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Abstract: For order-of-addition experiments, the response is affected by the addition order of the

experimental materials. Consequently, the main interest focuses on creating a predictive model and

an optimal design for optimizing the response. Van Nostrand (1995) proposed the pairwise-order

(PWO) model for detecting PWO effects. Under the PWO model, the full PWO design is optimal

under various criteria but is often unaffordable because of the large run size. In this paper, we

consider the D-, A- and M.S.-optimal fractional PWO designs. We first present some results on

information matrices. Then, a flexible and efficient algorithm is given for generating these optimal

PWO designs. Numerical simulation shows that the generated design has an appealing efficiency in

comparison with the full PWO design, though with only a small fraction of runs. Several comparisons

with existing designs illustrate that the generated designs achieve better efficiencies, and the best

PWO designs and some selected 100% efficient PWO designs generated by the new algorithm are

reported.

Keywords: pairwise-order model; D-optimal; A-optimal; M.S.-optimal; particle swarm optimization;

Fedorov exchange algorithm

1. Introduction

In some specific experiments, such as a chemical experiment with a number of reactants that

are added into an apparatus sequentially rather than simultaneously, different orders of adding

the components involved in the system yield different responses. Therefore, researchers are more

interested in how the addition sequence of reactants affects the response. Experiments with this feature

are referred to as order-of-addition (OofA) experiments and are widely applied to chemical-related

areas and food industries, as well as biochemistry and measurement processes. The earliest research

on OofA experiments can perhaps be traced back to the study of a lady tasting tea in Fisher (1937).

Another study appeared in Fuleki and Francis (1968) that evaluated an experiment for extracting

anthocyanins from cranberries. During the past decades, the approach of OofA experiments has been

proposed in many practical studies; for example, see the references Jourdain et al. (2009), Karim,

Mccormick, and Kappagoda (2000), Olsen et al. (1994) and so on.

For the objective of optimizing and predicting the response, a statistical model and an optimal

design are created for the OofA experiment. The idea of pairwise-order (PWO) modeling and designing

the OofA experiment has been presented in Van Nostrand (1995). Recently, Voelkel (2019) proposed

a number of design criteria. Voelkel (2019) provided theoretical results on the full PWO design and

construction of the optimal PWO design, which has the same correlation structure as the full PWO

design, namely, the same information matrix. A recent review on OofA experiments and PWO models

can be found in Lin and Peng (2019).

In fact, the PWO model is also a regression model. Then, a family of criteria can be applied to

find optimal designs under the PWO model, such as D-, A- and M.S.-optimal designs. The optimality

proof indicates that a full PWO design with m! distinct permutations of components is D-, A- and
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M.S.-optimal, but the run size is extremely large. Taking m = 10 as an example, there are m! = 3628800

distinct permutations. Consequently, over three million runs of experiments should be implemented,

which is impractical. Therefore, fractions of full PWO designs with a smaller number of runs are

preferable.

Recently, four kinds of fractional PWO designs have been studied. Peng, Mukerjee, and Lin

(2019) introduced a method for constructing optimal PWO designs. This method limits the run size

to m!/r! (2 ≤ r ≤ m/2), which is also too many for experimenters to afford. For instance, if m = 10,

the method needs at least 30240 runs to be implemented. Yang, Sun, and Xu (2021) and Zhao, Lin,

and Liu (2022) provided construction methods based on an orthogonal array, the resulting designs

are component orthogonal arrays (COAs) and OofA orthogonal arrays (OofA-OAs), in which the run

size is also inflexible. Zhao, Lin and Liu (2021) provided a minimal-point design with m(m− 1)/2 + 1

runs. The run size is small, but the efficiency is relatively low. However, theoretical constructions of

these fractional PWO designs are highly dependent on run size. Winker, Chen, and Lin (2020) applied

the threshold accepting algorithm to construct the optimal designs (D-efficiency for application) based

on the pairwise-order (PWO) model and the tapered PWO model, the designs obtained by threshold

accepting algorithm for 4 ≤ m ≤ 30 with n = m(m − 1)/2 + 1, m(m − 1) + 1, 3m(m − 1)/2 + 1,

respectively, are provided for practical uses. The present paper also provides a computer algorithm

to construct the PWO design with a flexible run size, and D-, A-, and M.S.-optimal PWO designs

can be constructed using the proposed algorithm. When compared with the full PWO designs, the

constructed designs possess high efficiencies.

This paper is organized as follows. We first introduce the PWO model in Section 2. Section 3

gives a review of Fedorov’s exchange algorithm for constructing the D-optimal designs. Then, this

algorithm is modified and extended for constructing A- and M.S.-optimal designs. Some theoretical

results on the information matrix and algorithm are also provided in Section 3. In Section 4, based on

the exchange algorithm and particle swarm optimization (PSO) algorithm, a novel hybrid algorithm

is proposed to achieve D-, A- and M.S.-optimal PWO designs. Some numerical results are given in

Section 5. Finally, concluding remarks are provided in Section 6.

2. Model specification

Now, we introduce the Van Nostrand PWO model. Suppose there are m components denoted as

1, . . . , m. Any treatment in the OofA experiment corresponds to a permutation of 1, . . . , m, denoted as

α, and the first-order PWO model can be expressed as

τ(α) = β0 + ∑
1≤j<k≤m

zjk(α)β jk,

where each zjk(α) is a PWO indicator between j and k,

zjk(α) =

{
1 if j precedes k in α,

−1 if k precedes j in α.
(1)

For an n-point PWO design, let Y be the n-dimensional response vector, Z be the design matrix with

(m
2 ) columns corresponding to PWO indicators z12, z13, . . . , z(m−1)m, and β = (β12, β13, . . . , β(m−1)m)

′,

where ′ denotes the transpose. Then, the first-order PWO model can be written as

Y = 1β0 + Zβ + ǫ, (2)

or

Y = Xβ̃ + ǫ, (3)
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where X = (1 Z)n×p with p = (m
2 ) + 1 is the model matrix, and β̃ = (β0, β′)′ represents the parameter

of interest. Mee (2020) extended the PWO model to the high-order case. Here, we only consider a

first-order PWO model. The proposed algorithms also apply to a higher-order PWO model.

Furthermore, we refer to M̃ = X′X/n as the information matrix of an n-point PWO design.

Under the PWO model (3), the variance-covariance matrix of the least squares estimator of β is

proportional to M̃. Hence, it is desirable to maximize the matrix M̃ under some criteria. The popular

criteria include the D-criterion det(M̃)1/p, the A-criterion tr(M̃−1), the M.S.-criterion tr(M̃2) (see the

reference Atwood 1969). Note that tr(M̃−1) is interpreted as +∞ for singular X′X. Let X f be the full

PWO design and the corresponding information matrix be M̃ f = X′f X f /n. For clarity, we take m = 3

as an example to illustrate the characteristics of the full PWO design under D-, A- and M.S.-criteria.

The levels of PWO factors in the full PWO design with 3 components are as follows.

