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Abstract: Image aesthetic assessment (IAA) with neural attention has made significant progress due 

to its effectiveness in object recognition. Current studies have shown that the features learned by 

convolutional neural networks (CNN) at different learning stages indicate meaningful information. 

The shallow feature contains the low-level information of images and the deep feature perceives the 

image semantics and themes. Inspired by this, we propose a visual enhancement network with 

feature fusion (FF-VEN). It consists of two sub-modules, the visual enhancement module (VE 

module) and the shallow and deep feature fusion module (SDFF module). The former uses an 

adaptive filter in the spatial domain to simulate human eyes according to the region of interest (ROI) 

extracted by neural feedback. The latter not only takes out the shallow feature and the deep feature 

by transverse connection, but also uses a feature fusion unit (FFU) to fuse the pooled features 

together with the aim of information contribution maximization. Experiments on standard AVA 

dataset and Photo.net dataset show the effectiveness of FF-VEN. 

Keywords: deep learning; image aesthetics assessment; image enhancement  

 

1. Introduction 

With the increasing application of digital images, the studies of image aesthetic assessment 

(IAA) have made significant development. IAA has favorable commercial application value and 

potential. Feature extraction has long been a question of great interest in IAA [1]. Early studies 

focused on photographic methods and human perception. Deng et al. [2] summarized the manual 

production features and the deep features, indicating the limitations of machine learning. Among the 

early efforts, the diversity of aesthetic features and the complexity of photographic methods resulted 

in the poor performance of the models with manual extraction. 

Recently, deep learning has become a hot topic for IAA [3], which overcomes the limitation of 

hand-crafted feature extraction. Neural networks have shown good advantages for image analysis 

and processing [4–6]. Dai et al. [7] introduced the existing research in the field of intelligent media. 

The pooling layers was utilized to increase the speed of processing the low-level features [8]. Talebi 

et al. [9] modified the last layer of convolutional neural networks (CNN), directly predicting the 

aesthetic score distribution. It transforms the classification model into a distributed task, increasing 

the training speed and improving the performance of neural networks. Based on [9], In [10], VGGNet 

stacks the convolutional layers, pushing the network depth to more than 16 weight layers. [11] 

showed that intermediate convolution layers of CNN contain meaningful information about the 

complexity of images. Thus, we analyze the network structure and try to fuse the features of CNN, 

aiming to combine the low-level information and the abstract image semantics. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Neural attention is a major area of interest within the field of IAA. How to assess the digital 

images based on human visual characteristics is challenging for researchers. The deep model (TDM) 

was designed to perceive the image scenes with the advantages of peripheral vision and central vision 

[12]. Ma et al. [13] introduced A-Lamp that can learn the detailed and overall information of images. 

The details of images are retained via dynamically selecting image blocks. The overall information is 

extracted from the attribute graphs of the image blocks. Zhang et al. [14] combined the spatial layout 

and the details of images on the basis of top-down neural feedback. Inspired by TDM [12], they also 

proposed GLFN-Net [15]. It calculates the image blocks of region of interest (ROI) and simulates the 

fovea vision. However, human observation of images is flexible, not in the fixed shape of a rectangle. 

We attempt to dynamically process the digital images according to ROI. 

In this paper, we propose a visual enhancement network with feature fusion (FF-VEN). It is 

divided into two sub-modules: the visual enhancement module (VE module) and the shallow and 

deep feature fusion module (SDFF module). VE module simulates the human eyes based on the fovea 

visual characteristics. It adaptively filters the images according to ROI obtained by neural feedback. 

SDFF module consists of feature extraction and feature fusion. The shallow feature and the deep 

feature are taken out by the method of transverse connection. We design a feature fusion unit (FFU) 

that performs the weighted fusion to maximize the contribution to information. The aesthetic score 

distribution is learned by minimizing squared earth mover's distance (EMD) loss. Further, FF-VEN 

is evaluated in the classification task and the regression task. Therefore, the contributions made by 

this paper are as follows: 

1) We propose an end-to-end training network, consisting of two sub-modules. The former module 

considers top-down neural attention and fovea visual characteristics. The latter module extracts 

and integrates the features learned by CNN at different stages. 

2) An adaptive filter is designed to select the filters in the spatial domain. Specifically, each pixel 

in the images adjusts the parameters of filters according to the normalized interest matrix 

extracted by neural feedback. 

3) We optimize a feature fusion unit to combine the low-level information and the image semantics. 

The added pooling layers deal with the corresponding features, increasing the training speed 

and improving the precision of the predicted score prediction. Besides, it fuses the features for 

contribution maximization. 

