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Simple Summary: We propose a deep neural network-based (DNN-based) approach on the

multimodal prostate structure name standardization data that provides state-of-the-art results by

considering for the first time, both the bony anatomy along with radiation dose information and

the textual physician-given structure names of the structures present in the various organs in the

prostate of cancer patients. Structure name standardization is a critical problem in Radiotherapy (RT)

planning system to correctly identify the various standard Organs-at-Risk, Planning Target Volumes

and Other organs for monitoring present and future medications. The pipeline, that is introduced

here, helps in automatic standardization of the randomized structure name given by the physicians

with high accuracy. We have also performed rigorous experiments by varying input data modalities

to show that using masked images and masked dose data with text outperforms the combination of

other input modalities. We also undersampled the majority class, i.e., the ‘Other’ class, at different

degrees and conducted extensive experiments to demonstrate that a small amount of majority class

undersampling is essential for superior performance. Overall, our proposed integrated, DNN-based

architecture for prostate structure name standardization can solve several challenges associated with

multimodal data with varying data types.

Abstract: Physicians often label anatomical structure sets in Digital Imaging and Communications in

Medicine (DICOM) images with nonstandard names. As these names vary widely, the standardization

of the nonstandard names in the Organs at Risk (OARs), Planning Target Volumes (PTVs), and

‘Other’ organs inside the area of interest is a vital problem. Prior works considered traditional

machine learning approaches on structure sets with moderate success. This paper presents integrated

deep learning methods applied to structure sets by integrating the multimodal data compiled from

the radiotherapy centers administered by the US Veterans Health Administration (VHA) and the

Department of Radiation Oncology at Virginia Commonwealth University (VCU). The de-identified

radiation oncology data collected from VHA and VCU radiotherapy centers have 16,290 prostate

structures. Our method integrates the heterogeneous (textual and imaging) multimodal data with

Convolutional Neural Network (CNN)-based deep learning approaches like CNN, Visual Geometry

Group (VGG) network, and Residual Network (ResNet). Our model presents improved results in

prostate (RT) structure name standardization. Evaluation of our methods with macro-averaged F1

Score shows that our deep learning model with single-modal textual data usually performs better

than the previous studies. We also experimented with various combinations of multimodal data

(masked images, masked dose) besides textual data. The models perform well on the textual data

alone, while the addition of imaging data shows that deep neural networks can achieve improved

performance using information present in the other modalities. Additionally, using masked images

and masked doses along with text leads to an overall performance improvement with the various
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CNN-based architectures than using all the modalities together. Undersampling the majority class

leads to further performance enhancement. The VGG network on the masked image-dose data

combined with CNNs on the text data performs the best and establishes the state-of-the-art in this

domain.

Keywords: multimodal data integration; radiotherapy standard name mapping; radiation oncology;

machine learning; deep learning; TG-263 names

1. Introduction

Radiation therapy or RT is an effective cancer treatment therapy where high-intensity radiation

beams are used to kill cancerous tissues and cells, decreasing the size of the malignant tumor. In the

RT treatment workflow, radiation oncologists use the images based on a Computed Tomography (CT)

or Magnetic Resonance (MR) dataset saved in the Digital Imaging and Communications in Medicine

(DICOM) files to delineate or contour the various anatomical regions or structures of the organ of

interest on these imaging datasets and provide appropriate structure names. These physician-identified

structures are either Organs at Risk (OARs), Planning Target Volume (PTV), Clinical Target Volume

(CTV), Gross Tumor Volume (GTV), or ‘Other’ (all the remaining). Based on the particular disease site

such as prostate or lung cancer, the radiation oncologist contours all neighboring OARs such as bladder,

rectum, bowel, femurs, etc. for prostate cases and heart, spinal cord, both lungs, ribs, etc. for the lung

cases. While defining these contours and naming them, we have noticed a high level of variability in

the recorded structure names, which makes it hard to consistently gather data for the same structure

contour type across a large population of patients. Inconsistencies in the physician-given structure

names are primarily due to the personal choice of the physicians coupled with the variation in policies

and systems at different RT clinics.

This issue of disparity between the physician-given structure names is addressed by the American

Association of Physicists in Medicine (AAPM), and the American Society for Radiation Oncology

(ASTRO) [1–3]. It mainly addressed the key challenges in the Radiation structure name standardization

process and has released a Task Group 263 (TG-263) report where the standard names for the

structures are mentioned. With the availability of the standard structure names, there rises the

need to automate the standardization of the structure names. It takes huge amounts of time and labour

to manually standardize the structure names which is always not possible in the clinical world as

fast decision-making is often required depending upon the criticality of the cancer patients. Hence,

automating the prediction of the standard structure names is a vital problem to solve both from a

clinician’s and an informatician’s point of view. However, there have been limited attempts to automate

the structure name standardization process using artificial intelligence (AI) and machine learning (ML)

related techniques; therefore, extensive experimentation with various data models and networks are

required to required to elevate the current state-of-the-art in this domain.

