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Abstract: The demand for explainable and transparent models increases with the continued success 1

of reinforcement learning. In this article, we explore the potential of generating shallow decision 2

trees (DT) as simple and transparent surrogate models for opaque deep reinforcement learning (DRL) 3

agents. We investigate three algorithms for generating training data for axis-parallel and oblique 4

DTs with the help of DRL agents (“oracles”) and evaluate these methods on classic control problems 5

from OpenAI Gym. The results show that one of our newly developed algorithms, the iterative 6

training, outperforms traditional sampling algorithms, resulting in well-performing DTs that often 7

even surpass the oracle from which they were trained. Even higher dimensional problems can be 8

solved with surprisingly shallow DTs. We discuss the advantages and disadvantages of different 9

sampling methods and insights into the decision-making process made possible by the transparent 10

nature of DTs. Our work contributes to the development of not only powerful but also explainable 11

RL agents and highlights the potential of DTs as a simple and effective alternative to complex DRL 12

models. 13

Keywords: Reinforcement learning, Decision tree, Explainable AI, Rule learning 14

1. Introduction 15

One of the most significant drawbacks of powerful deep reinforcement learning (DRL) 16

algorithms is their opacity. The well-performing decision-making process is buried in the 17

depth of artificial neural networks, which might constitute a major barrier to the application 18

of reinforcement learning (RL) in various areas. 19

In a recent publication [1], we proposed an algorithm for obtaining simple decision 20

trees (DT) from trained DRL agents (“oracles”). This approach has notable advantages: 21

1. It is conceptually simple, as it translates the problem of explainable RL into a super- 22

vised learning setting. 23

2. DTs are fully transparent and (at least for limited depth) offer a set of easily under- 24

standable rules. 25

3. The approach is oracle-agnostic: it does not rely on the agent being trained by a 26

specific RL algorithm, as only a training set of state-action pairs is required. 27

Although the algorithm in [1] was successful on some problems, it failed on others because 28

no well-performing shallow DT could be found. In this work, we investigate the reasons 29

for those failures and propose three algorithms to generate training samples for the DTs: 30

The first one is entirely based on evaluation episodes of the DRL agent (described in [1] and 31

evaluated further in this article), the second one applies random sampling on a subregion 32

of the observation space, and the third approach is an iterative algorithm involving the 33

DRL agent’s predictions for regions explored by the DT. We test all approaches on seven en- 34

vironments of varying dimensionality, including all classic control problems from OpenAI 35

Gym. Our results show that DTs of shallow depth can solve all environments, that DTs can 36

even surpass DRL agents, and that the third algorithm (the iterative approach) outperforms 37
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the other two methods in finding simple and well-performing trees. As a particularly 38

surprising result, we show that an 8-dimensional control problem (LUNARLANDER) can be 39

successfully solved with a DT of only depth 2. 40

We discuss the advantages and disadvantages of the three algorithms’ computational 41

complexity and how DTs’ transparent, simple nature provides interesting options for 42

explainability that are not immediately applicable to opaque DRL models. 43

The remainder of the article is structured as follows: In Section 2, we present related 44

work. Section 3 contains a detailed description of our methods and the experimental setup. 45

In Section 4, we present our results and discuss the explainability of DTs. We place our 46

results in a broader context and discuss future research in Section 5 before drawing a short 47

conclusion in Section 6. 48

2. Related Work 49

In recent years, interest in explainable and interpretable algorithms for Deep Learning 50

algorithms has grown steadily. This is shown by review articles for explainable AI (XAI) 51

and explainable machine learning in general [2–4] and, more recently, by review articles for 52

explainable Reinforcement Learning (XRL) in particular [5–7]. Lundberg et al. [8] give an 53

overview of efficient algorithms for generating explanations, especially for trees. 54

A variety of rule deduction methods have been developed over the years. Liu et al. [9] 55

apply a mimic learning approach to RL using comparably complex Linear Model U-trees to 56

approximate a Q-function. Our approach differs insofar as the DTs we obtain are arguably 57

simpler and represent a transparent policy, translating state into action. Mania et al. [10] 58

propose Augmented Random Search, another algorithm for finding linear models that solve 59

RL problems. Coppens et al. [11] distill PPO agents’ policy networks into Soft Decision 60

Trees [12] to get insights. Another interesting approach to explainable RL, which does not 61

use DTs, is the approach by Verma et al. [13] called Programmatically Interpretable RL 62

(PIRL) through Neurally Directed Program Synthesis (NDPS). In this method, the DRL 63

guides the search of a policy consisting of specific operators and input variables to obtain 64

interpretable rules mimicking PID controllers. As Verma et al. [13] also test their algorithms 65

on OpenAI Gym’s classic control problems, a direct comparison is possible and was made 66

in [1]. However, their results were not reproducible by us, and we show how our algorithms 67

yield better results at low DT depths than the reported ones. Zilke et al. [14] propose an 68

algorithm for distilling DTs from neural networks. With their method “DeepRED”, the 69

authors translate each layer of a feedforward network into rules and aim to simplify those. 70