The rest of the article is structured as follows. Section 2 introduces the relevant work briefly and 

Section 3 describes the proposed FF-VEN. Section 4 evaluates the performance of the network and 

compares it with other models. In Section 5, we summarize the paper. 

2. Related Work 

There are two basic approaches currently being adopted in research into IAA. One is extracting 

the image features manually and the other is based on deep learning. On the one hand, hand-crafted 

feature extraction means designing the aesthetic attributes of digital images on the computer based 

on photography, psychology, aesthetics, and other subjects. Datta et al. [16] defined the aesthetic 

image features, including color, structure, and image content, aiming to explore the relationship 

between human emotions and the low-level features. Reference [17] depended on the global saliency 

map of images and located the region of visual attention. From a photographer's point of view, Dhar 

et al. [18] analyzed image layout, sky lighting, and other image attributes. The relative foreground 

position and visual weight ratio are combined to enhance the visual image features [19]. Tang et al. 

[20] integrated the regional and global features according to the eye-catching areas. They used a 

support vector machine (SVM) model for the classification task. However, the methods of hand-

crafted feature extraction are unsuitable for all images. It enters a bottleneck, because aesthetics is 

abstract and the photographic methods are diverse. 

On the other hand, deep learning has significant advantages for IAA [2]. For multi-scale image 

processing, Szegedy et al. [21] proposed GoogLeNet, increasing the width of the network via sparse 

connections. Because of its great performance on ImageNet, they developed InceptionNet, using 
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optimization algorithms to improve the performance of the model [7]. DMA-NET [22] performed 

random image clipping and extracted local fine-grained information. A-Lamp learned the detailed 

information and the overall attributes of the input images [13]. Based on GoogLeNet [21], Jin et al. 

[23] considered the local and global views of images. They proposed ILG-NET, combing the 

InceptionNet and the connected layer. Yan et al. [24] obtained the aesthetic image features, including 

semantics, texture, and color. They weighted points of interest (POI) and segmented the image pixels. 

They proposed a circular attention network, which ignores irrelevant information and focuses on the 

attention region when extracting visual features [25]. From the gray value, contrast and spatial 

position relationships of pixels in color channels, the shallow feature perceives the image attributes 

like light, tone, clarity, and composition. The semantic information contains image object, theme, 

context, etc. 

At present, the multi-channel frameworks have been widely used for IAA. She et al. [26] captured 

the image layout, using a special neural network composed of two sub-networks. A pooling layer of 

the multimodal factorized bilinear (MFB) was used to combine the features [25]. Based on [26], the 

GIF module integrated the weight generator into the feature fusion part [15]. They down-sampled 

the images to simulate peripheral vision, which missed the details and failed to assess the high-

variance images. A gating unit (GU) performs dynamic weighted combination [27]. GU adds two 

fully connected layers and a Tanh layer, improving the effectiveness of the networks. It calculates the 

contribution of features to the result via analyzing the statistical characteristics. Inspired by this, we 

propose FFU, adding pooling layers for corresponding features based on GU. Ma et al. [13] showed 

that the ROI captured the spatial layout information of images and calculated the attention area of 

CNN. Zhang et al. [14] simulated fovea vision by generating image blocks via top-down neural 

feedback. Similarly, we use the incentive support method [28] to extract the interest matrix of images. 

However, the area of visual interest is not as the shape of a rectangle when humans assessing images. 

We develop an adaptive filter, which is such a pixel-based approach that it captures the fine-grained 

details of an image in any shape. 

Early studies treated IAA as a task of aesthetic classification [13,29]. According to the aesthetic 

score distribution, the average of scores is compared with the threshold value, aiming to divide the 

images into the high quality images and the low quality images. The aesthetic score distribution is 

ordered in IAA. Cross-entropy loss in the classification ignores the relationships between scores. The 

regression model was utilized to assess images [2]. For ordered classes, Zhang et al. [30] showed that 

the models with the classification task can outperform the regression networks. Due to the cultural 

background, the emotion states, the physiological condition, and other factors of the assessors, the 

aesthetic scores are highly subjective. At present, the research mainly focuses on the direct prediction 

of the aesthetic score distribution. Cumulative distribution function with Jensen-Shannon divergence 

(CJS) loss was proposed to boost the performance of models [31]. Talebi et al. [8] regarded the score 

distribution as an ordered class. They used squared EMD loss to predict the score distribution. In this 

paper, we minimize EMD loss to make the results more accurate. 

