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Abstract: The demand for explainable and transparent models increases with the continued success 1
of reinforcement learning. In this article, we explore the potential of generating shallow decision 2
trees (DT) as simple and transparent surrogate models for opaque deep reinforcement learning (DRL) s
agents. We investigate three algorithms for generating training data for axis-parallel and oblique 4
DTs with the help of DRL agents (“oracles”) and evaluate these methods on classic control problems s
from OpenAI Gym. The results show that one of our newly developed algorithms, the iterative
training, outperforms traditional sampling algorithms, resulting in well-performing DTs that often 7
even surpass the oracle from which they were trained. Even higher dimensional problems canbe
solved with surprisingly shallow DTs. We discuss the advantages and disadvantages of different o
sampling methods and insights into the decision-making process made possible by the transparent 1o
nature of DTs. Our work contributes to the development of not only powerful but also explainable 11
RL agents and highlights the potential of DTs as a simple and effective alternative to complex DRL 12

models. 13
Keywords: Reinforcement learning, Decision tree, Explainable AI, Rule learning 14
1. Introduction 15

One of the most significant drawbacks of powerful deep reinforcement learning (DRL) 16
algorithms is their opacity. The well-performing decision-making process is buried in the 17
depth of artificial neural networks, which might constitute a major barrier to the application s

of reinforcement learning (RL) in various areas. 10
In a recent publication [1], we proposed an algorithm for obtaining simple decision 2o
trees (DT) from trained DRL agents (“oracles”). This approach has notable advantages: 21
1. Itis conceptually simple, as it translates the problem of explainable RL into a super- 2=
vised learning setting. 2
2. DTs are fully transparent and (at least for limited depth) offer a set of easily under- 24
standable rules. 25
3. The approach is oracle-agnostic: it does not rely on the agent being trained by a 2
specific RL algorithm, as only a training set of state-action pairs is required. 27

Although the algorithm in [1] was successful on some problems, it failed on others because  2s
no well-performing shallow DT could be found. In this work, we investigate the reasons =
for those failures and propose three algorithms to generate training samples for the DTs: 1o
The first one is entirely based on evaluation episodes of the DRL agent (described in [1] and s
evaluated further in this article), the second one applies random sampling on a subregion 2
of the observation space, and the third approach is an iterative algorithm involving the s
DRL agent’s predictions for regions explored by the DT. We test all approaches on seven en- s
vironments of varying dimensionality, including all classic control problems from OpenAl  ss
Gym. Our results show that DTs of shallow depth can solve all environments, that DTs can 36
even surpass DRL agents, and that the third algorithm (the iterative approach) outperforms  s7
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the other two methods in finding simple and well-performing trees. As a particularly s
surprising result, we show that an 8-dimensional control problem (LUNARLANDER) can be 3¢
successfully solved with a DT of only depth 2. s

We discuss the advantages and disadvantages of the three algorithms’ computational 4
complexity and how DTs’ transparent, simple nature provides interesting options for
explainability that are not immediately applicable to opaque DRL models. a3

The remainder of the article is structured as follows: In Section 2, we present related s
work. Section 3 contains a detailed description of our methods and the experimental setup. s
In Section 4, we present our results and discuss the explainability of DTs. We place our 46
results in a broader context and discuss future research in Section 5 before drawing a short 47
conclusion in Section 6. a8

2. Related Work 49

In recent years, interest in explainable and interpretable algorithms for Deep Learning  so
algorithms has grown steadily. This is shown by review articles for explainable Al (XAI) =
and explainable machine learning in general [2-4] and, more recently, by review articles for s
explainable Reinforcement Learning (XRL) in particular [5-7]. Lundberg ef al. [8] give an  ss
overview of efficient algorithms for generating explanations, especially for trees. sa

A variety of rule deduction methods have been developed over the years. Liu et al. [9] s
apply a mimic learning approach to RL using comparably complex Linear Model U-trees to e
approximate a Q-function. Our approach differs insofar as the DTs we obtain are arguably  s-
simpler and represent a transparent policy, translating state into action. Mania et al. [10] e
propose Augmented Random Search, another algorithm for finding linear models that solve s
RL problems. Coppens et al. [11] distill PPO agents’ policy networks into Soft Decision  eo
Trees [12] to get insights. Another interesting approach to explainable RL, which does not &
use DTs, is the approach by Verma ef al. [13] called Programmatically Interpretable RL 2
(PIRL) through Neurally Directed Program Synthesis (NDPS). In this method, the DRL s
guides the search of a policy consisting of specific operators and input variables to obtain  es
interpretable rules mimicking PID controllers. As Verma et al. [13] also test their algorithms  es
on OpenAl Gym'’s classic control problems, a direct comparison is possible and was made s
in [1]. However, their results were not reproducible by us, and we show how our algorithms e
yield better results at low DT depths than the reported ones. Zilke et al. [14] propose an s
algorithm for distilling DTs from neural networks. With their method “DeepRED”, the oo
authors translate each layer of a feedforward network into rules and aim to simplify those. 7o
Qiu and Zhu [15] present an algorithm that allows policy architectures to be learned and 7
that does not require a trained oracle. 72

The work presented here extends our earlier research in Engelhardt ef al. [1]. We apply 7
it to additional environments and introduce new sampling algorithms to overcome the 7
drawbacks of [1]. To the best of our knowledge, no other algorithms are available in the 7
current state of the art to construct that simple DTs from trained DRL agents for a large 7
variety of RL environments. 77

Concerning the iterative learning of trees outside of RL, well-known iterative meta- 7
heuristics like boosting and its particular form AdaBoost [16,17] exist, which are often 7
applied to trees. However, boosting is iterative with respect to weak learners and outputs s
an ensemble of them, while our approach is iterative in the data, retrains many trees, and e
outputs only the best-performing one. 82

Rudin [18] has emphasized the importance of building inherently interpretable models s
instead of trying to explain black box models. While Rudin [18] applied this to standard s
machine learning models for application areas like criminal justice, healthcare, and com- s
puter vision, we try to take her valuable arguments over to the area of control problems e
and RL and show how we can substitute black box models with inherently transparent DTs &7
without loss of performance. Although we use a DRL model to construct our DT, the final s
DT can be used in operation and interpreted without referencing the DRL model. 89
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3. Methods %
Our experiments were implemented in Python programming language version 3.9.16 o
using a variety of different packages and methods described in the following'. 02
3.1. Environments o3

