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Abstract: For order-of-addition experiments, the response is affected by the addition order of the
experimental materials. Consequently, the main interest focuses on creating a predictive model and
an optimal design for optimizing the response. Van Nostrand (1995) proposed the pairwise-order
(PWO) model for detecting PWO effects. Under the PWO model, the full PWO design is optimal
under various criteria but is often unaffordable because of the large run size. In this paper, we
consider the D-, A- and M.S.-optimal fractional PWO designs. We first present some results on
information matrices. Then, a flexible and efficient algorithm is given for generating these optimal
PWO designs. Numerical simulation shows that the generated design has an appealing efficiency in
comparison with the full PWO design, though with only a small fraction of runs. Several comparisons
with existing designs illustrate that the generated designs achieve better efficiencies, and the best
PWO designs and some selected 100% efficient PWO designs generated by the new algorithm are
reported.

Keywords: pairwise-order model; D-optimal; A-optimal; M.S.-optimal; particle swarm optimization;
Fedorov exchange algorithm

1. Introduction

In some specific experiments, such as a chemical experiment with a number of reactants that
are added into an apparatus sequentially rather than simultaneously, different orders of adding
the components involved in the system yield different responses. Therefore, researchers are more
interested in how the addition sequence of reactants affects the response. Experiments with this feature
are referred to as order-of-addition (OofA) experiments and are widely applied to chemical-related
areas and food industries, as well as biochemistry and measurement processes. The earliest research
on OofA experiments can perhaps be traced back to the study of a lady tasting tea in Fisher (1937).
Another study appeared in Fuleki and Francis (1968) that evaluated an experiment for extracting
anthocyanins from cranberries. During the past decades, the approach of OofA experiments has been
proposed in many practical studies; for example, see the references Jourdain et al. (2009), Karim,
Mccormick, and Kappagoda (2000), Olsen et al. (1994) and so on.

For the objective of optimizing and predicting the response, a statistical model and an optimal
design are created for the OofA experiment. The idea of pairwise-order (PWO) modeling and designing
the OofA experiment has been presented in Van Nostrand (1995). Recently, Voelkel (2019) proposed
a number of design criteria. Voelkel (2019) provided theoretical results on the full PWO design and
construction of the optimal PWO design, which has the same correlation structure as the full PWO
design, namely, the same information matrix. A recent review on OofA experiments and PWO models
can be found in Lin and Peng (2019).

In fact, the PWO model is also a regression model. Then, a family of criteria can be applied to
find optimal designs under the PWO model, such as D-, A- and M.S.-optimal designs. The optimality
proof indicates that a full PWO design with m! distinct permutations of components is D-, A- and
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M.S -optimal, but the run size is extremely large. Taking m = 10 as an example, there are m! = 3628800
distinct permutations. Consequently, over three million runs of experiments should be implemented,
which is impractical. Therefore, fractions of full PWO designs with a smaller number of runs are
preferable.

Recently, four kinds of fractional PWO designs have been studied. Peng, Mukerjee, and Lin
(2019) introduced a method for constructing optimal PWO designs. This method limits the run size
tom!/r! (2 <r <m/2), which is also too many for experimenters to afford. For instance, if m = 10,
the method needs at least 30240 runs to be implemented. Yang, Sun, and Xu (2021) and Zhao, Lin,
and Liu (2022) provided construction methods based on an orthogonal array, the resulting designs
are component orthogonal arrays (COAs) and OofA orthogonal arrays (OofA-OAs), in which the run
size is also inflexible. Zhao, Lin and Liu (2021) provided a minimal-point design with m(m —1)/2 + 1
runs. The run size is small, but the efficiency is relatively low. However, theoretical constructions of
these fractional PWO designs are highly dependent on run size. Winker, Chen, and Lin (2020) applied
the threshold accepting algorithm to construct the optimal designs (D-efficiency for application) based
on the pairwise-order (PWO) model and the tapered PWO model, the designs obtained by threshold
accepting algorithm for 4 < m < 30 withn = m(m —1)/2+1,m(m —1) +1,3m(m —1)/2 +1,
respectively, are provided for practical uses. The present paper also provides a computer algorithm
to construct the PWO design with a flexible run size, and D-, A-, and M.S.-optimal PWO designs
can be constructed using the proposed algorithm. When compared with the full PWO designs, the
constructed designs possess high efficiencies.

This paper is organized as follows. We first introduce the PWO model in Section 2. Section 3
gives a review of Fedorov’s exchange algorithm for constructing the D-optimal designs. Then, this
algorithm is modified and extended for constructing A- and M.S.-optimal designs. Some theoretical
results on the information matrix and algorithm are also provided in Section 3. In Section 4, based on
the exchange algorithm and particle swarm optimization (PSO) algorithm, a novel hybrid algorithm
is proposed to achieve D-, A- and M.S.-optimal PWO designs. Some numerical results are given in
Section 5. Finally, concluding remarks are provided in Section 6.