3. Proposed Method 

Figure 1 shows the overall framework of FF-VEN proposed in this paper. VE module uses the 

excitation support method to extract ROI from images, aiming to get top-down neural attention of 

ResNet50. Based on ROI, the adaptive filter selects either Laplace filter or Gaussian filter. It also 

adjusts the parameters of filters depending on the degree of visual interest. SDFF module 

dynamically fuses the shallow feature and the deep feature of VGG16 [10] taken out via transverse 

connection. In FFU, the pooling layers are used for the corresponding features. FFU calculates the 

weights of contribution to information by analyzing the statistical characteristics of the features. Next, 

the pooled features are dotted with their contribution weights, and then put into fusion. Finally, EMD 

loss is selected to predict the score distribution. 
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Figure 1. The overall framework of FF-VEN. VE module filters images adaptively based on ROI. SDFF 

module uses FFU to fuse the shallow feature and the deep feature extracted by the method of 

transverse connection. Finally, the score distribution is directly predicted. 

3.1. Top-down Neural Attention 

In this paper, ROI represents the level of interest of all pixels in the form of a two-dimensional 

matrix. The interest degree is calculated via top-down neural feedback from the decisive pixels to the 

all pixels of the original image. For the computer, the interest matrix shows the region with the 

prominent feature that CNN pays attention to when predicting. For humans, the value of the interest 

matrix represents the degree of attraction to the pixel by human eyes. On the basis of the probabilistic 

winner-take-all (WTA) model, the incentive support method [28] can calculate the interest matrix 

with the same size as the input image. In statistical concepts, the marginal winning probability ( )iP o  

represents the attention rate transmitted from the decisive pixels, i.e., 

( ) ( )
1

N

i i j

j

P o P o o
=

=  (1)

where i
o  is a pixel of the overall pixel set in the input image, N is the number of the decisive pixels 

in the upper layer generated by io . In (1), ( )iP o  sums the pixel’s effect degree after quantization 

between the two layers. In the excitation backprop algorithm, neurons transmit signals through the 

excitation propagation. The marginal winning probability ( )iP o  is obtained via the top-down 

connections based on the conditional winning probability ( )i jP o o . If the excitation connection ,i jm  

exists, ( )i jP o o  is defined as:  

( ) , ˆ
i j i j i jP o o m o c=

 
(2)

where ,i jm  represents the connection weight between io  and jo , io


 means the response of io , 

and j
c  is the normalization factor. According to (1) and (2), the recursive propagation of top-down 

signals can calculate the interest matrix of images layer by layer. The interest matrix represents ROI 

in pixels when CNN makes decisions. In this paper, pre-trained ResNet50 is used to extract the 

interest matrix. Some examples are shown in Figure 2. ROI of images is highlighted by the pseudo-

color technique. In Figure 2, ROI not only distinguishes between the foreground and the background, 

but also displays the degree of neural attention. 
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Figure 2. The examples of images with ROI. We apply pseudo-color technique to the interest matrix 

(JET mapping). The colors are red, orange, yellow, green, blue and purple in turn. Red indicates the 

highest degree of interest and purple represents the lowest degree of interest. 

3.2. Adaptive Filtering 

An adaptive filter is designed to simulate human eyes based on the fovea visual characteristics. 

The spatial domain filters conform to the convolution process of CNN, so the adaptive filter uses 

Laplace filter and Gaussian filter. The outermost edge of the images is retained to keep the image size 

unchanged. As shown in Figure 3, adaptive filtering is carried out on the basis of the interest matrix 

extracted in Section 3.1. First, the interest matrix is processed by the min-max normalization method. 

The value of the threshold is set as the average of the interest matrix. Experiments show that the 

average value accounts for about 60% of the maximum value. Next, the interest degree of each pixel 

is compared to the value of the threshold, selecting to sharpen or to blur.  

On the one hand, for the process of sharpening, the Laplace operator is used to calculate the 

details of the images. The Laplace operator of 4 neighborhood pixels is defined as:  

4 ( , ) ( , 1) ( , 1) ( 1, ) ( 1, ) 4 ( , )
L
g x y f x y f x y f x y f x y f x y= − + + + − + + −  (3)

where ( , )f x y  is the pixel located at coordinates ( , )x y . There is another kind of expression of 

Laplace operator. Its definition is shown below: 

1 1

8
1 1

( , ) ( , ) 9 ( , )L

i j

g x y f x i y j f x y
=− =−

= + + −  (4)

where 8 ( , )Lg x y  means the Laplace operator with diagonal distribution. 8 ( , )Lg x y  detects more 

details and texture, combining fine-grained attributes of 8 neighborhood pixels. In addition, irregular 

noise belongs to fine-grained information in the spatial domain. Due to the noise’s impact on image 

assessment, the high-pass filter processes images directly. The high-boost filtering combines the 
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original images and the weighted results of Laplace filtering. It linearly enhances the texture and the 

details of images, i.e., 

( , , , ) ( , ) ( , )Lg x y k b f x y k g x y b= + ⋅ +  (5)

where ( , )Lg x y  represents the pixel after Laplace filtering and ( , )f x y  means a pixel of the input 

images. b and k are coefficients of the high-boost filtering and their values depend on the degree of 

the neural attention. In (5), the high-boost filtering adds the fine-grained texture (obtained by the 

