
Article

Not peer-reviewed version

Constructing Optimal Designs for

Order-of-Addition Experiments Using a

Hybrid Algorithm

Dongying Wang and Sumin Wang

*

Posted Date: 31 May 2023

doi: 10.20944/preprints202304.1166.v2

Keywords: Pairwise-order model; D-optimal; A-optimal; M.S.-optimal; particle swarm optimization; Fedorov

exchange algorithm

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2683872
https://sciprofiles.com/profile/2917975

Article

Constructing Optimal Designs for Order-of-Addition
Experiments Using a Hybrid Algorithm

Dongying Wang 1, Sumin Wang 2,*
1 School of Statistics, Jilin University of Finance and Economics, Changchun, Jilin 130117, China;

wangdy798@nenu.edu.cn
2 Center for Combinatorics, LPMC & KLMDASR, Nankai University, Tianjin 300071, China;

wangsm088@nankai.edu.cn

* Correspondence: wangsm088@nankai.edu.cn

Abstract: For order-of-addition experiments, the response is affected by the addition order of the

experimental materials. Consequently, the main interest focuses on creating a predictive model and

an optimal design for optimizing the response. Van Nostrand (1995) proposed the pairwise-order

(PWO) model for detecting PWO effects. Under the PWO model, the full PWO design is optimal

under various criteria but is often unaffordable because of the large run size. In this paper, we

consider the D-, A- and M.S.-optimal fractional PWO designs. We first present some results on

information matrices. Then, a flexible and efficient algorithm is given for generating these optimal

PWO designs. Numerical simulation shows that the generated design has an appealing efficiency in

comparison with the full PWO design, though with only a small fraction of runs. Several comparisons

with existing designs illustrate that the generated designs achieve better efficiencies, and the best

PWO designs and some selected 100% efficient PWO designs generated by the new algorithm are

reported.

Keywords: pairwise-order model; D-optimal; A-optimal; M.S.-optimal; particle swarm optimization;

Fedorov exchange algorithm

1. Introduction

During the past decades, order-of-addition (OofA) experiments are widely applied to

biochemistry(Olsen et al. 1994), foot industries(Karim, Mccormick, and Kappagoda 2000), as well as

chemical-related areas(Jourdain et al. 2009). In those mentioned experiments, several components are

added into an apparatus sequentially rather than simultaneously, and different addition sequences of

reactants yield different responses. However, as the number of components increases, the sample space

suffers from a combinatorial explosion, and performing full design becomes unfeasible. Accordingly,

our goal is to model for an OofA experiment and construct an informative and economical fractional

design.

For the objective of optimizing and predicting the response, several statistical models are created

for the OofA experiment: Van Nostrand (1995), Voelkel (2019), Peng, Mukerjee, and Lin (2019) proposed

a PWO model with diminishing effects for pairwise factors; Mee (2020) added PWO factor interactions

to account for sequencing effects not accounted for by pairwise main effects alone; Yang, Sun, and Xu

(2020) proposed a component-position (CP) model for order-of-addition using categorical explanatory

variables. In this article, we only focus on the first-order PWO model. However, the PWO model

is also a regression model. Then, a family of criteria can be applied to find optimal designs under

the PWO model, such as D-, A- and M.S.-optimal designs. The optimality proof indicates that a full

PWO design with m! distinct permutations of components is D-, A- and M.S.-optimal, but the run

size is extremely large. Taking m = 10 as an example, there are m! = 3628800 distinct permutations.

Consequently, over three million runs of experiments should be implemented, which is impractical.

Therefore, fractions of full PWO designs with a smaller number of runs are preferable.

Recently, four kinds of fractional PWO designs have been studied. Peng, Mukerjee, and Lin

(2019) introduced a method for constructing optimal PWO designs. This method limits the run size

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/math11112538

2 of 20

to m!/r! (2 ≤ r ≤ m/2), which is also too many for experimenters to afford. For instance, if m = 10,

the method needs at least 30240 runs to be implemented. Yang, Sun, and Xu (2021) and Zhao, Lin,

and Liu (2022) provided construction methods based on an orthogonal array, the resulting designs

are component orthogonal arrays (COAs) and OofA orthogonal arrays (OofA-OAs), in which the run

size is also inflexible. Zhao, Lin, and Liu (2021) provided a minimal-point design with m(m− 1)/2 + 1

runs. The run size is small, but the efficiency is relatively low. However, theoretical constructions of

these fractional PWO designs are highly dependent on run size. Winker, Chen, and Lin (2020) applied

the threshold-accepting algorithm to construct the optimal designs (D-efficiency for application)

based on the pairwise-order (PWO) model and the tapered PWO model, the designs obtained by

threshold-accepting algorithm for 4 ≤ m ≤ 30 with n = m(m− 1)/2+ 1, m(m− 1) + 1, 3m(m− 1)/2+

1, respectively, are provided for practical uses.

This article gives serious consideration to constructing D-, A-, and M.S.-optimal PWO designs.

The main contributions of this article are as follows. First, we construct a new hybrid algorithm for

generating the PWO design, which is flexible with no restriction on run size. Second, D-, A-, and

M.S.-optimal PWO designs can be constructed using the proposed algorithm. Third, the constructed

designs possess high efficiencies compared with the full PWO design, though with a small fraction of

runs. Some optimal PWO designs and fully efficient PWO designs are listed in the tables.

This paper is organized as follows. We first introduce the PWO model in Section 2. Section 3

gives a review of Fedorov’s exchange algorithm for constructing the D-optimal designs. Then, this

algorithm is modified and extended for constructing A- and M.S.-optimal designs. Some theoretical

results on the information matrix and algorithm are also provided in Section 3. In Section 4, based on

the exchange algorithm and particle swarm optimization (PSO) algorithm, a novel hybrid algorithm

is proposed to achieve D-, A- and M.S.-optimal PWO designs. Some numerical results are given in

Section 5. Finally, concluding remarks are provided in Section 6.

2. Model specification

Now, we introduce the Van Nostrand PWO model. Suppose there are m components denoted as

1, . . . , m. Any treatment in the OofA experiment corresponds to a permutation of 1, . . . , m, denoted as

α, and the first-order PWO model can be expressed as

τ(α) = β0 + ∑
1≤j<k≤m

zjk(α)β jk,

where each zjk(α) is a PWO indicator between j and k,

zjk(α) =

{
1 if j precedes k in α,

−1 if k precedes j in α.
(1)

For an n-point PWO design, let Y be the n-dimensional response vector, Z be the design matrix with

(m
2) columns corresponding to PWO indicators z12, z13, . . . , z(m−1)m, and β = (β12, β13, . . . , β(m−1)m)

′,

where ′ denotes the transpose. Then, the first-order PWO model can be written as

Y = 1β0 + Zβ + ǫ, (2)

or

Y = Xβ̃ + ǫ, (3)

where X = (1 Z)n×p with p = (m
2) + 1 is the model matrix, β̃ = (β0, β′)′ represents the parameter of

interest, and the random error ǫ ∼ N(0, σ2 I). Mee (2020) extended the PWO model to the high-order

case. Here, we only consider a first-order PWO model. The proposed algorithms also apply to a

higher-order PWO model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

3 of 20

Furthermore, we refer to M̃ = X′X/n as the information matrix of an n-point PWO design.
Under the PWO model (3), the variance-covariance matrix of the least squares estimator of β is
proportional to M̃. Hence, it is desirable to maximize the matrix M̃ under some criteria. The popular
criteria include the D-criterion det(M̃)1/p, the A-criterion tr(M̃−1), the M.S.-criterion tr(M̃2) (see the
reference Atwood 1969). Note that tr(M̃−1) is interpreted as +∞ for singular X′X. Let X f be the full

PWO design and the corresponding information matrix be M̃ f = X′f X f /n. For clarity, we take m = 3

as an example to illustrate the characteristics of the full PWO design under D-, A- and M.S.-criteria.
The levels of PWO factors in the full PWO design with 3 components are as follows.