2. Model specification

Now, we introduce the Van Nostrand PWO model. Suppose there are m components denoted as
1,...,m. Any treatment in the OofA experiment corresponds to a permutation of 1, ..., m, denoted as
«, and the first-order PWO model can be expressed as

(a) =Bo+ Y, zj(a)Bji

1<j<k<m

where each zji () is a PWO indicator between j and k,

) 1 ifjprecedeskina,
ka(“) - { —1 if k precedes j in «. g

For an n-point PWO design, let Y be the n-dimensional response vector, Z be the design matrix with
(3) columns corresponding to PWO indicators z13, 213, - - -, Z(y—1)m, and B = (B12, B13, - - -, B(m—1)m)’s
where ' denotes the transpose. Then, the first-order PWO model can be written as

Y =1Bg+ ZB +e, @)

or
Y=XB+e, ®)
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where X = (1 Z)nxp with p = (%) + 1 is the model matrix, and B = (Bo, B')’ represents the parameter
of interest. Mee (2020) extended the PWO model to the high-order case. Here, we only consider a
first-order PWO model. The proposed algorithms also apply to a higher-order PWO model.

Furthermore, we refer to M = X'X/n as the information matrix of an n-point PWO design.
Under the PWO model (3), the variance-covariance matrix of the least squares estimator of B is
proportional to M. Hence, it is desirable to maximize the matrix M under some criteria. The popular
criteria include the D-criterion det (M )1/ P, the A-criterion tr(M~1), the M.S.-criterion tr(M?) (see the
reference Atwood 1969). Note that tr(M~1) is interpreted as +co for singular X'X. Let X be the full
PWO design and the corresponding information matrix be M = XJ’,X ¢/ n. For clarity, we take m = 3
as an example to illustrate the characteristics of the full PWO design under D-, A- and M.S.criteria.
The levels of PWO factors in the full PWO design with 3 components are as follows.

Table 1 Full PWO design with 3 components

Run Order-of-Addition 212,213,223
1 123 1, 1, 1
2 132 1, 1,-1
3 213 -1, 1, 1
4 231 -1,-1, 1
5 312 1,-1,-1
6 321 -1,-1,-1
From this, we obtain
1 1 1 1
1 1 1 -1 1 0 0 0
1 -1 1 1 ~ 0 1 1/3 -1/3
X pr— pr—
f 11 o1 o1 P o 1/3 1 1/3 |’
1 1 -1 -1 0 -1/3 1/3 1
1 -1 -1 -1

=11/2 and tr(M2%) = 14/3.

and det(]\71f) =16/27, tr(M; ! ¥

7))
3. Exchange algorithms for constructing D-, A-, and M.S.-optimal designs

Theoretical constructions on optimal designs are always complicated; hence, computer algorithms
are applied for constructing approximate and exact optimal designs in the literature. Exchange
algorithm is one of the popular computer algorithms for constructing optimal designs for the cases
with the design points being selected from a finite design space. Fedorov (1972) first proposed an
exchange algorithm for generating D-optimal designs. This algorithm chooses n points to include in the
design from a finite set of possible points called candidate points, and it starts with nonsingular n-point
designs and then adds and deletes one observation in order to achieve increases in the determinant.
After that some improved implementations are proposed based upon Fedorov’s exchange algorithm,
such as the Kiefer round-off algorithm, the Mitchell algorithm, the Wan Schalkwyk algorithm, the
combined Fedorov, the Wynn-Mitchell algorithm and so on; see the references Mitchell (1992), Nguyen
and Miller (1992).

3.1. The single-point exchange procedure

Consider an n-point design D = {a;}_; under model (3), with a corresponding model matrix X =
(x1,...,%,). If M = X'X/n, then the D-, A- and M.S.-criteria maximize det(M)/?, —tr(M~1) and
ftr(Mz) respectively, which are equlvalent to maximizing ¢(D) = det(M), —tr(M~1) and —tr(M?)
respectively, where M = X'X = Y /' | x;x/
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Inspired by Fedorov’s exchange algorithm, we develop a new exchange algorithm for generating
D-, A- and M.S.-optimal designs simultaneously. This algorithm is realized by multiple iterations of
the single-point exchange procedure which works as follows.

Single-point exchange procedure:
Let X be the model matrix of the original design and M = X'X,

(1) Find a vector x among the vectors of the complementary design such that u(x) is maximum and add x to
the current n-point design;

(2) Find a vector x; among the n + 1 vectors of the current n + 1-point design such that v(x;) is minimum
and remove x;.

When use the single-point exchange procedure for generating the D-, A- and M.S.-optimal
designs, the objective functions are denoted as u.(x) and v, (x;) with * = D, A, M.S. and defined as

bellow:
up(x) = x’M~tx,0p(x;) = xMy tx;; 4)
x'M~2x xXIM;2x;
UpA(X) = ———————,04(X) = ————————; 5
a(x) 1+x'M-1x a(x) 1fx§M;1xi ©
ups.(x) = —x'Mx, vps.(x;) = —xiMqx;; (6)

where M = }I' | x;x] is the moment matrix of the current design and M is updated to My = M + xx’
when a candidate point from the complementary design is added to the current design. Here, the
complementary design consists of all candidate points from the design space except for the n points of
the current design.