Laplace operator) to the original pixel. The greater interest degree causes the greater enhancement of 

texture and details. On the other hand, two-dimensional Gaussian low-pass filter (GIPF) is utilized 

for the blurring process: 

2 2

2
( )

2
2

1( , , )
2

x y

G x y e σσ
πσ

+

=
 

(6)

where x and y are the coordinates of pixels, σ  is the standard deviation of GIPF and its value is 

determined by the interest matrix. According to (6), the smaller the value of σ , the severer the peak’s 

change in Gaussian function, and the lower the blurring degree. On the contrary, the larger value of 

σ  results in the higher blurring degree. Table 1 shows the specific parameters of the filters. Max is 

the highest interest degree of the input image and threshold is set to choose the corresponding filter. 

 

Figure 3. The process of adaptive filtering. The adaptive filter analyzes the interest degree in each 

pixel depending on the extracted interest matrix. GIPF or Laplace filter is dynamically selected to 

simulate human eyes. 

Table 1. The parameters in the adaptive filter. 

Filter size k b σ  

The high-boost filter 

(including Laplace filter)  
9×9 

i threshold

Max threshold

−

−  
( )2 i threshold⋅ −

 
- 

Gaussian filter 9×9 - - 
threshold i

threshold Min

−

−  

As mentioned above, the adaptive filter in the spatial domain with contrast processing achieves 

the goal of visual enhancement. Figure 4 shows some examples of this step. Column 2 shows the 

quadrupling of the results. In Figure 4, the adaptive filter sharpens or blurs the images in different 

degrees based on ROI. The process of sharpening leads to the brighter foreground and the sharper 

details. The result of blurring is weakening the presence of the background. For computer vision, the 
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adaptive filter increases the difference between pixels of different interest levels based on the 

feedback after identifying the object. The cooperation of neural attention in Section 3.1 and the 

adaptive filtering in Scetion 3.2 takes advantage of the underlying physiological responses that 

human consciousness drives behavior. 

 

Figure 4. The examples of adaptive filtering. Column 1, the original images; Column 2, the results of 

adaptive filtering; Column 3, the processed images. 

3.3. Features at Different Stages 

Current studies have found that there are different meanings of features learned by CNN at 

different learning stages [11]. The shallow feature contains the low-level information of images, such 

as color, edge, and texture. The deep feature perceives abstract semantic information. Similar to 

InceptionNet [7], SDFF module broadens the network structure, aiming to improve the performance 

of models. We use VGG16 [10] as the baseline and take out the shallow feature and the deep feature 

from different convolution layers. Figure 5 shows an example of the results. The main parameters of 

VGG16 are listed in Table 2. The max pooling layer after each convolution layer is omitted. From the 

Conv3-256* layer, we take out the shallow feature, whose size is 28 28 256× ×  after passing 

through the max pooling layer. The deep feature is taken from the Conv3-512* layer. Its size is 

7 7 512× × . The above process is mathematically expressed as: 

( )( )

( )( )
1 1 1 0

2 2 2 1

I Pl W I

I Pl W I

ψ

ψ

 ′ = ⋅


′ = ⋅  

(7)

where 0I  represents an input image, 1I ′  and 2I ′  are the output of the transverse connection, 

( )1i iW Iψ −⋅  is the state function of VGG16, and ( )1i iPl I −  is the feature pooling function with 

0,1,2i = . In (7), 1I  is taken out when VGG16 is the state function ( )1 0W Iψ ⋅ . By the feature pooling 

function ( )1 1Pl I , the shallow feature 1I ′  is obtained. Similarly, the deep feature 2I ′  is taken out by 

the method of transverse connection. Adding the shallow feature reduces the influence of the deep 

feature on the results. In this way, the low-level and semantic information of the images can be 

integrated to improve the network performance. 
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Figure 5. The feature's understanding of an image in VGG16. The information contained in the 

features is attached to the original image with the incentive support method. It is confident for the 

deep feature to recognize objects. The shallow feature captures the foreground by learning low-level 

information. 

Table 2. The main parameters of VGG16. 

Layer a The size of input data The number of the layer 

Conv3-64 224x224x3 2 

Conv3-128 112x112x64 2 

Conv3-256* 56x56x128 3 

Conv3-512 28x28x256 3 

Conv3-512* 14x14x512 3 

a The layers from Line 1 to Line 5 are the convolution layer of VGG16. The asterisk * represents the layer that we 

take out the feature from. 

