme improves the battery performance in terms 

of reducing battery peak power, DC bus voltage variation and battery energy consump-

tion with the help of SC [18,19].  However, it requires a medium size converter for man-

aging power flow of the SC.  To avoid the large size of SC’s converter, Guidi et al. [20–22] 

introduced the configuration as in Figure 3 (d).  This configuration separates SC into two 
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banks, SC_0 and SC_1, but controls only one of them.  Thus, converter capacity and losses 

are lower than the previous configuration, since the active components of the converter 

are half size and the inductor is one third smaller. However, the total voltage of both SC 

bank is higher than DC bus by two times, hence, this requires dynamic balancing circuit-

ries for managing SC voltage, which are expensive and complex.  In terms of reliability, 

configurations in Figure 3 (c) and (d)  provide higher reliability than that in Figure 3 (b)  ,

whereby if the converter of SC fails, the vehicle still can be operated. This is due to the fact 

that the major energy source, the battery, is directly linked to the motor's inverter and 

does not rely on any DC-DC converter. 

By modifying the energy storage system as shown in Figure 3 (e) converter capacity 

can be minimized [23].  In this configuration, the battery supplies average power to the 

load once SC voltage is higher than battery voltage, otherwise, the battery will forward 

bias the diode, and the battery power will be discharged sharply to the load.  The major 

disadvantage of this scheme is the large DC bus voltage variations with SC voltage [24].  

In addition, the large variation of DC bus voltage causes high losses in the propulsion 

inverter.   However, this configuration improves the battery performance if it is not dis-

charged through the diode frequently, and it has equal reliability as the two previous 

schemes.  To overcome the problems of large DC bus voltage variation, configurations in 

Figure 3 (f)-(g) have been reviewed by [17,24,25].  These schemes require a medium and a 

full -size converter for each source to provide dynamic power with steady DC bus voltage, 

therefore, the incremental cost, weight, and loss are highest among other schemes.  More-

over, the losses in the two converters can be traded off with the improved propulsion 

inverter efficiency due to the stabilized DC bus voltage .  On the downside, their reliability 

is lower than those in Figure 3 (a) and Figure 3 (c)-(e); if one of the converters damages, 

the vehicle might be inoperative.  To control the energy and power of battery and SC, 

multi -converter is proposed by scholars as shown in Figure 3 (h)  [26–29].  This configura-

tion presents a steady DC bus voltage and protects the battery from high repetitive power.  

However, the disadvantages are like the configuration in Figure 3 (f)-(g).  In an EV appli-

cation, the HESS should have the most reliability, less complexity, low weight, low loss, 

and low cost to enhance the vehicle performance.  These are the reasons that the configu-

ration in Figure 3 (c) is widely used by many researchers and manufacturers for hybridiz-

ing the SC to the battery.  

 

Figure 3. Configurations of battery/SC in HESS for EV applications. 

The authors provided ratings to any topology for a more thorough selection based 

on converter size, DC bus voltage stiffness, and reliability. Table 1 shows the scoring of 

each converter's topology, with configuration (d) receiving the best score due to the lowest 
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size of SC converter, DC bus voltage stability according to battery voltage, and excellent 

reliability even if the SC and its converter fail. However, the converter in type (c) gets a 

lower score despite having a bigger SC converter size but the same DC bus stiffness and 

reliability as type (d). However, as previously said, this design has been allowed for EV 

application, even though it did not achieve the best score in this study, but the advantages 

include reduced weight, cost, and loss when compared to the configuration (d). 

Table 1. Converter evaluation in battery/SC HESS applications. 

Configura-

tion 

Converter size 

(score 0-3) 

DC bus voltage 

(score 0-2) 

Reliability 

(score 0-1) 
Total score 

(a) None (0) Follow battery (1) High (1) 2 

(b) 1 full size (1) Constant (2) Low (0) 3 

(c) 1 medium size (2) Follow battery (1) High (1) 4 

(d) 1 small size (3) Follow battery (1) High (1) 5 

(e) 1 medium size (2) Follow SC (0) High (1) 3 

(f)-(h) 
1 full 1 medium size 

(1) 
Constant (2) Low (0) 3 

4.DC/DC converter topologies for energy source 

The design of DC-TO-DC converters to control energy or power sources for the BHEV 

energy management system is an exciting and hard task [30].  Firstly, the power converter 

holds hundreds of amps of current while working at a low operational voltage, often 300 

V DC or less. Through the time-varying voltage ratio, these huge currents can raise the 

electric and thermal stresses in the active and passive components and lower the converter 

efficiency. As a result, active and passive component ratings are increased even further. 

Secondly, the stress and huge component sizes combined with EMI emissions make the 

converter packaging challenging, costly, and bulky. Therefore, it is necessary to build a 

converter for an EV such that it has the qualities of being compact, light, inexpensive, and 

having minimal losses. 

The non-isolated bi-directional DC-TO-DC converters are suitable choices among 

converter topologies. Non-isolated bi-directional converters are favored because they are 

lighter than isolated bi-directional converters, which have an extra transformer mass. The 

half bridge converter is acceptable in the category of non-isolated bi-directional DC-DC 

converters because they meet the EV converter design requirements. The key benefits of 

the half-bridge converter over the CUK and combination SEPIC/Luo converter are that (1) 

it only requires one inductor (L) instead of two, and (2) the inductor size is half that of the 

CUK and combined SEPIC/Luo converter. The most notable conclusion is that the half-

bridge converter is more efficient than the CUK and combined SEPIC/Luo converter due 

to decreased inductor conduction loss, switching losses, and active component conduction 

losses. 