Theorem 1. For D-, A-, and M.S.~criteria which maximize ¢(D) = det(M), —tr(M~1) and —tr(M?)
respectively, the design generated by the single-point procedure with u(x) and v(x;) defined as equations (4)-(6)
leads to no decrease in ¢(D).

The proof of this theorem uses some matrix theories, and we present it in the appendix. This
result implies that exchange algorithm will return local D-, A- and M.S.-optimal designs over multiple
iterations of the single-point exchange procedure.

3.2. The technique for avoiding the singularity of the matrix for the exchange algorithm

For generating optimal design using a computer search algorithm, the solution is often trapped
into the local optimal design. Thus random exchange method is always used to avoid this drawback.
For constructing D-, A- and M.S.-optimal designs using a computer search algorithm, a random
selected initial design possibly corresponds to a singular moment matrix, especially for the case with a
rather small number of 1, and computation problem then arises. Taking the case withn = () + 1(m =
4,5) as an example. Among all (”:Z') options of n-point design, a large proportion of them correspond
to a badly conditioned matrix M. As shown in Figure 1, all the reciprocal condition numbers are near
0, and the reciprocal condition number below 10712 is counted in the first bin of each histogram with a
probability exceeding 50%.

A random selected initial design will return a computationally singular matrix M with a large
probability. For this reason, we address the issue of avoiding singularities of M and M, in the
single-point exchange algorithm. Two types of techniques are provided regarding this issue. The first
technique is to start with a nonsingular design instead of starting with a randomly selected design.
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All PWO designs with m=4, n=7 10° randomly selected PWO designs with m=6, n=16

— 0
02 0 02 04 06 08 1 02 0 02 04 06 08 1
Reciprocal condition number of M Reciprocal condition number of M

Figure 1. Distributions of the reciprocal condition numbers of matrix M for all PWO designs with
m =4,n =7 and 10° randomly selected PWO designs with m = 5,n = 11.

Remark 1. If the initial design has nonsingular moment matrix, then by My = |M|(1 + x’M~'x) and
IaAf—1

My — xixt = [Mi|(1 — xIM;1x;), where x!M1x; < X'M7lx = ﬂTﬁx < 1, both My and My — x;x,

are nonsingular matrices during each iteration of the single-point exchange algorithm which is performed

recursively.

This technique is practical since a nonsingular initial design with n points can be obtained by
appending n — (%) — 1 randomly selected distinct points to the minimal-point design provided in
Zhao, Lin, and Liu (2021). However, in the hybrid algorithm, the design is updated via both the
single-point exchange procedure and some random exchange procedure.

The second technique is inspired by the DETMAX algorithm in Mitchell (2000), a specified
nonsingular matrix multiplied by a very small positive parameter 6 is added to matrix M or My.
Taking M as an example, we do not consider M1 directly, but instead attempt to calculate (M +
Q(X}X £/Ny))~!, where Ny is the number of candidate points, and Xy is the model matrix of the
full design composed of all Ny candidate points. Then, one technique that we can use to avoid the
singularity of the matrix is as follows.

Remark 2. To avoid singularity, x' (M + G(X}Xf/Nf))’lx and x| (M + G(X}Xf/Nf))’lxi are maximized
and minimized in the single-point exchange algorithm with u(x) and v(x;) being defined as equations (4) and
(5). The degree of error involved in considering these alternative matrices is less than 0.

To appreciate the degree of error involved in considering the alternative matrix, one can make the
following calculations. Let
£(8) = %' (M +6(X;X¢/Ng)) ™ 'x.

Then, extend f(6) in a Taylor series about 6 = 0 to obtain the linear approximation:

o)

= M lx— G(X/(M + B(X}Xf/Nf))il(X}Xf)/Nf(M + G(X}Xf/Nf))flx) |9:0
= M 1x— ex’Mflx}Xfolx/Nf.

1%

£(0)

For small 60, the error in considering x'(M + G(X}Xf/ Ny))'x instead of ¥’M~'x is nearly

0x’ M’lX}X fM’lx /Np. In the proposed algorithm, the value of 6 is set at 0.005, which is found
to be quite satisfactory in simulations. This choice based on run size of the full PWO is sufficiently
large such that x’M_lX}XfM_lx/Nf < 1, and the error will be less than 0.5%.
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Figure 2. D-, A- and M.S -efficiencies of PWO designs generated initial design, and each graph contains
four lines corresponding to PWO designs with m = 4,5,6,7 components and n = m(m — 1) runs,
respectively.

Note that in this paper, we adopt the technique described in Remark 2 to avoid the singularity of
the matrix.

3.3. The performance of the exchange algorithm

Now we discuss the performance of the exchange algorithm. The single-point exchange procedure
is performed recursively, and the D-, A- and M.S -efficiencies of the generated designs are calculated.
For brevity, the cases with m = 4,5,6,7 components are considered and the run sizes are fixed at
n = m(m — 1). The following Figure 2 shows that the efficiencies are deeply increased in former
iterations but then stabilized at slows on one value as the number of iterations increased. Therefore,
the exchange algorithm yields locally optimal designs that approximate a global optimal design in a
reasonable number of iterations.