3.4. Feature Fusion Unit 

After taking out the features, SDFF module needs a feature fusion mechanism to combine the 

shallow feature and the deep feature. Figure 6 shows FFU after fine-tuning. PCFS means a pooling 

layer, a catenation layer, a fully connected layer, and a Sigmoid layer in turn. The pooling layer 

analyzes the statistical characteristics of the features. The next layers calculate the weights (denoted 

by x
k  with x s=  or d  in Figure 6) of the pooled features. s means the shallow feature and d is the 

deep feature. x
k  represents the contribution weight of the feature to the information. Then, the 

shallow feature and the deep feature pass through the max pooling layer and the average pooling 

layer, respectively. Max pooling not only selects the data with higher recognition but also provides 

the nonlinearity factor for FFU. The deep feature is the results that CNN learns in the later stage, so 

it influences CNN greatly. Average pooling considers all of the deep information. Because the sizes 
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of the two pooling layers are 7 7× , the shallow feature and the deep feature are rescaled to 

7 7 256× ×  and 7 7 512× × . Afterwards, we take the dot product of each pooled feature and its xk . 

Finally, the results are fused by the catenation layer. The main parameters of FFU are showed in Table 

3. 

 

Figure 6. The framework of FFU. PCFS analyzes the contribution of features. Meanwhile, features 

pass through the max pooling layer and the average pooling layer, respectively. FFU dot pooled 

features with their weights and then fuse the results via the catenation layer. The gray dotted box 

represents the process of analyzing the contribution without changing the features numerically. 

Table 3. The main parameters of FFU. 

Layer The size of input data The number of the layer 

PCFS 28x28x256,7x7x512 1 

FC 7x7x256+7x7x512 1 

3.5. EMD Loss 

In AVA dataset and Photo.net dataset, the score distribution is intrinsically ordered. For ordered 

classes, the performance of classification models is better than regression frameworks. However, the 

classification task ignores the relationships between classes of score distribution. EMD loss penalizes 

mis-classifications according to class distances. In this paper, EMD loss is minimized to predict the 

score distribution directly. Because of the impact of the number of assessors on credibility, the 

distribution is normalized. The definition of EMD loss is shown below: 

( ) ( ) ( )

1

1

1,
N rr

l p

i

EMD l p CDF i CDF i
N =

 
= − 
 


  

(8)

where ( )xCDF i  represents the cumulative distribution function as 
1

(1 )
n

i

d

n

e i N
=

≤ ≤ . n
d  means the 

nth normalized number of assessors. ,x l p= . (l is the label distribution and p is the predicted 

distribution.) In (8), EMD is the minimum distance between the mass of two score distributions. We 

set r as 2 to punish the Euclidean distance between CDFs, aiming to optimize the network. 
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4. Experiments 

In this section, the performance of FF-VEN is evaluated on AVA dataset and Photo.net dataset. 

Compared with previous studies, FF-VEN is a promising model for IAA. 

4.1. Datasets 

AVA dataset [32]: AVA dataset is a popular dataset for IAA because of the large number of 

images, the diversity of content, and the consistency of data. It can be seen at 

http://www.dpchallenge.com/. For an image, there are 66 semantic labels, 14 style labels, and a label 

distribution with 10 scores (from 1 to 10). In AVA dataset, the higher scores mean the higher quality. 

For an image with the average score in a certain interval, its score distribution tends to be Gamma or 

Gaussian [32]. Figure 8 shows some examples of AVA dataset. On average, each image is assessed by 

about 200 people, including professional image workers, photographers, and photography 

enthusiasts. AVA dataset contains more than 250,000 images. We remove the images whose variance 

is high or whose average score is 5. Thus, 235,086 images are used for training, 18,987 for verification, 

and 1,000 for testing. 

 

Figure 7. The examples of images with the average score in different intervals in AVA dataset. Line 

1, the images with the average score in [0,4); Line 2, the images with the average score in [4,7); Line3, 

the images with the average score in [7,10]. 

Photo.net dataset [33]: Photo.net dataset contains about 20,000 images. We collect them from 

https://www.photo.net/, a platform for photography enthusiasts to share images. This website offers 

discussion forums, image reviews, galleries, etc. People assess images based on aesthetics and 

creativity, with a score between 1 and 7 for each. Photo.net explains that 1 means low quality and 7 

means high quality. Reasons for a high score include rich colors, interesting composition, and eye-

catching content. In Photo.net dataset, the images are diverse, which is a challenge for deep learning. 