Qiu and Zhu [15] present an algorithm that allows policy architectures to be learned and 71

that does not require a trained oracle. 72

The work presented here extends our earlier research in Engelhardt et al. [1]. We apply 73

it to additional environments and introduce new sampling algorithms to overcome the 74

drawbacks of [1]. To the best of our knowledge, no other algorithms are available in the 75

current state of the art to construct that simple DTs from trained DRL agents for a large 76

variety of RL environments. 77

Concerning the iterative learning of trees outside of RL, well-known iterative meta- 78

heuristics like boosting and its particular form AdaBoost [16,17] exist, which are often 79

applied to trees. However, boosting is iterative with respect to weak learners and outputs 80

an ensemble of them, while our approach is iterative in the data, retrains many trees, and 81

outputs only the best-performing one. 82

Rudin [18] has emphasized the importance of building inherently interpretable models 83

instead of trying to explain black box models. While Rudin [18] applied this to standard 84

machine learning models for application areas like criminal justice, healthcare, and com- 85

puter vision, we try to take her valuable arguments over to the area of control problems 86

and RL and show how we can substitute black box models with inherently transparent DTs 87

without loss of performance. Although we use a DRL model to construct our DT, the final 88

DT can be used in operation and interpreted without referencing the DRL model. 89
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3. Methods 90

Our experiments were implemented in Python programming language version 3.9.16 91

using a variety of different packages and methods described in the following1. 92

3.1. Environments 93

We test our different approaches of training DTs from DRL agents on all classic control 94

problems and the LUNARLANDER challenge offered by OpenAI Gym [19], and on the 95

CARTPOLE-SWINGUP problem as implemented in [20]. This selection of environments 96

offers a variety of simple but not trivial control tasks with continuous, multidimensional 97

tabular observables and one-dimensional discrete or continuous actions. Table 1 gives 98

an overview of the different environments used in this article. For the two environments 99

that do not have predefined thresholds at which they are considered solved, we manually 100

assigned one corresponding to visually convincing episodes of quick and stable swing-ups. 101

Table 1. Overview of environments used. A task is considered solved when the average return in 100
evaluation episodes is ≥ Rsolved. Environments with undefined official threshold Rsolved have been
assigned a reasonable one. This number is then reported in parenthesis.

Environment Observation space (O) Action space (A) Rsolved

Acrobot-v1

First angle cos(θ1) ∈ [−1, 1],
First angle sin(θ1) ∈ [−1, 1],

Second angle cos(θ2) ∈ [−1, 1],
Second angle sin(θ2) ∈ [−1, 1],

Angular velocity θ̇1 = ω1 ∈ [−4π, 4π],
Angular velocity θ̇2 = ω2 ∈ [−9π, 9π]

a ∈ Apply torque{-1 (0),
0 (1),
1 (2)}

−100

CartPole-v1

Position cart x ∈ [−4.8, 4.8],
Velocity cart v ∈ (−∞, ∞),

Angle pole θ ∈ [−0.42, 0.42],
Velocity pole ω ∈ (−∞, ∞)

a ∈ Accelerate{left (0),
right (1)} 475

CartPole-
SwingUp-v1

Position cart x ∈ [−2.4, 2.4],
Velocity cart v ∈ (−∞, ∞),

Angle pole cos(θ) ∈ [−1, 1],
Angle pole sin(θ) ∈ [−1, 1],

Angular velocity pole ω ∈ (−∞, ∞)

a ∈ Accelerate{left (0),
not (1),

right (2)}

undef.
(840)

LunarLander-v2

Position x ∈ [−1.5, 1.5],
Position y ∈ [−1.5, 1.5],

Velocity vx ∈ [−5, 5],
Velocity vy ∈ [−5, 5],
Angle θ ∈ [−π, π],

Angular velocity θ̇ = ω ∈ [−5, 5],
Contact left leg ll ∈ {0, 1},

Contact right leg lr ∈ {0, 1}

a ∈ Fire{not (0),
left engine (1),

main engine (2),
right engine (3)}

200

MountainCar-v0
Position x ∈ [−1.2, 0.6],

Velocity v ∈ [−0.07, 0.07]

a ∈ Accelerate{left (0),
not (1),

right (2)}
−110

MountainCar
Continuous-v0

Same as MountainCar-v0 a ∈ Accelerate [−1, 1] 90

Pendulum-v1
Angle cos(θ) ∈ [−1, 1],
Angle sin(θ) ∈ [−1, 1],

Angular velocity ω ∈ [−8, 8]
a ∈ Apply torque [−2, 2] undef.

(−170)

1 The experiments can be found in the Github repository https://github.com/MarcOedingen/Iterative-Oblique-
Decision-Trees
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3.2. Deep Reinforcement Learning 102

Our algorithms require a DRL agent to predict actions for given observations. We train 103

DRL agents (“oracles”) using PPO [21], DQN [22], and TD3 [23] algorithms as implemented 104

in the Python DRL framework Stable-Baselines3 (SB3) [24]. It is necessary to test all those 105

algorithms because no single DRL algorithm solves all environments used in this paper. 106

For each environment, we select one of the successful DRL agents (see Table 2a). 107

3.3. Decision Trees 108

For the training of DTs, we rely on two algorithms representing two “families” of 109

DTs: The widely-used Classification and Regression Trees (CART) as described by Breiman 110

et al. [25] and implemented in [26] partition the observation space with axis-parallel splits. 111

The decision rules use only one observable at a time, which makes them particularly easy to 112

interpret. On the other hand, Oblique Predictive Clustering Trees (OPCT), as described and 113

implemented in [27], can generate DTs where each decision rule compares the weighted 114

sum of the features oi to a threshold τ: 115

w1o1 + w2o2 + . . . + wnon ≤ τ (1)

Such rules subdivide the feature space with oblique splits (tilted hyperplanes), allowing 116

to describe more complex partitions with fewer rules and, consequently, lower depth. 117