However, several academics investigated the development of an interleaved three-

leg full-bridge DC-DC converter [13] and a modified SEPIC/Luo converter [31]. The for-

mer has the capability of reducing the inductor current ripple [32] while the latter has the 

good regulation capability, continuous input current, and low EMI. Interleaved three legs 

full -bridge DC-DC converter also has lower source current ripple and easier to control in 

both buck and boost modes of operation compared to the conventional SEPIC/Luo con-

verter [31].  Nonetheless, both need a huge amount of active and passive components, 

resulting in a bulky, high mass, high loss, and high cost when compared to a half-bridge 

converter.  Moreover, these works [13,31] were in the simulation and experimental scale 

while the half-bridge converter was proved its suitability for application in the real and 

commercial vehicle with an appropriate weight, low cost and low losses [61], [66].  How-

ever, the main drawback of the half-bridge converter is the discontinuous output current 

once operating as a boost converter; this requires a large size of the output capacitor 
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(𝐶𝑂).  Half -bridge converter connected to SC for hybridizing to the battery is shown in 

Figure 4 . 

 

Figure 4. Half-bridge converter architecture coupled to SC and battery. 

The half-bridge converter operates as a boost converter when power flows from the 

SC to the load. The boost switch, 𝑆𝑏𝑜𝑜𝑠𝑡 is activated according to the switching duty cycle 

produced by the controller together with the boost diode, 𝐷𝑏𝑜𝑜𝑠𝑡 . The buck switch, 𝑆𝑏𝑢𝑐𝑘, 

will take the complementary duty ratio of 𝑆𝑏𝑜𝑜𝑠𝑡 for operation with the buck diode, 𝐷𝑏𝑢𝑐𝑘  .  

Unlike previous works that separate control of converter in buck or boost mode according 

to the mode of operations [17], in this work, the duty ratio governs the half bridge con-

verter to operate in buck and boost mode complementarily depending on the load de-

mand; the smooth operation can be achieved  [34]–[36]. 

5. Energy management strategies for EV applications 

In general, the EMSs for EV or hybrid EV (i.e. pure battery EV, battery/SC hybrid EV, 

battery/fuel cell/SC hybrid EV, and a hybrid EV), can be classified into rule-based and 

optimization-based strategies [36], [37] as shown in Figure 5.   
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Figure 5. Control strategies for energy control management in EV applications. 

The EMSs have been intensively developed by many institutional researchers involv-

ing various aspects, such as the state-of-the-art of the control strategy, general character-

istics and control performances.  This section provides a qualitative review of the EMSs. 

5.1. Rule-based energy management strategy 

Rule-based energy management strategy is a heuristic real-time energy management 

control strategy in which human expertise, engineering perception, and the load charac-

teristics are used to design a rule set.  This kind of energy management control strategy 

does not require a prior knowledge of predefined driving cycle; it is computationally effi-

cient and simple to implement.  It has been broadly used in manufacturing vehicle and 

academic research [38–40]. The control performance of rule-based energy management 

control strategy relies on the initial conditions and rules.  Nonetheless, the exact initial 

conditions and rules themselves are the main problems that require large numbers of 

mathematical analysis and theoretical foundation.  To find appropriate parameters, com-

prehensive calibrations and modifications are required in order to improve the control 

performance for a specified EV characteristic and driving cycle.  Therefore, the develop-

ment of rule-based energy management control strategy is protracted and dependent on 

the specific characteristic of the vehicle and driving cycle [40].  Furthermore, no optimiza-

tion techniques are related to this strategy, thus the optimal solutions are not guaranteed.  

This control strategy can be divided into deterministic rule-based energy management 

control strategy and fuzzy rule-based energy management strategy as presented in the 

following descriptions. 

5.1.1.  Deterministic rule-based energy management strategy 

Deterministic rule -based energy management strategy for battery hybrid EV can be 

subdivided into power follower (load follower) control strategy [30]–[32], frequency -

based (power split) control strategy [42,43], and adaptive power split control strategy. In 

battery/fuel cell hybrid EV, battery/fuel cell is used as the main energy source while SC is 

availed as the auxiliary energy storage.  In 1999, Faggioli et al. [44], proposed the imple-

mentation of SC connected to a bi -directional DC-DC converter for buffering peak power 

in battery/fuel cell hybrid EV. The energy management control strategy employed the en-

ergy conservative law between vehicle kinetic energy and stored energy inside SC and 

controlled all energy sources following the specific rules.  However, the best solution ap-

peared in fuel cell EV testing with the ECE -15 urban driving cycle that consumed the en-

ergy stored inside SC of about 37%, which lead to the inefficiency of utilization the energy 

stored in SC.     

Dixon et al. [45,46]  used the energy conservative theory for the vehicle kinetic energy 

and the SC stored energy to increase the transient performance of the BHEV, and the life-

time of the battery.  From this principle, peak power discharge and recharge of the battery 

are avoided by the hybridization of battery and SC. In these papers (as mentioned above), 

the cascade control of SC charge (outer loop) and SC current control (inner loop) is used. 