Table 1. Full PWO design with 3 components

Run Order-of-Addition z12, z13, z23

1 1 2 3 1, 1, 1

2 1 3 2 1, 1,−1

3 2 1 3 −1, 1, 1

4 2 3 1 −1,−1, 1

5 3 1 2 1,−1,−1

6 3 2 1 −1,−1,−1

From this, we obtain

X f =

1 1 1 1

1 1 1 −1

1 −1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 −1 −1

, M̃ f =

1 0 0 0

0 1 1/3 −1/3

0 1/3 1 1/3

0 −1/3 1/3 1

 ,

and det(M̃ f) = 16/27, tr(M̃−1
f) = 11/2 and tr(M̃2

f) = 14/3.

3. Exchange algorithms for constructing D-, A-, and M.S.-optimal designs

Theoretical constructions on optimal designs are always complicated; hence, computer algorithms

are applied for constructing approximate and exact optimal designs in the literature. The exchange

algorithm is one of the popular computer algorithms for constructing optimal designs for the cases

with the design points being selected from a finite design space. Fedorov (1972) first proposed an

exchange algorithm for generating D-optimal designs. This algorithm chooses n points to include in

the design from a finite set of possible points called candidate points. It starts with nonsingular n-point

designs and then adds and deletes one observation to achieve increases in the determinant. After that,

some improved implementations are proposed based upon Fedorov’s exchange algorithm, such as

the Kiefer round-off algorithm, the Mitchell algorithm, the Wan Schalkwyk algorithm, the combined

Fedorov, the Wynn-Mitchell algorithm, and so on; see the references Mitchell (1992), Nguyen and

Miller (1992).

3.1. The single-point exchange procedure

Consider an n-point design D = {αi}
n
i=1 under model (3), with a corresponding model matrix X =

(x1, . . . , xn)′. If M̃ = X′X/n, then the D-, A- and M.S.-criteria maximize det(M̃)1/p, −tr(M̃−1) and

−tr(M̃2) respectively, which are equivalent to maximizing φ(D) = det(M),−tr(M−1) and −tr(M2)

respectively, where M = X′X = ∑
n
i=1 xix

′
i .

Inspired by Fedorov’s exchange algorithm, we develop a new exchange algorithm for generating

D-, A- and M.S.-optimal designs simultaneously. This algorithm is realized by multiple iterations of

the single-point exchange procedure which works as follows.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

4 of 20

Single-point exchange procedure:

Let X be the model matrix of the original design and M = X′X,

(1) Find a vector x among the vectors of the complementary design such that u(x) is maximum and add x to

the current n-point design;
(2) Find a vector xi among the n + 1 vectors of the current n + 1-point design such that v(xi) is minimum

and remove xi.

When use the single-point exchange procedure for generating the D-, A- and M.S.-optimal

designs, the objective functions are denoted as u∗(x) and v∗(xi) with ∗ = D, A, M.S. and defined as

bellow:

uD(x) = x′M−1x, vD(xi) = x′i M
−1
x xi; (4)

uA(x) =
x′M−2x

1 + x′M−1x
, vA(x) =

x′i M
−2
x xi

1− x′i M
−1
x xi

; (5)

uM.S.(x) = −x′Mx, vM.S.(xi) = −x′i Mxxi; (6)

where M = ∑
n
i=1 xix

′
i is the moment matrix of the current design and M is updated to Mx = M + xx′

when a candidate point from the complementary design is added to the current design.

Here, the complementary design consists of all candidate points from the design space except for

the n points of the current design.

Theorem 1. For D-, A-, and M.S.-criteria which maximize φ(D) = det(M),−tr(M−1) and −tr(M2)

respectively, the design generated by the single-point procedure with u(x) and v(xi) defined as equations (4)-(6)

leads to no decrease in φ(D).

The proof of this theorem uses some matrix theories, and we present it in the appendix. This

result implies that the exchange algorithm will return local D-, A- and M.S.-optimal designs over

multiple iterations of the single-point exchange procedure.

3.2. The technique for avoiding the singularity of the matrix for the exchange algorithm

For generating optimal design using a computer search algorithm, the solution is often trapped

into the local optimal design. Thus random exchange method is always used to avoid this drawback.

For constructing D-, A- and M.S.-optimal designs using a computer search algorithm, a randomly

selected initial design possibly corresponds to a singular moment matrix, and computation problem

then arises. This a significant issue especially for the case with a rather small number of n. Taking

the case with n = (m
2) + 1(m = 4, 5) as an example. Among all (m!

n) options of n-point design, a

large proportion of them correspond to a badly conditioned matrix M. As shown in Figure 1, all the

reciprocal condition numbers are near 0, and the reciprocal condition number below 10−12 is counted

in the first bin of each histogram with a probability exceeding 50%.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

5 of 20

Figure 1. Distributions of the reciprocal condition numbers of matrix M for all PWO designs with

m = 4, n = 7 and 105 randomly selected PWO designs with m = 5, n = 11.

A randomly selected initial design will return a computationally singular matrix M with a large

probability. For this reason, we address the issue of avoiding singularities of M and Mx in the

single-point exchange algorithm. Two types of techniques are provided regarding this issue. The first

technique is to start with a nonsingular design instead of starting with a randomly selected design.

Remark 1. If the initial design has a nonsingular moment matrix, then by Mx = |M|(1 + x′M−1x) and

Mx − xix
′
i = |Mx|(1− x′i M

−1
x xi), where x′i M

−1
x xi ≤ x′M−1

x x = x′M−1x
1+x′M−1x

< 1, both Mx and Mx − xix
′
i

are nonsingular matrices during each iteration of the single-point exchange algorithm which is performed

recursively.

This technique is practical since a nonsingular initial design with n points can be obtained by

appending n− (m
2)− 1 randomly selected distinct points to the minimal-point design provided in

Zhao, Lin, and Liu (2021). However, in the hybrid algorithm, the design is updated via both the

single-point exchange procedure and some random exchange procedure.

The second technique is inspired by the DETMAX algorithm in Mitchell (2000), a specified

nonsingular matrix multiplied by a very small positive parameter θ is added to matrix M or Mx.

Taking M as an example, we do not consider M−1 directly, but instead attempt to calculate (M +

θ(X′f X f /N f))
−1, where N f is the number of candidate points, and X f is the model matrix of the

full design composed of all N f candidate points. Then, one technique that we can use to avoid the

singularity of the matrix is as follows.

Remark 2. To avoid singularity, x′(M + θ(X′f X f /N f))
−1x and x′i(Mx + θ(X′f X f /N f))

−1xi are maximized

and minimized in the single-point exchange algorithm with u(x) and v(xi) being defined as equations (4) and

(5). The degree of error involved in considering these alternative matrices is less than θ.

To appreciate the degree of error involved in considering the alternative matrix, one can make the

following calculations. Let

f (θ) = x′(M + θ(X′f X f /N f))
−1x.

Then, apply the technique in Mitchell (2000) to extend f (θ) in a Taylor series about θ = 0 to obtain the

linear approximation:

f (θ) ∼= f (0) + θ

(
d f (θ)

dθ

)∣∣∣∣
θ=0

= x′M−1x− θ
(
x′(M + θ(X′f X f /N f))

−1(X′f X f)/N f (M + θ(X′f X f /N f))
−1x

)∣∣
θ=0

= x′M−1x− θx′M−1X′f X f M−1x/N f .

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

6 of 20

For small θ, the error in considering x′(M + θ(X′f X f /N f))
−1x instead of x′M−1x is nearly

θx′M−1X′f X f M−1x/N f . In the proposed algorithm, the value of θ is set at 0.005, which is found

to be quite satisfactory in simulations. This choice based on the run size of the full PWO is sufficiently

large such that x′M−1X′f X f M−1x/N f < 1, and the error will be less than 0.5%.

Note that in this paper, we adopt the technique described in Remark 2 to avoid the singularity of

the matrix.

3.3. The performance of the exchange algorithm

Now we discuss the performance of the exchange algorithm. The single-point exchange procedure

is performed recursively, and the D-, A- and M.S.-efficiencies of the generated designs are calculated.

For brevity, the cases with m = 4, 5, 6, 7 components are considered and the run sizes are fixed at

n = m(m − 1). The following Figure 2 shows that the efficiencies are deeply increased in former

iterations but then stabilized at slows on one value as the number of iterations increased. Therefore,

the exchange algorithm yields locally optimal designs that approximate a global optimal design in a

reasonable number of iterations.