However, the oblique split rules make the interpretation of such trees more challenging. 118

We will address this topic in Section 4.4. 119

3.4. DT Training Methods 120

In this subsection, we describe our different algorithms to generate datasets of samples 121

for the training of DTs. 122

3.4.1. Episode Samples (EPS) 123

The basic approach has been described in detail in [1]. In brief, it consists of three 124

steps: 125

1. A DRL agent (“oracle”) is trained to solve the problem posed by the studied environ- 126

ment. 127

2. The oracle acting according to its trained policy is evaluated for a set number of 128

episodes. At each time step, the state of the environment and action of the agent are 129

logged until a total of ns samples are collected. 130

3. A decision tree (CART or OPCT) is trained from the samples collected in the previous 131

step. 132

3.4.2. Bounding Box (BB) 133

Detailed investigations of the failures of DTs trained on episode samples for the 134

Pendulum environment show that a well-performing oracle only visits a very restricted 135

region of the observation space and oversamples specific subregions: A good oracle is 136

able to swing the pendulum in the upright position quickly and keeps the system in a 137

small region around the corresponding point in the state space for the rest of the episode’s 138

duration. 139

To counteract this issue, we investigated an approach based on querying the oracle at 140

random points in the observation space. The algorithm consists of three steps: 141

1. The oracle is evaluated for a certain number of episodes. Let Li and Ui be the lower 142

and upper bound of the visited points in the ith dimension of the observation space 143

and IQRi their interquartile range (difference between the 75th and the 25th percentile). 144

2. Based on the statistics of visited points in the observation space from the previous 145

step, we take a certain number ns of samples from the uniform distribution within 146

a hyper-rectangle of side lengths [Li − 1.5 · IQRi, Ui + 1.5 · IQRi]. The side length is 147

clipped, should it exceed the predefined boundaries of the environment. 148
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3. For all investigated depths d, OPCTs are trained from the dataset consisting of the ns 149

samples and the corresponding actions predicted by the oracle. 150

It should be noted that this algorithm has its peculiarities: Randomly chosen points 151

in the observation space might correspond to inconsistent states. While this is evident for 152

the example of PENDULUM (the observations contain cos θ and sin θ (see Table 1), which 153

was solved here by sampling θ and generating observations from that), less apparent 154

dependencies between observables may occur in other cases. 155

3.4.3. Iterative Training of Explainable RL Models (ITER) 156

The DTs in [1] were trained solely based on samples from the oracle episodes. In the 157

iterative algorithm, ITER, the tree with the best performance (from all iterations so far) is 158

used as a generator for new observations. 159

The procedure is shown in Algorithm 1 and can be described as follows: The initial 160

tree is trained on samples of oracle evaluation episodes. We use these initial samples to fit 161

the tree to the oracle’s predictions and use the tree’s current, somewhat imperfect decision- 162

making to generate observations in areas the oracle does maybe not access anymore. Often, 163

the points in the observation space that are essential for the formation of a successful tree 164

lie a bit beside oracle trajectories. Generating samples next to these trajectories with a not 165

yet fully trained tree allows the next iteration’s tree to fit its decisions to these previously 166

unknown areas. 167

Algorithm 1 Iterative Training of Explainable RL Models (ITER)

Require: Oracle policy πO, maximum iteration Imax, number nb of base samples, number
of trees Tmax, evaluation episodes neps, DT depth d, number of samples added in each
iteration nsamp . O: observations, A: actions.

1: Sc ← (Ob,Ab) ▷ collect nb samples by running πO in environment
2: M← ∅ ▷ the setM collects triples for each tree
3: for i = 0, . . . , Imax do
4: for j = 1, . . . , Tmax do
5: Ti,j ← train_tree(Sc, d) ▷ tree Ti,j
6: Mj ←

(
Ti,j, eval_tree(Ti,j, neps)

)
▷ tripleMj (eval_tree returns OTi,j ,RTi,j )

7: M.append(Mj)
8: end for
9:

(
Ti,∗,OTi,∗ ,RTi,∗

)
← pick_best(M) ▷ pick tripleMj with highest rewardRTi,j

10: ÔTi,∗ ← choice
(
OTi,∗ , nsamp

)
▷ pick nsamp random observations

11: Snew ←
(
ÔTi,∗ , πO(ÔTi,∗)

)
12: Sc ← Sc ∪ Snew
13: end for
14: return TImax ,∗ ▷ return the best tree from all iterations

After each iteration, the generated observations from the so-far best tree are labeled 168

with the oracle’s predictions. The tree will likely revisit the region of these observations 169

in the future, and therefore has to know the correct predictions at these points in the 170

observation space. Finally, the selected samples are joined with the previous ones, and the 171

next iteration begins. After a predetermined number of iterations, the overall best tree is 172

returned. A flowchart of the iterative generation of samples for a given tree depth is shown 173

in Figure 1. 174

A possible variant is to include in line 11 of Algorithm 1 only samples for which the 175

action of the tree AT and of the oracle differ. While this potentially reduces the training 176

set for the DTs, both the oracle’s and the DT’s predictions are still required for comparison. 177

Since our tests showed no noticeable difference in performance, we do not delve into this 178

variant further. 179
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Oracle

Base samples Sb

Current samples Sc

T1 T2 TnTn−1

Evaluation −→ T∗

AT∗OT∗OracleAO

New samples Snew

∪

(Imax + 1)× ⇒ TImax,∗

Figure 1. Flowchart of ITER (Algorithm 1)