The SC charge control is compared with the SC charge reference, which is generated from 

the reference charge curve considering vehicle speed and battery state of charge into ac-

count, with the actual SC charge.  The reference charge curve allows the SC to be charged 

at a low state of charge if the battery is fully charged.  Thus, the energy stored in SC is 

inefficiently utilized.  Moreover, the generation of time-varying SC current reference, 

𝑖𝑆𝐶,𝑟𝑒𝑓 (𝑡), is not robust where the current reference is bounded by the current bandwidth 

limiter.  The current bandwidth is obtained by multiplying the specific voltage gain be-

tween battery voltage, Vbat, and SC voltage, VSC, with the difference between the time-var-

ying actual load current, 𝐼𝑙𝑜𝑎𝑑(𝑡), and the maximum battery current, Ib,max.  The SC current 

reference generation is given by the following equation [46].  
Vbat

VSC
∙ (𝐼𝑙𝑜𝑎𝑑(𝑡) − Ib,max) ≤ 𝑖𝑆𝐶,𝑟𝑒𝑓 (𝑡) ≤

Vbat

VSC
∙ (𝐼𝑙𝑜𝑎𝑑(𝑡) + Ib,max)          (1) 
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Thounthong et al. [42,43]  proposed energy management of FC/battery/SC hybrid 

power source for hybrid EV applications that manage the energy exchanges between the 

sources and the propulsion load (not consider power losses). The three control strategies 

used are: (1)  charge mode, when the FC supplies energy to the battery and SC and to the 

load, (2) discharge mode, when FC, battery, and SC supply energy to the load, (3) recovery 

mode, when the load supplies energy to the battery and SC.  In the discharge mode, DC 

bus voltage is regulated by SC current that is generated by means of energy and power 

calculation.  The SC current reference is limited by its limitation function.  This limiter is 

developed based on human -expert in finding an appropriate working point, so compre-

hensive calibration and tuning to find the suitable point are required. With this algorithm, 

the control processor is loaded with energy and power calculation.  In fact, a stiff  DC bus 

voltage can be obtained by directly controlling of SC current and DC bus voltage as pro-

posed in [47], [29]  instead of power and energy respectively.  In addition, the evaluation 

of energy source capacity and testing with a standard driving cycle, which is the essential 

tasks to prove the effectiveness of the control strategy and energy economy, had not been 

executed.  The SC voltage was decreased by only 8% due to the improper size of the SC 

thus ineffective utilized the stored energy in the SC.  Moreover, the advantage in terms of 

energy consumption for the driving cycle supplied by FC had not been considered, there-

fore, the effectiveness could not be fully confirmed; whether the energy supplied by the 

HESS is lower than a single source. Moreover, the battery is still repeatedly charged by 

FC, therefore the battery life could be reduced. 

Wong et al. [29]  improved the control strategy processing by controlling the  voltage 

and current of fuel cell/battery/SC for a power-sharing in the hybrid EV instead of con-

trolling power and energy of each source.  The strategy uses three algebraic current algo-

rithms to manage the current of each source so that the DC bus is fixed.  The results of this 

work show that SC can supply transient and steady state current instead of battery and 

FC until the SC voltage reaches the minimum voltage limit, then FC and battery take over 

the load instead.  The function of the battery is to support during vehicle start -up period 

when the other sources are not ready.  However, the method of evaluation SC size has not 

been mentioned therefore the energy stored in the SC is inefficiently utilized.  Moreover, 

the proposed system had not been tested with a standard driving cycle to confirm imple-

mentation in real-world driving.     

An advanced energy management system for controlling the SC is proposed by Ar-

menta et al.   [14]  by utilizing the energy conservative law between the vehicle kinetic en-

ergy and the SC stored energy.  The control strategy is to discharge SC based on the min-

imal power delivered to the load, to give enough space for absorbing regenerative braking 

energy.  According to this strategy, excessive discharge power from the battery is pre-

vented, and a new driving cycle can be started naturally, even though the vehicle requires 

a high acceleration.  The principle of the control strategy is by substituting the square of 

speed in vehicle kinetic energy equation with the fundamental speed equation, so a new 

vehicle kinetic energy equation can be derived, and the instantaneous ideal power sup-

plied by SC is achieved by the differentiating the energy.  The SC power is then discretized 

for controlling power by considering charge/discharge losses of vehicle transmission sys-

tem.  This power uses discrete control in three strategies: acceleration strategy, cruising 

strategy, and braking strategy.  The simulation results show that the proposed control 

strategies can reduce battery peak power and enhance driving range.  However, the sim-

ulation results of the three ideal driving cycles are not practical whereby the regenerative 

braking power is sufficient for charging SC until it is full, without requiring any support 

from the battery [34] .  In general, the amount of energy supplied by SC to the vehicle in 

acceleration is higher than the regenerative braking energy recovered whereby it is dissi-

pated into the powertrain system forth and back.  Thus, the regenerative braking energy 

alone is not enough for recharging SC until it is full. 

 Wangsupphaphol et al. [48] has presented a simple HESS and SC current control 

approach for electric vehicle applications. Instead of managing SC power, SC current con-

trol is significantly simpler and more effective for reducing battery power and energy 
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usage. The contribution is to relate the SC current reference to vehicle acceleration or de-

celeration, allowing SC current to regulate vehicle dynamic power. In addition, SC capac-

ity calculation has provided in this work because of the heavier the SC mass the larger 

power and energy consumption, which most of the HESS studied in the past has ignored. 

This design philosophy was highlighted in a Japanese automobile manufacturer's U.S. pa-

tent application. However, this work was limited by the real-vehicle experiment to prove 

the actual effectiveness of the proposed strategy.  

Another deterministic rule-based energy management strategy termed as fixed -fre-

quency power split has been proposed and validated by real -time simulation in [8].  In 

this control strategy, the current required from the battery is reduced by the assisting cur-

rent from SC, however, the battery is still charged by the shallow negative current in brak-

ing phase even though the deep negative current is absorbed by the SC.  This can reduce 

the battery lifetime. 

A novel adaptive power split strategy for an EV was proposed in [26]  whereby the 

load power is filtered as high and low frequency supplied by SC and battery respectively.  