Figure 2. D-, A- and M.S.-efficiencies of PWO designs generated initial design, and each graph contains

four lines corresponding to PWO designs with m = 4, 5, 6, 7 components and n = m(m − 1) runs,

respectively.

To illustrate the performance of the exchange algorithm for constructing D-, A- and M.S.-optimal

designs, 1000 designs are generated by the exchange algorithm concerning each pair of the objective

functions defined in equations (4)-(6). The initial designs are randomly selected. We list the minimum,

average, and maximum efficiencies of the generated designs in Table 2. The generated designs are

largely depended on the initial designs, most of them are locally optimal designs and some of them

even have lower efficiencies than 80%, see the numbers in bold font. Thus, in the next section, we

proposed a more robust hybrid algorithm that combines the exchange algorithm and the particle swarm

algorithm to produce approximate optimal designs with higher efficiency than designs generated by

the exchange algorithm.

Table 2. Efficiencies of 1000 designs generated by the exchange algorithm

D-efficiency A-efficiency M.S.-efficiency

m Runs Min Ave Max Min Ave Max Min Ave Max

4 12 97.4% 99.8% 100% 32.1% 65.3% 92.4% 76.3% 97.7% 100%

5 20 94.2% 96.0% 97.0% 19.5% 51.7% 73.9% 74.4% 96.5% 98.2%

6 30 93.8% 95.8% 97.1% 19.1% 48.0% 69.5% 95.2% 96.8% 98.1%

7 42 93.7% 95.3% 96.7% 33.4% 47.7% 63.4% 95.9% 97.1% 98.0%

4. Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm combining
the exchange algorithm and PSO algorithm

Before introducing the new algorithm, we add some details of the PSO algorithm. PSO is a

population-based stochastic algorithm for optimization. Each population member is described as a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

7 of 20

particle that moves around a search space testing new criterion values. All particles survive from the

beginning of a trial until the end, and their interactions result in iterative improvement of the quality

of the problem solutions over time. The most common type of implementation defines the particles’

behavior as adjusting toward each of its personal best position(local-best) and global-best position so

that its trajectory shifts to new regions of the search space and the particles gradually cluster around

the optima. To generate optimal experimental designs, a particularly challenging task is to redefine the

particle designs’ movement toward its personal local-best design and global-best design. A review

of some recent applications of PSO and its variants to tackle various types of efficient experimental

design is Chen, Chen, and Wang (2022). Since finding optimal PWO designs for the OofA experiment

is to solve a discrete optimization problem, we utilize an update procedure for the particle designs

that is similar to the modified PSO algorithms in Chen et al. (2014) and Phoa et al. (2016). Each particle

design relates to its personal local-best design which is derived by exchange procedures starting from

itself. During each iteration, the current particle design is adjusted toward its personal local-best

design as well as the global-best design by exchanging points with each other.

Now, we introduce a new hybrid algorithm called Ex-PSO algorithm, which combines the

single-point exchange algorithm and PSO algorithm for generating D-, A-, and M.S.-optimal designs.

The single-point exchange algorithm is used for generating the local-best design concerning each

particle design. The PSO algorithm ensures the particle designs gradually cluster around the optimal

PWO design. To avoid singularity, the technique proposed in Remark 2 is used; hence, a parameter θ

with a small value is involved in this algorithm.

Since the Ex-PSO algorithm involves a set of parameters denoted as s, tex, tpso, θ, c1, c2, we

also refer to it as Ex-PSO(m, n; s, tex, tpso, θ, c1, c2) for generating optimal PWO design with m

components and n runs. For clarity, we create a programming chart to illustrate the steps of

Ex-PSO(m, n; s, tex, tpso, θ, c1, c2). Further, we explain the optimization process and the uses of these

parameters as follows. Denote Lks and G as the local-best designs and the global-best design

respectively. These designs are updated during each iteration of the Ex-PSO algorithm. Each local-best

design Lk is derived from the current particle design Dk via a fixed number of iterations of the

single-point exchange procedure, denoted as tex. In addition, the global-best design G is the optimal

local-best design that maximizes φ(Lk). And the number of iterations of the PSO algorithm is denoted

as tpso. Meanwhile, two parameters are used to control the PSO behavior of the Ex-PSO algorithm: c1

and c2, which account for the velocities at which each current design drifts toward the corresponding

local-best and global-best design. More specifically, during each iteration of the PSO algorithm, we

randomly exchange c1 points from the difference set Dk \ Lk with c1 points from Lk \ Dk and then

randomly exchange c2 points from the difference set Dk \ G with c2 points from G \Dk. This procedure

corresponds to the “Update Dk by PSO" box in the programming chart.

Finally, we note that the time complexity for each iteration is O(n3). However, the search

procedure of PSO also relates to the full design which is a combinatorial large set with m! points,

so Ex-PSO algorithm may be time-consuming for large m. The Ex-PSO algorithm implemented

in MATLAB running on Intel(R) Core(TM) i7-8550U GHz with 8 GB Memory. Take the case of

m = 6, n = 16 for example, it takes 30.42 seconds for running Ex-PSO(6, 16; 10, 20, 100, 0.005, 1, 1).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

8 of 20

Ex-PSO Algorithm: Ex-PSO(m, n; s, tex, tpso, θ, c1, c2)

Start

Randomly initialize Dk , k = 1, . . . , s

Calculate φ(Dk), k = 1, . . . , s

Initial Lk ← Dk , k = 1, . . . , s and G ← argmax1≤k≤sφ(Lk)

Update Dk by PSO

Update each Dk by single-point exchange procedure

Enough iterations?

Calculate φ(Dk), k = 1, . . . , s

φ(Dk) > φ(Lk)?

φ(Lk) > φ(G)?

Update Lk by Dk

Enough iterations?

Update G by Lk

Return G

Stop

N

Y

Y

N

Y

N

N

Y

5. Numerical simulations

In this section, we illustrate the performances of the obtained designs constructed by the Ex-PSO

algorithm. For brevity, the generated designs are denoted as Ex-PSO-D, Ex-PSO-A and Ex-PSO-M.S.

designs that respectively correspond to the objective functions (4)-(6) which are considered in the

exchange algorithm. Numerical simulations show that these designs are powerful for fitting PWO

models in terms of the D-, A- and M.S.-efficiencies. The efficiencies are derived from comparison

with the full PWO design since the information matrix of the full PWO design has been proven to

be universally optimal. Therefore, we have the D-, A- and M.S.-efficiencies that calculate
det(M̃)1/p

det(M̃ f)
1/p ,

tr(M̃−1
f)

tr(M̃−1)
and

tr(M̃2
f)

tr(M̃2)
respectively, where M̃ and M̃ f are the information matrices of the obtained design

and full PWO design respectively, and p is the number of the columns of the model matrix X.

The number of PSO particles (s), the maximum iteration counts of the single-point exchange

algorithm and PSO algorithm (tex, tpso), and the numbers of pairs of exchanging points with which

each particle design drifts toward the local-best and global-best design (c1, c2), control the optimization

process of Ex-PSO algorithm. It seems reasonable that these parameters should be increased for large n

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

9 of 20

and m. In our test of searching for optimal PWO designs with m = 4, 5, 6, 7 components, we recommend

that these parameters set at s = 10, tex = 20, tpso = 100, c1 = c2 = 1. Furthermore, we recommend

setting the maximum iteration counts of the exchange algorithm and PSO at tex = 20 and tpso = 100,

respectively, which achieves high computational efficiency. Further, to demonstrate the performance

of such a set of parameters, we randomly run the algorithm Ex-PSO(m, n; 10, 20, 100, 0.005, 1, 1) for

one hundred times for generating the Ex-PSO-A designs, because the exchange algorithm seems

inefficient under A-optimal criterion, as shown in Table 2. Therefore, one hundred Ex-PSO-A designs

with m = 4, 5, 6, 7 components and n = m(m− 1) runs are generated, and Figure 3 highlights that all

Ex-PSO-A designs reach at least 93% of the efficiency of the full PWO design. For the cases with large

m, the settings on maximum iterations, tex and tpso may not be enough, but the Ex-PSO algorithm still

returns approximate optimal PWO designs; see Tables 4-6 in the following part.