Table 1 Full PWO design with 3 components

Run Order-of-Addition z12, z13, z23

1 1 2 3 1, 1, 1
2 1 3 2 1, 1,−1
3 2 1 3 −1, 1, 1
4 2 3 1 −1,−1, 1
5 3 1 2 1,−1,−1
6 3 2 1 −1,−1,−1

From this, we obtain

X f =




1 1 1 1

1 1 1 −1

1 −1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 −1 −1




, M̃ f =




1 0 0 0

0 1 1/3 −1/3

0 1/3 1 1/3

0 −1/3 1/3 1


 ,

and det(M̃ f ) = 16/27, tr(M̃−1
f ) = 11/2 and tr(M̃2

f ) = 14/3.

3. Exchange algorithms for constructing D-, A-, and M.S.-optimal designs

Theoretical constructions on optimal designs are always complicated; hence, computer algorithms

are applied for constructing approximate and exact optimal designs in the literature. Exchange

algorithm is one of the popular computer algorithms for constructing optimal designs for the cases

with the design points being selected from a finite design space. Fedorov (1972) first proposed an

exchange algorithm for generating D-optimal designs. This algorithm chooses n points to include in the

design from a finite set of possible points called candidate points, and it starts with nonsingular n-point

designs and then adds and deletes one observation in order to achieve increases in the determinant.

After that some improved implementations are proposed based upon Fedorov’s exchange algorithm,

such as the Kiefer round-off algorithm, the Mitchell algorithm, the Wan Schalkwyk algorithm, the

combined Fedorov, the Wynn-Mitchell algorithm and so on; see the references Mitchell (1992), Nguyen

and Miller (1992).

3.1. The single-point exchange procedure

Consider an n-point design D = {αi}
n
i=1 under model (3), with a corresponding model matrix X =

(x1, . . . , xn)′. If M̃ = X′X/n, then the D-, A- and M.S.-criteria maximize det(M̃)1/p, −tr(M̃−1) and

−tr(M̃2) respectively, which are equivalent to maximizing φ(D) = det(M),−tr(M−1) and −tr(M2)

respectively, where M = X′X = ∑
n
i=1 xix

′
i .
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Inspired by Fedorov’s exchange algorithm, we develop a new exchange algorithm for generating

D-, A- and M.S.-optimal designs simultaneously. This algorithm is realized by multiple iterations of

the single-point exchange procedure which works as follows.

Single-point exchange procedure:

Let X be the model matrix of the original design and M = X′X,

(1) Find a vector x among the vectors of the complementary design such that u(x) is maximum and add x to

the current n-point design;
(2) Find a vector xi among the n + 1 vectors of the current n + 1-point design such that v(xi) is minimum

and remove xi.

When use the single-point exchange procedure for generating the D-, A- and M.S.-optimal

designs, the objective functions are denoted as u∗(x) and v∗(xi) with ∗ = D, A, M.S. and defined as

bellow:

uD(x) = x′M−1x, vD(xi) = x′i M
−1
x xi; (4)

uA(x) =
x′M−2x

1 + x′M−1x
, vA(x) =

x′i M
−2
x xi

1− x′i M
−1
x xi

; (5)

uM.S.(x) = −x′Mx, vM.S.(xi) = −x′i Mxxi; (6)

where M = ∑
n
i=1 xix

′
i is the moment matrix of the current design and M is updated to Mx = M + xx′

when a candidate point from the complementary design is added to the current design. Here, the

complementary design consists of all candidate points from the design space except for the n points of

the current design.

Theorem 1. For D-, A-, and M.S.-criteria which maximize φ(D) = det(M),−tr(M−1) and −tr(M2)

respectively, the design generated by the single-point procedure with u(x) and v(xi) defined as equations (4)-(6)

leads to no decrease in φ(D).

The proof of this theorem uses some matrix theories, and we present it in the appendix. This

result implies that exchange algorithm will return local D-, A- and M.S.-optimal designs over multiple

iterations of the single-point exchange procedure.

3.2. The technique for avoiding the singularity of the matrix for the exchange algorithm

For generating optimal design using a computer search algorithm, the solution is often trapped

into the local optimal design. Thus random exchange method is always used to avoid this drawback.

For constructing D-, A- and M.S.-optimal designs using a computer search algorithm, a random

selected initial design possibly corresponds to a singular moment matrix, especially for the case with a

rather small number of n, and computation problem then arises. Taking the case with n = (m
2 ) + 1(m =

4, 5) as an example. Among all (m!
n ) options of n-point design, a large proportion of them correspond

to a badly conditioned matrix M. As shown in Figure 1, all the reciprocal condition numbers are near

0, and the reciprocal condition number below 10−12 is counted in the first bin of each histogram with a

probability exceeding 50%.

A random selected initial design will return a computationally singular matrix M with a large

probability. For this reason, we address the issue of avoiding singularities of M and Mx in the

single-point exchange algorithm. Two types of techniques are provided regarding this issue. The first

technique is to start with a nonsingular design instead of starting with a randomly selected design.
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Figure 1. Distributions of the reciprocal condition numbers of matrix M for all PWO designs with

m = 4, n = 7 and 105 randomly selected PWO designs with m = 5, n = 11.

Remark 1. If the initial design has nonsingular moment matrix, then by Mx = |M|(1 + x′M−1x) and

Mx − xix
′
i = |Mx|(1− x′i M

−1
x xi), where x′i M

−1
x xi ≤ x′M−1

x x = x′M−1x
1+x′M−1x

< 1, both Mx and Mx − xix
′
i

are nonsingular matrices during each iteration of the single-point exchange algorithm which is performed

recursively.

This technique is practical since a nonsingular initial design with n points can be obtained by

appending n− (m
2 )− 1 randomly selected distinct points to the minimal-point design provided in

Zhao, Lin, and Liu (2021). However, in the hybrid algorithm, the design is updated via both the

single-point exchange procedure and some random exchange procedure.

The second technique is inspired by the DETMAX algorithm in Mitchell (2000), a specified

nonsingular matrix multiplied by a very small positive parameter θ is added to matrix M or Mx.

Taking M as an example, we do not consider M−1 directly, but instead attempt to calculate (M +

θ(X′f X f /N f ))
−1, where N f is the number of candidate points, and X f is the model matrix of the

full design composed of all N f candidate points. Then, one technique that we can use to avoid the

singularity of the matrix is as follows.

Remark 2. To avoid singularity, x′(M + θ(X′f X f /N f ))
−1x and x′i(Mx + θ(X′f X f /N f ))

−1xi are maximized

and minimized in the single-point exchange algorithm with u(x) and v(xi) being defined as equations (4) and

(5). The degree of error involved in considering these alternative matrices is less than θ.

To appreciate the degree of error involved in considering the alternative matrix, one can make the

following calculations. Let

f (θ) = x′(M + θ(X′f X f /N f ))
−1x.

Then, extend f (θ) in a Taylor series about θ = 0 to obtain the linear approximation:

f (θ) ∼= f (0) + θ

(
d f (θ)

dθ

)∣∣∣∣
θ=0

= x′M−1x− θ
(
x′(M + θ(X′f X f /N f ))

−1(X′f X f )/N f (M + θ(X′f X f /N f ))
−1x

)∣∣
θ=0

= x′M−1x− θx′M−1X′f X f M−1x/N f .