We test our different approaches of training DTs from DRL agents on all classic control  ss
problems and the LUNARLANDER challenge offered by OpenAl Gym [19], and on the s
CARTPOLE-SWINGUP problem as implemented in [20]. This selection of environments s
offers a variety of simple but not trivial control tasks with continuous, multidimensional o7
tabular observables and one-dimensional discrete or continuous actions. Table 1 gives s
an overview of the different environments used in this article. For the two environments o
that do not have predefined thresholds at which they are considered solved, we manually 100
assigned one corresponding to visually convincing episodes of quick and stable swing-ups. 10

Table 1. Overview of environments used. A task is considered solved when the average return in 100
evaluation episodes is > Rgyjye4- Environments with undefined official threshold R4 have been
assigned a reasonable one. This number is then reported in parenthesis.

Environment Observation space (O) Action space (A) Reorved

First angle cos(6;) € [-1,1],
First angle sin(6;) € [-1,1],

Second angle cos(6,) € [—1,1], a € Apply torque{-1 (0),

Acrobot-vl Second angle sin(6;) € [—1,1], ? 8;; —100
Angular velocity 6, = w; € [—4m,47],
Angular velocity 6, = w, € [—97,97]
Position cart x € [—4.8,4.8],
Velocity cart v € (—o0,00), a € Acceleratefleft (0),
CartPole-vi Angle pole 8 € [~0.42,0.42], right (1)) 475
Velocity pole w € (—o0,00)
Position cart x € [—2.4,2.4],
CartPole- Velocity cart v € (—oo,0), a € Acceleratefleft (0), undef.
SwingUp-vi Angle pole cos(0) € [-1,1], not (1), (840)
Angle pole sin(9) € [-1,1], right (2)}
Angular velocity pole w € (—o0, 00)
Position x € [—1.5,1.5],
Positiony € [—1.5,1.5],
Velocity vy € [-5,5], a € Fire{not (0),
Velocity v, € [-5,5], left engine (1),
LunarLander-v2 Angle 0 € [—m, 7], main engine (2), 200
Angular velocity § = w € [-5,5), right engine (3)}

Contact leftleg [; € {0,1},
Contact right leg I, € {0,1}

Position x € [~1.2,0.6], a € Accelerate{left (0),

MountainCar-v0 . N not (1), —110
Velocity v € [—0.07,0.07] right (2)]
MoultltainCar Same as MountainCar-v0 a € Accelerate [—1,1] 90
Continuous-v0
Angle cos(9) € [-1,1],
Pendulum-v1 Anglesin(9) € [-1,1], undef,

-1, a € Apply torque [—2,2] (=170)
Angular velocity w € [—8, 8]

1 The experiments can be found in the Github repository https:/ /github.com/MarcOedingen /Iterative-Oblique-

Decision-Trees
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3.2. Deep Reinforcement Learning 102

Our algorithms require a DRL agent to predict actions for given observations. We train  10s
DRL agents (“oracles”) using PPO [21], DQN [22], and TD3 [23] algorithms as implemented  1os
in the Python DRL framework Stable-Baselines3 (SB3) [24]. It is necessary to test all those 105
algorithms because no single DRL algorithm solves all environments used in this paper. o6
For each environment, we select one of the successful DRL agents (see Table 2a). 107

3.3. Decision Trees 108

For the training of DTs, we rely on two algorithms representing two “families” of 100
DTs: The widely-used Classification and Regression Trees (CART) as described by Breiman 110
et al. [25] and implemented in [26] partition the observation space with axis-parallel splits. 111
The decision rules use only one observable at a time, which makes them particularly easy to 112
interpret. On the other hand, Oblique Predictive Clustering Trees (OPCT), as described and 113
implemented in [27], can generate DTs where each decision rule compares the weighted 114
sum of the features o; to a threshold t: 115

w101 + w00 + ... +wuoy < T 1)

Such rules subdivide the feature space with oblique splits (tilted hyperplanes), allowing 116
to describe more complex partitions with fewer rules and, consequently, lower depth. 117
However, the oblique split rules make the interpretation of such trees more challenging. 11s

We will address this topic in Section 4.4. 110
3.4. DT Training Methods 120

In this subsection, we describe our different algorithms to generate datasets of samples 12
for the training of DTs. 122
3.4.1. Episode Samples (EPS) 123

The basic approach has been described in detail in [1]. In brief, it consists of three 12s
steps: 125

1. A DRL agent (“oracle”) is trained to solve the problem posed by the studied environ- 12
ment. 127
2. The oracle acting according to its trained policy is evaluated for a set number of 12
episodes. At each time step, the state of the environment and action of the agent are 120

logged until a total of s samples are collected. 130
3. A decision tree (CART or OPCT) is trained from the samples collected in the previous 1s:
step. 132
3.4.2. Bounding Box (BB) 133

Detailed investigations of the failures of DTs trained on episode samples for the s
Pendulum environment show that a well-performing oracle only visits a very restricted 135
region of the observation space and oversamples specific subregions: A good oracle is 136
able to swing the pendulum in the upright position quickly and keeps the system ina 17
small region around the corresponding point in the state space for the rest of the episode’s  13s

duration. 130
To counteract this issue, we investigated an approach based on querying the oracle at 140
random points in the observation space. The algorithm consists of three steps: 141

1. The oracle is evaluated for a certain number of episodes. Let L; and U; be the lower s
and upper bound of the visited points in the i dimension of the observation space 1
and IQR; their interquartile range (difference between the 751 and the 25t percentile). 144
2. Based on the statistics of visited points in the observation space from the previous 1ss
step, we take a certain number #; of samples from the uniform distribution within s
a hyper-rectangle of side lengths [L; — 1.5-IQR;, U; + 1.5 - IQR;]. The side length is 147
clipped, should it exceed the predefined boundaries of the environment. 148
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3. For all investigated depths d, OPCTs are trained from the dataset consisting of the 15 140
samples and the corresponding actions predicted by the oracle. 150

