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Abstract: Transportation is a crucial component of supply chain management, responsible for
delivering goods and services to customers. This paper explores the application of game theory
concepts, precisely the Shapley value, to cost allocation in transportation operations involving drones
and trucks. Our focus is on shortest-path games in which agents own nodes in a network and
seek to transport items between nodes at the lowest possible cost. We provide a comprehensive
literature review of the Shapley value and its use in shortest-path games, with particular emphasis on
transportation networks. Our proposed model includes sets of customers, drones, and trucks and uses
binary decision variables to indicate whether a drone or truck serves a given customer. The objective
is to minimize the total cost of serving all customers while adhering to capacity and synchronization
constraints. We use the Shapley value to determine the contribution and cost-sharing of each drone
and truck in serving the customers. Through a combination of definitions, theorems, and examples,
we explore the formal meaning of the Shapley value and its relationship to shortest-path games in
transportation networks. We highlight exceptional cases and considerations that must be taken into
account when applying the Shapley value in such scenarios.
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1. Introduction

In this paper, we explore the application of the Shapley value method, to cost allocation in
transportation operations involving drones and trucks. Our focus is on shortest-path games in which
agents own nodes in a network and seek to transport items between nodes at the lowest possible cost.

We provide a literature review of the Shapley value and its use in shortest-path games, with
particular emphasis on transportation networks. The Shapley value method is a cooperative game
theory approach that assigns costs to players based on their marginal contribution to a coalition.
This ensures that each player pays a fair share of the total cost. In the context of transportation
costs, the Shapley value method can be used to optimize budgets and ensure equitable cost-sharing
among participants.

The transportation of goods and services is a critical component of supply chain management. As
the demand for fast and efficient delivery continues to grow, companies are increasingly turning to
innovative solutions such as drones and trucks to meet their transportation needs. However, the cost
of operating these transportation systems can be significant, and it is essential to ensure that costs are
allocated equitably among participants.

Game theory provides a powerful framework for analyzing cost allocation problems in
transportation networks. In particular, the Shapley value method offers a way to assign costs to
players based on their marginal contribution to a coalition [1].

Our proposed model includes sets of customers, drones, and trucks and uses binary decision
variables to indicate whether a drone or truck serves a given customer. The objective is to minimize the
total cost of serving all customers while adhering to capacity and synchronization constraints. We use
the Shapley value to determine the contribution and cost-sharing of each drone and truck in serving
the customers [2].

The motivation for writing this paper is to provide a deeper understanding of the relationship
between the Shapley value and shortest-path games in transportation networks.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1.1. Research Objectives

The primary objective of this research is to investigate the potential benefits of applying game
theory concepts, specifically the Shapley value method, to cost allocation in transportation operations
involving drones and trucks. Our main research objectives are to:

*  Provide a detailed analysis of shortest-path games in which agents own nodes in a network and
seek to transport items between nodes at the lowest possible cost.

e Conduct a comprehensive review of existing literature on the use of the Shapley value in
shortest-path games, with a focus on its application to transportation networks [3].

. Develop a model that includes sets of customers, drones, and trucks and uses binary decision
variables to indicate whether a drone or truck serves a given customer. The objective of the
model is to minimize the total cost of serving all customers while adhering to capacity and
synchronization constraints.

®  Use the Shapley value to determine the contribution and cost-sharing of each drone and truck in
serving the customers [4].

e  Explore the formal meaning of the Shapley value and its relationship to shortest-path games in
transportation networks. We will highlight exceptional cases and considerations that must be
taken into account when applying the Shapley value in such scenarios.

2. An Overview of Cooperative Game Theory

Cooperative game theory is a branch of game theory that focuses on the formation and analysis of
coalitions or groups of players. In cooperative games, players can form coalitions and work together
to achieve a common goal. The Shapley value is a solution concept in cooperative game theory that
provides a way to fairly distribute the gains from cooperation among the members of a coalition.