To illustrate the performance of the exchange algorithm for constructing D-, A- and M.S.-optimal
designs, 1000 designs are generated by the exchange algorithm with respective to each pair of the
objective functions defined in equations (4)-(6). The initial designs are randomly selected. We list
the minimum, average and maximum efficiencies of the generated designs in Table 2. Obviously, the
generated designs are largely depended on the initial designs, most of them are locally optimal designs
and some of them even have lower efficiencies than 80%, see the numbers in a bold font. Thus, in the
next section, we proposed a more robust hybrid algorithm which combines the exchange algorithm
and the particle swarm algorithm to produce approximate optimal designs with higher efficiency than
the designs generated by exchange algorithm.

Table 2 Efficiencies of 1000 designs generated by the exchange algorithm

D-efficiency A-efficiency M.S -efficiency

m Runs Min Ave Max Min Ave Max Min Ave Max

4 12 97.4% 99.8% 100% 32.1% 65.3% 92.4% 76.3% 97.7% 100%
5 20 94.2% 96.0% 97.0% 19.5% 51.7% 73.9% 74.4% 96.5% 98.2%
6
7

30 93.8%  95.8%  97.1%  191%  48.0% 69.5% 95.2% 96.8%  98.1%
42 93.7%  953%  96.7%  334%  47.7% 63.4% 95.9% 971%  98.0%

4. Constructions on D-, A- and M.S.-optimal PWO designs using a hybrid algorithm combining
the exchange algorithm and PSO algorithm

Before introducing the new algorithm, we add some details of the PSO algorithm. PSO is a
population-based stochastic algorithm for optimization. Each population member is described as a
particle that moves around a search space testing new criterion values. All particles survive from the
beginning of a trial until the end, and their interactions result in iterative improvement of the quality
of the problem solutions over time. The most common type of implementation defines the particles
behavior as adjusting toward each of its personal best position(local-best) and global-best position so
that its trajectory shifts to new regions of the search space and the particles gradually cluster around

7
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the optima. For applications to find optimal experimental designs, a particularly challenging task
is to redefine the particle designs” movement toward its personal local-best design and global-best
design. A review of some recent applications of PSO and its variants to tackle various types of efficient
experimental design is Chen, Chen, and Wang (2022). Since finding optimal PWO designs for OofA
experiment is to solve a discrete optimization problem, we utilize a update procedure for the particle
designs that is similar to the modified PSO algorithms in Chen et al. (2014) and Phoa et al. (2016).
Each particle design relates to its personal local-best design which is derived by exchange procedures
starting from itself. During each iteration, the current particle design is adjusted toward its personal
local-best design as well as the global-best design by exchanging points with each other.

Now, we introduce a new hybrid algorithm called Ex-PSO algorithm, which combining the
single-point exchange algorithm and PSO algorithm for generating D-, A-, and M.S.-optimal designs.
The single-point exchange algorithm is used for generating the local-best design with respect to each
particle design. The PSO algorithm ensure the particle designs gradually cluster around the optimal
PWO design. To avoid singularity, the technique proposed in Remark 2 is used; hence, a parameter 0
with a small value is involved in this algorithm.

Since the Ex-PSO algorithm involves a set of parameters denoted as s, tx, tpso,0,c1,c2, wWe
also refer to it as Ex-PSO(m, n;s, tex, tpso 0,1, cp) for generating optimal PWO design with m
components and n runs. For clarity, we create a programming chart to illustrate the steps of
Ex-PSO(m, n; s, tex, tpso, 0,1, c2). Further, we explain the optimization process and the uses of these
parameters as follows. Denote Lis and G as the local-best designs and the global-best design
respectively. These designs are updated during each iteration of the Ex-PSO algorithm. Each local-best
design Ly is derived from the current particle design Dy via a fixed number of iterations of the
single-point exchange procedure, denoted as t.,. In addition, the global-best design § is the optimal
local-best design that maximizes ¢(Ly). And the number of iterations of the PSO algorithm is denoted
as tpso. Meanwhile, two parameters are used to control the PSO behavior of the Ex-PSO algorithm: ¢4
and cp, which account for the velocities at which each current design drifts toward the corresponding
local-best and global-best design. More specifically, during each iteration of the PSO algorithm, we
randomly exchange ¢ points from the difference set Dy \ £ with ¢; points from £y \ Dy and then
randomly exchange c; points from the difference set Dy \ G with ¢, points from G \ Dy. This procedure
corresponds to the “Update Dy by PSO" box in the programming chart.

Finally, we note that the Ex-PSO algorithm is implemented in MATLAB running on Intel(R)
Core(TM) i7-8550U GHz with 8 GB Memory. Take the case of m = 6,n = 16 for example, it takes 30.42
seconds for running Ex-PSO(6, 16;10,20,100,0.005,1,1).