3.5. Experimental Setup 180

All algorithms for sample generation presented in Section 3.4 are evaluated on all 181

environments of Section 3.1 and for all tree depths d = 1, . . . , 10. Each such trial is called 182

an experiment. For every experiment, the return R is obtained by averaging over 100 183

evaluation episodes. Each experiment is repeated for 10 runs with different seeds, and both 184

mean µ and standard deviation σ of the return R are calculated. 185

Whenever we create an OPCT, we actually create Tmax = 10 trees and pick the one with 186

the highest return R. This was done due to the high fluctuation of OPCTs depending on the 187

random seeds that initialized the oblique cuts in the observation space (see implementation 188

in [27]). 189

In algorithms EPS and BB, we use ns = 30, 000 samples. In ITER (Algorithm 1), we 190

set nb = 20, 000 and nsamp = 1 000 to have the same total number of samples across our 191

tested algorithms2. The other tunable parameter Imax is set to 10. Adding more than 10 192

iterations merely resulted in samples generated from a tree that had already been adapted 193

to the oracle. Since these samples hardly differed from those of the oracle, the iterations 194

did not improve the system further. 195

2 The ratio between nb and nsamp or the total number of samples ns are hyperparameters that have not yet been
tuned to optimal values. It could be that other values would lead to significantly higher sample efficiency.
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Figure 2. Return R as a function of DT depth d for all environments and all presented algorithms. The
solved-threshold is shown as dash-dotted green line, the average oracle performance as dashed orange
line, and the DTs performances as solid lines with average and ±1σ of ten repetitions as shaded area.
Note: (i) For ACROBOT we show two plots to include BB curve. (ii) Good performance in CARTPOLE

leads to overlapping curves: oracle, BB, and ITER are all constantly at R = 500.
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4. Results 196

In this section, we discuss results and computational complexity and highlight the 197

advantages of shallow DTs in terms of additional insights and explainability. 198

4.1. Solving Environments 199

Figure 2 shows our main result: For all environments and all presented algorithms, 200

we plot the return R as a function of DT depth d. ITER usually reaches the solved-threshold 201

(dash-dotted green line) at lower depths than the other two algorithms. It is the only one to 202

solve all investigated environments (at depths up to 10). 203

Table 2a shows these results in compact quantitative form: Which is the minimum 204

depth needed to reach the solved-threshold of an environment?3 As can be seen, ITER 205

outperforms the other algorithms. Its sum of depths is roughly half of the other algorithms’ 206

sums. Depth (1) for MOUNTAINCARCONTINUOUS + BB has been put in brackets because 207

it is somewhat unstable: At depths 2 and 3 the performance is below the threshold, as can 208

be seen from Figure 2. Additionally, Table 2a shows algorithms EPS and ITER for CART 209

as baseline experiments. In both cases, CART does not reach the performance of OPCT, at 210

least not for shallow depths. 211

Figure 2 shows another remarkable result: DTs can often even surpass the performance 212

of the DRL agents they originate from (the oracles, dashed orange lines). In Table 2b, we 213

report the minimum depths at which DT performances exceeds the oracle’s performance. 214

While these numbers can be deceptive too (CARTPOLE-SWINGUP + ITER almost reaches 215

oracle performance at depth 8), they show that there is not necessarily a trade-off between 216

model complexity and performance: DTs require orders of magnitude fewer parameters 217

(see Section 4.4.1) and can exhibit higher performance. Again, ITER is the best-performing 218

algorithm in this respect. In Sections 4.3 and 5, we discuss why such a performance better 219

than the oracle’s can occur. 220

4.2. Computational Complexity 221

The algorithms presented here differ significantly in computing time, as shown in 222

Table 3. All experiments were performed on a CPU device (i7-10700K 8 × 3.8 GHz). To 223

ensure methodological consistency, we let each algorithm generate the same total number 224

of samples, namely ns = 30, 000. 225

In every algorithm, we average over 10 trees for each depth d = 1, . . . , 10 due to 226

fluctuations and represent the time needed in tOPCT . Additionally, ITER performs Imax + 1 227

iterations for all depths. Hence, a single run takes ≈ 10 · tOPCT time for both EPS and 228

BB while taking ≈ 10 · (Imax + 1) · tOPCT time for ITER. (Here, the time tOPCT reflects the 229

performance of an algorithm in the particular environment, depending on whether more 230

or less time is required for a desired result.) However, the most time-consuming part of a 231

run is the evaluation of the trees, i.e., the generation of samples by running 100 evaluation 232

episodes in the environment. According to these observations, ITER takes the most time to 233

complete. 234

4.3. Decision Space Analysis 235

Two-dimensional observation spaces offer the possibility of visual inspection of the 236

agents’ decision-making. This can provide additional insights and offer explanations of bad 237

results in certain settings. Figure 3 shows the decision surfaces of DRL agents and OPCTs 238

for MOUNTAINCAR in the discrete (top row) and continuous (bottom row) versions. DRL 239

agents can often learn a needlessly complicated partitioning of the observation space, as 240

can be seen prominently in the top left plot, e.g., by yellow patches of “no-acceleration” in 241

the upper left or the blue “accelerate right” area in the bottom right, which are never visited 242

by oracle episodes. This poses a problem for the BB algorithm because it samples, e.g., from 243

3 Note that these numbers can be deceptive: A 10+ might be from a tree being below the threshold only by a
tiny margin or a 5 might hide the fact that a depth-4 tree is only slightly below the threshold.
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Table 2. The numbers show the minimum depth of the respective algorithm for (a) solving an
environment and (b) surpassing the oracle. (. . . )+ means no DT of investigated depths could reach
the threshold. See main text for explanation of (1) or (3).