For small θ, the error in considering x′(M + θ(X′f X f /N f ))
−1x instead of x′M−1x is nearly

θx′M−1X′f X f M−1x/N f . In the proposed algorithm, the value of θ is set at 0.005, which is found

to be quite satisfactory in simulations. This choice based on run size of the full PWO is sufficiently

large such that x′M−1X′f X f M−1x/N f < 1, and the error will be less than 0.5%.
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Figure 2. D-, A- and M.S.-efficiencies of PWO designs generated initial design, and each graph contains

four lines corresponding to PWO designs with m = 4, 5, 6, 7 components and n = m(m − 1) runs,

respectively.

Note that in this paper, we adopt the technique described in Remark 2 to avoid the singularity of

the matrix.

3.3. The performance of the exchange algorithm

Now we discuss the performance of the exchange algorithm. The single-point exchange procedure

is performed recursively, and the D-, A- and M.S.-efficiencies of the generated designs are calculated.

For brevity, the cases with m = 4, 5, 6, 7 components are considered and the run sizes are fixed at

n = m(m − 1). The following Figure 2 shows that the efficiencies are deeply increased in former

iterations but then stabilized at slows on one value as the number of iterations increased. Therefore,

the exchange algorithm yields locally optimal designs that approximate a global optimal design in a

reasonable number of iterations.

To illustrate the performance of the exchange algorithm for constructing D-, A- and M.S.-optimal

designs, 1000 designs are generated by the exchange algorithm with respective to each pair of the

objective functions defined in equations (4)-(6). The initial designs are randomly selected. We list

the minimum, average and maximum efficiencies of the generated designs in Table 2. Obviously, the

generated designs are largely depended on the initial designs, most of them are locally optimal designs

and some of them even have lower efficiencies than 80%, see the numbers in a bold font. Thus, in the

next section, we proposed a more robust hybrid algorithm which combines the exchange algorithm

and the particle swarm algorithm to produce approximate optimal designs with higher efficiency than

the designs generated by exchange algorithm.

Table 2 Efficiencies of 1000 designs generated by the exchange algorithm

D-efficiency A-efficiency M.S.-efficiency

m Runs Min Ave Max Min Ave Max Min Ave Max

4 12 97.4% 99.8% 100% 32.1% 65.3% 92.4% 76.3% 97.7% 100%
5 20 94.2% 96.0% 97.0% 19.5% 51.7% 73.9% 74.4% 96.5% 98.2%
6 30 93.8% 95.8% 97.1% 19.1% 48.0% 69.5% 95.2% 96.8% 98.1%
7 42 93.7% 95.3% 96.7% 33.4% 47.7% 63.4% 95.9% 97.1% 98.0%

4. Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm combining
the exchange algorithm and PSO algorithm

Before introducing the new algorithm, we add some details of the PSO algorithm. PSO is a

population-based stochastic algorithm for optimization. Each population member is described as a

particle that moves around a search space testing new criterion values. All particles survive from the

beginning of a trial until the end, and their interactions result in iterative improvement of the quality

of the problem solutions over time. The most common type of implementation defines the particles’

behavior as adjusting toward each of its personal best position(local-best) and global-best position so

that its trajectory shifts to new regions of the search space and the particles gradually cluster around
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the optima. For applications to find optimal experimental designs, a particularly challenging task

is to redefine the particle designs’ movement toward its personal local-best design and global-best

design. A review of some recent applications of PSO and its variants to tackle various types of efficient

experimental design is Chen, Chen, and Wang (2022). Since finding optimal PWO designs for OofA

experiment is to solve a discrete optimization problem, we utilize a update procedure for the particle

designs that is similar to the modified PSO algorithms in Chen et al. (2014) and Phoa et al. (2016).

Each particle design relates to its personal local-best design which is derived by exchange procedures

starting from itself. During each iteration, the current particle design is adjusted toward its personal

local-best design as well as the global-best design by exchanging points with each other.

Now, we introduce a new hybrid algorithm called Ex-PSO algorithm, which combining the

single-point exchange algorithm and PSO algorithm for generating D-, A-, and M.S.-optimal designs.

The single-point exchange algorithm is used for generating the local-best design with respect to each

particle design. The PSO algorithm ensure the particle designs gradually cluster around the optimal

PWO design. To avoid singularity, the technique proposed in Remark 2 is used; hence, a parameter θ

with a small value is involved in this algorithm.

Since the Ex-PSO algorithm involves a set of parameters denoted as s, tex, tpso, θ, c1, c2, we

also refer to it as Ex-PSO(m, n; s, tex, tpso, θ, c1, c2) for generating optimal PWO design with m

components and n runs. For clarity, we create a programming chart to illustrate the steps of

Ex-PSO(m, n; s, tex, tpso, θ, c1, c2). Further, we explain the optimization process and the uses of these

parameters as follows. Denote Lks and G as the local-best designs and the global-best design

respectively. These designs are updated during each iteration of the Ex-PSO algorithm. Each local-best

design Lk is derived from the current particle design Dk via a fixed number of iterations of the

single-point exchange procedure, denoted as tex. In addition, the global-best design G is the optimal

local-best design that maximizes φ(Lk). And the number of iterations of the PSO algorithm is denoted

as tpso. Meanwhile, two parameters are used to control the PSO behavior of the Ex-PSO algorithm: c1

and c2, which account for the velocities at which each current design drifts toward the corresponding

local-best and global-best design. More specifically, during each iteration of the PSO algorithm, we

randomly exchange c1 points from the difference set Dk \ Lk with c1 points from Lk \ Dk and then

randomly exchange c2 points from the difference set Dk \ G with c2 points from G \Dk. This procedure

corresponds to the “Update Dk by PSO" box in the programming chart.

Finally, we note that the Ex-PSO algorithm is implemented in MATLAB running on Intel(R)

Core(TM) i7-8550U GHz with 8 GB Memory. Take the case of m = 6, n = 16 for example, it takes 30.42

seconds for running Ex-PSO(6, 16; 10, 20, 100, 0.005, 1, 1).

5. Numerical simulations

In this section, we illustrate the performances of the obtained designs constructed by the Ex-PSO

algorithm. For brevity, the generated designs are denoted as Ex-PSO-D, Ex-PSO-A and Ex-PSO-M.S.

designs that respectively correspond to the objective functions (4)-(6) which are considered in the

exchange algorithm. Numerical simulations show that these designs are powerful for fitting PWO

models in terms of the D-, A- and M.S.-efficiencies. The efficiencies are derived from comparison

with the full PWO design, since the information matrix of the full PWO design has been proven to

be universally optimal. Therefore, we have the D-, A- and M.S.-efficiencies that calculate
det(M̃)1/p

det(M̃ f )
1/p ,

tr(M̃−1
f )

tr(M̃−1)
and

tr(M̃2
f )

tr(M̃2)
respectively, where M̃ and M̃ f are the information matrices of the obtained design

and full PWO design respectively, and p is the number of the columns of the model matrix X.