Excluding invalid images and lost images, 16,663 images are obtained by crawlers. 14,000 images are 

used for training, 1,000 for verification, and the remaining 1,663 images are used for testing. 

4.2. Details of the Experiment 

The size of the input images is 224 224 3× × . The images are resampled by the ANTIALIAS 

algorithm of PIL package in PYTHON library. Batch size is 16, initial learning rate is 1e-3, momentum 

is 0.9, learning decay rate is 0.0002, and epoch is 10. The number of iterations of AVA dataset is 14,693 

and that of Photo.net dataset is 1,042. Our network is based on the open source TorhchRay, Caffe, 

and PyTorch frameworks. We use a single NVIDIA GeForce GTX 1650 GPU. 
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Based on the direct prediction of the score distribution, we evaluate FF-VEN in the classification 

task and the regression task. In the regression task, we use these indicators: Pearson linear correlation 

coefficient (LCC), Spearman rank-order correlation coefficient (SRCC), mean absolute error (MAE), 

and root mean square error (RMSE). The evaluation index formulas are showed as: 
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(9)

where l is the label distribution and p is the predicted distribution, l  is the average of l, lσ
 is the 

standard deviation of l, 
p

 is the average of p, pσ
 is the standard deviation of p. LCC applies to 

normally distributed data to predict the accuracy of the model. SRCC is suitable for nonlinear data. 

It calculates the correlation of the scores in the corresponding position in arrays between the 

prediction distribution and the label distribution. The values of SRCC and LCC vary between 0 and 

1. The larger value means the better model performance. RMSE measures the deviation between the 

predicted results and the labels. MAE calculates the average of residuals directly. MAE and RMSE 

are expected to be smaller. In the classification task, we calculate Mean of the score distribution and 

compare it with the value of the threshold. We define Mean as: 

1

N

i

i

Mean s i
=

= ×
 

(10)

where i
s  is the score when the class of the distribution is i. N is 10 when AVA dataset and 7 when 

Photo.net dataset. The value of the threshold is set as 5, as Ma et al. did in [13]. Images with the value 

of Mean above 5 are regarded as high quality. Otherwise, they are classified as the low quality images. 

In the classification task, the selected index is Accuracy, i.e., 

TP TN
Accuracy

P N

+
=

+  

(11)

where P is positive cases, N is negative cases, TP is true and positive cases, and TN is true and 

negative cases. 

4.3. Comparison on AVA Dataset 

We compare FF-NET with other models on AVA dataset. The results are shown in Table 4. SPP-

Net is a network with spatial pyramid pooling for the pretreatment of images [34]. AA-Net is a 

cropping model with attention box prediction (ABP) [35]. Zhang et al. [15] recorded the evaluation 

results of SPP-NET based on VGG16 [10]. In the classification task, Accuracy of FF-VEN is 83.64%, 

9.23% higher than that of SPP-Net, 6.64% higher than that of AA-Net. Compared with SPP-Net, LCC 

of FF-VEN is 31.7% larger, SRCC is 25.7% larger, and EMD is 23.9% smaller. MAE and RMSE are 
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slightly better than SPP-Net and AA-Net. The contrast between them suggests the superiority of our 

network. We list three advanced methods: NIMA [8], ResNet [36], and InceptionNet [7]. In their 

experiments, the network on the basis of InceptionNet performed best, with Accuracy larger more 

than 2% than InceptionNet. Specifically, NIMA outperforms by 2.08%, demonstrating that it is 

helpful to broaden the network structure of CNN. LCC and SRCC of GPF-CNN [15] are 2.6% higher 

and 2.1% higher, which reveals that neural attention benefits the computer to assess images from the 

perspective of human eyes. For ReLIC++ [27], Accuracy, LCC and SRCC are 82.35%, 0.76 and 0.748, 

respectively. It indicates the advantages of FFU. In addition, ReLIC++ has a deeper understanding of 

the features of images. These successful cases verified the rationality of FF-VEN. Accuracy of FF-VEN 

is 4.21% higher than InceptionNet. And our network is superior to previous studies in the regression 

task. It shows the effectiveness of FF-VEN. 

Table 4. The results of comparison on AVA dataset. 