Figure 3. Boxplot of the A-efficiencies for the Ex-PSO-A designs with m = 4, 5, 6, 7 components and

n = m(m− 1) generated by one hundred runs of Ex-PSO(m, n; 10, 20, 100, 0.005, 1, 1).

To illustrate the advantages of the obtained designs for fitting PWO model, we compare the

Ex-PSO-D designs for 4 components and 12 runs with the optimal PWO design in Peng, Mukerjee, and

Lin (2019).

Example 1. The following is a Ex-PSO-D design with 4 components and 12 runs generated by

Ex-PSO(4, 12; 10, 20, 100, 0.005, 1, 1).

Table 3. An Ex-PSO-D design with 4 components and 12 runs

Run Order-of-Addition z12, z13, z14, z23, z24, z34

1 1 4 2 3 1, 1, 1, 1,−1,−1

2 1 2 4 3 1, 1, 1, 1, 1,−1

3 1 3 2 4 1, 1, 1,−1, 1, 1

4 2 1 3 4 −1, 1, 1, 1, 1, 1

5 2 4 3 1 −1,−1,−1, 1, 1,−1

6 2 3 4 1 −1,−1,−1, 1, 1, 1

7 3 1 4 2 1,−1, 1,−1,−1, 1

8 3 2 1 4 −1,−1, 1,−1, 1, 1

9 3 4 1 2 1,−1,−1,−1,−1, 1

10 4 1 3 2 1, 1,−1,−1,−1,−1

11 4 2 1 3 −1, 1,−1, 1,−1,−1

12 4 3 2 1 −1,−1,−1,−1,−1,−1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

10 of 20

The information matrix of this design under the first-order PWO model is

M̃ =

1 0 0 0 0 0 0

0 1 1/3 1/3 −1/3 −1/3 0

0 1/3 1 1/3 1/3 0 −1/3

0 1/3 1/3 1 0 1/3 1/3

0 −1/3 1/3 0 1 1/3 −1/3

0 −1/3 0 1/3 1/3 1 1/3

0 0 −1/3 1/3 −1/3 1/3 1

.

If rows are rearranged, this design is the same as the optimal PWO design with 4!/2! runs constructed by Peng,

Mukerjee, and Lin (2019). This design also features projective properties (Voelkel and Gallagher 2019). All 4

subsets of three components correspond to two-times-replicated three-component designs.

Furthermore, for the OofA experiment with 4 components, we generated optimal PWO designs

with 7 to 23 runs using the Ex-PSO algorithm. Figure 4 shows the efficiencies of these designs. All the

obtained designs with n ≥ 12 reach at least 95% efficiency of the full PWO design, though with less

than one-fifth of the runs. Especially for the cases with n = 12, the design attains the same efficiency

as the full PWO design.

Figure 4. Relative efficiencies of Ex-PSO designs with 7 ≤ n ≤ 23 compared with the full PWO design

for the OofA experiment with 4 components.

Furthermore, we compare four types of fractional PWO designs, which are COA, and the

corresponding designs obtained by the threshold-accepting algorithm (Winker, Chen, and Lin 2020),

the Federov’s exchange algorithm (which iteratively optimizes a delta function of the xi and x where

xi is in the design and x is not, see reference to section 3.3 in Fedorov 1972) and the Ex-PSO algorithm,

denoted as Dcoa, Dta, Dex and Dex−pso respectively. Dta is the best result obtained over repeated

runs of the threshold-accepting algorithm with up to 10000000 iterations, Dex is generated by the

optFederov function (implemented in the R library AlgDesign) with nRepeats = 5, and Dex−pso is the

best result obtained over five repeated runs of the Ex-PSO algorithm with tex = 20 and tpso = 100. The

optimal PWO design constructed by Peng, Mukerjee, and Lin (2019) which serves as a benchmark

for evaluating fractional PWO designs is also listed here and denoted as Dpeng. In addition, the new

hybrid algorithm needs an exhaustive search over the design space during the single-point exchange

procedure, and it can be computationally expensive if m is large. Hence, we only report designs

with n = m(m− 1)/2 + 1, m(m− 1), m!/r!(r = ⌊m/2⌋) where 4 ≤ m ≤ 7. Nevertheless, given the

tremendous growth in computational resources available, it is feasible to conduct the Ex-PSO algorithm

for constructing designs with m > 7.

Tables 4-6 exhibit the values of det(M̃)1/p, tr(M̃−1), tr(M̃2), and D-, A- and M.S.-efficiency (in

parentheses) for the corresponding designs. Note that the larger the value of det(M̃)1/p is, the better,

while smaller values of tr(M̃−1) and tr(M̃2) are better. For any number of components, Dmp is not

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

11 of 20

unique and the corresponding tr(M̃−1) or tr(M̃2) is by no means a fixed value. Hence, Dmp is not

listed in Tables 5 and 6. From the tables, we can find that Dex−pso reaches a higher efficiency than the

other types of designs under the PWO model in most cases. Further, we report the best PWO designs

with n = m(m− 1)/2 + 1, m(m− 1) and 4 ≤ m ≤ 7 under the D-, A- and M.S.-optimal criteria in the

supplementary material.

Table 4. Comparison of det(M̃)1/p and D-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 0.6966(89.6%) 0.6966(89.6%) 0.6966(89.6%)

12 0.7773(100%) 0.7064(90.9%) 0.7773(100%) 0.7773(100%) 0.7773(100%)

5 11 - - 0.6379(90.3%) 0.6211(87.9%) 0.6379(90.3%)

20 - 0.6354(89.9%) 0.6855(97.0%) 0.6840(96.8%) 0.6855(97.0%)

60 0.7067(100%) - 0.7067(100%) 0.7061(99.9%) 0.7067(100%)

6 16 - - 0.5778(88.1%) 0.5612(85.6%) 0.6002(91.5%)

30 - 0.5710(87.1%) 0.6344(96.7%) 0.6372(97.2%) 0.6381(97.3%)

120 0.6558(100%) - 0.6552(99.9%) 0.6555(99.95%) 0.6558(100%)

7 22 - - 0.5016(81.2%) 0.5325(86.2%) 0.5409(87.6%)

42 - 0.5800(93.9%) 0.5958(96.4%) 0.5996(97.0%) 0.5998(97.1%)

840 0.6178(100%) - 0.6178(100%) 0.6177(99.99%) 0.6178(100%)

Table 5. Comparison of tr(M̃−1) and A-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 17.5000(67.4%) - 14.8750(79.3%)

12 11.8000(100%)14.5000(81.4%) 11.8000(100%) 11.8000(100%) 11.8000(100%)

5 11 - - 28.2898(74.2%) - 26.4773(79.3%)

20 - 26.0000(80.8%) 22.4550(93.5%) 22.3910(93.8%) 22.3311(94.0%)

60 21.0000(100%) - 21.0337(99.8%) 21.0000(100%) 21.0000(100%)

6 16 - - 46.0558(72.0%) - 40.8428(81.2%)

30 - 45.3736(73.0%) 35.3203(93.8%) 35.0989(94.4%) 35.0144(94.7%)

120 33.1429(100%) - 33.2443(99.7%) 33.2023(99.8%) 33.1721(99.9%)

7 22 - - 76.4729(63.1%) - 72.4088(66.6%)

42 - 57.1177(84.5%) 51.6845(93.4%) 51.0578(94.5%) 51.5024(93.7%)

840 48.2500(100%) - 48.2583(99.98%)48.2738(99.95%) 48.2555(99.99%)

Note: Dex with n = m(m− 1)/2 + 1 is omitted because it reports an error of “singular design"

when running the optFederov function from the AlgDesign package in R.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

12 of 20

Table 6. Comparison of tr(M̃2) and M.S.-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex−pso

4 7 - - 10.4694(92.3%) 10.4694(92.3%)

12 9.6667(100%) 10.3333(93.6%) 9.6667(100%) 9.6667(100%)

5 11 - - 18.5207(95.4%) 18.5207(95.4%)

20 - 19.0000(93.0%) 18.0400(97.9%) 18.0000(98.2%)

60 17.6667(100%) - 17.6667 (100%) 17.6667(100%)

6 16 - - 31.0000(94.6%) 30.9688(94.7%)

30 - 31.3333(93.6%) 29.8756(98.2%) 29.8311(98.3%)

120 29.3333(100%) - 29.3556(99.92%) 29.3733(99.89%)

7 22 - - 47.5702(95.3%) 47.7686(94.9%)

42 - 45.8095(99.0%) 45.9048 (98.8%) 46.1905(98.1%)

840 45.3333(100%) - 45.3349(99.99%) 45.3368(99.99%)

We conclude this section with some numerical results on constructions of fractional PWO designs

which have the same correlation structure as the full PWO design. Since these designs are 100%

efficient under diverse design criteria including the D-, A-, M.S.-optimal criteria, we call them fully

efficient PWO designs. Using the Ex-PSO algorithm, we find the following results.