Ex-PSO Algorithm: Ex-PSO(m, n; s, tex, tpso, θ, c1, c2)
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Start

Randomly initialize Dk , k = 1, . . . , s

Calculate φ(Dk), k = 1, . . . , s

Initial Lk ← Dk , k = 1, . . . , s and G ← argmax1≤k≤sφ(Lk)

Update Dk by PSO

Update each Dk by single-point exchange procedure

Enough iterations?

Calculate φ(Dk), k = 1, . . . , s

φ(Dk) > φ(Lk)?

φ(Lk) > φ(G)?

Update Lk by Dk

Enough iterations?

Update G by Lk

Return G

Stop

N

Y

Y

N

Y

N

N

Y

Clearly, the number of PSO particles (s), the maximum iteration counts of single-point exchange

algorithm and PSO algorithm (tex, tpso) and the numbers of pairs of exchanging points with which each

particle design drifts toward the local-best and global-best design (c1, c2), control the optimization

process of Ex-PSO algorithm. It seems reasonable that these parameters should be larger for larger

problems. In our test of searching for optimal PWO designs with m = 4, 5, 6, 7 components,

we recommend that these parameters to set at s = 10, tex = 20, tpso = 100, c1 = c2 = 1.

Furthermore, we recommend to set the maximum iteration counts of exchange algorithm and PSO

at tex = 20 and tpso = 100 respectively, which achieves high computational efficiency. Further,

to demonstrate the performance of such a set of parameters, we randomly run the algorithm

Ex-PSO(m, n; 10, 20, 100, 0.005, 1, 1) for one hundred times for generating the Ex-PSO-A designs,

because the exchange algorithm seems inefficient under A-optimal criterion, as shown in Table 2.

Therefore, one hundred Ex-PSO-A designs with m = 4, 5, 6, 7 components and n = m(m− 1) runs are

generated, and Figure 3 highlights that all Ex-PSO-A designs reach at least 93% of the efficiency of the

full PWO design. For the cases with large m, the settings on maximum iterations, tex and tpso may not

be enough, but the Ex-PSO algorithm still returns approximate optimal PWO designs; see Tables 4-6 in

the following part.
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Figure 3. Boxplot of the A-efficiencies for the Ex-PSO-A designs with m = 4, 5, 6, 7 components and

n = m(m− 1) generated by one hundred runs of Ex-PSO(m, n; 10, 20, 100, 0.005, 1, 1).

To illustrate the advantages of the obtained designs for fitting PWO model, we compare the

Ex-PSO-D designs for 4 components and 12 runs with the optimal PWO design in Peng, Mukerjee, and

Lin (2019).

Example 1. The following is a Ex-PSO-D design with 4 components and 12 runs generated by

Ex-PSO(4, 12; 10, 20, 100, 0.005, 1, 1).

Table 3 An Ex-PSO-D design with 4 components and 12 runs

Run Order-of-Addition z12, z13, z14, z23, z24, z34

1 1 4 2 3 1, 1, 1, 1,−1,−1
2 1 2 4 3 1, 1, 1, 1, 1,−1
3 1 3 2 4 1, 1, 1,−1, 1, 1
4 2 1 3 4 −1, 1, 1, 1, 1, 1
5 2 4 3 1 −1,−1,−1, 1, 1,−1
6 2 3 4 1 −1,−1,−1, 1, 1, 1
7 3 1 4 2 1,−1, 1,−1,−1, 1
8 3 2 1 4 −1,−1, 1,−1, 1, 1
9 3 4 1 2 1,−1,−1,−1,−1, 1

10 4 1 3 2 1, 1,−1,−1,−1,−1
11 4 2 1 3 −1, 1,−1, 1,−1,−1
12 4 3 2 1 −1,−1,−1,−1,−1,−1

The information matrix of this design under the first-order PWO model is

M̃ =




1 0 0 0 0 0 0

0 1 1/3 1/3 −1/3 −1/3 0

0 1/3 1 1/3 1/3 0 −1/3

0 1/3 1/3 1 0 1/3 1/3

0 −1/3 1/3 0 1 1/3 −1/3

0 −1/3 0 1/3 1/3 1 1/3

0 0 −1/3 1/3 −1/3 1/3 1




.

If rows are rearranged, this design is the same as the optimal PWO design with 4!/2! runs constructed by Peng,

Mukerjee, and Lin (2019). This design also features projective properties (Voelkel and Gallagher 2019). All 4

subsets of three components correspond to two-times-replicated three-component designs.
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Figure 4. Relative efficiencies of Ex-PSO designs with 7 ≤ n ≤ 23 compared with the full PWO design

for the OofA experiment with 4 components.

Furthermore, for the OofA experiment with 4 components, we generated optimal PWO designs

with 7 to 23 runs using the Ex-PSO algorithm. Figure 4 shows the efficiencies of these designs. Clearly,

all the obtained designs with n ≥ 12 reach at least 95% efficiency of the full PWO design, though

with less than one fifth of the runs. Especially for the cases with n = 12, the design attains the same

efficiency as the full PWO design.

Furthermore, we compare four types of fractional PWO designs, which are COA, and the

corresponding designs obtained by the threshold accepting algorithm (Winker, Chen, and Lin 2020),

the Federov’s exchange algorithm (which iteratively optimizes a delta function of the xi and x where

xi is in the design and x is not, see reference to section 3.3 in Fedorov 1972) and the Ex-PSO algorithm,

denoted as Dcoa, Dta, Dex and Dex−pso respectively. Dta is the best result obtained over repeated runs

of threshold accepting algorithm with up to 10000000 iterations, Dex is generated by the optFederov

function (implemented in the R library AlgDesign) with nRepeats = 5, and Dex−pso is the best result

obtained over five repeated runs of the Ex-PSO algorithm with tex = 20 and tpso = 100. The

optimal PWO design constructed in Peng, Mukerjee, and Lin (2019) which serves as a benchmark

for evaluating fractional PWO designs is also listed here and denoted as Dpeng. In addition, the new

hybrid algorithm needs exhaustive search over the design space during the single-point exchange

procedure, and it can be computational expensive if m is large. Hence, we only report designs

with n = m(m− 1)/2 + 1, m(m− 1), m!/r!(r = ⌊m/2⌋) where 4 ≤ m ≤ 7. Nevertheless, given the

tremendous growth in computational resources available, it is feasible to conduct the Ex-PSO algorithm

for constructing designs with m > 7.