It should be noted that this algorithm has its peculiarities: Randomly chosen points s
in the observation space might correspond to inconsistent states. While this is evident for s
the example of PENDULUM (the observations contain cos f and sin 6 (see Table 1), which 1ss
was solved here by sampling 6 and generating observations from that), less apparent 1se
dependencies between observables may occur in other cases. 155

3.4.3. Iterative Training of Explainable RL Models (ITER) 156

The DTs in [1] were trained solely based on samples from the oracle episodes. In the sz
iterative algorithm, ITER, the tree with the best performance (from all iterations so far) is  1se
used as a generator for new observations. 180

The procedure is shown in Algorithm 1 and can be described as follows: The initial 160
tree is trained on samples of oracle evaluation episodes. We use these initial samples to fit 16
the tree to the oracle’s predictions and use the tree’s current, somewhat imperfect decision- 2
making to generate observations in areas the oracle does maybe not access anymore. Often, 1es
the points in the observation space that are essential for the formation of a successful tree ies
lie a bit beside oracle trajectories. Generating samples next to these trajectories with a not 1es
yet fully trained tree allows the next iteration’s tree to fit its decisions to these previously 1es
unknown areas. 167

Algorithm 1 Iterative Training of Explainable RL Models (ITER)

Require: Oracle policy 7o, maximum iteration Iy, number #; of base samples, number
of trees Tyx, evaluation episodes 7,5, DT depth d, number of samples added in each
iteration 754y, . O: observations, A: actions.

1: 'S¢ + (Op, Ap) > collect 1, samples by running 775 in environment
2 M@ > the set M collects triples for each tree
3: fori=0,..., [z do

4: forj=1,..., Ty do

5: T;; < train_tree(S.,d) > tree T;
6: M (Ti,j, eval_tree(T;;, Meps)) b triple M,; (eval_tree returns Or, , Rt )
7: M .append(M;)

8: end for

9: (Ti,*, Or, ., RT,*) < pick_best(M) > pick triple M; with highest reward R,
10: @Ti,* <+ choice (OTM nsamp> > pick 7154p random observations

11: Snew — (OTL*’ ﬂo(OTi/*))

12: Sc + ScU Syew

13: end for

14: return Ty, > return the best tree from all iterations

After each iteration, the generated observations from the so-far best tree are labeled  1es
with the oracle’s predictions. The tree will likely revisit the region of these observations 1
in the future, and therefore has to know the correct predictions at these points in the 17
observation space. Finally, the selected samples are joined with the previous ones, and the 17
next iteration begins. After a predetermined number of iterations, the overall best tree is 172
returned. A flowchart of the iterative generation of samples for a given tree depth is shown 17
in Figure 1. 174

A possible variant is to include in line 11 of Algorithm 1 only samples for which the 175
action of the tree A1 and of the oracle differ. While this potentially reduces the training 17
set for the DTs, both the oracle’s and the DT’s predictions are still required for comparison. 17
Since our tests showed no noticeable difference in performance, we do not delve into this 17s
variant further. 179
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| |
Ao «—{ Oracle H Or, ‘ Ar,
(Imax + 1) X Evaluation — T, = TI’"‘“"*
Current samples S¢ <—{ U ‘
Base samples S;,
Oracle
Figure 1. Flowchart of ITER (Algorithm 1)
3.5. Experimental Setup 180

All algorithms for sample generation presented in Section 3.4 are evaluated on all = 1a:
environments of Section 3.1 and for all tree depths d =1, ...,10. Each such trial is called s
an experiment. For every experiment, the return R is obtained by averaging over 100 1ss
evaluation episodes. Each experiment is repeated for 10 runs with different seeds, and both  1s4
mean y and standard deviation ¢ of the return R are calculated. 185

Whenever we create an OPCT, we actually create T,y = 10 trees and pick the one with  1ee
the highest return R. This was done due to the high fluctuation of OPCTs depending on the  1e7
random seeds that initialized the oblique cuts in the observation space (see implementation 1ss
in [27]) 189

In algorithms EPS and BB, we use 15 = 30,000 samples. In ITER (Algorithm 1), we 100
set n, = 20,000 and 755mp = 1000 to have the same total number of samples across our 1o
tested algorithmsz. The other tunable parameter I,y is set to 10. Adding more than 10 12
iterations merely resulted in samples generated from a tree that had already been adapted  1es
to the oracle. Since these samples hardly differed from those of the oracle, the iterations e
did not improve the system further. 105

2 The ratio between 1, and 11gqp or the total number of samples 1 are hyperparameters that have not yet been

tuned to optimal values. It could be that other values would lead to significantly higher sample efficiency.
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Figure 2. Return R as a function of DT depth d for all environments and all presented algorithms. The
solved-threshold is shown as dash-dotted green line, the average oracle performance as dashed orange
line, and the DTs performances as solid lines with average and +1c of ten repetitions as shaded area.
Note: (i) For ACROBOT we show two plots to include BB curve. (ii) Good performance in CARTPOLE
leads to overlapping curves: oracle, BB, and ITER are all constantly at R = 500.
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4. Results 196
In this section, we discuss results and computational complexity and highlight the 107
advantages of shallow DTs in terms of additional insights and explainability. 108
4.1. Solving Environments 199

Figure 2 shows our main result: For all environments and all presented algorithms, 200
we plot the return R as a function of DT depth d. ITER usually reaches the solved-threshold 201
(dash-dotted green line) at lower depths than the other two algorithms. It is the only one to  zo2
solve all investigated environments (at depths up to 10). 203

Table 2a shows these results in compact quantitative form: Which is the minimum 20
depth needed to reach the solved-threshold of an environment?® As can be seen, ITER 205
outperforms the other algorithms. Its sum of depths is roughly half of the other algorithms’ =06
sums. Depth (1) for MOUNTAINCARCONTINUOUS + BB has been put in brackets because  zo7
it is somewhat unstable: At depths 2 and 3 the performance is below the threshold, as can  zce
be seen from Figure 2. Additionally, Table 2a shows algorithms EPS and ITER for CART 2o
as baseline experiments. In both cases, CART does not reach the performance of OPCT, at 210
least not for shallow depths. 211