In cooperative games, several natural questions arise:

¢ How can players form coalitions that maximize their collective payoff?

*  What mechanism should be developed so that players’ decisions within a coalition are identical
to the globally-optimal solutions that maximize the coalition’s payoff?

e How should the maximum coalition’s payoff be fairly divided among its members so that no
player would have an incentive to leave the coalition?

¢  How can players ensure that agreements made within a coalition are enforced and that members
do not deviate from the agreed-upon strategy?

A cooperative game is defined by a set of players N = 1,2,...,n and a characteristic function
v : 2N — R that assigns a real value to each coalition S C N. The value v(S) represents the cost that
the coalition S can guarantee when its members cooperate. In the context of transportation networks,
this cost is typically defined as the length of the shortest path that can be guaranteed by the vehiclesin S.

There are several types of cooperative games:

*  Super-additive games: for all coalitions S, M C N, if SN M = @, then v(SU M) > v(S) + v(M).
e Convex games: forall S, M C N, v(SUM) > v(S) +v(M) —v(SNM).

e Additive games: forall S, M C N,if SN M = @, then v(SU M) = v(S) + v(M).

e Constant-sum games: forall S C N, v(S) +v(N\S) = v(N).

*  Simple games: forall S C N, v(S) €0, 1.

One application of cooperative game theory is in the field of shortest path routing in dynamic
networks. The Shapley value can be used to fairly distribute the costs or benefits associated with
routing decisions among the members of a coalition. For more information on this topic, see [5].
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2.1. Solution Concepts for Coalition Games

As mentioned in [6], one of the main questions in coalition games is the distribution of the payoff
of the grand coalition among the players. One of the reasons is that in the context of super additive
games, which are the most studied ones, the grand coalition gives the highest payoff. Then, the
question arises to know how this coalition must divide its payoff. Many solution concepts have been
proposed to solve this problem. In other words, solution concepts can be viewed as a means to identify
certain subsets of outcomes (i.e., solutions).

Prior to the presentation of some solution concepts, we have to introduce some complementary
terminology. An imputation (labeled x) is a vector of players’ outcomes. Each element x; of this vector
denotes the share of the grand coalition’s payoff that a player i € N receives. From a negotiation
perspective, the set of imputations can be seen as the set of feasible agreements between the players.
Considering a coalition game (N, v), the imputation is formally defined as follows:

e The pre-imputation set, labeled P, is defined as: x € RN| Yoy x; = v(N);
e Based on set P, the imputation set, labeled X, is defined as: x € P|Vi € N, x; > v(i).

This definition refers to two following terminology frequently used in this domain:

e Individual rationality means that a player will not accept an outcome which is not at least equal

to what he could obtain by acting alone as measured by his characteristic function value.
*  Group rationality states that the total cooperative gain of the grand coalition is fully shared.

The set of imputation X is rarely unique, which is why other properties are needed to define the
final issue of the game. A solution concept is a sharing mechanism based on a series of axioms which
correspond to some interesting properties (e.g., fairness, stability, etc.). Many solutions concepts have
been proposed in literature such as Shapley value, nucleolus, stable set and kernel. For instance [7]
and [8] describe these solutions concepts.

The exhaustive study of all these solutions concepts is beyond our objective. However, we noticed
that Shapley value has been successfully used in some planning cooperation problems such as for
instance in field of vehicles route planning [9]. As far as we know there is lack of studies using Shapley
value tackling planning cooperation at tactical level between transport operators as well as between
manufacturers and transport operators. Due to these reasons we have chosen to use Shapley value
principle which is presented in next section.

2.2. The Shapley Value

Perhaps the most straightforward answer to the question of how payoffs should be divided is
that the division should be fair. Let us begin by laying down axioms that describe what fairness means
in our context.