Tables 4-6 exhibit the values of det(M̃)1/p, tr(M̃−1), tr(M̃2), and D-, A- and M.S.-efficiency (in

parentheses) for the corresponding designs. Note that the larger the value of det(M̃)1/p is, the better,

while smaller values of tr(M̃−1) and tr(M̃2) are better. For any number of components, Dmp is not

unique and the corresponding tr(M̃−1) or tr(M̃2) is by no means a fixed value. Hence, Dmp is not

listed in Tables 5 and 6. From the tables, we can find that Dex−pso reach a higher efficiency than the

other types of designs under the PWO model in most cases. Further, we report the best PWO designs

with n = m(m− 1)/2 + 1, m(m− 1) and 4 ≤ m ≤ 7 under the D-, A- and M.S.-optimal criteria in the

supplementary material.
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Table 4 Comparison of det(M̃)1/p and D-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 0.6966(89.6%) 0.6966(89.6%) 0.6966(89.6%)
12 0.7773(100%) 0.7064(90.9%) 0.7773(100%) 0.7773(100%) 0.7773(100%)

5 11 - - 0.6379(90.3%) 0.6211(87.9%) 0.6379(90.3%)
20 - 0.6354(89.9%) 0.6855(97.0%) 0.6840(96.8%) 0.6855(97.0%)
60 0.7067(100%) - 0.7067(100%) 0.7061(99.9%) 0.7067(100%)

6 16 - - 0.5778(88.1%) 0.5612(85.6%) 0.6002(91.5%)
30 - 0.5710(87.1%) 0.6344(96.7%) 0.6372(97.2%) 0.6381(97.3%)
120 0.6558(100%) - 0.6552(99.9%) 0.6555(99.95%) 0.6558(100%)

7 22 - - 0.5016(81.2%) 0.5325(86.2%) 0.5409(87.6%)
42 - 0.5800(93.9%) 0.5958(96.4%) 0.5996(97.0%) 0.5998(97.1%)
840 0.6178(100%) - 0.6178(100%) 0.6177(99.99%) 0.6178(100%)

Table 5 Comparison of tr(M̃−1) and A-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex Dex−pso

4 7 - - 17.5000(67.4%) - 14.8750(79.3%)
12 11.8000(100%) 14.5000(81.4%) 11.8000(100%) 11.8000(100%) 11.8000(100%)

5 11 - - 28.2898(74.2%) - 26.4773(79.3%)
20 - 26.0000(80.8%) 22.4550(93.5%) 22.3910(93.8%) 22.3311(94.0%)
60 21.0000(100%) - 21.0337(99.8%) 21.0000(100%) 21.0000(100%)

6 16 - - 46.0558(72.0%) - 40.8428(81.2%)
30 - 45.3736(73.0%) 35.3203(93.8%) 35.0989(94.4%) 35.0144(94.7%)

120 33.1429(100%) - 33.2443(99.7%) 33.2023(99.8%) 33.1721(99.9%)

7 22 - - 76.4729(63.1%) - 72.4088(66.6%)
42 - 57.1177(84.5%) 51.6845(93.4%) 51.0578(94.5%) 51.5024(93.7%)

840 48.2500(100%) - 48.2583(99.98%) 48.2738(99.95%) 48.2555(99.99%)

Note: Dex with n = m(m− 1)/2 + 1 is omitted because it reports an error of “singular design"
when running the optFederov function from the AlgDesign package in R.

Table 6 Comparison of tr(M̃2) and M.S.-efficiency of PWO designs

m n Dpeng Dcoa Dta Dex−pso

4 7 - - 10.4694(92.3%) 10.4694(92.3%)
12 9.6667(100%) 10.3333(93.6%) 9.6667(100%) 9.6667(100%)

5 11 - - 18.5207(95.4%) 18.5207(95.4%)
20 - 19.0000(93.0%) 18.0400(97.9%) 18.0000(98.2%)
60 17.6667(100%) - 17.6667 (100%) 17.6667(100%)

6 16 - - 31.0000(94.6%) 30.9688(94.7%)
30 - 31.3333(93.6%) 29.8756(98.2%) 29.8311(98.3%)

120 29.3333(100%) - 29.3556(99.92%) 29.3733(99.89%)

7 22 - - 47.5702(95.3%) 47.7686(94.9%)
42 - 45.8095(99.0%) 45.9048 (98.8%) 46.1905(98.1%)

840 45.3333(100%) - 45.3349(99.99%) 45.3368(99.99%)

We conclude this section with some numerical results on constructions of fractional PWO designs

which have the same correlation structure as the full PWO design. Since these designs are 100%

efficient under diverse design criteria including the D-, A-, M.S.-optimal criteria, we call them fully

efficient PWO designs. Using the Ex-PSO algorithm, we find the following results.

Remark 3. Removing p(< m) components from a fully efficient PWO design with m components will result

in a fully efficient PWO design with m− p components.

Remark 4. The fully efficient PWO designs exist for the cases (i) m = 4, 5, n = 12k(k ≥ 1); (ii) m = 6,

n = 24k(k ≥ 1); and (iii) m = 7, n = 24.
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For saving space, some selected fully efficient PWO designs with minimized runs for m = 4, 5, 6, 7

are exhibited in Table 7, other fully efficient PWO designs and the MATLAB codes for the Ex-PSO

algorithm are available upon request.

Table 7 Selected fully efficient PWO designs for m = 4, 5, 6, 7

m = 4 m = 5 m = 6 m = 7
runs 1-12 runs 13-24 runs 1-12 runs 13-24

1 2 4 3 1 2 3 5 4 1 2 5 4 6 3 4 2 1 3 6 5 1 2 3 7 4 6 5 4 5 2 6 7 1 3
1 3 4 2 1 4 3 5 2 1 2 5 4 6 3 4 2 5 3 6 1 1 5 6 3 2 7 4 4 6 3 7 1 2 5
1 3 2 4 1 5 3 2 4 1 3 4 2 5 6 4 6 3 2 5 1 1 6 5 7 4 2 3 4 7 1 3 6 5 2
2 1 4 3 2 4 3 1 5 1 3 6 2 5 4 5 1 2 4 3 6 1 7 4 3 2 5 6 5 2 4 3 6 1 7
2 3 1 4 2 5 1 4 3 1 4 6 5 2 3 5 4 3 2 1 6 2 5 4 1 7 6 3 6 1 2 4 5 7 3
2 3 4 1 3 1 4 2 5 2 3 4 5 1 6 5 2 1 6 3 4 2 7 6 3 1 5 4 6 4 2 1 3 7 5
3 1 4 2 3 2 4 5 1 2 6 1 5 3 4 5 3 6 2 1 4 3 2 1 6 4 7 5 6 5 1 3 4 7 2
3 2 4 1 3 5 4 2 1 2 6 4 3 1 5 5 6 4 1 2 3 3 2 6 5 7 4 1 6 7 2 3 4 5 1
4 1 2 3 4 2 1 5 3 3 1 2 6 4 5 6 2 1 4 3 5 3 4 1 5 7 2 6 7 4 6 5 3 2 1
4 2 1 3 4 5 1 2 3 3 1 5 6 4 2 6 2 5 3 4 1 3 5 1 4 6 2 7 7 2 1 5 3 4 6
4 3 1 2 5 2 3 1 4 3 5 2 4 6 1 6 3 5 1 4 2 3 5 7 6 2 1 4 7 5 1 2 6 4 3
4 3 2 1 5 4 3 1 2 4 1 5 6 3 2 6 4 5 1 3 2 4 2 5 3 7 1 6 7 5 3 6 4 1 2

6. Concluding Remarks

For the OofA experiments, the study of the optimal fraction of the PWO design has received

considerable attention in the literature. The fractional PWO design with the same correlation structure

as the full PWO design is optimal under diverse design criteria but exists only for some fixed run sizes,

such as m!/r!(2 ≤ r ≤ m) runs. Theoretical constructions on optimal PWO designs are also heavily

constrained by the run size. In this paper, we present a flexible and effective searching algorithm,

the Ex-PSO algorithm. Even though the candidate fractional PWO designs are extremely massive,

this algorithm generates high efficient designs with only one hundred iterations. Moreover, it’s an

interesting but difficult problem to obtain more general theoretical results which cover Remark 4 as

special cases. While Remark 3 gives a fresh insight into constructions of the fully efficient PWO design

with m components basing on the fully efficient PWO design with m− 1 components. To that effect,

more theoretical results on the fully efficient PWO designs for general m will be studied in our future

work.