Figure 2 shows another remarkable result: DTs can often even surpass the performance 212
of the DRL agents they originate from (the oracles, dashed orange lines). In Table 2b, we 213
report the minimum depths at which DT performances exceeds the oracle’s performance. 214
While these numbers can be deceptive too (CARTPOLE-SWINGUP + ITER almost reaches  2is
oracle performance at depth 8), they show that there is not necessarily a trade-off between 216
model complexity and performance: DTs require orders of magnitude fewer parameters 2-
(see Section 4.4.1) and can exhibit higher performance. Again, ITER is the best-performing 21s
algorithm in this respect. In Sections 4.3 and 5, we discuss why such a performance better 210
than the oracle’s can occur. 220

4.2. Computational Complexity a2

The algorithms presented here differ significantly in computing time, as shown in 2z
Table 3. All experiments were performed on a CPU device (i7-10700K 8 x 3.8 GHz). To 22
ensure methodological consistency, we let each algorithm generate the same total number 224
of samples, namely n; = 30, 000. 225

In every algorithm, we average over 10 trees for each depthd = 1,...,10 due to 2z
fluctuations and represent the time needed in tppcr. Additionally, ITER performs [yay +1 227
iterations for all depths. Hence, a single run takes ~ 10 - topcr time for both EPS and  22s
BB while taking ~ 10 - (Luax + 1) - topcr time for ITER. (Here, the time topcr reflects the 220
performance of an algorithm in the particular environment, depending on whether more  2s0
or less time is required for a desired result.) However, the most time-consuming part of a 23
run is the evaluation of the trees, i.e., the generation of samples by running 100 evaluation 232
episodes in the environment. According to these observations, ITER takes the most time to  2s»
complete. 234

4.3. Decision Space Analysis 235

Two-dimensional observation spaces offer the possibility of visual inspection of the 236
agents’ decision-making. This can provide additional insights and offer explanations of bad  2a7
results in certain settings. Figure 3 shows the decision surfaces of DRL agents and OPCTs  23s
for MOUNTAINCAR in the discrete (top row) and continuous (bottom row) versions. DRL 230
agents can often learn a needlessly complicated partitioning of the observation space, as 240
can be seen prominently in the top left plot, e.g., by yellow patches of “no-acceleration” in 24
the upper left or the blue “accelerate right” area in the bottom right, which are never visited 242
by oracle episodes. This poses a problem for the BB algorithm because it samples, e.g., from 243

3 Note that these numbers can be deceptive: A 10+ might be from a tree being below the threshold only by a

tiny margin or a 5 might hide the fact that a depth-4 tree is only slightly below the threshold.
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Table 2. The numbers show the minimum depth of the respective algorithm for (a) solving an
environment and (b) surpassing the oracle. (...)" means no DT of investigated depths could reach
the threshold. See main text for explanation of (1) or (3).

(a) Solving an environment

Algorithms
EPS EPS BB ITER ITER

Environment Model CART OPCT OPCT CART OPCT
Acrobot-vi1 DQN 1 1 10" 1 1
CartPole-vil PPO 3 3 1 3 1
CartPole-SwingUp-v1 DQN 10" 10" 10" 10" 7
LunarLander-v2 PPO 10t 10t 2 10* 2
MountainCar-vO0 DQON 3 3 5 3 1
MountainCarContinuous-v0 TD3 1 1 ) 1 1
Pendulum-v1 TD3 10" 9 6 7 5

Sum 38* 37+ 35+ 35+ 18
(b) Surpassing the oracle
Acrobot-v1 DQN 3 3 10™ 2 1
CartPole-v1 PPO 5 6 1 (3) 1
CartPole-SwingUp-vi DQN 10" 10™ 10" 10" 10"
LunarLander-v2 PPO 10+ 10t 2 10t 3
MountainCar-vO0 DOQN 3 5 6 3 4
MountainCarContinuous-v0 TD3 10t 1 4 2 1
Pendulum-vi TD3 10* 9 8 10 6

Sum 51 44+ 41+ 40 26"
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Table 3. Computation times of our algorithms for some environments (we selected those with
different observation space dimensions D). Shown are the averaged results from 10 runs. f;y;:
average time elapsed for one run covering all depths d = 1,...,10. topcT: average time elapsed to
train and evaluate 10 OPCTs. n5: total number of samples used. Note how the bad performance of BB
in the ACROBOT environment leads to longer episodes and therefore longer evaluation times topcr.

Environment  dim D  Algorithm trun [8] topcr [8] s
EPS 124.82 +1.96 11.71 £ 0.95 30,000
Acrobot-v1l 6 BB 477.70 £7.89 47.56 +£2.92 30,000
ITER 1189.14 +28.70 10.76 =1.02 30,000
EPS 18739 +£3.64  18.06 £2.29 30,000
CartPole-v1 4 BB 202.65 £1.26 19.11£1.13 30,000
ITER 2040.16 £21.46 18.50+1.64 30,000
EPS 85.39 £ 1.50 7.93+0.57 30,000
MountainCar-v0 2 BB 104.92 +2.05 10.27 £0.54 30,000

ITER 849.90+£19.79  7.68£0.61 30,000

the blue bottom right area and therefore, DTs learn in part “wrong” actions, resulting in 24
poor performance. Thus, the inspection of the oracle’s decision space reveals the reason for 2as
the partial failure of the BB algorithm in the case of MOUNTAINCAR at low depths. 246

On the other hand, algorithm ITER will not be trained with samples from regions za
never visited by oracle or tree episodes. Hence, it has no problem with the blue bottom right  24s
area. It delivers more straightforward rules at depthd = 1 or d = 2 (shown in columns 2 240
and 3 of Figure 3), and yields returns slightly better than the oracle because it generalizes s
better given its fewer degrees of freedom. 251

MC-v0 DQN (-101.22)

MC-v0 OPCT depth 1 (-104.11) MC-v0 OPCT depth 2 (-106.93)

Action

|
o
o
o

MCC-v0 TD3 (93.46) MCC-v0 OPCT depth 1 (94.22) MCC-v0 OPCT depth 2 (93.65)

Velocity v

—1.00 -0.75 -0.50 —=0.25 0.00 0.25 0.50

/
—1.00 -0.75 -0.50 —=0.25 0.00 0.25 0.50 —1.00 -0.75 -0.50 —=0.25 0.00 0.25 0.50
Position x