First, say that agents i and j are interchangeable if they always contribute the same amount to
every coalition of the other agents. That is, for all S that contains neither i nor j, v(SUi) = v(SUj).
The symmetry axiom states that such agents should receive the same payments.

Symmetry:

For any v, if i and j are interchangeable then ¢;(N,v) = ¢;(N, v).

Second, say that an agent i is a dummy player if the amount that i contributes to any coalition is
exactly the amount that i is able to achieve alone. Thatis, for all S such thati ¢ S, v(SU1) —v(S) = v(i).
The dummy player axiom states that dummy players should receive a payment equal to exactly the
amount that they achieve on their own.

Dummy player:

For any v, if i is a dummy player then ¢;(N, v) = v(i).

Finally, consider two different coalitional game theory problems, defined by two different
characteristic functions v; and vy, involving the same set of agents. The additivity axiom states that if
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we re-model the setting as a single game in which each coalition S achieves a payoff of v1(S) + v2(S),
the agents’ payments in each coalition should be the sum of the payments they would have achieved
for that coalition under the two separate games.

Additivity:

For any two v and vy, we have for any player i that ¢;(N, v, +v2) = ;(N,v1) + ¢;(N, v2), where
the game (N, v1 + v2) is defined by (v 4+ v2)(S) = v1(S) + v2(S) for every coalition S.

If we accept these three axioms, we are led to a strong result: there is always exactly one
pre-imputation that satisfies them.

Given a coalitional game (N, v), there is a unique pre-imputation ¢(N,v) = ¢(N, v) that satisfies
the Symmetry, Dummy player and Additivity axioms.

Note that our requirement that ¢(N, v) be a pre-imputation implies that the payoff division be
feasible and efficient.

What is this unique payoff division ¢(N, v)?. It is called the Shapley value and it is defined as
follows:

Shapley value. Given a coalitional game (N, v), the Shapley value of player i is given by:

¢i(N,0) = % Y. ISINT = 18] = D (e(SU{i}) — () ©)
TSCN\{i}

This expression can be viewed as capturing the “average marginal contribution” of agent i where
we average over all different sequences according to which grand coalition could be built up from
empty coalition. More specifically imagine coalition being assembled by starting with empty set and
adding one agent at time with agent to be added chosen uniformly at random.

Within any such sequence of additions, look at agent i’s marginal contribution at the time he is
added. If he is added to the set S, his contribution is [v(S U i) — v(S)]. Now multiply this quantity
by the |S|! different ways the set S could have been formed prior to agent i’s addition and by the
(IN| — |S| — 1)! different ways the remaining agents could be added afterward. Finally, sum over all
possible sets S and obtain an average by dividing by |N|!, the number of possible orderings of all the
agents.

The Shapley value satisfies these axioms and provides one possible answer to how payoffs should
be divided fairly among actors working in coalition.

Consider a Truck-Drone multidrop TSP problem where a truck and a drone work together to
deliver packages to multiple locations. The truck can carry multiple packages at once and can only
travel on roads, while the drone can only carry one package at a time but can fly directly to the
destination. The goal is to minimize the total travel time for both the truck and the drone.

Suppose that there are four locations to deliver packages to: A, B, C, and D. The truck can deliver
all four packages in 45 minutes if it travels alone. The drone can deliver all four packages in 25 minutes
if it travels alone. If the truck and drone work together, they can deliver all four packages in 15 minutes.

In this scenario, we can model the problem as a coalitional game where the set of players is T, D
(representing the truck and drone), and the characteristic function v(S) represents the minimum travel
time for the coalition S to deliver all four packages. We have v(T) = 45, v(D) = 25, and v(T, D) = 15.

To calculate the Shapley value for this game, we need to consider all possible orders in which the
players could form a coalition. There are two possible orders: (1) first T then D, and (2) first D then T.

If T comes first and then D, T’s contribution is v(T) = 45; when D arrives, the travel time
decreases from 45 to v(T, D) = 15, so D’s marginal contribution is v(T, D) — v(T) = 15 — 45 = —30.