Two bi -directional DC-DC converters had been used for interfacing battery and SC to DC 

voltage bus.  The control strategies deal with voltage and current instead of energy and 

power, so the computational effort is reduced.  However, slow changing of filter’s time 

constant of the proposed adaptive splitter allows the battery to supply high -frequency 

power instead of SC once the SC has low energy, thus can damage the battery rapidly.  

Moreover, the slow dynamic of SC voltage control loop, generated by the adapter, causes 

SC voltage exceeding the upper limit, which may jeopardize safety and not suitable for 

EV applications. 

Kalman filter used for power splitting EMS in tuk-tuk EV was proposed by Karuna-

rathne et al. [49]. The converter for SC and battery is used thus the power of them can be 

control properly. The power split technic can save battery SOC and SOH thus improve 

driving range. Though, this is inevitable trade off with the complex control structure and 

weight of the converters which are the crucial important for EV applications. In addition, 

SC capacity calculation was not declared thus the effectiveness of energy reduction may 

be doubted. 

5.1.2. Fuzzy rule-based energy management strategy 

Fuzzy rule -based energy management control strategy is an extended type of the de-

terministic rule -based energy management control strategy.  The principle of this control 

strategy is to develop a group of fuzzy rules (IF-THEN) from human knowledge and cog-

nition whereby the mathematical model of the system is not necessary.  The core benefits 

of fuzzy rule -based energy management control strategy are its robustness to noise and 

variation in component parameters.  Nevertheless, membership function and fuzzy rule 

are generally derived from human expertise and cognition; hence a noble control perfor-

mance cannot be guaranteed. The performance of fuzzy logic control mostly relies on the 

designer’s expertise. Fuzzy rule -based control strategy implemented in EV power source 

control can be grouped into two categories: conventional fuzzy logic control and fuzzy 

sliding mode control. 

Wang et al. [50]  proposed the conventional fuzzy logic control for controlling SC 

which are connected parallel to the battery main energy storage for improving the energy 

recapture efficiency and extending the driving range.  The fuzzy control strategy employs 

load power, SOC of the battery and SC, to determine the proportion of the power from the 

battery to supply the load.  The simulation results, implemented in ADVISOR 2002 and 

compared to the traditional logic threshold strategy, show that the proposed fuzzy logic 

control can reduce battery peak power and improve the energy recapture efficiency by 

50% and 10% respectively. 

Xiaoliang et al. [51], proposed the frequency decoupling method to manage the 

power of SC.  The conventional fuzzy logic control is implemented to manage the energy 

contents inside SC while the battery is passively controlled.  The driving cycle, road con-

ditions, and load current are used as the fuzzy input variables and then processed by using 
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state flow in MATLAB to produce SC current reference.  The experimental results tested 

with the ECE -15 driving cycle show that the lower of decoupling frequency allows the 

higher SC energy supplied to the load. However, the intuitively optimum decoupling fre-

quency is unknown but must be determined based on human expertise. Thus, the mini-

mized battery’s energy consumption cannot be confirmed.  The low decoupling frequency 

causes the battery to recharge the SC in deceleration with the regenerative braking power, 

even though the battery supplies less power in acceleration. 

Zandi et al. [52]  proposed the conventional fuzzy logic control for controlling battery 

and SC which are parallel with FC main energy source.  The fuzzy rules, established from 

SC, battery voltage, and load power, are designed to manage the energy and power con-

tents inside battery and SC in any operating modes, i.e., recovery, normal, and overload 

cooperative working with FC.  Three DC-DC converters for FC, battery, and SC are em-

ployed.  Three different controllers are employed: the state feedback controller (for FC 

control), the fuzzy logic controller (for SC and battery control) and sliding mode controller 

(for switching control).  The experimental results show the perfection of high dynamic 

power from SC and battery to assist the FC power, moreover, DC bus voltage is always 

steady even if facing a sudden step load.  However, the complexity and high computa-

tional requirements processing these controllers cannot be avoided. 

Cao et al. [53]  proposed fuzzy sliding mode controller which combines the benefits 

of fuzzy control and sliding mode control.  The control objective changes from tracking 

error to sliding mode function by creating S -Function incline to zero.  Since the fuzzy slid-

ing mode control could soften the control signal that reduces the chattering happening in 

common sliding mode control, so the robustness is improved.  In the experiment, the 

fuzzy sliding mode control is compared with the PID control; and the results show an 

improvement in energy saving, faster response and more reliable performances achieved 

by the fuzzy sliding mode control. 

Li et al. [54]  proposed a hybrid power system that composed of an FC, battery, and 

SC for a tramway power supply.  The energy management control strategy is based on a 

combination of fuzzy logic control and Haar -wavelet transform.  The energy management 

control strategy can reduce transient peak power demand while maintaining high-effi-

ciency mechanism performance of FC.  The results show that the proposed energy man-

agement control strategy can split the main positive high -frequency power from FC.  The 

battery will respond to the medium frequency power while the high -frequency power is 

supported by SC.  

5.2. Optimization-based energy management strategy 

The general characteristic of optimization-based energy management control strat-

egy is the optimization of EV system performance cost function, which is described nu-

merically, by different optimization control methods.  The development of several cost 

functions means the diversities of optimization control problem.  Therefore, several opti-

mization-based energy management control strategies are presented for solving the vari-

eties of optimal problems.  There are two major optimization-based energy management 

control strategies suggested by scholars: global optimization energy management control 

strategy and real-time optimization energy management control strategy. They are de-

scribed as follows. 