Figure 3. Decision surfaces for MOUNTAINCAR (MC, discrete actions) and MOUNTAINCARCONTIN-
uous (MCC, continuous actions). Column 1 shows the DRL agents. The OPCTs in column 2 (depth
1) and column 3 (depth 2) were trained with algorithm ITER. The number in brackets in each subplot
title is the average return R. The black dots represent trajectories of 100 evaluation episodes with
same starting conditions across the different agents. They indicate the regions actually visited in the
observation space.
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4.4. Explainability for Oblique Decision Trees in RL 252

Explainability is significantly more difficult to achieve for agents operating in envi- zss
ronments with multiple time steps than in those with single time steps (by “single time 2sa
step” we mean that a decision follows directly in response to a single input record, e.g., 2ss
classification or regression). This is because the RL agent has to execute a, possibly long, s
sequence of action decisions before collecting the final return (also known as the credit 2s7
assignment problem [28,29]). 258

Given their simple, transparent nature, DTs offer interesting options for explainability 2se
in such environments with multiple time steps, which are not immediately applicable to  ze0
opaque DRL models. This section will illustrate steps towards explainability in RL through  ze
shallow DTs. 262

4.4.1. Decision Trees: Compact and Readable Models 263

Trees are useful for XAl since they are usually much more compact than DRL models  2es
and consist of a set of explicit rules, which are simple in that they are linear inequalities  zes
in the input features (for oblique DTs). As an example of the models’ simplicity, Figure 4 266
shows a very compact OPCT of depth 1 for the MOUNTAINCAR challenge. On the other 267
hand, DRL models have many trainable parameters and form complex, nonlinear features zes
from the input observations. Table 4 shows the number of trainable weights for all our SB3 260
oracles (DRL models) which are, in all cases, orders of magnitude larger than the number 270
of trainable tree parameters. am

0.3072x — 34.55v < —0.1461

false true

left right

Figure 4. OPCT of depth 1 obtained by ITER solving MOUNTAINCAR with a return of R = —107.47
in 100 evaluation episodes

Table 4. Oracle and tree complexity. (D denotes the dimension of the observation space)

Number of parameters

Environment dimD Model Oracle ITER depthd
Acrobot-vi 6 DON 136,710 9 1
CartPole-vi1 4 PPO 9155 7 1
CartPole-SwingUp-v1 5 DQN 534,534 890 7
LunarLander-v2 8 PPO 9797 31 2
MountainCar-v0 2 DON 134,656 5 1
MountainCarContinuous-v0 2 TD3 732,406 5 1
Pendulum-v1 3 TD3 734,806 156 5

The number of parameters in the oracle can be computed from the architecture of the
respective policy network. For example, in MOUNTAINCAR with input dimension D = 2,
the DQN consists of 2 networks: a Q- and a target network. Each has D +1 = 2 + 1 inputs
(including bias), 3 action outputs, and a (256,256) hidden layer architecture* which results
in

2-((241)-256 + (256 + 1) - 256 + 256 - 3) = 134,656 weights.

4 We do not use overly complex DRL architectures but keep the default parameters suggested by the SB3
methods [24].
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The number of parameters in the tree is a function of the tree’s depth and the input
dimension: For example, in LUNARLANDER with input dimension D = §, the oblique tree
of depth d = 2 (as obtained by, e.g., ITER) has 2¢ — 1 = 3 = 1 4 2 split nodes and 2¢ = 4
leaf nodes. Each split node has D + 1 = 9 parameters (one weight for each input dimension
+ threshold), and each leaf node has one adjustable output parameter (the action), resulting

in
3-9 + 4 = 31 parameters.

However, it should be emphasized that all our DTs have been trained with the guidance 272
of a DRL oracle. At least so far, we could not find a procedure to construct successful DTs 273
solely from interaction with the environment. Optimizing the tree parameters from scratch 27
with respect to cumulative episode reward did not lead to success for tricky OpenAl Gym 27
control problems because incremental changes to a start tree usually miss the goal and 276
thus miss the reward. Only with the guidance of the oracle samples showing reasonable 27
solutions can the tree learn a successful first arrangement of its hyperplanes, which can be 275
refined further.

In a sense, the DT “explains” the oracle by offering a simpler surrogate action model. 2e0
The surrogate is often nearly as good as or even better than the DRL model in terms of ze:
mean reward.

It is a surprising result of our investigations that trees of small depth delivering such  2es
high rewards could be found at all. Most prominently, for the environments ACROBOT and  zss
LUNARLANDER with their higher input dimensions 6 and 8, it was not expected beforehand  2es
to find successful trees of depth 1 and 2, respectively. 286
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Figure 5. Distance to hyperplanes for LUNARLANDER. The diagrams show root node, left child, and
right child from top to bottom. Small points: node is “inactive” for this observation (the observation

is not routed through this node). Big points: node is “active”.
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4.4.2. Distance to Hyperplanes 267

Further insights that help to explain a DT can be gained by visualizing the distance to  zss
hyperplanes of the nodes of a DT: According to Equation 1, each split node has an associated  zeo
hyperplane in the observation space so that observations above or below this hyperplane  2e0
take a route to different subtrees (or leaves) of this node. 201

Although hyperplanes in higher dimensions are difficult to visualize and interpret, 2e2
the distance to each hyperplane is easy to visualize, regardless of the dimension of the 203
observation space. It can be shown that even an anisotropic scaling of the observation space 204
leaves the relations between all distances to a particular hyperplane intact, i.e., they are zes
changed only by a common factor. 296

Figure 5 shows the distance plots for the three nodes 0, 1,2 of the ITER OPCT for 2e7
LUNARLANDER. A distance plot shows the distances of the observations to the node’s 208
hyperplane for a specific episode as a function of time step . Each observation is colored  ze0
by the action the DT has taken. It is seen in Figure 5 that after a short transient period o0
(t < 40), the distances for every node stay small while the lander sinks. At about time step  so:
t = 280, the lander touches the ground and the distances increase (because all velocities 3o
are forced to be zero, all positions and angles are forced to certain values prescribed by the 03
shape of the ground), which is, however, irrelevant for the control of the lander and the o4
success of the episode. All nodes are attracting nodes (points are attracted to the respective sos
hyperplane), which bring the ship to an equilibrium (a sinking position with constant v;) o
that guarantees a safe landing. 307

Another example is shown in Figure 6 for the three nodes 0, 1,2 of the ITER OPCT 308
for PENDULUM. These are the three upper nodes of a tree with depth 3 and, therefore, o0
seven split nodes. Node 0 is an attracting one (“equilibrium node”) because the distances sio
approach zero (here: for t > 64). Nodes 1 and 2 do not exhibit a zero distance in the 31
equilibrium state; instead, they are “swing-up nodes” responsible for bringing energy into = s:=
the system through appropriate action switching. 313
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Figure 6. Distance plots for PENDULUM. Three of the diagrams show the distance to the hyperplanes
of root node 0, left child node 1, and right child node 2. The lower left plot shows the distance to the
equilibrium point (1,0,0) in observation space. The vertical line at = 64 marks the step where the

distance for node 0 approaches zero.