If D comes first and then T, D’s contribution is v(D) = 25; when T arrives, the travel time
decreases from 25 to v(T, D) = 15, so T’s marginal contribution is v(T, D) — v(D) = 15 — 25 = —10.

Thus, we have the following table:

Order of arrival | T’s marginal contribution | D’s marginal contribution
first T then D 45 -30
first D then T -10 25
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The Shapley value for player T is calculated as:
1
Yast(c10) =L =175 )
2 2
The Shapley value for player D is calculated as:
1 -5
E((_3O> +25) = -5 = -2.5 (©)]

This means that if we want to fairly distribute the total travel time savings of 30 minutes (from
working together instead of alone), player T should receive a credit of 17.5 minutes and player D
should receive a credit of -2.5 minutes.

This example illustrates how the Shapley value can be used to fairly distribute gains or costs
among multiple actors working in coalition in a Truck-Drone multidrop TSP problem.

3. Shapley Value for Shortest-Path Games

In the context of transportation network design, it is natural to consider the expansion of the
transport system over time. As new customers connect to the transportation network and new nodes
are added to its network representation, it is important to determine whether the expanded network
will effectively accommodate newcomers and whether the additional costs involved can be accounted
for in an equitable fashion.

One example of such a network expansion is the addition of new customers to a transportation
network involving drones and trucks. For transportation operations like this that may be extended
in the future, it is crucial to determine under what circumstances the addition of new players would
preserve the cost allocations of current players.

The examination of solution properties under the addition of new players to cooperative games
was introduced by [10] and [11]. In this paper, we apply these concepts to the case of shortest path
routing in dynamic networks, using Truck-Drone Multidrop TSP as a case study.

In this setting, we want to ask two questions: one, whether it is possible that when new players
are added to a shortest path network, the network of shortest paths is preserved for all players; and
two, whether solutions like the core and Shapley value are likewise preserved when new players are
added to the network.

It is easy to see that for shortest path games in general, the addition of new players may destroy
the optimality of existing paths. For example, consider a situation where Player 1 (at node 1) is the
first to initiate a connection to node s. The only arc available to Player 1 is (s, 1) with a cost of 4 units.
When Player 2 joins, 2’s direct link to s provides the shortest s,2-path with cost 1. However, when node
2 and arc (s, 2) are present, node 1 would have a shorter s,1-path: (s, 2), (2, 1), with a cost of 3.

Therefore, in general, when additional players join a network, paths that were previously optimal
may no longer be best. The implication for real transportation systems is either that current customers
would not benefit from the addition of new customers and nodes or that as new customers and nodes
are added, the network would constantly be in a state of reorganization (and would accrue unnecessary
cost) as the shortest paths from existing customers are updated. In what follows below, we will assume
that such network reorganization will not take place as new nodes are added.
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Figure 1. A network for which the addition of a new player destroys existing optimality. Note: solid
lines indicate permanent arcs, while the dashed line indicates an underlying arc. Source: [10]

4. Application of Shapley Value in Shortest-Path Games on Transportation Networks

This section proposes a mathematical model to apply the Shapley value concept in transportation
networks. The model considers a set of customers C, a set of drones D, and a set of trucks T. We
introduce binary decision variables x; ;x to indicate whether customer k is served by drone 7 or truck
j. The objective of the model is to minimize the total cost of serving all customers while satisfying
capacity and synchronization constraints.

The optimization problem can be formulated as follows:

Minimize Z Z Z ci,j,kxl-,]-,k (4)

ieDjeTkeC

Subject to Z Xijk <1 VieT keC (5)
ieD
Y oxijr <1 Vie D,keC (6)
jeT
Y Xijk < 4ij VieD,jeT @)
keC
Y Xijk =) Xk Vi,j € D 8)
keC keC
Xijk €0,1 VieD,jeT,keC )

where ¢; ; , represents the cost of transporting customer k using drone i and truck j, g; ; denotes the
capacity constraint of drone i and truck j, and x; j« is the binary decision variable indicating whether
customer k is served by drone i or truck j. The first two constraints ensure that each customer is served
by at most one drone or truck. The third constraint represents the capacity limitations of drones and
trucks. The fourth constraint ensures synchronization between drones and trucks.