5.2.1.  Global optimization energy management strategy 

This energy management control strategy is established on a global optimization 

method to find a global optimum solution by minimizing a cost function such as fuel econ-

omy, emissions of a specified driving cycle considering the constraints of HESS, and pro-

pulsion motor and converter.  This method depends on prior knowledge of the specified 

driving cycle; therefore, it can be named as an offline optimization.  Additionally, the 

computational requirement of the global optimization energy management control strat-

egy is greater than that of the rule-based energy management control strategy.   
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Presently, the classification of optimisation control problem of EVs has three major 

solutions.   

• Firstly, the optimisation of the parameters of a rule-based energy management con-

trol strategy. By this method, the energy management problem turns into a parame-

ter optimisation problem, and it is called a static optimisation problem.  Thus, a de-

rivative-free static optimisation method can be implemented, i.e. genetic algorithm 

(GA), particle swarm optimisation (PSO) and simulated annealing (SA).  In addition, 

a derivative-based static optimisation method such as sequential quadratic program-

ming (SQP) can also be applied.   

• Secondly, the energy management problem of EV applications is considered as a dy-

namic, nonlinear, and constrained optimisation problem.  This is recognised as an 

optimal control problem.  The optimisation problem can be determined by dynamic 

optimisation methods such as dynamic programming.   

• Thirdly, the optimal control problem is approximately modelled as a mathematical 

problem.  After that, the problem is solved by static optimisation methods such as 

SQP.   

•  

• Both static and dynamic optimisation methods have been utilised in optimisation 

control problem of EV applications, which are described as follows. 

5.1.1.1. Static optimisation method 

The calculating methods of the static optimisation problem can be classified into two 

groups: derivative -free methods and derivative -based methods. The derivative -based 

methods such as SQP use the derivative of the objective function to solve the optimisation 

problem. This method is implemented in the optimisation of energy management control 

strategy parameters of an EV [55]. 

Dellnitz et al. [56]  implemented this technique in an EV for the purpose of extending 

driving range by minimising battery’s SOC and velocity variation.  The principle of SQP 

is to sequentially formulate auxiliary quadratic problems for approximating a locally op-

timal solution to the original problem, which is the main drawback of this method.  The 

requirements of the SQP for achieving a locally optimal solution in this work are the 

strong assumptions of cost or objective functions, discretization point, and initial guess 

(minimized value of velocity variances).  Otherwise, the SOC of the battery is highly con-

sumed according to the compared results in this work.  However, the SQP still has some 

minor problems such as discontinuous numerical processes that are caused by look -up 

tables, and the solution can be trapped in a local minimum.  Therefore, for better perfor-

mance of numerical optimisation methods, a derivative -free optimisation method that can 

find the global optimisation solution with respect to several different objectives, could be 

applied. 

The derivative -free and stochastic search methods outperform the derivative -based 

methods in terms of searching global optimal solution within the specified design space. 

These methods find an optimal solution by iteration instead of depending on the deriva-

tive and typically applied to solve a number of complicated engineering problems that are 

nonlinear, multimodal, and non -convex objective functions [57].  Because of their global 

optimality and robustness, these methods are suitable for optimal control problems of EVs 

as described in  [57], [58], [59,60].  The methods which are classified under this category 

and applied to EVs are, for example, genetic algorithms (GAs), particle swarm optimisa-

tion (PSO), and simulated annealing (SA).   

 Jain et al. [61]  applied an exclusive non -dominated sorting genetic algorithm 

(NSGA -II) to find the optimal solution of an FC/battery/SC hybrid vehicle.  The NSGA -II 

provides the ability to optimise 8 variables to receive 2 minimised global solutions; (1) fuel 

economy and (2) fuel cell and battery cost.  The simulation result of the vehicle running 

with given driving cycle shows that both objectives can be achieved, especially fuel econ-

omy is greatly improved.  However, the best solutions in this work are not only dependent 
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on the great population size but also on several generations, and this is the main disad-

vantage of the GAs that requires high performance of processor for a proper convergence 

processing period.   In addition, the solutions are well suited to the driving cycle tested 

only, the inherent characteristic of the offline optimisation. 

The PSO concept started as a simulation of simple community systems such as flocks, 

fish, or birds.  A PSO system begins with an initial population of random individuals, 

indicating solutions of a problem, then assigning the random velocities.  Ren et al. [58] 

proposed a mutual PSO -wavelet -transform based power management for PEMFC hybrid 

EVs which comprising of a PEMFC, lithium -ion batteries, and SC as the HESS.  To decou-

ple the high frequency of load power, the wavelet transform is utilised, and this power is 

maintained by SC for extending the battery and fuel cell lifetime.  The PSO is implemented 

to optimise the parameters of the PID controller.  Simulation results show that the pro-

posed method can separate the high-power frequency for supplying SC while the battery 

and FC supply to the medium and low -frequency power respectively.  However, the dis-

advantages of the PSO relies on the selection of the constants in the updating velocity and 

initial random population and easy to get trapped in local optimal solution [36] . 

SA is the method for searching the global optimal solutions without covering entire 

design space.  It has the processing time faster than neural network technique and genetic 

algorithm in finding a quasi -optimal solution.  However, the performance of SA depends 

on tuning parameters [36].  Chen et al. [62]  used simulated annealing method and quad-

ratic programming to find the optimal battery power supplied in a series plug -in hybrid 

EV by solving the quadratic equation of fuel consumption rate.  The SA method is utilised 

to decide the engine on -off based on battery power, vehicle speed and drive power.  For 

the period of iteration, the interior point method is used to solve the proposed quadratic 

programming problem to decide the optimal battery powers.  The simulation results run 

in the program namely Autonomie, which is developed by Argonne National Laboratory, 

demonstrate that the proposed method can reduce fuel consumption with a smooth grad-

ual decrease of battery SOC, thus the battery lifetime could be extended. 