The lower left plot (“distance to equilibrium”) of Figure 6 shows the distance of each s
observation to the unstable equilibrium point (cos6,sin6, w) = (1,0,0) (the desired goal s
state). Interestingly, at t = 64 (vertical gray line), where the distance to node 0 is already 16
close to zero, the distance to the equilibrium point is not yet zero (but soon will be). This is = 317
because the hyperplane is oriented in such a way that for small angle 0, the angular velocity sie
w is approximately w = —5.3sin(0) (read off from the node’s parameters). The hyperplane 1
tells us on which path the pole approaches the equilibrium point: The control strategy is to 320
raise w for points below the hyperplane and to lower w for points above. This amounts to sz
the fact that a tilted pole gets an w (corresponding to a certain kinetic energy) such that the 322
pole will come to rest at 6 = 0. The exact physical equation requires that the kinetic energy sz

has the same value as the necessary change in potential energy, 324
Egin (w) = AEpot(e)
1 55 14 14
ng w? = mgy —mgy cos(6),

leading to the angular velocity

w=— %(1 —cosf) ~ —5.5sin(6/2) (forg=10,£=1)
which is not too far from the control strategy found by the node. 325

Similar patterns (equilibrium nodes + swing-up nodes) can be observed in those sz
environments where the goal is to reach or maintain certain (unstable) equilibrium points 27
(CARTPOLE-SWINGUP, CARTPOLE). Environments like MOUNTAINCAR(CONTINUOUS) Or 326
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ACROBOT, which do not have an equilibrium state as goal, consist only of swing-up nodes
as shown in Figure 7 for ACROBOT.

actions
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Figure 7. Distance plot for ACROBOT. The tree has only one node.

In summary, the distance plots show us two characterizing classes of nodes:

*  equilibrium nodes (or attracting nodes): nodes with distance near to zero for all obser-
vation points after a transient period. These nodes occur only in those environments
where an equilibrium has to be reached.

* swing-up nodes: nodes that do not stabilize at a distance close to zero. These nodes
are responsible for swing-up, for bringing energy into a system. The trees for environ-
ments MOUNTAINCAR, MOUNTAINCARCONTINUOUS, and ACROBOT consist only
of swing-up nodes because, in these environments, the goal state to reach is not an
equilibrium.

4.4.3. Sensitivity Analysis

An individual rule of an oblique tree is simple in mathematical terms (it is a linear
inequality). It is, nevertheless, difficult to interpret for humans. This is because the
individual input features (usually different physical quantities) are multiplied with weights
and added up, which has no direct physical interpretation.

For example, the single-node tree of CARTPOLE has the rule

4.904x — 0.1829v + 19.14976 4 1.5203w < —0.0003 (2)

= WxX + Wy +wpb +wew < T

which does not directly tell which input features are important for success and is as such
difficult to interpret. However, due to the simple mathematical relationship, we may vary
each weight w; or the threshold 7 individually and measure the effect on the reward. This
is shown in Figure 8. The weights are varied in a wide range of [—100%,200%] of their
nominal value, the threshold 7 (being close to 0) is varied in the range T — @ + [0%, 200%] - ,
where  is the mean of all weight magnitudes |w;| of the node.

From Figure 8a, we learn that the angle 8 is the most important input feature: If wy
is below its nominal value, performance starts to degrade, while a higher wy keeps the
optimal reward. The most important parameter is the threshold 7, which has to be close
to 0; otherwise, performance quickly degrades on both sides. This makes sense because
the essential control strategy for the CARTPOLE is to react to slightly positive or negative 0
with the opposite action. On the other hand, the weight for velocity v is the least important
parameter: varying it in Figure 8a does not change the reward, and setting its weight w, to
0 and varying the other weights leads to essentially the same picture in Figure 8b.

One could object that these sensitivity analysis results could have also been read off
directly from Equation 2 because 6 has the largest, and v has the most negligible weight in
magnitude. However, this is only an accidental coincidence: For many other nodes that
we examined using sensitivity analysis, the most/least important feature in terms of mean
return did not coincide with the largest/smallest weight.

Suppose an OPCT has more than one node, e.g., for LUNARLANDER at depth d = 2
with its three split nodes. In that case, we can perform a sensitivity analysis for each node

330
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Figure 8. OPCT sensitivity analysis for CARTPOLE: (a) including all weights, (b) with velocity weight
wy set to zero. Parameter angle is the most important, velocity is least important.

separately, or vary the respective weights and thresholds for all nodes simultaneously. The ez
latter is shown in Figure 9. We see that strengthening their weights (setting them to higher es
values than nominal ones) only leads to slow degradation for all input features. A faster oo
degradation occurs when lowering the weight for a certain input feature. The features v,, 7
6, and vy (in this order) are the most important in that respect. On the other hand, the legs 7
(boolean variables signaling the ground-contact of the lander’s legs), are least important: sz
The curves in Figure 9b only change slightly if the legs are removed from the decisions by sz
setting their weights to zero. This makes sense because the legs have a constant no-contact sz
value during the majority of episode steps (and when the legs do reach ground-contact, the 17

success or failure of an episode is usually already determined). 376
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Figure 9. OPCT sensitivity analysis for LUNARLANDER: (a) including all weights, (b) with the weights
for the legs set to zero. vy is most important, the ground-contacts of the legs are least important.