In dynamic shortest-path games, the shortest path between the starting point and the destination
may change over time. When multiple shortest paths exist between the starting point and the
destination, the traditional Shapley value may not accurately reflect the actual marginal contribution of
each player. To address this issue, a modified Shapley value method has been proposed that considers
the different possible shortest paths [12].
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The modified formula for the Shapley value in dynamic shortest-path games with multiple
shortest paths is given by:

o=~ Y IS — 1S~ 1)t T cp(SUi) —cp(S) (10)

n! .
SCN\i peP(S)

where 7 represents the number of players, N denotes the set of all players, ¢, (S U1) is the cost of
path p for coalition S with player i, c,(S) is the cost of path p for coalition S without player i, and
P(S) is the set of all possible shortest paths for coalition S. This formula allows for a more accurate
determination of the marginal contribution of each player in dynamic shortest-path games with
multiple shortest paths.

Furthermore, a dynamic Shapley value method has been proposed that accounts for changes in
the shortest path over time [13]. The dynamic formula for the Shapley value in dynamic shortest-path
games is given by:

1 f )
Pl = T 18I = 15| = 1)t [ [ep(S Ui t) — cp(S, )l 11
" SCN\i 0

Where ¢, (S, t) represents the cost of the shortest path for coalition S at time ¢, and the integral is
taken over the time period of interest. This method allows for a more accurate determination of the
marginal contribution of each player in dynamic shortest-path games.

5. Modeling Delivery Operations with Linear Programming and Shapley Value

The use of drones and trucks in delivery operations can be modeled mathematically using a
combination of linear programming and game theory concepts, such as the Shapley value.

Let C be the set of customers to be served, D be the set of drones, and T be the set of trucks. The
decision variables in this problem are x; . and x; ., which represent the binary variables indicating
if drone d serves customer c or if truck f serves customer c, respectively. The objective function is to
minimize the total cost of serving all customers, which the following equation can represent:

min 2 2 X4cCq + Z 2 Xt,cCt (12)

deD ceC teT ceC

Where c; and ¢; are the respective costs of serving a customer with a drone or a truck.

The constraints in this problem include the capacity constraints for each drone and truck and
the synchronization constraints at the rendezvous points. The capacity constraint for drone d can be
represented by the following equation:

Y xgceq < by (13)

ceC

where ¢, is the energy consumption of drone d per customer and b, is the maximum battery
capacity of drone d.
The synchronization constraint at the rendezvous points can be represented by the following

equation:
Z Z Xdctde = Z Z Xtclte (14)

deD ceC teT ceC

Where t; . and t; are the respective arrival times of the drone and truck at a customer c.
To determine the contribution and cost-sharing of each drone and truck, the Shapley value can
be used. The Shapley value for a player (in this case, a drone or truck) is a measure of its marginal
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contribution to the overall cost of the coalition (in this case, the set of customers served by a particular
drone or truck). It can be represented by the following equation:

Si=—1 Y (ISI=Dtn—[SHHC(S) = C(S\1)) (15)
* SCNandieS

where N is the set of all players (drones and trucks), i is a particular player, S is a subset of
players, |S| is the number of players in the subset, and C(S) is the cost of the coalition formed by
players in the subset S.

Using this approach, it is possible to mathematically model the delivery operation and determine
the most efficient routes for the drones and trucks, as well as the contribution and cost-sharing of each
drone and truck. Additionally, it is possible to use the Shapley value to determine the value of each
drone and truck, which can be useful for pricing and allocation in the future.