(a) Solving an environment

Algorithms

EPS EPS BB ITER ITER

Environment Model CART OPCT OPCT CART OPCT

Acrobot-v1 DQN 1 1 10+ 1 1
CartPole-v1 PPO 3 3 1 3 1
CartPole-SwingUp-v1 DQN 10+ 10+ 10+ 10+ 7
LunarLander-v2 PPO 10+ 10+ 2 10+ 2
MountainCar-v0 DQN 3 3 5 3 1
MountainCarContinuous-v0 TD3 1 1 (1) 1 1
Pendulum-v1 TD3 10+ 9 6 7 5

Sum 38+ 37+ 35+ 35+ 18

(b) Surpassing the oracle

Acrobot-v1 DQN 3 3 10+ 2 1
CartPole-v1 PPO 5 6 1 (3) 1
CartPole-SwingUp-v1 DQN 10+ 10+ 10+ 10+ 10+

LunarLander-v2 PPO 10+ 10+ 2 10+ 3
MountainCar-v0 DQN 3 5 6 3 4
MountainCarContinuous-v0 TD3 10+ 1 4 2 1
Pendulum-v1 TD3 10+ 9 8 10 6

Sum 51+ 44+ 41+ 40+ 26+
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Table 3. Computation times of our algorithms for some environments (we selected those with
different observation space dimensions D). Shown are the averaged results from 10 runs. trun:
average time elapsed for one run covering all depths d = 1, . . . , 10. tOPCT : average time elapsed to
train and evaluate 10 OPCTs. ns: total number of samples used. Note how the bad performance of BB
in the ACROBOT environment leads to longer episodes and therefore longer evaluation times tOPCT .

Environment dim D Algorithm trun [s] tOPCT [s] ns

Acrobot-v1 6
EPS 124.82± 1.96 11.71± 0.95 30, 000
BB 477.70± 7.89 47.56± 2.92 30, 000

ITER 1 189.14± 28.70 10.76± 1.02 30, 000

CartPole-v1 4
EPS 187.39± 3.64 18.06± 2.29 30, 000
BB 202.65± 1.26 19.11± 1.13 30, 000

ITER 2 040.16± 21.46 18.50± 1.64 30, 000

MountainCar-v0 2
EPS 85.39± 1.50 7.93± 0.57 30, 000
BB 104.92± 2.05 10.27± 0.54 30, 000

ITER 849.90± 19.79 7.68± 0.61 30, 000

the blue bottom right area and therefore, DTs learn in part “wrong” actions, resulting in 244

poor performance. Thus, the inspection of the oracle’s decision space reveals the reason for 245

the partial failure of the BB algorithm in the case of MOUNTAINCAR at low depths. 246

On the other hand, algorithm ITER will not be trained with samples from regions 247

never visited by oracle or tree episodes. Hence, it has no problem with the blue bottom right 248

area. It delivers more straightforward rules at depth d = 1 or d = 2 (shown in columns 2 249

and 3 of Figure 3), and yields returns slightly better than the oracle because it generalizes 250

better given its fewer degrees of freedom. 251
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Figure 3. Decision surfaces for MOUNTAINCAR (MC, discrete actions) and MOUNTAINCARCONTIN-
UOUS (MCC, continuous actions). Column 1 shows the DRL agents. The OPCTs in column 2 (depth
1) and column 3 (depth 2) were trained with algorithm ITER. The number in brackets in each subplot
title is the average return R. The black dots represent trajectories of 100 evaluation episodes with
same starting conditions across the different agents. They indicate the regions actually visited in the
observation space.
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4.4. Explainability for Oblique Decision Trees in RL 252

Explainability is significantly more difficult to achieve for agents operating in envi- 253

ronments with multiple time steps than in those with single time steps (by “single time 254

step” we mean that a decision follows directly in response to a single input record, e.g., 255

classification or regression). This is because the RL agent has to execute a, possibly long, 256

sequence of action decisions before collecting the final return (also known as the credit 257

assignment problem [28,29]). 258

Given their simple, transparent nature, DTs offer interesting options for explainability 259

in such environments with multiple time steps, which are not immediately applicable to 260

opaque DRL models. This section will illustrate steps towards explainability in RL through 261

shallow DTs. 262

4.4.1. Decision Trees: Compact and Readable Models 263

Trees are useful for XAI since they are usually much more compact than DRL models 264

and consist of a set of explicit rules, which are simple in that they are linear inequalities 265

in the input features (for oblique DTs). As an example of the models’ simplicity, Figure 4 266

shows a very compact OPCT of depth 1 for the MOUNTAINCAR challenge. On the other 267

hand, DRL models have many trainable parameters and form complex, nonlinear features 268

from the input observations. Table 4 shows the number of trainable weights for all our SB3 269

oracles (DRL models) which are, in all cases, orders of magnitude larger than the number 270

of trainable tree parameters. 271

0.3072 x− 34.55 v ≤ −0.1461

rightleft

false true

Figure 4. OPCT of depth 1 obtained by ITER solving MOUNTAINCAR with a return of R = −107.47
in 100 evaluation episodes

Table 4. Oracle and tree complexity. (D denotes the dimension of the observation space)

Number of parameters

Environment dim D Model Oracle ITER depth d

Acrobot-v1 6 DQN 136,710 9 1
CartPole-v1 4 PPO 9 155 7 1
CartPole-SwingUp-v1 5 DQN 534,534 890 7
LunarLander-v2 8 PPO 9 797 31 2
MountainCar-v0 2 DQN 134,656 5 1
MountainCarContinuous-v0 2 TD3 732,406 5 1
Pendulum-v1 3 TD3 734,806 156 5

The number of parameters in the oracle can be computed from the architecture of the
respective policy network. For example, in MOUNTAINCAR with input dimension D = 2,
the DQN consists of 2 networks: a Q- and a target network. Each has D + 1 = 2 + 1 inputs
(including bias), 3 action outputs, and a (256, 256) hidden layer architecture4 which results
in

2 · ((2 + 1) · 256 + (256 + 1) · 256 + 256 · 3) = 134, 656 weights.