Remark 3. Removing p(< m) components from a fully efficient PWO design with m components will result

in a fully efficient PWO design with m− p components.

Remark 4. The fully efficient PWO designs exist for the cases (i) m = 4, 5, n = 12k(k ≥ 1); (ii) m = 6,

n = 24k(k ≥ 1); and (iii) m = 7, n = 24.

For saving space, some selected fully efficient PWO designs with minimized runs for m = 4, 5, 6, 7

are exhibited in Table 7, other fully efficient PWO designs and the MATLAB codes for the Ex-PSO

algorithm are available upon request.

Table 7. Selected fully efficient PWO designs for m = 4, 5, 6, 7

m = 4 m = 5 m = 6 m = 7
runs 1-12 runs 13-24 runs 1-12 runs 13-24

1 2 4 3 1 2 3 5 4 1 2 5 4 6 3 4 2 1 3 6 5 1 2 3 7 4 6 5 4 5 2 6 7 1 3
1 3 4 2 1 4 3 5 2 1 2 5 4 6 3 4 2 5 3 6 1 1 5 6 3 2 7 4 4 6 3 7 1 2 5
1 3 2 4 1 5 3 2 4 1 3 4 2 5 6 4 6 3 2 5 1 1 6 5 7 4 2 3 4 7 1 3 6 5 2
2 1 4 3 2 4 3 1 5 1 3 6 2 5 4 5 1 2 4 3 6 1 7 4 3 2 5 6 5 2 4 3 6 1 7
2 3 1 4 2 5 1 4 3 1 4 6 5 2 3 5 4 3 2 1 6 2 5 4 1 7 6 3 6 1 2 4 5 7 3
2 3 4 1 3 1 4 2 5 2 3 4 5 1 6 5 2 1 6 3 4 2 7 6 3 1 5 4 6 4 2 1 3 7 5
3 1 4 2 3 2 4 5 1 2 6 1 5 3 4 5 3 6 2 1 4 3 2 1 6 4 7 5 6 5 1 3 4 7 2
3 2 4 1 3 5 4 2 1 2 6 4 3 1 5 5 6 4 1 2 3 3 2 6 5 7 4 1 6 7 2 3 4 5 1
4 1 2 3 4 2 1 5 3 3 1 2 6 4 5 6 2 1 4 3 5 3 4 1 5 7 2 6 7 4 6 5 3 2 1
4 2 1 3 4 5 1 2 3 3 1 5 6 4 2 6 2 5 3 4 1 3 5 1 4 6 2 7 7 2 1 5 3 4 6
4 3 1 2 5 2 3 1 4 3 5 2 4 6 1 6 3 5 1 4 2 3 5 7 6 2 1 4 7 5 1 2 6 4 3
4 3 2 1 5 4 3 1 2 4 1 5 6 3 2 6 4 5 1 3 2 4 2 5 3 7 1 6 7 5 3 6 4 1 2

6. Concluding Remarks

In this article, we have presented a new hybrid algorithm for searching optimal PWO designs for

OofA experiments. This algorithm starts with a set of randomly selected particle designs. It combines

the single-point exchange algorithm for generating the local-best design related to each particle and

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

13 of 20

the PSO algorithm for clustering the particle designs gradually around the global optimal design.

We have addressed two points for this stochastic optimization technique: (i) the selection of initial

particle designs; and (ii) the definition of the particle designs’ movement toward its personal local-best

or global-best design. As the sample space is a large combinatorial set of m! points, it’s satisfying to

randomly select points for initial designs. And the movement is defined as randomly exchanging

points to adjust the particle design toward the target design. Our generated design has an appealing

efficiency in comparison with the full PWO design, though with only a small fraction of runs. And it

achieves better efficiency compared with the existing designs. Also, we have reported optimal PWO

designs and some selected 100% efficient PWO designs for application.

To illustrate the effectiveness of our model and designs, we provide a real-life OofA experiment.

The data is from the four-drug data in Table 3 of Yang, Sun, and Xu (2021). The first-order PWO model

fits using the data from the fully efficient PWO design with 12 runs(runs {1,2,6,7,10,11,16,18,20,21,22,24}

of four-drug data) as well as the full design with 24 runs (i) with an adjusted R square of 0.93(vs

0.77), (ii) an RMSE of 2.19(vs 3.53) based on 5(vs 17) degrees of freedom. For further comparison,

we consider variable selection to simplify the first-order PWO model. We start with a model with

intercept only and perform stepwise regression with the AIC criterion. By using the data of fully

efficient design, the stepwise regression leads to the following PWO model: y = 44.22− 3.82z23 +

6.02z34 + 2.79z12 − 2.96z14 + 1.37z13, which has an adjusted R square of 0.95, an RMSE of 2.00 with 6

degrees of freedom. When using the data of full design, the stepwise regression leads to the following

PWO model: y = 45.22− 3.91z12 + 3.86z23 − 1.59z13, which has an adjusted R square of 0.79, an RMSE

of 3.43 with 20 degrees of freedom. Thus, the first-order PWO model is sufficient for the four-drug

OofA experiment. Meanwhile, the fully efficient design has an appealing efficiency, though with only a

half run of the full design. However, in some applications, we are persuaded that the first-order PWO

model cannot account for all systematic effects caused by component ordering, thus we shall consider

the second-order PWO model to obtain a lower error. This approach can be referred to Mee (2020).

In addition, from the viewpoint of model robustness, it is interest to examine how our designs

behave under high-order PWO models. From the perspective of model parsimony, we only consider

the second-order PWO model with only a few interactions of two PWO factors sharing a common

component being entertained, and recommend using the fully efficient PWO designs for analysis. We

omit the details to save space but note that, even under such augmented models the fully efficient PWO

designs tend to perform well, particularly under the D-, M.S.-criteria and often under the A-criterion.

For example, the fully efficient design for m = 6, n = 24, has D- , A-, M.S.-efficiencies of at least 90%,

under such augmented model. This allows further flexibility in model selection with a provision

for penalty for the additional parameters that correspond to two-factor interactions. As before, one

remains assured of relatively high design efficiency under the model that one arrives at.

As pointed out by reviewers, our work can be extended using alternation optimization techniques,

such as the memetic optimization algorithm based on local searches(Abbasi-khazaei and Rezvani 2022).

We conclude with the hope that the present endeavor will generate further interest in optimal designs

for OofA experiments and related topics.

Acknowledgements

The authors thank the editor and two referees for their valuable comments and suggestions.

This work was supported by the National Natural Science Foundation of China (grant nos. 11971098,

11971097, 12101258, and 12131001), National Key Research and Development Program of China (No.

2020YFA0714102), and Education Department Science and Technology Project of Jilin Province under

Grant JJKH20220152KJ.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

14 of 20

Appendix A. The proof of Theorem 1

To prove Theorem 1, the following two lemmas are useful.

Lemma A.1 (Nguyen and Miller 1992). For a nonsingular matrix M,

(1) M + xx′ is nonsingular, and (M + xx′)−1 = M−1 −wuu′, where w = 1/(1 + x′M−1x), u = M−1x;
(2) if Mx − xix

′
i is nonsingular, then x′i M

−1xi 6= 1 and (Mx − xix
′
i)
−1 = M−1

x + wiuiu
′
i, where wi =

1/(1− x′i M
−1xi), ui = M−1

x xi.