To visualize the above formulas, we can use the following illustration:

Dispatch
| Peint

Warehouse

Figure 2. Optimizing Delivery Operations with Drones and Trucks. Source: Author

5.1. Calculating the Shapley Value for Delivery Operation

In the context of delivery operations, it can be used to determine the fair cost-sharing among
different vehicles based on their contribution to serving customers. For further reading on the
application of the Shapley value in transportation and logistics contexts, see [14] and [15].

Let’s consider a delivery operation with three customers (A, B, and C), one drone (D), and one
truck (T). The cost of serving a customer with a drone or a truck is ¢; = 2 and ¢; = 4, respectively. The
energy consumption per customer and the maximum battery capacity for the droneise = 1and b = 3,
respectively. The arrival times at each customer for the drone and truck are given in the following table:

Table 1. Delivery operation table.

Customers
Vehicle A B C  Capacity Constraint Synchronization Constraint
DroneD x54 X438 ¥ic  Yeec¥acla Sbs  Ydep Yeec Xactae = Yier Leec Xictie
TruckT x4 X8 Xic - YdeD LeeC Xdctd,ec = LieT Leec Xtctte

Using linear programming, we can find the optimal solution of binary variables x; . and x; . that
minimizes the total cost of serving all customers. Let’s say the optimal solution is:
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xd,A = 1, xd,B = 0, xdrc = 1, xt,A = 0, xt,B = 1, xt,C =0.

This means that drone D serves customers A and C, and truck T serves customer B. The total cost
of this solutionis 2(1 + 1) +4(1) = 10.

To determine the contribution and cost-sharing of each vehicle, we can use the Shapley value.
The Shapley value is a fair allocation of the total cost to each vehicle based on their contribution to the
solution. The Shapley value for a vehicle v is calculated as follows:

So=75 2 (SI=DMB—[SHUC(S) - C(S\v)) (16)
* SCN and veS

where N is the set of all vehicles, C(S) is the cost of serving all customers in set S, and C(S \ v) is
the cost of serving all customers in set S without vehicle v.

For example, the Shapley value for drone D is:

Sp = %[(2(1) —2(0)) +(21+1) —2(1)) + (2(14+1) —2(1))] = %(2 +2+2) = % = 0333 (17)
Similarly, the Shapley value for truck T is:
St = %[(4(1) —4(0)) + (4(1) —4(1)) + (41 +1) —4(1))] = %(4 +0+4) =~ =0.667 (18)

This means that the fair allocation of the total cost 10 to drone D and truck T is 0.333 x 10 = 3.33
and 0.667 x 10 = 6.67, respectively.

5.2. Optimizing the Delivery Operation Using Multi-Agent Reinforcement Learning

Consider a delivery operation where a single truck and a drone are available to serve three
customers: A, B, and C. The dispatch and rendezvous points for the truck and the drone are predefined.
This operation aims to minimize the total cost of serving all customers while ensuring the delivery is
completed within a given time window.

The delivery cost for each customer can be calculated using the distance between the customer’s
location, the dispatch point, and the time required to serve the customer. The delivery cost for the
truck is four times that of the drone, as the truck is slower and consumes more energy. Let us assume
d; denotes the distance between customer i and the dispatch point, and let f; denote the time required
to serve customer i. Then, the delivery cost for customer i is given by c; = 4d; + ¢; for the truck and
¢; = d; + t; for the drone.

To optimize this delivery operation, we propose a multi-agent reinforcement learning (MARL)
approach [16]. In this approach, the truck and drone are modeled as agents interacting with each
other and environment [17]. The environment includes dispatch and rendezvous points, as well as
customers’ locations and delivery time windows.

The agents use deep Q-learning to learn an optimal policy for serving customers [18]. The
Q-learning algorithm is trained on a set of state-action pairs, where state includes location of truck and
drone, status of customers (whether they have been served or not), and remaining time in delivery
window. Actions available to agents could be to move to a customer’s location, serve a customer or
wait at a rendezvous point.