It is worth noting that the Ex-PSO designs are possibly to an optimal PWO designs given the

tremendous growth in computational resources available, thus it provides instructions for exploring

theoretical results on optimal PWO designs. In addition, the Ex-PSO algorithm applies not only to

PWO design but also to any type of design with finite candidate points. Therefore, this algorithm

has many potential applications, such as constructing optimal designs for an alternative model of the

OofA experiment or other kinds of experiments, and there are still many issues for further study.
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Appendix A. The proof of Theorem 1

To prove Theorem 1, the following two lemmas are useful.

Lemma A.1. For a nonsingular matrix M,

(1) M + xx′ is nonsingular, and (M + xx′)−1 = M−1 −wuu′, where w = 1/(1 + x′M−1x), u = M−1x;
(2) if Mx − xix

′
i is nonsingular, then x′i M

−1xi 6= 1 and (Mx − xix
′
i)
−1 = M−1

x + wiuiu
′
i, where wi =

1/(1− x′i M
−1xi), ui = M−1

x xi.
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The proof of this lemma is straightforward according to matrix theory and is thus omitted.

Lemma A.2. Let M be a nonsingular matrix and Mx = M + xx′; we have x′M−1
x x = x′M−1x

1+x′M−1x
and

x′M−2
x x = x′M−2x

(1+x′M−1x)2 .

Proof: According to Lemma A.1, we have

x′M−1
x x = x′M−1x− wx′uu′x

= x′M−1x−
(x′M−1x)2

1 + x′M−1x

=
x′M−1x

1 + x′M−1x
,

and

x′M−2
x x = x′(M−1 − wuu′)2x

= x′M−2x− 2wx′M−1uu′x + w2x′(uu′)2x

= x′M−2x−
2x′M−2xx′M−1x

1 + x′M−1x
+

x′(M−1xx′M−1)2x

(1 + x′M−1x)2

= x′M−2x[1−
2x′M−1x

1 + x′M−1x
+

(x′M−1x)2

(1 + x′M−1x)2
]

=
x′M−2x

(1 + x′M−1x)2
.

Proof of Theorem 1

Since Fedorov’s exchange algorithm has proved this result for the case with φ(D) = det(M),

uD(x) and vD(xi) defined as Equation (4), hence we only prove this result for the other two cases.

First, we prove that the design generated by single-point exchange procedure leads to no increase

in tr(M−1).

Let X be the model matrix of the current design and denote M = X′X, which is updated as

Mx − xix
′
i after exchanging x for xi according to the single exchange procedure. The following delta

function evaluates the multiple changes from tr(M−1) to tr((Mx − xix
′
i)
−1):

△(xi, x) =
tr((Mx − xix

′
i)
−1)

tr(M−1)

=
tr(M−1)− tr(wuu′) + tr(wiuiu

′
i)

tr(M−1)

= 1−
tr(wu′u)− tr(wiu

′
iui)

tr(M−1)

= 1−
1

tr(M−1)

[
x′M−2x

1 + x′M−1x
−

x′i M
−2
x xi

1− x′i M
−1
x xi

]
. (A.1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2023                   doi:10.20944/preprints202304.1166.v1

https://doi.org/10.20944/preprints202304.1166.v1


14 of 19

Based on step (2) of this procedure, we know that
x′i M−2

x xi

1−x′i M−1
x xi
≤ x′M−2

x x

1−x′M−1
x x

. In the combination of Lemma

A.2, we obtain

x′M−2x

1 + x′M−1x
−

x′i M
−2
x xi

1− x′i M
−1
x xi

≥
x′M−2x

1 + x′M−1x
−

x′M−2
x x

1− x′M−1
x x

=
x′M−2x

1 + x′M−1x
−

x′M−2x
(1+x′M−1x)2

1− x′M−1x
1+x′M−1x

=
x′M−2x

1 + x′M−1x
−

x′M−2x

1 + x′M−1x
= 0.

Thus, △(xi, x) ≤ 1 is obtained, which means tr(M−1) does not increase in the single-point

exchange procedure.

Second, we prove that the design generated in single-point procedure leads to no increase in

tr(M2).

To calculate the multiple exchange on the tr(M2) during each iteration of the single-point exchange

procedure, we define a delta function△(xi, x) as follows:

△(xi, x) =
tr((Mx − xix

′
i)

2)

tr(M2)

=
tr(M2

x)− 2x′i Mxxi + p2

tr(M2)

=
tr(M2) + 2x′Mx− 2x′i Mxxi + 2p2

tr(M2)

= 1 +
2x′Mx− 2x′i Mxxi + 2p2

tr(M2)
. (A.2)

By step (2) of this procedure, we have x′Mxx ≤ x′i Mxxi and

x′Mx− x′i Mxxi ≤ x′Mx− x′Mxx

≤ x′Mx− x′(M + xx′)x

≤ −p2. (A.3)

Thus, we obtain△(xi, x) ≤ 1 from (A.2) and (A.3).

Theorem 1 is proved.

Appendix B. Best PWO designs under the D-optimal criterion

Table B.1 D-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 3 4 1 2 4 3 3 2 1 4
1 3 4 2 1 2 3 4 3 2 4 1
2 1 4 3 1 3 4 2 4 1 3 2
3 1 2 4 2 1 4 3 4 2 1 3
3 2 4 1 2 3 4 1 4 2 3 1
4 1 3 2 3 1 4 2 4 3 1 2
4 2 3 1
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Table B.2 D-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 3 4 2 1 5 2 3 4 3 5 4 1 2
2 5 3 4 1 1 2 5 4 3 3 4 2 1 5
2 3 1 4 5 1 3 4 2 5 4 1 5 3 2
2 4 1 3 5 1 4 2 3 5 4 3 1 5 2
3 2 5 1 4 2 1 4 3 5 4 3 5 1 2
3 4 5 1 2 2 5 4 1 3 4 5 3 2 1
4 2 5 1 3 2 3 4 5 1 5 1 3 2 4
4 3 1 2 5 2 4 5 3 1 5 2 3 1 4
4 5 3 2 1 3 2 1 5 4 5 3 1 4 2
5 1 2 4 3 3 5 2 1 4 5 4 2 1 3
5 4 2 3 1