5.1.1.1. Dynamic optimisation method 

Dynamic programming is an optimisation method which has the ability to obtain a 

global optimal solution of power control in EVs for a specified time horizon of driving 

cycle if it is known in advance.  It finds the optimal solution for nonlinear dynamic sys-

tems.  The dynamic programming method extracts the dynamic optimisation problem 

into many groups of the problem by discretizing and calculating backwards from the final 

state to the initial state (prior knowledge), for establishing a cost -to -go function at every 

sampling time.  The main disadvantage of dynamic programming is the extremely com-

plicated processing of quantization and interpolation, which necessitates the use of high-

performance computers. The global optimization energy management control strategy re-

quires the completely prior knowledge of driving cycle while in real world driving, this is 

not possible. However, it is possible to apply this method in real -time by recognizing and 

classifying the driving pattern together with the use of rule -based energy management 

control strategies [36], [63].  

5.2.2. Real-time optimisation energy management strategy 

As aforesaid, the global optimisation control strategies are not suitable and viable for 

real-time control implementation.  To achieve the real-time energy management control 

strategy, the instantaneous cost function must be defined by considering the variations of 

electrical energy consumption compared to fossil fuel energy consumption. As a result, 

the real-time optimisation control technique requires less computer speed and memory to 

implement. Neural networks and model predictive control approaches are well-known 

and commonly used technologies for EV applications. Recently, the reinforcement learn-

ing (RL) technique has become prominent in the regulation of an EV's energy system. 

5.2.2.1. Neural network control strategy 
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The neural network is a human brain emulated control system that finds the solution 

using reason judgment based on the qualitative and quantitative of the system input in-

formation.  This control method is considered an intelligent control system, and it is suit-

able for a nonlinear complex system.  Because of this characteristic, the neural network is 

widely used in EVs by many researchers.  Although this technique does not need exact 

powertrain models, creating and updating a comprehensive database for system learning 

is difficult and time-consuming.  In addition, structure sizes of the database directly affect 

the computation time and performance of the controller.  Moreno et al. [17] proposed the 

use of optimal neural network control for SC that is hybridised with the battery in an EV.  

The battery was considered as a passive element whereby its current was controlled indi-

rectly by observing the load current and controlling of SC current instead.  The dynamic 

equation of battery and SC energy are state variables of the system, and they were mini-

mised in the optimisation process by the gradient method.  The method for solving the 

dynamic equations of the system is to perturb the variable of control system for every 

single iteration.  In this manner, the physical reaction occurred in the optimisation process 

can be noticed at each single time step.  The simulation results show that as the SC current 

injected to the load, and the battery current is significantly reduced.  This can save battery 

energy consumption by 28.7     % compared to the case of the battery alone EV.  This is due 

to the SC’s high receptive performance to absorb the whole regenerative current from the 

vehicle kinetic energy.  However, the energy inside SC has not been utilised effectively 

because of the improper calculation of SC capacity. 

Ortúzar et al. [16] implemented neural networks to control SC as an auxiliary energy 

source in a battery EV, Chevrolet mini truck.  The control algorithm made of two heuristic 

rules; the first rule states that the energy content in the SC must be inverted to the vehicle 

speed.  Therefore, at the maximum speed, the stored energy inside SC should be low and 

vice versa.  The second rule is the limits of SC current that extracted from the batteries.  

These current limits change automatically when the battery is fully charged to avoid over-

voltage during regenerative braking.  Because the first rule is complementary to the sec-

ond rule, the second rule was developed by using optimisation tools after that the first 

rule is derived.  The efficient SC currents are evaluated using optimal control techniques, 

then numerous sets of the most efficient current drawn from SC supplying to the load are 

used for training the neural network.  However, varieties of SC currents result in varieties 

of battery currents; therefore, the most efficient set of SC currents must be found within 

the allowable operating area of SC’s SOC.  Tests are carried out under four different con-

ditions: (1) battery alone without regenerative, (2) battery alone with regenerative, (3) bat-

tery with SC using rule -based control, and (4) battery with SC using optimal -based neural 

network control strategy. The results show that the main benefits of the proposed strategy 

are energy saving, the lower battery voltage swing, and no regenerative currents return to 

the battery.  The neural network control strategy increases the energy efficiency of the 

system and protects the battery from damage.  Moreover, in the economic perspective, it 

is possible to combine SC in the battery EV where the cost is higher than 8.3% compared 

to the pure battery (lead-acid) EV.  However, if the main energy source is fuel cell and 

combined with SC, the total cost will be dramatically decreased by 33.7% compared to the 

pure battery (lithium-ion) EV. 

Samanta et al. [64]  applied PSO and GA as training algorithms to train radial basis 

function neural network (RBFNN) namely GA -trained radial basis function (GRBF) and 

PSO -trained radial basis function (PRBF) for the energy management control strategy 

used in a hybrid EV.  Because of the artificial neural network (ANN) control strategy has 

the limitations in terms of large complication and traps in local optimal solution, the radial 

basis function (RBF) network control strategies which process on the single hidden layer 

are implemented to find a global optimal solution.  Nevertheless, there are still some prob-

lems building RBFNNs.  In GRBF and PRBF, GA and PSO are used to find the central of 

the hidden neurones, extent, and bias parameters by minimising the mean square error 

(MSE) of the desired outputs and actual outputs.  The verification of the PRBF and GRBF 

approach was proved by simulation of a commercial hybrid EV running in New European 
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Driving Cycle compared to the other conventional artificial neural network control strat-

egies. The simulation result demonstrates that PRBF consumes the lowest energy, how-

ever, it takes the longest runtime to acquire a solution, which is the disadvantage of the 

optimisation technique. 