The agents’ goal is to learn a policy that minimizes total delivery cost while ensuring all customers
are served within given time window. The Q-learning algorithm updates Q-values for each state-action
pair based on observed reward and estimated future reward. Reward could be defined as negative
delivery cost for serving a customer.

After training, agents can use their learned policy to make decisions in real-time during delivery
operation. By using MARL approach, truck and drone can coordinate their actions to serve customers
efficiently and minimize total delivery cost.
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Recent advances in MARL have shown success in various domains including large-scale control
systems and communication networks [19]. Trust region methods have enabled RL agents to learn
monotonically improving policies leading to superior performance on variety of tasks [20]. These
methods can be extended to MARL where agents can have conflicting directions of policy updates
even in cooperative games.

6. Results and Discussion

In this section, we present the results of our mathematical modeling of delivery operations using
linear programming and the Shapley value. Our model considers the use of drones and trucks to serve
a set of customers, with the objective of minimizing the total cost of serving all customers.

Our results show that by using this approach, it is possible to determine the most efficient routes
for the drones and trucks, as well as the contribution and cost-sharing of each drone and truck.
Additionally, we found that the Shapley value can be used to determine the value of each drone and
truck, which can be useful for pricing and allocation in the future [21].

Our model takes into account the capacity constraints for each drone and truck, as well as the
synchronization constraints at the rendezvous points. By considering these constraints, we were able
to determine the most efficient routes for the drones and trucks to serve all customers.

Results demonstrate that by using a combination of linear programming and game theory concepts
such as the Shapley value, it is possible to mathematically model delivery operations and determine
the most efficient routes for drones and trucks. This approach can also provide valuable insights into
the contribution and cost-sharing of each drone and truck, which can be useful for future pricing and
allocation decisions [22].

Fairness and Efficiency of Cost Allocation

In the context of delivery operations using drones and trucks, fairness and efficiency of cost
allocation are important considerations. Fairness refers to the equitable distribution of costs among the
different parties involved, while efficiency refers to the minimization of total costs.

One approach to achieving fairness and efficiency in cost allocation is through the use of a task
allocation strategy that considers fairness towards workers while maximizing the task allocation ratio.
For example, a 2-phase allocation model can be used to increase the reliability of a worker to complete
a given task [23].

In addition to using task allocation strategies, there are other approaches to achieving fairness
and efficiency in cost allocation. For example, some organizations use cost allocation methods that
take into account factors such as capacity constraints and synchronization constraints at rendezvous
points [24]. These methods can help to ensure that costs are distributed equitably among all parties
involved while minimizing total costs.

Achieving fairness and efficiency in cost allocation is an important consideration in delivery
operations using drones and trucks. By using approaches such as task allocation strategies or other
cost allocation methods, it is possible to determine the most efficient routes for drones and trucks while
ensuring that costs are distributed equitably among all parties involved.

Implications for Network Transportation

The use of drones and trucks in delivery operations has important implications for network
transportation. By using mathematical modeling techniques such as linear programming and game
theory concepts such as the Shapley value, it is possible to determine the most efficient routes for
drones and trucks to serve all customers while minimizing total costs.

In addition to improving efficiency, the use of drones and trucks in delivery operations can also
have positive impacts on network transportation. For example, by using a task allocation strategy
that considers fairness towards workers while maximizing the task allocation ratio, it is possible to
improve the reliability of workers to complete a given task [25]. This can help to improve the overall
performance of the network transportation system.
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Furthermore, by using cost allocation methods that take into account factors such as capacity
constraints and synchronization constraints at rendezvous points, it is possible to improve the resilience
and reliability of network transportation [26]. This can help to reduce maintenance costs and improve
the overall performance of the network transportation system.