Table B.3 D-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 6 5 2 4 3 1 6 2 5 3 4 4 5 1 6 2 3
1 2 4 5 3 6 1 2 6 3 5 4 4 5 2 6 1 3
1 5 3 6 4 2 1 3 4 2 5 6 4 5 3 1 2 6
2 1 3 5 4 6 1 4 6 3 5 2 5 2 1 3 6 4
2 3 6 5 4 1 2 1 5 4 6 3 5 2 3 1 4 6
3 1 4 2 6 5 2 6 4 1 5 3 5 4 1 3 6 2
3 2 5 1 6 4 2 3 5 4 6 1 5 4 3 6 1 2
3 4 5 1 6 2 3 1 5 2 6 4 5 6 3 1 2 4
4 1 3 5 2 6 3 1 6 4 2 5 5 6 3 4 2 1
4 2 5 1 6 3 3 2 6 5 1 4 6 1 5 4 2 3
4 3 6 5 2 1 3 2 4 1 6 5 6 1 2 3 4 5
5 2 6 3 1 4 3 4 6 1 5 2 6 2 1 4 5 3
5 4 6 3 1 2 3 5 6 2 1 4 6 2 4 3 5 1
6 1 4 2 3 5 4 2 1 3 5 6 6 3 5 4 2 1
6 3 2 4 1 5 4 2 6 5 3 1 6 5 1 3 2 4
6 5 1 3 2 4
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Table B.4 D-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 7 5 2 6 4 3 1 7 6 5 2 3 4 4 3 7 5 6 2 1
1 4 3 6 5 7 2 1 4 7 2 3 6 5 4 7 2 1 5 6 3
2 5 6 1 3 4 7 1 4 3 2 7 6 5 4 6 2 1 7 5 3
2 6 3 4 7 1 5 1 5 6 4 2 7 3 4 6 5 3 7 1 2
3 1 2 5 6 7 4 1 6 2 4 5 3 7 5 1 6 4 7 3 2
3 2 7 4 6 5 1 2 1 4 3 6 7 5 5 2 1 7 4 6 3
3 7 5 6 1 4 2 2 3 7 1 6 4 5 5 2 3 6 4 1 7
3 5 4 1 7 6 2 2 3 5 4 7 6 1 5 3 1 4 6 7 2
4 2 1 7 5 3 6 2 5 7 1 3 4 6 5 7 2 6 1 4 3
4 5 6 1 2 7 3 2 5 4 7 3 6 1 6 1 7 2 3 4 5
5 2 7 1 6 3 4 2 5 6 1 3 7 4 6 1 5 3 4 2 7
5 3 6 7 2 4 1 2 6 7 5 4 3 1 6 3 2 4 7 5 1
5 4 6 3 2 7 1 2 6 4 7 3 5 1 6 3 4 5 1 2 7
5 7 4 2 3 6 1 3 1 7 2 5 6 4 6 7 1 3 5 2 4
6 1 7 5 3 4 2 3 1 5 6 2 7 4 6 7 1 4 2 5 3
6 2 1 3 7 5 4 3 2 4 1 6 5 7 7 3 1 4 5 2 6
6 2 5 4 7 3 1 3 7 5 4 1 2 6 7 3 6 4 2 5 1
6 4 1 3 2 5 7 3 6 5 7 4 2 1 7 4 1 6 2 3 5
6 7 4 3 2 5 1 4 1 3 2 5 6 7 7 4 5 3 6 1 2
7 1 3 2 5 4 6 4 1 5 7 3 2 6 7 6 3 2 1 5 4
7 1 4 6 2 5 3 4 2 6 3 1 5 7 7 6 5 4 1 3 2
7 6 3 2 1 4 5

Appendix C. Best PWO designs under the A-optimal criterion

Table C.1 A-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 3 4 2 1 4 3 2 3 1 2 4
2 1 4 3 1 2 3 4 3 2 4 1
2 3 1 4 2 1 3 4 3 4 2 1
3 1 2 4 2 1 4 3 4 1 3 2
3 2 4 1 2 4 3 1 4 1 2 3
4 1 2 3 3 1 4 2 4 2 3 1
4 3 2 1

Table C.2 A-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 4 2 3 5 1 5 3 4 2 3 5 1 4 2
2 1 5 4 3 1 2 5 4 3 3 5 2 4 1
2 1 3 4 5 1 3 2 4 5 4 1 5 2 3
2 3 5 4 1 2 1 4 3 5 4 2 1 3 5
2 4 5 1 3 2 5 4 3 1 4 2 5 1 3
3 4 1 2 5 2 3 5 4 1 4 3 1 5 2
4 1 3 5 2 2 3 4 1 5 4 5 3 2 1
4 3 2 5 1 3 1 4 2 5 5 1 2 4 3
4 5 2 3 1 3 2 1 5 4 5 2 3 1 4
5 1 3 4 2 3 2 4 5 1 5 4 1 3 2
5 3 1 2 4
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Table C.3 A-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

2 1 5 6 3 4 1 3 2 6 4 5 4 1 5 2 3 6
3 1 2 4 5 6 1 3 5 6 2 4 4 2 1 3 5 6
3 1 6 4 5 2 1 4 2 6 3 5 4 3 2 5 6 1
3 5 2 4 1 6 1 4 3 6 2 5 4 6 1 2 3 5
3 5 6 4 1 2 2 1 6 4 5 3 4 5 1 6 3 2
4 2 3 6 5 1 2 1 6 3 5 4 5 2 3 1 4 6
4 3 6 2 1 5 2 1 4 5 6 3 5 2 4 6 1 3
4 5 6 2 3 1 2 3 5 1 6 4 5 3 4 1 2 6
5 1 6 4 3 2 2 5 3 6 4 1 5 6 1 3 4 2
5 1 3 4 6 2 2 5 4 3 1 6 6 1 4 2 5 3
5 3 2 6 1 4 3 1 2 5 4 6 6 2 1 5 3 4
6 1 5 2 4 3 3 1 4 5 6 2 6 2 3 4 5 1
6 1 3 4 5 2 3 2 4 6 1 5 6 4 3 1 5 2
6 2 3 5 1 4 3 4 6 5 2 1 6 5 1 2 4 3
6 2 4 5 1 3 3 5 2 6 1 4 6 5 4 3 2 1
6 5 3 4 1 2