Note that the sensitivity analysis shown here is, in a sense, more detailed than a 7
Shapley value analysis [30] because it allows to disentangle the effects of intensifying or sz
weakening an input feature. In contrast, the Shapley value only compares the presence or 37
absence of a feature. (It is of course also less detailed, because it does not take coalitions of  ss0
features into account as Shapley does.) It is also computationally less intensive: Measuring s
the Shapley value for RL problems by computing the mean reward over many environment —ss:
episodes and many coalitions would be, in most cases, prohibitively time-consuming. 383

5. Discussion 384

For a broader perspective, we want to point out a number of issues related to our ses
findings. 386


https://doi.org/10.20944/preprints202304.1162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2023 d0i:10.20944/preprints202304.1162.v1

17 of 20

1.  Can we understand why ITER + OPCT is successful, while OPCT obtained by the EPS
algorithm is not? We have no direct proof, but from the experiments conducted, we
can share these insights: Firstly, equilibrium problems like CARTPOLE or PENDULUM
exhibit a severe oversampling of some states (i.e., the upright pendulum state). If, as
a consequence, the initial DT is not well-performing, ITER allows to add the correct
oracle actions for problematic samples and to improve the tree in critical regions of
the observation space. Secondly, for environment PENDULUM we observed that the
initial DT was “bad” because it learned only from near-perfect oracle episodes: It had
not seen any samples outside the near-perfect episode region and hypothesized the
wrong actions in the outside regions. Again, ITER helps: A “bad” DT is likely to visit
these outside regions and then add samples combined with the correct oracle actions
to its sample set.

2. We investigated another possible variant of an iterative algorithm: In this variant,
observations were sampled while the oracle was training (and probably also visited
unfavorable regions of the observation space). After the oracle had completed its
training, the samples were labeled with the action predictions of the fully trained
oracle. These labeled samples were presented to DTs in a similar iterative algorithm
as described above. However, this algorithm was not successful.

3. A striking feature of our results is that DTs (predominantly those trained with ITER)
can outperform the oracle they were trained from. This seems paradoxical at first
glance, but the decision space analysis for MOUNTAINCAR in Section 4.3 has shown
the likely reason: In Figure 3, the decision spaces of the oracles are overly complex
(similar to overfitted classification boundaries, although overfitted is not the proper
term in the RL context). With their significantly reduced degrees of freedom, the DTs
provide simpler, better generalizing models. Since they do not follow the “mistakes”
of the overly complex DRL models, they exhibit a better performance. It fits to this
picture that the MOUNTAINCARCONTINUOUS results in Figure 2 are best at d = 1
(better than oracle) and slowly degrade towards the oracle performance as d increases:
The DT gets more degrees of freedom and mimics the (slightly) non-optimal oracle
better and better. The fact that DTs can be better than the DRL model they were
trained on is compatible with the reasoning of Rudin [18], who stated that transparent
models are not only easier to explain but often also outperform black box models.

4. We applied algorithm ITER to OPCT. Can CART also benefit from ITER? — The solved-
depths shown in column ITER + CART of Table 2a add up to 35, which is nearly as
bad as EPS + CART (38™). Only the solved-depth for PENDULUM improved somewhat
from 10" to 7. We conclude that the expressive power of OPCTs is important for being
successful in creating shallow DTs with ITER.

5. Alast point worth mentioning is the intrinsic trustworthiness of DTs. They partition
the observation space in a finite (and often small) set of regions, where the decision is
the same for all points. (This feature includes smooth extrapolation to yet-unknown
regions.) DRL models, on the other hand, may have arbitrarily complex decision
spaces: If such a model predicts action a for point x, it is not known which points in
the neighborhood of x will have the same action.

6. Conclusion

In this article we have shown that a considerable range of classic control RL problems
can be solved with DTs. Even higher-dimensional problems (ACROBOT and LUNARLAN-
DER) can be solved with surprisingly simple trees. We have presented three algorithms for
generating training data for DTs. The training data are composed of the RL environment’s
observations and the corresponding DRL oracle’s decisions.

These algorithms differ in the way the points of the observation space are selected: In
EPS, all samples visited by the oracle during evaluation episodes are used, BB means that
random samples from a hyperrectangle in the observation space are taken, while ITER is
an algorithm that takes points in the observation space visited by previous iterations of
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PPO Proximal Policy Optimization

RL Reinforcement Learning

SB3 Stable-Baselines3

TD3 Twin Delayed Deep Deterministic Policy Gradient

1.  Engelhardt, R.C.; Lange, M.; Wiskott, L.; Konen, W. Sample-Based Rule Extraction for Explainable Reinforcement Learning. In
Proceedings of the Machine Learning, Optimization, and Data Science; Nicosia, G.; Ojha, V.; La Malfa, E.; La Malfa, G.; Pardalos,
P; et al,, Eds.; Springer: Cham, 2023; Vol. 13810, LNCS, pp. 330-345. https://doi.org/10.1007/978-3-031-25599-1_25.

2. Adadi, A.; Berrada, M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access 2018,
6, 52138-52160. https:/ /doi.org/10.1109/ACCESS.2018.2870052.

3. Molnar, C.; Casalicchio, G.; Bischl, B. Interpretable Machine Learning — A Brief History, State-of-the-Art and Challenges. In
Proceedings of the ECML PKDD 2020 Workshops; Koprinska, I.; Kamp, M.; Appice, A.; et al., Eds.; Springer: Cham, 2020; pp.
417-431. https://doi.org/10.1007/978-3-030-65965-3_28.

452

453

454

455

472

473

474

475

476

477

478

479

480


https://github.com/MarcUnknown/Iterative-Oblique-Decision-Trees
https://doi.org/10.1007/978-3-031-25599-1_25
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.20944/preprints202304.1162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2023 d0i:10.20944/preprints202304.1162.v1

19 of 20

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.
30.

Molnar, C. Interpretable Machine Learning: A guide for making black box models explainable. https://christophm.github.io/
interpretable-ml-book/, 2022.

Puiutta, E.; Veith, EM.S.P. Explainable Reinforcement Learning: A Survey. In Proceedings of the Machine Learning and
Knowledge Extraction; Holzinger, A.; Kieseberg, P.; Tjoa, A.M.; Weippl, E., Eds.; Springer: Cham, 2020; pp. 77-95. https:
/ /doi.org/10.1007/978-3-030-57321-8_5.