The proof of this lemma is straightforward according to matrix theory and is thus omitted.

Lemma A.2. Let M be a nonsingular matrix and Mx = M + xx′; we have x′M−1
x x = x′M−1x

1+x′M−1x
and

x′M−2
x x = x′M−2x

(1+x′M−1x)2 .

Proof: According to Lemma A.1, we have

x′M−1
x x = x′M−1x− wx′uu′x

= x′M−1x−
(x′M−1x)2

1 + x′M−1x

=
x′M−1x

1 + x′M−1x
,

and

x′M−2
x x = x′(M−1 − wuu′)2x

= x′M−2x− 2wx′M−1uu′x + w2x′(uu′)2x

= x′M−2x−
2x′M−2xx′M−1x

1 + x′M−1x
+

x′(M−1xx′M−1)2x

(1 + x′M−1x)2

= x′M−2x[1−
2x′M−1x

1 + x′M−1x
+

(x′M−1x)2

(1 + x′M−1x)2
]

=
x′M−2x

(1 + x′M−1x)2
.

Proof of Theorem 1

Since Fedorov’s exchange algorithm has proved this result for the case with φ(D) = det(M),

uD(x) and vD(xi) defined as Equation (4), hence we only prove this result for the other two cases.

First, we prove that the design generated by single-point exchange procedure leads to no increase

in tr(M−1).

Let X be the model matrix of the current design and denote M = X′X, which is updated as

Mx − xix
′
i after exchanging x for xi according to the single exchange procedure. The following delta

function evaluates the multiple changes from tr(M−1) to tr((Mx − xix
′
i)
−1):

△(xi, x) =
tr((Mx − xix

′
i)
−1)

tr(M−1)

=
tr(M−1)− tr(wuu′) + tr(wiuiu

′
i)

tr(M−1)

= 1−
tr(wu′u)− tr(wiu

′
iui)

tr(M−1)

= 1−
1

tr(M−1)

[
x′M−2x

1 + x′M−1x
−

x′i M
−2
x xi

1− x′i M
−1
x xi

]
. (A.1)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

15 of 20

Based on step (2) of this procedure, we know that
x′i M−2

x xi

1−x′i M−1
x xi
≤ x′M−2

x x

1−x′M−1
x x

. In the combination of Lemma

A.2, we obtain

x′M−2x

1 + x′M−1x
−

x′i M
−2
x xi

1− x′i M
−1
x xi

≥
x′M−2x

1 + x′M−1x
−

x′M−2
x x

1− x′M−1
x x

=
x′M−2x

1 + x′M−1x
−

x′M−2x
(1+x′M−1x)2

1− x′M−1x
1+x′M−1x

=
x′M−2x

1 + x′M−1x
−

x′M−2x

1 + x′M−1x
= 0.

Thus, △(xi, x) ≤ 1 is obtained, which means tr(M−1) does not increase in the single-point

exchange procedure.

Second, we prove that the design generated in single-point procedure leads to no increase in

tr(M2).

To calculate the multiple exchange on the tr(M2) during each iteration of the single-point exchange

procedure, we define a delta function△(xi, x) as follows:

△(xi, x) =
tr((Mx − xix

′
i)

2)

tr(M2)

=
tr(M2

x)− 2x′i Mxxi + p2

tr(M2)

=
tr(M2) + 2x′Mx− 2x′i Mxxi + 2p2

tr(M2)

= 1 +
2x′Mx− 2x′i Mxxi + 2p2

tr(M2)
. (A.2)

By step (2) of this procedure, we have x′Mxx ≤ x′i Mxxi and

x′Mx− x′i Mxxi ≤ x′Mx− x′Mxx

≤ x′Mx− x′(M + xx′)x

≤ −p2. (A.3)

Thus, we obtain△(xi, x) ≤ 1 from (A.2) and (A.3).

Theorem 1 is proved.

Appendix B. Best PWO designs under the D-optimal criterion

Table B.1 D-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 3 4 1 2 4 3 3 2 1 4
1 3 4 2 1 2 3 4 3 2 4 1
2 1 4 3 1 3 4 2 4 1 3 2
3 1 2 4 2 1 4 3 4 2 1 3
3 2 4 1 2 3 4 1 4 2 3 1
4 1 3 2 3 1 4 2 4 3 1 2
4 2 3 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

16 of 20

Table B.2 D-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 3 4 2 1 5 2 3 4 3 5 4 1 2
2 5 3 4 1 1 2 5 4 3 3 4 2 1 5
2 3 1 4 5 1 3 4 2 5 4 1 5 3 2
2 4 1 3 5 1 4 2 3 5 4 3 1 5 2
3 2 5 1 4 2 1 4 3 5 4 3 5 1 2
3 4 5 1 2 2 5 4 1 3 4 5 3 2 1
4 2 5 1 3 2 3 4 5 1 5 1 3 2 4
4 3 1 2 5 2 4 5 3 1 5 2 3 1 4
4 5 3 2 1 3 2 1 5 4 5 3 1 4 2
5 1 2 4 3 3 5 2 1 4 5 4 2 1 3
5 4 2 3 1

Table B.3 D-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 6 5 2 4 3 1 6 2 5 3 4 4 5 1 6 2 3
1 2 4 5 3 6 1 2 6 3 5 4 4 5 2 6 1 3
1 5 3 6 4 2 1 3 4 2 5 6 4 5 3 1 2 6
2 1 3 5 4 6 1 4 6 3 5 2 5 2 1 3 6 4
2 3 6 5 4 1 2 1 5 4 6 3 5 2 3 1 4 6
3 1 4 2 6 5 2 6 4 1 5 3 5 4 1 3 6 2
3 2 5 1 6 4 2 3 5 4 6 1 5 4 3 6 1 2
3 4 5 1 6 2 3 1 5 2 6 4 5 6 3 1 2 4
4 1 3 5 2 6 3 1 6 4 2 5 5 6 3 4 2 1
4 2 5 1 6 3 3 2 6 5 1 4 6 1 5 4 2 3
4 3 6 5 2 1 3 2 4 1 6 5 6 1 2 3 4 5
5 2 6 3 1 4 3 4 6 1 5 2 6 2 1 4 5 3
5 4 6 3 1 2 3 5 6 2 1 4 6 2 4 3 5 1
6 1 4 2 3 5 4 2 1 3 5 6 6 3 5 4 2 1
6 3 2 4 1 5 4 2 6 5 3 1 6 5 1 3 2 4
6 5 1 3 2 4

Table B.4 D-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 7 5 2 6 4 3 1 7 6 5 2 3 4 4 3 7 5 6 2 1
1 4 3 6 5 7 2 1 4 7 2 3 6 5 4 7 2 1 5 6 3
2 5 6 1 3 4 7 1 4 3 2 7 6 5 4 6 2 1 7 5 3
2 6 3 4 7 1 5 1 5 6 4 2 7 3 4 6 5 3 7 1 2
3 1 2 5 6 7 4 1 6 2 4 5 3 7 5 1 6 4 7 3 2
3 2 7 4 6 5 1 2 1 4 3 6 7 5 5 2 1 7 4 6 3
3 7 5 6 1 4 2 2 3 7 1 6 4 5 5 2 3 6 4 1 7
3 5 4 1 7 6 2 2 3 5 4 7 6 1 5 3 1 4 6 7 2
4 2 1 7 5 3 6 2 5 7 1 3 4 6 5 7 2 6 1 4 3
4 5 6 1 2 7 3 2 5 4 7 3 6 1 6 1 7 2 3 4 5
5 2 7 1 6 3 4 2 5 6 1 3 7 4 6 1 5 3 4 2 7
5 3 6 7 2 4 1 2 6 7 5 4 3 1 6 3 2 4 7 5 1
5 4 6 3 2 7 1 2 6 4 7 3 5 1 6 3 4 5 1 2 7
5 7 4 2 3 6 1 3 1 7 2 5 6 4 6 7 1 3 5 2 4
6 1 7 5 3 4 2 3 1 5 6 2 7 4 6 7 1 4 2 5 3
6 2 1 3 7 5 4 3 2 4 1 6 5 7 7 3 1 4 5 2 6
6 2 5 4 7 3 1 3 7 5 4 1 2 6 7 3 6 4 2 5 1
6 4 1 3 2 5 7 3 6 5 7 4 2 1 7 4 1 6 2 3 5
6 7 4 3 2 5 1 4 1 3 2 5 6 7 7 4 5 3 6 1 2
7 1 3 2 5 4 6 4 1 5 7 3 2 6 7 6 3 2 1 5 4
7 1 4 6 2 5 3 4 2 6 3 1 5 7 7 6 5 4 1 3 2
7 6 3 2 1 4 5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