Table C.4 A-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 3 7 4 2 6 5 1 2 7 3 5 4 6 4 7 3 6 1 5 2
1 5 4 6 3 7 2 1 3 7 6 5 2 4 4 7 6 1 2 5 3
1 6 7 4 5 3 2 1 5 4 6 3 7 2 4 5 2 1 3 6 7
1 6 3 4 5 7 2 1 6 2 5 3 4 7 5 1 7 4 3 6 2
2 7 6 1 4 3 5 1 6 4 7 3 2 5 5 3 6 4 1 7 2
2 4 5 6 1 3 7 1 6 4 5 2 7 3 5 7 3 2 4 1 6
2 6 5 4 3 1 7 2 1 4 5 7 6 3 5 7 3 6 1 4 2
3 6 1 5 7 2 4 2 7 6 5 1 4 3 5 6 4 3 1 2 7
3 6 2 5 1 4 7 2 4 3 5 6 7 1 6 1 7 3 5 2 4
3 6 4 2 7 1 5 2 4 5 6 1 3 7 6 1 3 4 5 2 7
4 1 6 2 7 3 5 2 6 5 4 7 1 3 6 1 5 3 7 4 2
4 1 5 2 7 3 6 3 1 2 4 6 7 5 6 2 3 5 1 4 7
4 2 3 5 6 7 1 3 1 7 2 6 4 5 6 2 4 1 7 5 3
4 3 1 7 5 6 2 3 2 7 1 5 4 6 6 3 5 2 7 4 1
4 7 6 5 3 1 2 3 4 2 1 7 5 6 6 7 4 3 1 2 5
5 3 2 7 4 1 6 3 4 5 7 1 2 6 6 7 5 2 3 1 4
5 6 3 1 4 2 7 3 6 2 7 1 4 5 7 1 5 2 6 4 3
7 1 6 2 4 5 3 4 2 6 3 1 5 7 7 2 1 3 5 6 4
7 1 3 2 5 6 4 4 2 6 7 5 1 3 7 4 5 1 6 2 3
7 5 2 3 1 4 6 4 2 3 1 6 5 7 7 5 2 6 3 1 4
7 6 3 4 2 1 5 4 3 7 6 5 2 1 7 6 3 4 2 5 1
7 6 5 4 2 1 3

Appendix D. Best PWO designs under the M.S.-optimal criterion

Table D.1 M.S.-Optimal PWO designs for m = 4

7 runs 12 runs
runs 1-7 runs 8-12

1 2 4 3 1 4 3 2 2 3 1 4
2 1 3 4 1 4 2 3 3 2 1 4
2 4 3 1 1 2 3 4 3 4 1 2
3 1 4 2 1 3 2 4 3 4 2 1
3 2 4 1 2 4 1 3 4 2 1 3
4 1 3 2 2 4 3 1 4 3 1 2
4 2 1 3
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Table D.2 M.S.-Optimal PWO designs for m = 5

11 runs 20 runs
runs 1-10 runs 11-20

1 5 2 4 3 1 5 3 4 2 3 5 2 1 4
1 5 3 4 2 1 2 5 4 3 4 1 3 2 5
1 3 2 4 5 1 3 4 5 2 4 2 5 1 3
2 5 1 4 3 2 1 4 3 5 4 2 3 1 5
2 5 3 4 1 2 1 5 3 4 4 3 1 5 2
2 3 1 4 5 2 3 1 4 5 4 5 1 2 3
3 5 1 4 2 2 3 4 5 1 4 5 3 2 1
3 5 2 4 1 3 1 4 2 5 5 1 2 4 3
4 1 2 3 5 3 2 5 4 1 5 3 2 4 1
4 3 2 1 5 3 5 1 4 2 5 4 2 3 1
4 5 2 1 3

Table D.3 M.S.-Optimal PWO designs for m = 6

16 runs 30 runs
runs 1-15 runs 16-30

1 2 6 4 5 3 1 4 2 3 5 6 4 2 1 6 3 5
1 3 4 6 5 2 1 4 3 2 6 5 4 5 6 2 3 1
1 5 2 4 3 6 1 4 5 3 6 2 5 1 6 3 4 2
2 6 3 4 5 1 2 1 6 5 3 4 5 1 2 6 4 3
2 5 1 3 4 6 2 6 4 5 1 3 5 2 1 3 4 6
3 2 6 1 5 4 2 3 5 6 1 4 5 3 1 2 4 6
3 4 1 2 5 6 2 3 4 1 5 6 5 3 6 4 2 1
3 5 1 6 4 2 2 4 6 5 3 1 5 4 2 3 6 1
4 1 3 6 2 5 3 1 6 5 2 4 5 4 6 1 3 2
4 2 3 5 6 1 3 2 5 4 1 6 6 1 2 3 4 5
4 6 5 3 1 2 3 2 6 4 1 5 6 2 1 5 4 3
5 3 6 2 4 1 3 4 6 2 5 1 6 3 1 4 2 5
5 4 2 1 6 3 3 4 6 5 1 2 6 3 1 5 2 4
5 6 1 4 3 2 4 1 3 5 2 6 6 4 3 5 2 1
6 1 2 3 5 4 4 1 6 2 5 3 6 5 4 1 2 3
6 4 2 1 5 3

Table D.4 M.S.-Optimal PWO designs for m = 7

22 runs 42 runs
runs 1-21 runs 22-42

1 2 3 6 7 4 5 1 7 2 6 3 4 5 4 2 6 7 3 5 1
1 2 5 7 6 3 4 1 7 2 4 5 6 3 4 3 5 1 7 2 6
1 4 3 6 2 5 7 1 7 5 3 2 6 4 4 7 5 3 2 1 6
2 1 6 5 4 3 7 1 3 2 5 7 4 6 4 5 3 6 2 1 7
2 5 4 6 3 1 7 1 3 4 5 6 2 7 4 5 7 6 2 1 3
3 4 1 7 5 6 2 1 4 3 2 6 7 5 4 6 3 7 1 5 2
3 4 2 7 6 5 1 1 5 7 4 2 3 6 5 2 1 6 4 3 7
4 5 2 6 7 1 3 1 6 5 2 4 7 3 5 3 2 4 7 6 1
4 5 3 1 7 2 6 2 7 5 1 3 4 6 5 4 1 6 3 7 2
4 6 1 7 2 5 3 2 3 4 1 6 5 7 5 7 4 2 3 6 1
5 2 1 7 3 4 6 2 3 5 6 4 7 1 5 6 7 3 1 2 4
5 3 6 1 7 4 2 2 4 7 6 1 5 3 6 1 4 2 5 3 7
5 3 6 2 4 7 1 2 4 3 7 1 6 5 6 1 5 3 4 7 2
6 1 4 5 7 3 2 2 5 3 7 1 4 6 6 2 5 1 7 4 3
6 3 2 1 7 4 5 2 6 3 1 7 5 4 6 5 3 4 1 2 7
6 3 5 7 1 2 4 3 1 4 6 7 2 5 6 7 2 5 4 1 3
6 7 5 4 2 3 1 3 2 6 4 5 1 7 6 7 4 5 1 2 3
7 1 5 4 6 3 2 3 7 6 4 2 5 1 7 1 3 6 5 4 2
7 2 4 3 1 5 6 3 7 5 6 1 2 4 7 4 6 1 3 2 5
7 3 2 6 1 5 4 3 6 7 2 1 4 5 7 5 3 4 1 2 6
7 5 1 3 2 4 6 4 2 1 7 5 6 3 7 6 3 5 2 1 4
7 6 2 4 5 1 3
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