Network architecture 
Accuracy 

(%) 

LCC 

(mean) 

SRCC 

(mean) 
MAE RMSE EMD 

SPP-Net [34] 74.41 0.5869 0.6007 0.4611 0.5878 0.0539 

AA-Net [35] 77.00 - - - - - 

InceptionNet [7] 79.43 0.6865 0.6756 0.4154 0.5359 0.0466 

NIMA [8] 81.51 0.636 0.612 - - 0.050 

GPF-CNN [15] 81.81 0.7042 0.6900 0.4072 0.5246 0.045 

ReLIC++ [27] 82.35 0.760 0.748 - - - 

FF-VEN 83.64 0.773 0.755 0.4011 0.5109 0.044 

4.4. Comparison on Photo.net Dataset 

On Photo.net dataset, FF-VEN is compared with GIST-SVM [36], FV-SIFT-SVM [36], MRTLCNN 

[49], and GLFN [14]. The results are shown in Table 5. Marchesotti et al. [36] used the generic image 

descriptors to assess images and treated IAA as a classification problem. However, the indexes of 

two kinds of SVM are around 60%, for the classification task. Accuracy of FF-VEN is 78.1%, which is 

obviously better than the networks based on SVM. For the networks of deep learning (MRTLCNN, 

GLFN), we all choose VGG16 [10] as the baseline, similar to [14]. MRTLCNN is a multi-task 

framework that combines aesthetic labels and semantic labels [37]. Accuracy of FF-VEN is 12.9% 

higher than that of MRTLCNN and 2.5% higher than that of GLFN. In the regression task, LCC is 

16.7% better and SRCC is 18.3% better. This indicates that FF-VEN outperforms GLFN on small-scale 

datasets like Photo.net dataset. 

Table 5. The results of comparison on Photo.net dataset. 

Network architecture 
Accuracy 

(%) 

LCC 

(mean) 

SRCC 

(mean) 
MAE RMSE EMD 

GIST-SVM [37] 59.9 - - - - - 

FV-SIFT-SVM [37] 60.8 - - - - - 

MRTLCNN [38] 65.2 - - - - - 

GLFN [14] 75.6 0.5464 0.5217 0.4242 0.5211 0.070 

FF-VEN 78.1 0.6381 0.6175 0.4278 0.5285 0.062 
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4.5. Evaluation of Two Sub-modules 

The two sub-modules (VE module and SDFF module) are respectively experimented on AVA 

dataset. VE-CNN (VGG16) adds VE module on the basis of the original VGG16. SDFF (VGG16) takes 

out the features in VGG16 and then fuses them. We compare two sub-modules with VGG16 [36], 

Random-VGG16 [20], Saliency-VGG [38] and GPF-CNN (VGG16) [15]. The results are shown in Table 

6. Saliency-VGG16 combined the global and local information according to the saliency map [38]. In 

Table 6, Random-VGG16 outperforms VGG16, indicating randomness improves the performance of 

models. In Accuracy, Saliency-VGG16 is 79.19% and GPF-CNN is 80.70%. It shows the importance of 

neural attention. VE-CNN (VGG16) is superior to previous studies in the regression task. LCC is 7.5% 

higher than GPF-CNN (VGG16) and SRCC is 6.25% higher. It suggests that adaptive filtering based 

on ROI helps FF-VEN to process the details of images. We use ResNet50 to extract ROI from images. 

The neural attention of ResNet50 benefits the network performance of VGG16. SDFF (VGG16) 

performs slightly better than GPF-CNN (VGG16) in the regression task. And Accuracy is 7.06% 

better. This indicates that SDFF module broadens the network structure of VGG16, deepening the 

memory of FF-VEN and reducing the number of required samples. 

Table 6. The results of comparison on AVA dataset. 

Network architecture 
Accuracy 

(%) 

LCC 

(mean) 

SRCC 

(mean) 
MAE RMSE EMD 

VGG16 [36] 74.41 0.5869 0.6007 0.4611 0.5878 0.0539 

Random-VGG16 [20] 78.54 0.6382 0.6274 0.4410 0.5660 0.0510 

Saliency-VGG16 [38] 79.19 0.6711 0.6601 0.4228 0.5430 0.0475 

GPF-VGG16 [15] 80.70 0.6868 0.6762 0.4144 0.5347 0.0460 

VE-CNN (VGG16) 81.03 0.7395 0.7185 0.4073 0.5279 0.0441 

SDFF (VGG16) 81.47 0.7119 0.7021 0.4103 0.5317 0.0462 

4.6. Quality-based Comparison 

As mentioned in [32], the score distribution of images with Mean in [0,4) or [7,10] tends to be 

Gamma. The number of those images account for 4.5% of all images. If Mean in the range [4,7), the 

score distribution of the corresponding image is largely Gaussian. Inspired by this, we divide AVA 

dataset into three parts depending on Mean and conduct the experiments, respectively. The results 

are shown in Table 7. To be fair, we adopt VGG16 as the basic model. For Mean in [4,7), MAE of FF-

VEN is 0.3748 and LCC is 0.8945. It indicates that the larger the number of images, the more consistent 

the scores predicted by CNN with the labels. As the score distribution of most images is Gaussian, 

the prediction of CNN tends to be Gaussian. As a result, the performance of CNN is poor to assess 

images with Gamma distribution. It is worth noting that Accuracy of the three models is greater than 

90% for images with Mean in [7,10]. Because professional images are excellent at composition, tone, 

and other aspects, CNN is more likely to distinguish them. Accuracy of FF-VEN is 3.78% higher than 

NIMA [8] and 2.07% higher than ReLIC++ [27]. For professional images, this suggests that FF-VEN 

captures the object’s contour and increases the gap between the foreground and the background 

effectively.  