5.2.2.2. Model predictive control strategy  

The model predictive control strategy is a well-known control strategy that has been 

used in industry to cope with multivariable constrained of the control system problems. 

This control normally consists of three steps.  Firstly, minimise the cost function that sub-

jects to the constraints in predicted time horizon optimally.  Secondly, implement the op-

timal solution to the physical plant.  Lastly, move the entire predicted horizon one step 

forward and repeat step 1 [36].  Unlike dynamic programming, model predictive control 

is a time receding horizon control strategy that works in real-time.  It has the potential to 

decrease computational load and can be implemented in a real EV.  Since it has the char-

acteristic of receding horizon in nature, the model predictive control strategy can adapt to 

the differences of propulsion load profiles in driving cycles.   Nonetheless, the upcoming 

driving cycle information must be known in advance by predicting or recognising.  Based 

on its orientation characteristic, model predictive control can be categorised as linear time-

varying control and nonlinear control.  Thus, the linearization of nonlinear systems and 

constraints is used where it can reduce computational processing.  However, the system 

model error that is due to the linearization is the obstacle for the vehicle to enhance energy 

saving [65]. Since model predictive has the capability to predict torque demand, it can be 

categorised into two subcategories: (1) model predictive control based on navigation tech-

nology, and (2) model predictive control based on a mathematical prediction model.  The 

optimisation performance of the former case depends on the accuracy of the road infor-

mation received from a global positioning system (GPS) or vehicle sensors.  The quality, 

reliability, and stability of GPS system and the peripheral vehicle sensor equipment are 

the keys to assure real -time control system performance where their cost is very high.  To 

solve these problems, the model predictive control based on the mathematical model has 

been proposed and it drew the attention of relevant researchers [66] . 

5.1.1.1. Reinforcement learning control strategy 

For the real-time EMS of the BHEV (battery/fuel cell/SC), Wang et al. [67] developed 

a deep reinforcement learning control strategy. The amount of training acquired by the 

RL-based EMS influences its performance; the more training received, the more controlled 

the supplementary power source is. Furthermore, the RL-based technique still needs a 

thorough understanding of the driving cycle, and the environment may be different from 

that of the training scheme. The simulation results in this paper show that the method can 

enhance driving range while decreasing power source life loss. However, the converter's 

mass may restrict the driving range, raising concerns regarding energy savings. Without 

validating the same cycles, comparing the findings to the real-time rule-based EMS at the 

small or actual scale might be challenging. In the actual world, rule-based EMS remains a 

strong assumption for many types of driving cycles. Table 2 summarizes the features of 

several EMSs. The bold letters emphasize recent work by three EMSs that are still being 

evaluated for EV applications. 

Table 2. Features of energy management strategies of HESS for EV applications. 

Paper EMS Control structure Main Contributions  Validation Limitations Year 

[15–
17,41,45,4

6] Rule-based; Load 

follower  

SC converter for current 
control within band-

width 

• Simple real-time application 

• Reduce peak current of battery 

• Driving range and battery life 

extension 

• Economic viability 

Real-world applica-

tion  

• SC size calculation 

• Current bandwidth 

causes jittering. 
  

2000-

2010 

[42,67,68] 

SC converter for current 

control based on energy 
and power-SC converter 

• Segregation mode of power flow 

control 

• DC bus voltage stiffness 

Experimental valida-

tion 

• SC size calculation 

• Complex of control  

2006-

2009 
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• Energy economy 

and driving validation 

• Real-vehicle experi-

ment   

[29]  
SC converter for voltage 

and current control 

• DC bus voltage stiffness 

• Battery support start up  

Experimental valida-

tion 

• SC size calculation 

• Real-vehicle experi-

ment   

2011 

[14] 

SC converter for power 

control based on vehicle 

dynamic 

• Reduction of battery peak power  

• Enhance driving range  
Simulation 

• Impracticability of 

recharging energy for SC 

• Real-vehicle experi-

ment   

2015 

[48] 

SC converter for cur-

rent control based on 

vehicle dynamic 

• SC sizing calculation 

• Reduction of battery power 

and energy consumption 

• Simple in control and struc-

ture 

Simulation and lab-

scale experiment 
Real-vehicle experiement   2022 

[8] 
Rule-based; power 

split 

SC converter for power 

control based on vehicle 

kinetic energy 

• Reduce battery current 

• Reduce life cycle cost of power 

source by HESS 

Simulation 

• Experimental valida-

tion  

• Real-vehicle experi-

ment   

2014 

[26]  
Rule-based; adap-

tive power split 

SC converter for curent 

and voltage control 
• Less complex of SC control ref-

erence generation 
Real-time simulation 

Slow control response causes 
inefficient use of the battery 

and SC. 