The clinical impact of our work has the potential to enable the construction of data pooling tools

that can reuse retrospective patient imaging and contouring datasets for tracking patient outcomes,

building data registries and clinical trials. Standardized structure names help ensure that all members

of the radiation oncology team, including physicians, dosimetrists, and therapists, are using consistent

and accurate terminology when identifying and contouring anatomical structures. Furthermore,

consistent and accurate contouring of anatomical structures is critical for achieving optimal treatment

outcomes in radiation oncology. Standardized structure names can help ensure that all team members

are working from the same page, which can help improve treatment accuracy and efficacy.
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1.1. Related Works

AI/ML is a popular topic in many clinical and biomedical processes, including Radiation

Oncology [4–6]. Natural Language Processing (NLP)-based tasks on clinical and biomedical texts have

gained immense popularity, too [7–10]. ML models can be used for automation, value prediction,

classification, or other tasks in radiation oncology. A few prior works in standardizing the structure

names for organs like prostate, lung, and head & neck have proposed automated ML models. It has

been shown that the standardization of structure names can be done reliably by using neural networks

on the head and neck imaging data [11,12]. This model reported good results but only considered

a limited number of OARs for prediction; they also did not consider the non-OARs. Hence, this

method is unsuitable for real-world clinical datasets as non-OAR structures usually form most of the

structure-naming datasets.

Handcrafted 1D features extracted from the imaging data based on the bony, non-bony, and

combined anatomy were used for building a ML model that identifies the TG-263 labels [13]

where automated ML methods were proposed. Also, an ML model was built based on the

textual physician-given structure name data by using a supervised FastText algorithm to create

a disease-dependent structure name standardization model [14]. However, both the handcrafted

imaging features and the text data were considered together for the first time with traditional

ML-based algorithms where two different integration techniques were discussed [15]. It showed

decent performance. All these approaches have only used traditional ML algorithms but not deep

learning (DL)-based models for automation, besides only using the handcrafted geometric features

instead of the 3D image and dose data with/without text. DL models are gradient-based computational

methods with many processing layers to learn data representation with multiple levels of abstraction

[16]. Hence, DL algorithms have the potential to serve as better learning algorithms than standard

ML algorithms for the structure name standardization problem. DL methods on this dataset were

jointly first proposed by Bose et al. [17] and Sleeman et al. [18] earlier in 2021. Sleeman et al. (2021)

[18] proposed a DL-based approach in this context while considering the multimodal geometric data

and the radiation dose data where both the data types are numbers. Bose et al. [17] proposed a

CNN architecture on the text data and handcrafted geometric features where performances have been

improved from the previous ML-based network on geometric and FastText-based textual features.

1.2. Purpose of Study

No detailed prior work exists in standardizing the TG-263 structure names by considering both

the textual and 3D vision-dose data with DL models. In this paper, we present the first DNN-based

architecture on the text and the complex 3D vision-dose data with a detailed explanation for prostate

patient structure name standardization. Integrating textual and geometric data for the multi-class

classification problem while considering the various integration techniques is an interesting problem

with multiple challenges as both the data types are different: text and numbers. Hence, there is a need

to point out these challenges associated with multimodal DL. By including both the bony anatomy of

the structures along with radiation dose information and the textual physician-given structure names

of the structures present in the various organs in the prostate of cancer patients, we propose a deep

neural network-based (DNN-based) approach on this multimodal data that provides state-of-the-art

results. We have also performed rigorous experiments with varying input data modalities to show

that using masked images and masked dose data with text clearly has the edge over other data

models. Furthermore, this model requires less memory space to create and store the data and train

the networks compared to the model with text data, bitmaps, delineated images, and doses. We

also undersample the majority class, i.e., the ‘Other’ class, at different degrees and conduct extensive

experiments to demonstrate that a small amount of majority class undersampling can be essential

for superior performance. Hence, we evaluate our integrated, automated, CNN-based approaches

by comparing the performance of the networks based on varying data modalities and the degree of

undersampling in the context of challenges associated with multimodal DL with varying data types.
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Our 3D VGG network on masked vision-dose data and 1D CNN on the textual data with a little

amount of majority class undersampling provided the best results in this case thereby, improving the

current state-of-the-art to a significant extent.

2. Dataset

The textual physician-given structure names [14] and the 3-D DICOM CT geometric data [13] are

considered in our multimodal dataset. The DICOM CT image data shows that physicians identify

the anatomical structures of interest that should be irradiated or avoided during treatment. Then, the

physicians use a Treatment Planning System (TPS) to delineate the border around these structures.

This process was implemented for all the relevant imaging slices, producing several enclosed polygons

for each structure. This structure data for a particular patient was stored in the DICOM format. The

clinical dataset used here was collected from 759 prostate cancer patients by the VHA RT centers

and VCU radiation oncology department. The count of the various organ structures for prostate

cancer patients is shown in Table 1. Out of the 759 prostate cancer patients, the total count of the

physician-given structure names was 16,290, and the standard structure names consisted of 6 OARs

(Femur_L, Femur_R, Bowel_Large, Bowel_Small, Bladder, Rectum), Target (PTV) and ‘Other’ (all the

remaining) prostate structures. From the original dataset, there has been some data loss with time due

to corruption, a shift in technologies and platforms, etc. Finally, the dataset consists of 9723 samples

or structures, out of which we have used 7803 samples were used for training and 1920 samples for

testing.