5. Numerical simulations

In this section, we illustrate the performances of the obtained designs constructed by the Ex-PSO
algorithm. For brevity, the generated designs are denoted as Ex-PSO-D, Ex-PSO-A and Ex-PSO-M.S.
designs that respectively correspond to the objective functions (4)-(6) which are considered in the
exchange algorithm. Numerical simulations show that these designs are powerful for fitting PWO
models in terms of the D-, A- and M.S.-efficiencies. The efficiencies are derived from comparison

with the full PWO design, since the information matrix of the full PWO design has been proven to
v)l/
be universally optimal. Therefore, we have the D-, A- and M.S -efficiencies that calculate %,
f
tr(M;") tr(M3)
vy A L
and full PWO design respectively, and p is the number of the columns of the model matrix X.

Ex-PSO Algorithm: Ex-PSO(m, 1;s, tex, tpso, 0, c1,¢2)

respectively, where M and M ¢ are the information matrices of the obtained design
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/ Randomly initialize Dy, k =1,...,s /

v
Calculate ¢p(Dy), k=1,...,s

12

Initial L <— Dy, k=1,...,5sand G + argmaxy<x<s¢(Ly)
¥

Update Dy by PSO
¥

Update each Dy by single-point exchange procedure
¥

Enough iterations?

Calculate ¢p(Dy), k=1,...,s

Update Ly by Dy

Update G by £;

l Enough iterations?

Y

/ Return G /
v

Clearly, the number of PSO particles (s), the maximum iteration counts of single-point exchange
algorithm and PSO algorithm (., tpso) and the numbers of pairs of exchanging points with which each
particle design drifts toward the local-best and global-best design (c1, ¢2), control the optimization
process of Ex-PSO algorithm. It seems reasonable that these parameters should be larger for larger
problems. In our test of searching for optimal PWO designs with m = 4,5,6,7 components,
we recommend that these parameters to set at s = 10, tey = 20, tpso = 100, ¢ = ¢ = 1.
Furthermore, we recommend to set the maximum iteration counts of exchange algorithm and PSO

at tey = 20 and tps, = 100 respectively, which achieves high computational efficiency. Further,
to demonstrate the performance of such a set of parameters, we randomly run the algorithm
Ex-PSO(m, n;10,20,100,0.005,1,1) for one hundred times for generating the Ex-PSO-A designs,
because the exchange algorithm seems inefficient under A-optimal criterion, as shown in Table 2.
Therefore, one hundred Ex-PSO-A designs with m = 4,5,6,7 components and n = m(m — 1) runs are
generated, and Figure 3 highlights that all Ex-PSO-A designs reach at least 93% of the efficiency of the
full PWO design. For the cases with large m, the settings on maximum iterations, t., and tpso may not
be enough, but the Ex-PSO algorithm still returns approximate optimal PWO designs; see Tables 4-6 in
the following part.
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Figure 3. Boxplot of the A-efficiencies for the Ex-PSO-A designs with m = 4,5, 6,7 components and
n = m(m — 1) generated by one hundred runs of Ex-PSO(m, n; 10,20, 100, 0.005,1,1).

To illustrate the advantages of the obtained designs for fitting PWO model, we compare the
Ex-PSO-D designs for 4 components and 12 runs with the optimal PWO design in Peng, Mukerjee, and
Lin (2019).

Example 1. The following is a Ex-PSO-D design with 4 components and 12 runs generated by
Ex-PSO(4,12;10,20,100,0.005,1,1).

Table 3 An Ex-PSO-D design with 4 components and 12 runs

Run Order-of-Addition 212,213,214, 223,224, 234

1 1423 1, 1,1, 1,-1,-1
2 1243 1, 1,1, 1, 1,-1
3 1324 1, 1, 1,-1, 1, 1
4 2134 -1, 1,1, 1,1, 1
5 2431 -1,-1,-1, 1, 1,-1
6 2341 -1,-1,-1, 1, 1, 1
7 3142 1,-1, 1,-1,-1, 1
8 3214 -1,-1, 1,-1, 1, 1
9 3412 1,-1,-1,-1,-1, 1
10 4132 1, 1,-1,-1,-1,-1
11 4213 -1, 1,-1, 1,-1,-1
12 4321 -1,-1,-1,-1,-1,-1

The information matrix of this design under the first-order PWO model is

1 0 0 0 0 0 0
0 1 1/3 1/3 -1/3 -1/3 0
0 1/3 1 1/3 1/3 0 —1/3
M=|o0 1/3 1/3 1 0 1/3 1/3
0 —-1/3 1/3 0 1 1/3 —1/3
0 —1/3 0 1/3 1/3 1 1/3
0 0 -1/3 1/3 -1/3 1/3 1

If rows are rearranged, this design is the same as the optimal PWO design with 4! /2! runs constructed by Peng,
Mukerjee, and Lin (2019). This design also features projective properties (Voelkel and Gallagher 2019). All 4
subsets of three components correspond to two-times-replicated three-component designs.
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Figure 4. Relative efficiencies of Ex-PSO designs with 7 < n < 23 compared with the full PWO design
for the OofA experiment with 4 components.

Furthermore, for the OofA experiment with 4 components, we generated optimal PWO designs
with 7 to 23 runs using the Ex-PSO algorithm. Figure 4 shows the efficiencies of these designs. Clearly,
all the obtained designs with n > 12 reach at least 95% efficiency of the full PWO design, though
with less than one fifth of the runs. Especially for the cases with n = 12, the design attains the same
efficiency as the full PWO design.