4 We do not use overly complex DRL architectures but keep the default parameters suggested by the SB3
methods [24].
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The number of parameters in the tree is a function of the tree’s depth and the input
dimension: For example, in LUNARLANDER with input dimension D = 8, the oblique tree
of depth d = 2 (as obtained by, e.g., ITER) has 2d − 1 = 3 = 1 + 2 split nodes and 2d = 4
leaf nodes. Each split node has D + 1 = 9 parameters (one weight for each input dimension
+ threshold), and each leaf node has one adjustable output parameter (the action), resulting
in

3 · 9 + 4 = 31 parameters.

However, it should be emphasized that all our DTs have been trained with the guidance 272

of a DRL oracle. At least so far, we could not find a procedure to construct successful DTs 273

solely from interaction with the environment. Optimizing the tree parameters from scratch 274

with respect to cumulative episode reward did not lead to success for tricky OpenAI Gym 275

control problems because incremental changes to a start tree usually miss the goal and 276

thus miss the reward. Only with the guidance of the oracle samples showing reasonable 277

solutions can the tree learn a successful first arrangement of its hyperplanes, which can be 278

refined further. 279

In a sense, the DT “explains” the oracle by offering a simpler surrogate action model. 280

The surrogate is often nearly as good as or even better than the DRL model in terms of 281

mean reward. 282

It is a surprising result of our investigations that trees of small depth delivering such 283

high rewards could be found at all. Most prominently, for the environments ACROBOT and 284

LUNARLANDER with their higher input dimensions 6 and 8, it was not expected beforehand 285

to find successful trees of depth 1 and 2, respectively. 286

Figure 5. Distance to hyperplanes for LUNARLANDER. The diagrams show root node, left child, and
right child from top to bottom. Small points: node is “inactive” for this observation (the observation
is not routed through this node). Big points: node is “active”.
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4.4.2. Distance to Hyperplanes 287

Further insights that help to explain a DT can be gained by visualizing the distance to 288

hyperplanes of the nodes of a DT: According to Equation 1, each split node has an associated 289

hyperplane in the observation space so that observations above or below this hyperplane 290

take a route to different subtrees (or leaves) of this node. 291

Although hyperplanes in higher dimensions are difficult to visualize and interpret, 292

the distance to each hyperplane is easy to visualize, regardless of the dimension of the 293

observation space. It can be shown that even an anisotropic scaling of the observation space 294

leaves the relations between all distances to a particular hyperplane intact, i.e., they are 295

changed only by a common factor. 296

Figure 5 shows the distance plots for the three nodes 0, 1, 2 of the ITER OPCT for 297

LUNARLANDER. A distance plot shows the distances of the observations to the node’s 298

hyperplane for a specific episode as a function of time step t. Each observation is colored 299

by the action the DT has taken. It is seen in Figure 5 that after a short transient period 300

(t ≤ 40), the distances for every node stay small while the lander sinks. At about time step 301

t ≈ 280, the lander touches the ground and the distances increase (because all velocities 302

are forced to be zero, all positions and angles are forced to certain values prescribed by the 303

shape of the ground), which is, however, irrelevant for the control of the lander and the 304

success of the episode. All nodes are attracting nodes (points are attracted to the respective 305

hyperplane), which bring the ship to an equilibrium (a sinking position with constant vy) 306

that guarantees a safe landing. 307

Another example is shown in Figure 6 for the three nodes 0, 1, 2 of the ITER OPCT 308

for PENDULUM. These are the three upper nodes of a tree with depth 3 and, therefore, 309

seven split nodes. Node 0 is an attracting one (“equilibrium node”) because the distances 310

approach zero (here: for t ≥ 64). Nodes 1 and 2 do not exhibit a zero distance in the 311

equilibrium state; instead, they are “swing-up nodes” responsible for bringing energy into 312

the system through appropriate action switching. 313
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Figure 6. Distance plots for PENDULUM. Three of the diagrams show the distance to the hyperplanes
of root node 0, left child node 1, and right child node 2. The lower left plot shows the distance to the
equilibrium point (1, 0, 0) in observation space. The vertical line at t = 64 marks the step where the
distance for node 0 approaches zero.