17 of 20

Appendix C. Best PWO designs under the A-optimal criterion

Table C.1 A-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 3 4 2 1 4 3 2 3 1 2 4
2 1 4 3 1 2 3 4 3 2 4 1
2 3 1 4 2 1 3 4 3 4 2 1
3 1 2 4 2 1 4 3 4 1 3 2
3 2 4 1 2 4 3 1 4 1 2 3
4 1 2 3 3 1 4 2 4 2 3 1
4 3 2 1

Table C.2 A-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 4 2 3 5 1 5 3 4 2 3 5 1 4 2
2 1 5 4 3 1 2 5 4 3 3 5 2 4 1
2 1 3 4 5 1 3 2 4 5 4 1 5 2 3
2 3 5 4 1 2 1 4 3 5 4 2 1 3 5
2 4 5 1 3 2 5 4 3 1 4 2 5 1 3
3 4 1 2 5 2 3 5 4 1 4 3 1 5 2
4 1 3 5 2 2 3 4 1 5 4 5 3 2 1
4 3 2 5 1 3 1 4 2 5 5 1 2 4 3
4 5 2 3 1 3 2 1 5 4 5 2 3 1 4
5 1 3 4 2 3 2 4 5 1 5 4 1 3 2
5 3 1 2 4

Table C.3 A-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

2 1 5 6 3 4 1 3 2 6 4 5 4 1 5 2 3 6
3 1 2 4 5 6 1 3 5 6 2 4 4 2 1 3 5 6
3 1 6 4 5 2 1 4 2 6 3 5 4 3 2 5 6 1
3 5 2 4 1 6 1 4 3 6 2 5 4 6 1 2 3 5
3 5 6 4 1 2 2 1 6 4 5 3 4 5 1 6 3 2
4 2 3 6 5 1 2 1 6 3 5 4 5 2 3 1 4 6
4 3 6 2 1 5 2 1 4 5 6 3 5 2 4 6 1 3
4 5 6 2 3 1 2 3 5 1 6 4 5 3 4 1 2 6
5 1 6 4 3 2 2 5 3 6 4 1 5 6 1 3 4 2
5 1 3 4 6 2 2 5 4 3 1 6 6 1 4 2 5 3
5 3 2 6 1 4 3 1 2 5 4 6 6 2 1 5 3 4
6 1 5 2 4 3 3 1 4 5 6 2 6 2 3 4 5 1
6 1 3 4 5 2 3 2 4 6 1 5 6 4 3 1 5 2
6 2 3 5 1 4 3 4 6 5 2 1 6 5 1 2 4 3
6 2 4 5 1 3 3 5 2 6 1 4 6 5 4 3 2 1
6 5 3 4 1 2

Table C.4 A-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 3 7 4 2 6 5 1 2 7 3 5 4 6 4 7 3 6 1 5 2
1 5 4 6 3 7 2 1 3 7 6 5 2 4 4 7 6 1 2 5 3
1 6 7 4 5 3 2 1 5 4 6 3 7 2 4 5 2 1 3 6 7
1 6 3 4 5 7 2 1 6 2 5 3 4 7 5 1 7 4 3 6 2
2 7 6 1 4 3 5 1 6 4 7 3 2 5 5 3 6 4 1 7 2
2 4 5 6 1 3 7 1 6 4 5 2 7 3 5 7 3 2 4 1 6
2 6 5 4 3 1 7 2 1 4 5 7 6 3 5 7 3 6 1 4 2
3 6 1 5 7 2 4 2 7 6 5 1 4 3 5 6 4 3 1 2 7
3 6 2 5 1 4 7 2 4 3 5 6 7 1 6 1 7 3 5 2 4
3 6 4 2 7 1 5 2 4 5 6 1 3 7 6 1 3 4 5 2 7
4 1 6 2 7 3 5 2 6 5 4 7 1 3 6 1 5 3 7 4 2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

18 of 20

Table C.4 Cont.

22 runs 42 runs
runs 1-21 runs 22-42

4 1 5 2 7 3 6 3 1 2 4 6 7 5 6 2 3 5 1 4 7
4 2 3 5 6 7 1 3 1 7 2 6 4 5 6 2 4 1 7 5 3
4 3 1 7 5 6 2 3 2 7 1 5 4 6 6 3 5 2 7 4 1
4 7 6 5 3 1 2 3 4 2 1 7 5 6 6 7 4 3 1 2 5
5 3 2 7 4 1 6 3 4 5 7 1 2 6 6 7 5 2 3 1 4
5 6 3 1 4 2 7 3 6 2 7 1 4 5 7 1 5 2 6 4 3
7 1 6 2 4 5 3 4 2 6 3 1 5 7 7 2 1 3 5 6 4
7 1 3 2 5 6 4 4 2 6 7 5 1 3 7 4 5 1 6 2 3
7 5 2 3 1 4 6 4 2 3 1 6 5 7 7 5 2 6 3 1 4
7 6 3 4 2 1 5 4 3 7 6 5 2 1 7 6 3 4 2 5 1
7 6 5 4 2 1 3

Appendix D. Best PWO designs under the M.S.-optimal criterion

Table D.1 M.S.-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 4 3 1 4 3 2 2 3 1 4
2 1 3 4 1 4 2 3 3 2 1 4
2 4 3 1 1 2 3 4 3 4 1 2
3 1 4 2 1 3 2 4 3 4 2 1
3 2 4 1 2 4 1 3 4 2 1 3
4 1 3 2 2 4 3 1 4 3 1 2
4 2 1 3

Table D.2 M.S.-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 2 4 3 1 5 3 4 2 3 5 2 1 4
1 5 3 4 2 1 2 5 4 3 4 1 3 2 5
1 3 2 4 5 1 3 4 5 2 4 2 5 1 3
2 5 1 4 3 2 1 4 3 5 4 2 3 1 5
2 5 3 4 1 2 1 5 3 4 4 3 1 5 2
2 3 1 4 5 2 3 1 4 5 4 5 1 2 3
3 5 1 4 2 2 3 4 5 1 4 5 3 2 1
3 5 2 4 1 3 1 4 2 5 5 1 2 4 3
4 1 2 3 5 3 2 5 4 1 5 3 2 4 1
4 3 2 1 5 3 5 1 4 2 5 4 2 3 1
4 5 2 1 3

Table D.3 M.S.-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 2 6 4 5 3 1 4 2 3 5 6 4 2 1 6 3 5
1 3 4 6 5 2 1 4 3 2 6 5 4 5 6 2 3 1
1 5 2 4 3 6 1 4 5 3 6 2 5 1 6 3 4 2
2 6 3 4 5 1 2 1 6 5 3 4 5 1 2 6 4 3
2 5 1 3 4 6 2 6 4 5 1 3 5 2 1 3 4 6
3 2 6 1 5 4 2 3 5 6 1 4 5 3 1 2 4 6
3 4 1 2 5 6 2 3 4 1 5 6 5 3 6 4 2 1
3 5 1 6 4 2 2 4 6 5 3 1 5 4 2 3 6 1
4 1 3 6 2 5 3 1 6 5 2 4 5 4 6 1 3 2
4 2 3 5 6 1 3 2 5 4 1 6 6 1 2 3 4 5
4 6 5 3 1 2 3 2 6 4 1 5 6 2 1 5 4 3
5 3 6 2 4 1 3 4 6 2 5 1 6 3 1 4 2 5
5 4 2 1 6 3 3 4 6 5 1 2 6 3 1 5 2 4
5 6 1 4 3 2 4 1 3 5 2 6 6 4 3 5 2 1
6 1 2 3 5 4 4 1 6 2 5 3 6 5 4 1 2 3
6 4 2 1 5 3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