Furthermore, we compare four types of fractional PWO designs, which are COA, and the
corresponding designs obtained by the threshold accepting algorithm (Winker, Chen, and Lin 2020),
the Federov’s exchange algorithm (which iteratively optimizes a delta function of the x; and x where
x; is in the design and x is not, see reference to section 3.3 in Fedorov 1972) and the Ex-PSO algorithm,
denoted as Dcoq, Dta, Dex and Dex—pso respectively. Dy, is the best result obtained over repeated runs
of threshold accepting algorithm with up to 10000000 iterations, D,y is generated by the optFederov
function (implemented in the R library AlgDesign) with nRepeats = 5, and Dex—pso is the best result
obtained over five repeated runs of the Ex-PSO algorithm with t,; = 20 and tps, = 100. The
optimal PWO design constructed in Peng, Mukerjee, and Lin (2019) which serves as a benchmark
for evaluating fractional PWO designs is also listed here and denoted as Dypepg. In addition, the new
hybrid algorithm needs exhaustive search over the design space during the single-point exchange
procedure, and it can be computational expensive if m is large. Hence, we only report designs
withn =m(m—1)/2+1,m(m —1),m!/r!(r = [m/2]) where 4 < m < 7. Nevertheless, given the
tremendous growth in computational resources available, it is feasible to conduct the Ex-PSO algorithm
for constructing designs with m > 7.

Tables 4-6 exhibit the values of det(M)'/?, tr(M~1), tr(M?), and D-, A- and M.S.-efficiency (in
parentheses) for the corresponding designs. Note that the larger the value of det(M)!/? is, the better,
while smaller values of t#(M~!) and tr(M?) are better. For any number of components, Dyyp is not
unique and the corresponding tr(M~1) or tr(M?) is by no means a fixed value. Hence, Dyp is not
listed in Tables 5 and 6. From the tables, we can find that Dy ps, reach a higher efficiency than the
other types of designs under the PWO model in most cases. Further, we report the best PWO designs
withn =m(m—1)/2+1,m(m —1) and 4 < m < 7 under the D-, A- and M.S.-optimal criteria in the
supplementary material.
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Table 4 Comparison of det(M)'/P and D-efficiency of PWO designs
m n Dpeng Deoq Dy, Doy Dexfpso
4 7 - - 0.6966(89.6%) 0.6966(89.6%) 0.6966(89.6%)
12 0.7773(100%)  0.7064(90.9%)  0.7773(100%) 0.7773(100%) 0.7773(100%)
5 11 - - 0.6379(90.3%) 0.6211(87.9%) 0.6379(90.3%)
20 - 0.6354(89.9%)  0.6855(97.0%) 0.6840(96.8%) 0.6855(97.0%)
60 0.7067(100%) - 0.7067(100%) 0.7061(99.9%) 0.7067(100%)
6 16 - - 0.5778(88.1%) 0.5612(85.6%) 0.6002(91.5%)
30 - 0.5710(87.1%)  0.6344(96.7%) 0.6372(97.2%) 0.6381(97.3%)
120 0.6558(100%) - 0.6552(99.9%)  0.6555(99.95%)  0.6558(100%)
7 22 - - 0.5016(81.2%) 0.5325(86.2%) 0.5409(87.6%)
42 - 0.5800(93.9%)  0.5958(96.4%) 0.5996(97.0%) 0.5998(97.1%)
840 0.6178(100%) - 0.6178(100%)  0.6177(99.99%)  0.6178(100%)
Table 5 Comparison of t#(M~!) and A-efficiency of PWO designs
m n Dpeng Dcoq Dtq Dex Dex—pso
4 7 - - 17.5000(67.4%) - 14.8750(79.3%)
12 11.8000(100%)  14.5000(81.4%) 11.8000(100%) 11.8000(100%) 11.8000(100%)
5 11 - - 28.2898(74.2%) - 26.4773(79.3%)
20 - 26.0000(80.8%) 22.4550(93.5%) 22.3910(93.8%) 22.3311(94.0%)
60 21.0000(100%) - 21.0337(99.8%) 21.0000(100%) 21.0000(100%)
6 16 - - 46.0558(72.0%) - 40.8428(81.2%)
30 - 45.3736(73.0%) 35.3203(93.8%) 35.0989(94.4%) 35.0144(94.7%)
120 33.1429(100%) - 33.2443(99.7%) 33.2023(99.8%) 33.1721(99.9%)
7 22 - - 76.4729(63.1%) - 72.4088(66.6%)
42 - 57.1177(84.5%) 51.6845(93.4%) 51.0578(94.5%) 51.5024(93.7%)
840 48.2500(100%) - 48.2583(99.98%)  48.2738(99.95%)  48.2555(99.99%)

Note: Dey with n = m(m —1)/2 + 1 is omitted because it reports an error of “singular design”
when running the optFederov function from the AlgDesign package in R.