The lower left plot (“distance to equilibrium”) of Figure 6 shows the distance of each 314

observation to the unstable equilibrium point (cos θ, sin θ, ω) = (1, 0, 0) (the desired goal 315

state). Interestingly, at t = 64 (vertical gray line), where the distance to node 0 is already 316

close to zero, the distance to the equilibrium point is not yet zero (but soon will be). This is 317

because the hyperplane is oriented in such a way that for small angle θ, the angular velocity 318

ω is approximately ω = −5.3 sin(θ) (read off from the node’s parameters). The hyperplane 319

tells us on which path the pole approaches the equilibrium point: The control strategy is to 320

raise ω for points below the hyperplane and to lower ω for points above. This amounts to 321

the fact that a tilted pole gets an ω (corresponding to a certain kinetic energy) such that the 322

pole will come to rest at θ = 0. The exact physical equation requires that the kinetic energy 323

has the same value as the necessary change in potential energy, 324

Ekin(ω) = ∆Epot(θ)

1
6

mℓ2ω2 = mg
ℓ

2
−mg

ℓ

2
cos(θ),

leading to the angular velocity

ω = −
√

3g
2ℓ

(1− cos θ) ≈ −5.5 sin(θ/2) (for g = 10, ℓ = 1)

which is not too far from the control strategy found by the node. 325

Similar patterns (equilibrium nodes + swing-up nodes) can be observed in those 326

environments where the goal is to reach or maintain certain (unstable) equilibrium points 327

(CARTPOLE-SWINGUP, CARTPOLE). Environments like MOUNTAINCAR(CONTINUOUS) or 328
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ACROBOT, which do not have an equilibrium state as goal, consist only of swing-up nodes 329

as shown in Figure 7 for ACROBOT. 330

Figure 7. Distance plot for ACROBOT. The tree has only one node.

In summary, the distance plots show us two characterizing classes of nodes: 331

• equilibrium nodes (or attracting nodes): nodes with distance near to zero for all obser- 332

vation points after a transient period. These nodes occur only in those environments 333

where an equilibrium has to be reached. 334

• swing-up nodes: nodes that do not stabilize at a distance close to zero. These nodes 335

are responsible for swing-up, for bringing energy into a system. The trees for environ- 336

ments MOUNTAINCAR, MOUNTAINCARCONTINUOUS, and ACROBOT consist only 337

of swing-up nodes because, in these environments, the goal state to reach is not an 338

equilibrium. 339

4.4.3. Sensitivity Analysis 340

An individual rule of an oblique tree is simple in mathematical terms (it is a linear 341

inequality). It is, nevertheless, difficult to interpret for humans. This is because the 342

individual input features (usually different physical quantities) are multiplied with weights 343

and added up, which has no direct physical interpretation. 344

For example, the single-node tree of CARTPOLE has the rule 345

4.904x− 0.1829v + 19.1497θ + 1.5203ω ≤ −0.0003 (2)

⇔ wxx + wvv + wθθ + wωω ≤ τ

which does not directly tell which input features are important for success and is as such 346

difficult to interpret. However, due to the simple mathematical relationship, we may vary 347

each weight wi or the threshold τ individually and measure the effect on the reward. This 348

is shown in Figure 8. The weights are varied in a wide range of [−100%, 200%] of their 349

nominal value, the threshold τ (being close to 0) is varied in the range τ−w+ [0%, 200%] ·w, 350

where w is the mean of all weight magnitudes |wi| of the node. 351

From Figure 8a, we learn that the angle θ is the most important input feature: If wθ 352

is below its nominal value, performance starts to degrade, while a higher wθ keeps the 353

optimal reward. The most important parameter is the threshold τ, which has to be close 354

to 0; otherwise, performance quickly degrades on both sides. This makes sense because 355

the essential control strategy for the CARTPOLE is to react to slightly positive or negative θ 356

with the opposite action. On the other hand, the weight for velocity v is the least important 357

parameter: varying it in Figure 8a does not change the reward, and setting its weight wv to 358

0 and varying the other weights leads to essentially the same picture in Figure 8b. 359

One could object that these sensitivity analysis results could have also been read off 360

directly from Equation 2 because θ has the largest, and v has the most negligible weight in 361

magnitude. However, this is only an accidental coincidence: For many other nodes that 362

we examined using sensitivity analysis, the most/least important feature in terms of mean 363

return did not coincide with the largest/smallest weight. 364

Suppose an OPCT has more than one node, e.g., for LUNARLANDER at depth d = 2 365

with its three split nodes. In that case, we can perform a sensitivity analysis for each node 366

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2023                   doi:10.20944/preprints202304.1162.v1

https://doi.org/10.20944/preprints202304.1162.v1


16 of 20

(a) (b)
Figure 8. OPCT sensitivity analysis for CARTPOLE: (a) including all weights, (b) with velocity weight
wv set to zero. Parameter angle is the most important, velocity is least important.

separately, or vary the respective weights and thresholds for all nodes simultaneously. The 367

latter is shown in Figure 9. We see that strengthening their weights (setting them to higher 368

values than nominal ones) only leads to slow degradation for all input features. A faster 369

degradation occurs when lowering the weight for a certain input feature. The features vy, 370

θ, and vx (in this order) are the most important in that respect. On the other hand, the legs 371

(boolean variables signaling the ground-contact of the lander’s legs), are least important: 372

The curves in Figure 9b only change slightly if the legs are removed from the decisions by 373

setting their weights to zero. This makes sense because the legs have a constant no-contact 374

value during the majority of episode steps (and when the legs do reach ground-contact, the 375

success or failure of an episode is usually already determined). 376

(a) (b)
Figure 9. OPCT sensitivity analysis for LUNARLANDER: (a) including all weights, (b) with the weights
for the legs set to zero. vy is most important, the ground-contacts of the legs are least important.