Heuillet, A.; Couthouis, F.; Diaz-Rodriguez, N. Explainability in deep reinforcement learning. Knowledge-Based Systems 2021,
214, 106685. https://doi.org/10.1016/j.knosys.2020.106685.

Milani, S.; Topin, N.; Veloso, M.; Fang, F. A survey of explainable reinforcement learning, 2022. https://doi.org/10.48550/arXiv.
2202.08434.

Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, ].M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I.
From local explanations to global understanding with explainable Al for trees. Nature Machine Intelligence 2020, 2, 56-67.
https:/ /doi.org/10.1038 /s42256-019-0138-9.

Liu, G; et al. Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees. In Proceedings of the Machine
Learning and Knowledge Discovery in Databases; Berlingerio, M.; et al., Eds. Springer, 2019, Vol. 11052, LNCS, pp. 414—429.
https:/ /doi.org/10.1007 /978-3-030-10928-8_25.

Mania, H.; Guy, A.; Recht, B. Simple random search of static linear policies is competitive for reinforcement learning. In
Proceedings of the Advances in Neural Information Processing Systems; Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K,;
Cesa-Bianchi, N.; Garnett, R., Eds. Curran Associates, Inc., 2018, Vol. 31.

Coppens, Y.; Efthymiadis, K.; et al. Distilling deep reinforcement learning policies in soft decision trees. In Proceedings of the
IJCAI 2019 workshop on explainable artificial intelligence, 2019, pp. 1-6.

Frosst, N.; Hinton, G.E. Distilling a Neural Network Into a Soft Decision Tree. In Proceedings of the First International Workshop
on Comprehensibility and Explanation in Al and ML; Besold, T.R.; Kutz, O., Eds., 2017, Vol. 2071, CEUR Workshop Proceedings.
Verma, A.; Murali, V,; Singh, R.; Kohli, P.; Chaudhuri, S. Programmatically Interpretable Reinforcement Learning. In Proceedings
of the 35th International Conference on Machine Learning; Dy, J.; Krause, A., Eds. PMLR, 2018, Vol. 80, Proceedings of Machine
Learning Research, pp. 5045-5054.

Zilke, ].R.; Loza Mencia, E.; Janssen, F. DeepRED — Rule Extraction from Deep Neural Networks. In Proceedings of the
Discovery Science; Calders, T.; Ceci, M.; Malerba, D., Eds.; Springer: Cham, 2016; Vol. 9956, LNCS, pp. 457-473. https:
/ /doi.org/10.1007 /978-3-319-46307-0_29.

Qiu, W,; Zhu, H. Programmatic Reinforcement Learning without Oracles. In Proceedings of the International Conference on
Learning Representations, 2022.

Schapire, R.E. The strength of weak learnability. Machine Learning 1990, 5, 197-227. https://doi.org/10.1007/BF00116037.
Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of
Computer and System Sciences 1997, 55, 119-139. https:/ /doi.org/10.1006/jcss.1997.1504.

Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence 2019, 1, 206-215. https://doi.org/10.1038/542256-019-0048-x.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAl Gym, 2016. https:
/ /doi.org/10.48550/arXiv.1606.01540.

Lovatto, A.G. CartPole Swingup - A simple, continuous-control environment for OpenAI Gym. https://github.com/0Oxangelo/
gym-cartpole-swingup, 2021.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms, 2017. https:
/ /doi.org/10.48550/arXiv.1707.06347.

Mnih, V.; Kavukcuoglu, K.; et al. Playing Atari with Deep Reinforcement Learning, 2013. https://doi.org/10.48550/arXiv.1312.5
602.

Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the
35th International Conference on Machine Learning; Dy, J.; Krause, A., Eds. PMLR, 2018, Vol. 80, Proceedings of Machine Learning
Research, pp. 1587-1596.

Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research 2021, 22, 1-8.

Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification And Regression Trees; Routledge, 1984.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.,
et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825-2830.

Stepidnik, T.; Kocev, D. Oblique predictive clustering trees. Knowledge-Based Systems 2021, 227,107228. https://doi.org/10.1016/j.
knosys.2021.107228.

Alipov, V,; Simmons-Edler, R.; Putintsev, N.; Kalinin, P.; Vetrov, D. Towards practical credit assignment for deep reinforcement
learning, 2021. https://doi.org/10.48550/arXiv.2106.04499.

Woergoetter, F.; Porr, B. Reinforcement learning. Scholarpedia 2008, 3, 1448. https://doi.org/10.4249 /scholarpedia.1448.

Roth, A.E., Ed. The Shapley Value: Essays in Honor of Lloyd S. Shapley; Cambridge University Press, 1988. https://doi.org/10.1017/
CB09780511528446.

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524


https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.48550/arXiv.2202.08434
https://doi.org/10.48550/arXiv.2202.08434
https://doi.org/10.48550/arXiv.2202.08434
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/978-3-030-10928-8_25
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/BF00116037
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://github.com/0xangelo/gym-cartpole-swingup
https://github.com/0xangelo/gym-cartpole-swingup
https://github.com/0xangelo/gym-cartpole-swingup
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1016/j.knosys.2021.107228
https://doi.org/10.1016/j.knosys.2021.107228
https://doi.org/10.1016/j.knosys.2021.107228
https://doi.org/10.48550/arXiv.2106.04499
https://doi.org/10.4249/scholarpedia.1448
https://doi.org/10.1017/CBO9780511528446
https://doi.org/10.1017/CBO9780511528446
https://doi.org/10.1017/CBO9780511528446
https://doi.org/10.20944/preprints202304.1162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2023

do0i:10.20944/preprints202304.1162.v1

20 of 20

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.20944/preprints202304.1162.v1

	Introduction
	Related Work
	Methods
	Environments
	Deep Reinforcement Learning
	Decision Trees
	DT Training Methods
	Episode Samples (EPS)
	Bounding Box (BB)
	Iterative Training of Explainable RL Models (ITER)

	Experimental Setup

	Results
	Solving Environments
	Computational Complexity
	Decision Space Analysis
	Explainability for Oblique Decision Trees in RL 
	Decision Trees: Compact and Readable Models
	Distance to Hyperplanes
	Sensitivity Analysis


	Discussion
	Conclusion
	References