Table 6 Comparison of tr(M?) and M.S.-efficiency of PWO designs

m n Dpeng Dcoa Dy, Dexfpso

4 7 - - 10.4694(92.3%) 10.4694(92.3%)
12 9.6667(100%) 10.3333(93.6%) 9.6667(100%) 9.6667(100%)

5 11 - - 18.5207(95.4%) 18.5207(95.4%)
20 - 19.0000(93.0%) 18.0400(97.9%) 18.0000(98.2%)
60 17.6667(100%) - 17.6667 (100%) 17.6667(100%)

6 16 - - 31.0000(94.6%) 30.9688(94.7%)
30 - 31.3333(93.6%) 29.8756(98.2%) 29.8311(98.3%)
120 29.3333(100%) - 29.3556(99.92%) 29.3733(99.89%)

7 22 - - 47.5702(95.3%) 47.7686(94.9%)
42 - 45.8095(99.0%) 45.9048 (98.8%) 46.1905(98.1%)
840 45.3333(100%) - 45.3349(99.99%) 45.3368(99.99%)

We conclude this section with some numerical results on constructions of fractional PWO designs
which have the same correlation structure as the full PWO design. Since these designs are 100%
efficient under diverse design criteria including the D-, A-, M.S.-optimal criteria, we call them fully
efficient PWO designs. Using the Ex-PSO algorithm, we find the following results.

Remark 3. Removing p(< m) components from a fully efficient PWO design with m components will result
in a fully efficient PWO design with m — p components.

Remark 4. The fully efficient PWO designs exist for the cases (i) m = 4,5, n = 12k(k > 1); (ii) m = 6,
n =24k(k > 1); and (iii) m = 7, n = 24.
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For saving space, some selected fully efficient PWO designs with minimized runs for m = 4,5,6,7
are exhibited in Table 7, other fully efficient PWO designs and the MATLAB codes for the Ex-PSO
algorithm are available upon request.

Table 7 Selected fully efficient PWO designs for m = 4,5,6,7

m=4 m=2>5 m==6 m=7

runs 1-12 runs 13-24 runs 1-12 runs 13-24
1243 12354 125463 421365 1237465 4526713
1342 14352 125463 425361 1563274 4637125
1324 15324 134256 463251 1657423 4713652
2143 24315 136254 512436 1743256 5243617
2314 25143 146523 543216 2541763 6124573
2341 31425 234516 521634 2763154 6421375
3142 32451 261534 536214 3216475 6513472
3241 35421 264315 564123 3265741 6723451
4123 42153 312645 621435 3415726 7465321
4213 45123 315642 625341 3514627 7215346
4312 52314 352461 635142 3576214 7512643
4321 54312 415632 645132 4253716 7536412

6. Concluding Remarks

For the OofA experiments, the study of the optimal fraction of the PWO design has received
considerable attention in the literature. The fractional PWO design with the same correlation structure
as the full PWO design is optimal under diverse design criteria but exists only for some fixed run sizes,
such as m!/r!(2 < r < m) runs. Theoretical constructions on optimal PWO designs are also heavily
constrained by the run size. In this paper, we present a flexible and effective searching algorithm,
the Ex-PSO algorithm. Even though the candidate fractional PWO designs are extremely massive,
this algorithm generates high efficient designs with only one hundred iterations. Moreover, it’s an
interesting but difficult problem to obtain more general theoretical results which cover Remark 4 as
special cases. While Remark 3 gives a fresh insight into constructions of the fully efficient PWO design
with m components basing on the fully efficient PWO design with m — 1 components. To that effect,
more theoretical results on the fully efficient PWO designs for general m will be studied in our future
work.

It is worth noting that the Ex-PSO designs are possibly to an optimal PWO designs given the
tremendous growth in computational resources available, thus it provides instructions for exploring
theoretical results on optimal PWO designs. In addition, the Ex-PSO algorithm applies not only to
PWO design but also to any type of design with finite candidate points. Therefore, this algorithm
has many potential applications, such as constructing optimal designs for an alternative model of the
OofA experiment or other kinds of experiments, and there are still many issues for further study.
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12101258 and 12131001), National Key Research and Development Program of China (No. 2020YFA(0714102) and
Education Department Science and Technology Project of Jilin Province under Grant JJKH20220152K].

Appendix A. The proof of Theorem 1

To prove Theorem 1, the following two lemmas are useful.

Lemma A.1. For a nonsingular matrix M,
(1) M + xx' is nonsingular, and (M + xx') ™1 = M~! — wuu/, wherew = 1/(1+x’M~1x), u = M~ 1x;
(2) if My — x;x} is nonsingular, then xZ{M’lxi # 1and (My — xixf)’l = M;l + wjuu}, where w; =
/(1= xiM1x;), u; = My 'x;.
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The proof of this lemma is straightforward according to matrix theory and is thus omitted.