Note that the sensitivity analysis shown here is, in a sense, more detailed than a 377

Shapley value analysis [30] because it allows to disentangle the effects of intensifying or 378

weakening an input feature. In contrast, the Shapley value only compares the presence or 379

absence of a feature. (It is of course also less detailed, because it does not take coalitions of 380

features into account as Shapley does.) It is also computationally less intensive: Measuring 381

the Shapley value for RL problems by computing the mean reward over many environment 382

episodes and many coalitions would be, in most cases, prohibitively time-consuming. 383

5. Discussion 384

For a broader perspective, we want to point out a number of issues related to our 385

findings. 386
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1. Can we understand why ITER + OPCT is successful, while OPCT obtained by the EPS 387

algorithm is not? We have no direct proof, but from the experiments conducted, we 388

can share these insights: Firstly, equilibrium problems like CARTPOLE or PENDULUM 389

exhibit a severe oversampling of some states (i.e., the upright pendulum state). If, as 390

a consequence, the initial DT is not well-performing, ITER allows to add the correct 391

oracle actions for problematic samples and to improve the tree in critical regions of 392

the observation space. Secondly, for environment PENDULUM we observed that the 393

initial DT was “bad” because it learned only from near-perfect oracle episodes: It had 394

not seen any samples outside the near-perfect episode region and hypothesized the 395

wrong actions in the outside regions. Again, ITER helps: A “bad” DT is likely to visit 396

these outside regions and then add samples combined with the correct oracle actions 397

to its sample set. 398

2. We investigated another possible variant of an iterative algorithm: In this variant, 399

observations were sampled while the oracle was training (and probably also visited 400

unfavorable regions of the observation space). After the oracle had completed its 401

training, the samples were labeled with the action predictions of the fully trained 402

oracle. These labeled samples were presented to DTs in a similar iterative algorithm 403

as described above. However, this algorithm was not successful. 404

3. A striking feature of our results is that DTs (predominantly those trained with ITER) 405

can outperform the oracle they were trained from. This seems paradoxical at first 406

glance, but the decision space analysis for MOUNTAINCAR in Section 4.3 has shown 407

the likely reason: In Figure 3, the decision spaces of the oracles are overly complex 408

(similar to overfitted classification boundaries, although overfitted is not the proper 409

term in the RL context). With their significantly reduced degrees of freedom, the DTs 410

provide simpler, better generalizing models. Since they do not follow the “mistakes” 411

of the overly complex DRL models, they exhibit a better performance. It fits to this 412

picture that the MOUNTAINCARCONTINUOUS results in Figure 2 are best at d = 1 413

(better than oracle) and slowly degrade towards the oracle performance as d increases: 414

The DT gets more degrees of freedom and mimics the (slightly) non-optimal oracle 415

better and better. The fact that DTs can be better than the DRL model they were 416

trained on is compatible with the reasoning of Rudin [18], who stated that transparent 417

models are not only easier to explain but often also outperform black box models. 418

4. We applied algorithm ITER to OPCT. Can CART also benefit from ITER? – The solved- 419

depths shown in column ITER + CART of Table 2a add up to 35+, which is nearly as 420

bad as EPS + CART (38+). Only the solved-depth for PENDULUM improved somewhat 421

from 10+ to 7. We conclude that the expressive power of OPCTs is important for being 422

successful in creating shallow DTs with ITER. 423

5. A last point worth mentioning is the intrinsic trustworthiness of DTs. They partition 424

the observation space in a finite (and often small) set of regions, where the decision is 425

the same for all points. (This feature includes smooth extrapolation to yet-unknown 426

regions.) DRL models, on the other hand, may have arbitrarily complex decision 427

spaces: If such a model predicts action a for point x, it is not known which points in 428

the neighborhood of x will have the same action. 429

6. Conclusion 430

In this article we have shown that a considerable range of classic control RL problems 431

can be solved with DTs. Even higher-dimensional problems (ACROBOT and LUNARLAN- 432

DER) can be solved with surprisingly simple trees. We have presented three algorithms for 433

generating training data for DTs. The training data are composed of the RL environment’s 434

observations and the corresponding DRL oracle’s decisions. 435

These algorithms differ in the way the points of the observation space are selected: In 436

EPS, all samples visited by the oracle during evaluation episodes are used, BB means that 437

random samples from a hyperrectangle in the observation space are taken, while ITER is 438

an algorithm that takes points in the observation space visited by previous iterations of 439
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trained DTs. Our experiments show how DTs derived with these algorithms can generally 440

not only solve the challenges posed by classic control problems at very moderate depths 441

but also reach or even surpass the performance of the oracle. ITER produces good results 442

on all tested environments with equal or lower DT depths than the other two algorithms. 443

Furthermore, we discuss the advantages of transparent DT models with very few parame- 444

ters, especially compared to DRL networks, and show how they allow to gain insights that 445

would otherwise be hidden by opaque DRL decision-making processes. 446

However, our algorithms still require DRL agents as a prerequisite for creating suc- 447

cessful DTs. 448

Future work should test our algorithms on increasingly complex RL environments. 449

ITER still requires fine-tuning of parameters, such as the number of base samples and 450

number of samples per iteration, to optimize sample efficiency and performance. 451

Our work is intended to provide helpful arguments for simple, transparent RL agents 452

and to advance the knowledge in the field of explainable RL. 453
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The following abbreviations are used in this manuscript: 469

470

BB Bounding Box algorithm
CART Classification and Regression Trees
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DT Decision Tree
EPS Episode Samples algorithm
ITER Iterative Training of Explainable RL models
OPCT Oblique Predictive Clustering Tree
PPO Proximal Policy Optimization
RL Reinforcement Learning
SB3 Stable-Baselines3
TD3 Twin Delayed Deep Deterministic Policy Gradient
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