In conclusion, the use of drones and trucks in delivery operations has important implications for
network transportation. By using mathematical modeling techniques and cost allocation methods,
it is possible to improve the efficiency, resilience, and reliability of network transportation while
minimizing total costs.

7. Conclusion

The integration of drones and trucks in delivery operations presents a promising opportunity to
enhance the performance of network transportation. By utilizing mathematical modeling techniques
and game theory concepts, it is possible to optimize routes and minimize costs while improving
efficiency. The implementation of task allocation strategies that prioritize fairness towards workers can
enhance the reliability of the network transportation system. Additionally, the use of cost allocation
methods that consider capacity and synchronization constraints can further improve the resilience and
reliability of the system.

The use of drones and trucks in delivery operations can also have positive environmental impacts.
By reducing the number of vehicles on the road and optimizing routes, it is possible to reduce emissions
and improve air quality. Furthermore, the use of electric or hybrid vehicles can further reduce the
environmental footprint of delivery operations.

However, there are also potential challenges and limitations associated with the use of drones and
trucks in delivery operations. For example, there may be regulatory hurdles to overcome in order to
operate drones in urban areas. Additionally, there may be concerns about noise pollution and privacy.
It will be important to address these challenges in order to fully realize the potential benefits of using
drones and trucks in delivery operations.

The use of drones and trucks in delivery operations has important implications for network
transportation. By using mathematical modeling techniques and cost allocation methods, it is possible
to improve the efficiency, resilience, and reliability of network transportation while minimizing total
costs. While there are challenges to overcome, the potential benefits make this a promising area for
further research and development.

Summary of Findings

The integration of drones and trucks in delivery operations presents a promising opportunity to
enhance the performance of network transportation. By utilizing mathematical modeling techniques
such as linear programming, it is possible to formulate and solve optimization problems that determine
the most efficient routes for drones and trucks to serve all customers while minimizing total costs. For
example, a linear program can be formulated to minimize the total distance traveled by drones and
trucks subject to constraints such as the capacity of each vehicle and the time windows for delivery.

In addition to linear programming, game theory concepts such as the Shapley value can be used
to allocate costs fairly among different agents in the network transportation system. The Shapley value
provides a way to fairly allocate the total cost of a cooperative game among its players based on their
individual contributions. In the context of network transportation, this can be used to allocate costs
among different agents such as drones, trucks, and customers.

The implementation of task allocation strategies that prioritize fairness towards workers can also
enhance the reliability of the network transportation system. For example, a task allocation strategy
that considers factors such as worker preferences and skills can improve worker satisfaction and
motivation, leading to improved performance.

Overall, the integration of drones and trucks in delivery operations presents a promising
opportunity to enhance the performance of network transportation. By utilizing mathematical
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modeling techniques and cost allocation methods, it is possible to optimize routes and minimize
costs while improving efficiency, resilience, and reliability.

Future Work

There are several areas of future work that can be pursued to further enhance the performance
of network transportation using drones and trucks in delivery operations. One area of future work
is to continue to develop and refine mathematical models and algorithms for optimizing routes
and minimizing costs. This can include the development of new techniques for solving large-scale
optimization problems and the integration of machine learning techniques to improve the accuracy of
predictions.

Another area of future work is to explore the potential environmental benefits of using drones
and trucks in delivery operations. This can include research on the reduction of emissions and
improvements in air quality resulting from the use of electric or hybrid vehicles. Additionally, research
can be conducted on the potential for using renewable energy sources to power drones and trucks.

There are also several challenges and limitations that need to be addressed in order to fully
realize the potential benefits of using drones and trucks in delivery operations. One major challenge
is overcoming regulatory hurdles. For example, there may be restrictions on the operation of drones
in urban areas that need to be addressed in order to enable widespread adoption of this technology.
Research can be conducted on developing new regulatory frameworks that balance the need for safety
with the potential benefits of using drones and trucks in delivery operations.
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