Figure 8 shows some examples of images with Mean in different intervals for comparison. It can 

be found that the difference between the distribution predicted by FF-VEN and that of the labels is 

smaller than the other two. Images with Mean in [7,10] are less controversial. Most people give these 

images high scores. The composition of professional images is abstract and artistic, which is difficult 

for CNN to learn. From the above experiments, it seems that VE module enhances the features of 

images based on human visual characteristics, leading to improving the prediction confidence of FF-

VEN. Figure 9 shows some failure cases of FF-VEN. The network we trained does not perform well 

on images with very non-Gaussian distributions, like bimodal or very skewed distributions. 
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However, the Gaussian functions perform adequately for 99.77% of all the images in the AVA dataset 

[15]. 

 

Figure 8. Some examples of the results of FF-VEN. Means of the images in Line 1, Line 2, and Line 3 

are respectively in [0,4), [4,7), [7,10]. In Column 3, the magenta scores are the label distribution. The 

gray distribution is predicted by NIMA and the mazarine distribution is predicted by FF-VEN. 

 

Figure 9. Some examples of the failure cases. 
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Table 7. Evaluation results for images with Mean in different intervals. 

Mean Network architecture 
Accuracy 

(%) 

LCC 

(mean) 

SRCC 

(mean) 
MAE RMSE EMD 

 NIMA [8] 78.46 0.6265 0.6043 0.5577 0.6897 0.067 

[0,4) ReLIC++ [27] 80.02 0.6887 0.6765 - - - 

 FF-VEN 80.59 0.7095 0.6971 0.5037 0.6139 0.059 

 NIMA [8] 80.43 0.7271 0.7028 0.4037 0.5256 0.048 

[4,7) ReLIC++ [27] 81.15 0.8733 0.8547 - - - 

 FF-VEN 81.33 0.8945 0.8831 0.3748 0.4851 0.039 

 NIMA [8] 94.93 0.5936 0.5645 0.5927 0.7314 0.073 

[7,10] ReLIC++ [27] 96.64 0.6223 0.6084 - - - 

 FF-VEN 98.71 0.6113 0.6492 0.5343 0.6457 0.061 

4.7. Model Size Comparison 

Timings of one pass of NIMA (VGG16) [8] models on an image of size 224×224×3 are 150.34ms 

(CPU) and 85.76ms (GPU). And it has 134.3 million parameters. In ReLIC++ [27], the attention map is 

of size 49×49. The training time cost of Full GoogLeNetV1-BN [21] is 16 days. The model size is 82.56 

million. Training ILGNet-Inc.V1-BN [23] costs 4 days. In manuscripts, the model size of FF-VEN is 

14.7 Million. Evidently, FF-VEN is significantly lighter than ReLIC++. SDFF module improves the 

model size by about 119.6 M, compared to NIMA (VGG16). Training FF-VEN costs 4 days, which is 

faster than Full GoogLeNetV1-BN. In general, FF-VEN is light-weight and achieves inspiring 

aesthetic prediction accuracy, as reported in Table 8. 

Table 8. Comparison of model size. 

Model Size 

NIMA(VGG16) [8] 134.3 M 

GoogLeNet [21] 82.36 M 

ReLIC++ [27] 17.51M 

FF-VEN 14.7 M 

5. Conclusion 

FF-VEN proposed in this paper considers neural attention, human visual characteristics, and 

image understanding. It consists of VE module and SDFF module. According to ROI extracted by 

neural feedback, VE module not only selects the Laplace filter or GLPF but also adjusts the 

parameters of filters. It enables the computer to simulate human eyes assessing the digital images. 

SDFF module takes out the shallow feature and the deep feature via transverse connection, and fuses 

them on the basis of information contribution maximization. The results of comparison on AVA 

dataset and Photo.net dataset demonstrate the superiority of FF-VEN. In the future, we aim to 

analyze the network structure of ResNet, InceptionNet, and other CNN. To make the method more 

comprehensive, we attempt to focus on more factors, such as image themes, photography aesthetics, 

and human emotions.  
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