19 of 20

Table D.4 M.S.-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 2 3 6 7 4 5 1 7 2 6 3 4 5 4 2 6 7 3 5 1
1 2 5 7 6 3 4 1 7 2 4 5 6 3 4 3 5 1 7 2 6
1 4 3 6 2 5 7 1 7 5 3 2 6 4 4 7 5 3 2 1 6
2 1 6 5 4 3 7 1 3 2 5 7 4 6 4 5 3 6 2 1 7
2 5 4 6 3 1 7 1 3 4 5 6 2 7 4 5 7 6 2 1 3
3 4 1 7 5 6 2 1 4 3 2 6 7 5 4 6 3 7 1 5 2
3 4 2 7 6 5 1 1 5 7 4 2 3 6 5 2 1 6 4 3 7
4 5 2 6 7 1 3 1 6 5 2 4 7 3 5 3 2 4 7 6 1
4 5 3 1 7 2 6 2 7 5 1 3 4 6 5 4 1 6 3 7 2
4 6 1 7 2 5 3 2 3 4 1 6 5 7 5 7 4 2 3 6 1
5 2 1 7 3 4 6 2 3 5 6 4 7 1 5 6 7 3 1 2 4
5 3 6 1 7 4 2 2 4 7 6 1 5 3 6 1 4 2 5 3 7
5 3 6 2 4 7 1 2 4 3 7 1 6 5 6 1 5 3 4 7 2
6 1 4 5 7 3 2 2 5 3 7 1 4 6 6 2 5 1 7 4 3
6 3 2 1 7 4 5 2 6 3 1 7 5 4 6 5 3 4 1 2 7
6 3 5 7 1 2 4 3 1 4 6 7 2 5 6 7 2 5 4 1 3
6 7 5 4 2 3 1 3 2 6 4 5 1 7 6 7 4 5 1 2 3
7 1 5 4 6 3 2 3 7 6 4 2 5 1 7 1 3 6 5 4 2
7 2 4 3 1 5 6 3 7 5 6 1 2 4 7 4 6 1 3 2 5
7 3 2 6 1 5 4 3 6 7 2 1 4 5 7 5 3 4 1 2 6
7 5 1 3 2 4 6 4 2 1 7 5 6 3 7 6 3 5 2 1 4
7 6 2 4 5 1 3

References

1. Abbasi-khazaei, T., Rezvani, M. H. 2022. “Energy-aware and carbon-efficient VM placement

optimization in cloud datacenters using evolutionary computing methods." Soft Computing 26, 9287–9322.

doi:10.1007/s00500-022-07245-y.

2. Atwood C. L. 1969. “Optimal and efficient designs of experiments." The Annals of Mathematical Statistics 40

(5): 1570-1602. doi:10.1214/aoms/1177697374.

3. Chen P. Y., Chen R. B., and Wang W. K. 2022. Particle swarm optimization for searching efficient experimental

designs: A review. Wiley Interdisciplinary Reviews: Computational Statistics.

4. Chen R. B., Hsu Y. W., Hung Y., and Wang W. C. 2014. “Discrete particle swarm optimization for

constructing uniform design on irregular regions." Computational Statistics & Data Analysis 72: 282-297.

doi:10.1016/j.csda.2013.10.015.

5. Eberhart R. C., and Kennedy J. 2002. “A new optimizer using particle swarm theory," MHS’95. Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, 39-43. doi:10.1109/MHS.1995.494215.

6. Fedorov V. V. 1972. Theory of optimal experiments. Translated and edited by Studden, W. J. and Klimko E. M.

New York.

7. Jourdain L. S., Schmitt C., Leser M. E., Murray B. S., and Dickinson E. 2009. “Mixed layers of sodium

caseinate+dextran sulfate: influence of order of addition to oil-water interface." Langmuir 25: 10026-10037.

doi:10.1021/la900919w.

8. Karim M., Mccormick K., and Kappagoda C. T. 2000. “Effects of cocoa extracts on endothelium-dependent

relaxation." The Journal of Nutrition 130: 2105S-2108S. doi:10.1093/jn/130.8.2105S.

9. Mak S., and Joseph V. J. 2018. “Minimax and minimax projection designs using clustering." Journal of

Computational and Graphical Statistics 27: 166-178. doi:10.1080/10618600.2017.1302881.

10. Mee R. W. 2020. “Order-of-Addition Modeling." Statistica Sinica 30 (3): 1543-1559. doi:stable/26968940.

11. Mitchell T. J. 2000. “An Algorithm for the construction of ‘D-Optimal’ experimental designs." Technometrics

42 (2): 48-54. doi:10.1080/00401706.1974.10489175.

12. Nguyen N. K., and Miller A. J. 1992. “A review of some exchange algorithms for constructing discrete

D-optimal designs." Computational Statistics & Data Analysis 14: 489-498. doi:10.1016/0167-9473(92)90064-M.

13. Olsen G. J., Matsuda H., Hagstrom R., and Overbeek R. 1994. “Fastdnaml: a tool for construction of

phylogenetic trees of dna sequences using maximum likelihood." Computer Applications in the Biosciences:

CABIOS 10: 41-48. doi:10.1093/bioinformatics/10.1.41.

14. Peng J. Y., Mukerjee R., and Lin D. K. J. 2019. “Design of order-of-addition experiments." Biometrika 106 (3):

683-694. doi:10.1093/BIOMET/ASZ025.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

20 of 20

15. Phoa F. K. H., Chen R. B., Wang W. C., and Wong W. 2016. “Optimizing two-level supersaturated designs

using swarm intelligence techniques." Technometrics 58: 43-49. doi:10.1080/00401706.2014.981346.

16. Van Nostrand R. C. 1995. Design of experiments where the order-of-addition is important. ASA Proceedings of the

Section on Physical and Engineering Sciences, Alexandria, Virginia, 155-160.

17. Voelkel J. G. 2019. “The Design of order-of-addition experiments." Journal of Quality Technology 51 (3): 230-241.

doi:10.1080/00224065.2019.1569958.

18. Voelkel J. G., and Gallagher K. P. 2019. “The design and analysis of order-of-addition experiments: An

introduction and case study." Quality Engineering 31(4): 1-12. doi:10.1080/08982112.2019.1578374.

19. Winker P., Chen J. B., and Lin D. K. J. 2020. “The construction of optimal design for order-of-addition

experiment via threshold accepting." Chap 6 in: Contemporary Experimental Design, Multi-variate Analysis and

Data Mining. Switzerland: Cham.

20. Yang J. F., Sun F. S., and Xu H. Q. 2021. “A component-position model, analysis and design for

order-of-addition experiments." Technometrics 63 (2): 212-224. doi:10.1080/00401706.2020.1764394.

21. Zhao Y. N., Lin D. K. J., and Liu M. Q. 2021. “Designs for order of addition experiments." Journal of Applied

Statistics 48 (8), 1475-1495. doi:10.1080/02664763.2020.1801607.

22. Zhao Y. N., Lin D. K. J., and Liu M. Q. 2022. “Optimal designs for order-of-addition experiments."

Computational Statistics & Data Analysis 165. doi:10.1016/j.csda.2021.107320.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023 doi:10.20944/preprints202304.1166.v2

Peer-reviewed version available at Mathematics 2023, 11, 2538; doi:https://doi.org/10.3390/math11112538

https://doi.org/10.20944/preprints202304.1166.v2
https://doi.org/https://doi.org/10.3390/math11112538

	Introduction
	Model specification
	Exchange algorithms for constructing D-, A-, and M.S.-optimal designs
	The single-point exchange procedure
	The technique for avoiding the singularity of the matrix for the exchange algorithm
	The performance of the exchange algorithm

	Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm combining the exchange algorithm and PSO algorithm
	Numerical simulations
	Concluding Remarks
	References