. . _ Iaf—1
Lemma A.2. Let M be a nonsingular matrix and M, = M + xx'; we have x' M;'x = ﬁT’ix and
IAf—2q0 XM 2x
XM = (14+x'M~1x)2"

Proof: According to Lemma A.1, we have

My = XM 'x — wx'uu'x
/M—1x>2
* T iraM Ik
M
1+ M
and
M P?2x = X (MY —wuu')?x
= XM 2x — 2wx' M~ uu'x + w?x (uu')?x
B x,Mfzx_Zx'M’zxx’M’lx x'(M~1xx’M~1)2x
N 1+x'M~1x (14+xM~1x)2
_ Ml 2x’M*ix (x’Mfljc)2 ]
14+ x'M1x  (1+x'M~1x)?
B x'M~2x
(1M 1x)?
Proof of Theorem 1

Since Fedorov’s exchange algorithm has proved this result for the case with ¢(D) = det(M),
up(x) and vp(x;) defined as Equation (4), hence we only prove this result for the other two cases.

First, we prove that the design generated by single-point exchange procedure leads to no increase
in tr(M™1).

Let X be the model matrix of the current design and denote M = X’X, which is updated as
M, — x;x} after exchanging x for x; according to the single exchange procedure. The following delta
function evaluates the multiple changes from tr(M 1) to tr((My — x;x}) 1)

(M — xx)) 1)

A(xirx) = t?’(Mil)
(M) — tr(wu) + tr(wiuu)
B tr(M-1)
_ 1 tr(wu'u) — tr(wiulu;)
tr(M-1)
4 1 X' M 2x XM 2x; A1)

(M) [1+xM-1x  1— XM ]
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A~ _
xiMx le- x’Mx 2y

. In the combination of Lemma
ﬂcﬁM{lxi = 1—x'M;'x

Based on step (2) of this procedure, we know that ;

A.2, we obtain

YME M YN M
T+rM-lx 1-xMy'yy — 1+AMlx 1M
o _X'M™%x
_ XM™*x  Q+yM 1x)?
T 14+ xM1x 1_ ¥Mlx
1+x'M~1x
B M~ 2x x'M~2x
14 x¥M-lx 14+ 1M lx
= 0.

Thus, A(x;,x) < 1 is obtained, which means t#(M~!) does not increase in the single-point
exchange procedure.

Second, we prove that the design generated in single-point procedure leads to no increase in
tr(M?2).

To calculate the multiple exchange on the t7(M?) during each iteration of the single-point exchange
procedure, we define a delta function A(x;, x) as follows:

tr((Mx — xix})?)

Al x:
(xl/ x) tT(MZ)
_ tr(M2) = 2x]Myx; + p?
B tr(M?2)
_ tr(M?) + 2% Mx — 2x[ My x; + 2p?
N tr(M?2)
2x' Mx — 2x Myx; + 2p?
=1 L A2
+ (M) (A-2)
By step (2) of this procedure, we have ¥’ M,x < x/M,x; and
x'Mx — xIMyx; < x'Mx — x'Myx
< Mx—x'(M+ xx')x
< (A3)

Thus, we obtain A(x;,x) <1 from (A.2) and (A.3).
Theorem 1 is proved.

Appendix B. Best PWO designs under the D-optimal criterion

Table B.1 D-Optimal PWO designs for m = 4

7 runs 12 runs

runs 1-7 runs 8-12
1 2 3 41 2 4 3|3 2 1 4
1 3 4 2|1 2 3 4|3 2 4 1
2 1 4 3|1 3 4 2|4 1 3 2
31 2 412 1 4 3|4 2 1 3
3 2 4 112 3 4 14 2 3 1
4 1 3 23 1 4 2|4 3 1 2
4 2 3 1



https://doi.org/10.20944/preprints202304.1166.v1

doi:10.20944/preprints202304.1166.v1

(%]
N
(=]
N
m
S
<
©
(3}
e
(]
g
(1]
o
o
a]
w
=
=
S
i
.
o
|
[
o
|
o
P
_~
o
S
o
(2]
&
[=
=
Q.
)
S
=
s
s
2
8
S
S
g
Q

15 of 19

Table B.2 D-Optimal PWO designs for m =5
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Table B.3 D-Optimal PWO designs for m = 6
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Table B.4 D-Optimal PWO designs for m =7
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Appendix C. Best PWO designs under the A-optimal criterion

Table C.1 A-Optimal PWO designs for m = 4

12 runs

runs 8-12

3

4

runs 1-7

1 4 3

2

7 runs

Table C.2 A-Optimal PWO designs for m = 5
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Table C.3 A-Optimal PWO designs for m = 6
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Table C.4 A-Optimal PWO designs for m =7
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Appendix D. Best PWO designs under the M.S.-optimal criterion

=4

Table D.1 M.S.-Optimal PWO designs for m

12 runs

runs 8-12

3 4 2
3 4 2 1

runs 1-7

4

2

3 2 4

1

7 runs

2 4 3

2

4
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Table D.2 M.S.-Optimal PWO designs for m = 5

20 runs

runs 11-20

runs 1-10

11 runs

Table D.3 M.S.-Optimal PWO designs for m = 6

30 runs

runs 16-30

runs 1-15

16 runs

O —

o o

Table D.4 M.S.-Optimal PWO designs for m =7

42 runs

runs 22-42

runs 1-21

22 runs
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