2019 

[49] 
Rule-based; 

power split using 

Kalman filter 

Battery and SC con-

verter for SOC control 

• Reduce battery energy con-

sumption  

• Enhance battery health 

Real-vehicle experi-

ment 

• SC size calculation 

• Complex of con-

trol and structure 

• Mass of 2 convert-

ers 

2022 

[50] 

Rule-based; con-
ventional fuzzy 

logic  

 

Battery and SC con-

verter for power control 

• improve energy efficiency  

• extending driving range 

Simulation in ADVI-

SOR 2002 

• Experimental vali-

dation 

• Real-vehicle experi-

ment  

• Mass of 2 convert-

ers  

2010 

[52] 

Battery and SC con-

verter for energy and 

power control 

• Battery and SC power control 

• DC bus voltage stiffness even in 

step load 

 

Simulation and ex-
periment 

• Complex and com-

puter burden 

• Real-vehicle experi-

ment  

• Mass of 2 convert-

ers  

2011 

[53] 
Rule-based; fuzzy 

sliding mode  

Battery and SC con-

verter for SOC control 

• Improvement in energy saving 

• Faster response 

• More reliable performances 

Micro EV experiment 

• SC sizing calcula-

tion 

• Mass of 2 convert-

ers 

2007 

[54] 
Rule-based harr-

wavelet fuzzy logic  

Battery and SC con-

verter for power control 

• Medium and High- frequency 

power splitting 

• Improve energy efficiency 

 

Tramway experiment 

• Optimal SOC of SC  

• Mass of 2 convert-

ers 

2015 

[56] 

Off-line optimiza-

tion; sequential 
quadratic program-

ming 

Minimised battery’s 

SOC and velocity varia-
tion 

 

• extending driving range Simulation 

• Discontinuous nu-

merical processes 

• Real-vehicle experi-

ment   

2014 

[61] 

Off-line optimiza-

tion; non-domi-

nated sorting ge-

netic algorithm 

Minimised fuel econ-
omy and cost 

 

• fuel economy is greatly im-

proved 
Simulation 

• Experimental vali-

dation 

• Real-vehicle experi-

ment   

2009 

[58] 

Off-line optimiza-

tion; PSO-wavelet -
transform 

Estimation of battery 

and SC SOC and opti-
mization of PID param-

eters 

•  Medium and High- frequency 

power splitting 

 

Simulation 

• Trap in local opti-

mal solution 

• Real-vehicle experi-

ment   

2014 

[62] 

Off-line optimiza-

tion; Simulated an-
nealing 

Optimal battery power 

• reduce fuel consumption  

• Smooth gradual decrease of bat-

tery SOC 

Simulation in Auton-

omie 

• Knowing of driving 

conditions and experimental 

validation 

• Real-vehicle experi-

ment   

2015 

[63] 
Off-line optimiza-
tion; dynamic pro-

gramming 

optimal power distribu-

tion  
• Energy efficiency improvement Simulation 

• prior knowledge of 

driving cycle 

• Real-vehicle experi-

ment   

2015 

[15],[69] 

Real-time optimi-

zation; neural net-
work 

SC converter for current 

control 

• Reduce battery power and en-

ergy consumption 

• Saving regenerative braking en-

ergy 

Real-vehicle ex-

perimet, real-time ex-
periment 

• SC size calculation 

• Complex of control  

 

2010, 

2016 
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[66],[70] 
Real-time optimi-
zation; model pre-

dictive 

Battery and SC con-

verter for SOC control 

• Reduce energy loss of battery   

• Extend battery life 
Simulation 

• SC size calculation 

• Complex of control  

• Real-vehicle experi-

ment   

• Mass of 2 convert-

ers 

2010, 

2020 

[71] 

Real-time optimi-

zation; deep-rein-

forcement learn-

ing 

Fuel cell/battery/SC 

converter 
• Extend sources life span 

• Driving range enhancement 
 Simulation 

• Complex of con-

trol  

• Real-vehicle ex-

periment  

• Mass of 3 convert-

ers  

2022 

 

6. Discussion on major finding of energy management strategies 

Rule -based energy management strategy and optimization -based energy manage-

ment control strategy have their own characteristics and applications.  Rule -based energy 

management control strategy is the control strategy that has been widely used by com-

mercial vehicle makers due to simplicity and feasibility, in terms of implementation, 

which is not possible with optimization-based solutions.  Therefore, the optimization -

based energy management control strategy is proposed to overcome the drawbacks found 

in the rule-based energy management control strategy by means of optimisation control 

approach.  The optimization-based energy management control strategy can find a global 

optimal solution; however, its disadvantages are the requirement of high computer per-

formance and the future knowledge of the driving cycle.  The compromised solution 

among the two-prior mentioned strategy is the real-time optimisation. The real-time opti-

misation energy management control strategy is developed and proposed by many re-

searchers for years.  It is a combination of the advantages gained from rule-based and 

optimization-based energy management control strategies. It is based on finding a sub-

optimal solution that improves the performance of the rule-based energy management 

control strategy by using future road information supplied by the GPS and vehicle sen-

sors. However, the global optimal solution cannot be assured and high-performance pro-

cessors, as well as high precision road information, are required. Real-time optimisation 

energy management control strategy for hybrid energy sources is still under developing 

stages, and not ready for commercialization yet.  

7. Conclusions 

The energy storage for electric vehicles is one of the most critical components in com-

paring the performance of electric vehicles to traditional gas vehicles. This paper examines 

the effectiveness of HESS of battery and supercapacitor to overcome the obstacles that 

found in pure battery EV such as battery life degradation and power decreasing by the 

increased internal resistance and temperature during years of use. The conclusions of sig-

nificance of research are as follows. 

• The finding declared the significance of HESS for EV in terms of performance, cycle 

life, and controllability via DC-DC power converters among literatures and scoring 

for a suitable configuration for applications. 

• A review on non-isolated half bridge bi-directional DC-DC converter is proposed for 

smooth operation based on the limitations of low weight, low cost, and low loss with 

good dependability.  

• The evaluation of the energy management strategies where we found the rule-based 

real-time control is an acceptable solution for vehicle manufacturing. However, the 

performance of real-time optimization strategy is acknowledged and has a good pro-

spect unless th economy of scale is established. 
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