• VHA Dataset: There are 40 RT centers under VHA that are spread nationwide. Hence, there

is a need to evaluate the quality of treatments across these centers. To ensure this, VHA had

implemented a clinical informatics initiative called the Radiation Oncology Quality Surveillance

Program (VA-ROQS) [19]. The maximum number of prostate cancer patients considered for each

center was 20. The patients were selected per the criteria mentioned in Hagan et al. [19] that

ultimately helped store the data of 709 prostate cancer patients for analysis. Next, the physicians

manually labeled the organ structures using TG-263 nomenclature for building the models.

• VCU Dataset: A dataset was prepared from the DICOM CT geometric data from a random cohort

of 50 prostate cancer patients from the Radiation Oncology department at VCU. The physicians

manually labeled the structures, similar to VHA dataset.

Table 1. Distribution of the Organ structure for the Prostate Cancer Patients.

Standard Names VHA
Physician
Given Name
Counts

VCU
Physician
Given Name
Counts

Total
Physician
Given Name
Counts

Available
Physician
Given Name
Counts

Bladder 609 50 659 519
Rectum 719 50 769 517

PTV (Target) 714 38 752 522
Femur_L 694 29 723 508
Femur_R 700 29 729 515

SmallBowel 250 49 299 145
LargeBowel 341 0 341 234

‘Other’ 11,038 980 12,018 6763

Prostate Total 15,065 1,225 16,290 9,723

3. Methods

In this section, we outline our computational pipeline and different techniques applied during

the creation of our models. Ethical review and approval for using the dataset were waived because

this study was considered secondary data analysis and declared exempt by the US Veteran’s Health

Administration IRB.
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3.1. Data Modality and Multimodal Learning

The information can come from various input channels; for example, images are made up of tags

and captions, videos are associated with visual and audio signals, and so on [20]. Modality of data is

often used in data science to refer to the measurement method used to obtain the data. Each modality,

whether independent of other modalities or dependent on other modalities, has unique information

that, when added together, may improve model performance. Although combining complementary

data from multiple modalities may improve the performance of learning-based approaches, they are

accompanied by practical challenges of fully leveraging the various modalities like noise, conflicts

between modalities, etc. [21]. A multimodal data contain data of different modalities where the

data-types are similar across different modalities i.e. homogeneous multimodal data or the data-types

can vary across different modalities i.e. heterogeneous multimodal data. For example, multimodal

neuroimaging data consisting of magnetic resonance imaging (MRI) data and positron emission

tomography (PET) data used for effective Alzheimer’s disease diagnosis [22] is a multimodal data

system where the data types of the various modalities are the same as images are either 2-D/3-D

arrays of numbers. On the other hand, images and text were both considered for learning with

multimodal data where the data types vary; images are number arrays, whereas text is strings [15,20].

Multimodal learning has been addressed many times across various domains [23–25] including the

clinical and the biomedical field [26–28]. However, in most of these cases, the data types are similar

across different modalities. The additional modalities were either originally present in the dataset or

have been synthesized from a particular modality. In such cases, the conflicts between modalities is

likely to be less unlike multimodal data with varying data-types where the data for various modalities

are physically collected.

3.2. Data Pre-processing

In this case, the multimodal data consisted of numeric vision-dose data and the randomized

physician-given textual structure names. The textual names, being unstructured, have to be first

converted into numbers before they are fed into the learning framework. On the other hand, vision-dose

data are 3D arrays of numbers in each case. Due to the varying nature of the input data modalities,

both the modalities require different types of pre-processing. We next discuss the data pre-processing

techniques for the different data modalities.

3.2.1. Textual Data

The textual features are the physician-given structure names. The maximum length of the given

names and the characters used in them depends upon the system used by the particular vendor. The

distribution of the physician-given structure names of three random prostates is shown in Table 2.

Notably, in the case of the ‘Other’ structures, a wide variation in the given names is observed for

prostate cancer patients. Also, some physicians annotate some ‘Other’ type structures as PTV, but

the term ‘PTV’ is always associated with the Target type structures. This is a challenge for any

ML algorithm to predict whether the term ‘PTV’ falls under the Target class or ‘Other’ class. The

inconsistencies in the physician-given names of the structures are shown in Table 2. Although a wide

variation can be noticed in the structure naming procedures in general, the overall character set is

limited. Since the ‘Other’ class consists of all the contoured structures except the OARs and the Target,

it is the highest occurring structure. A high level of data imbalance was also observed between the

‘Other’ class and all the remaining classes.
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Table 2. Distribution of the Physician Given Structure Names for the Prostate Cancer Patients.

Structure Type Standard Name Patient 1 Patient 2 Patient 3

OAR LargeBowel Colon_Sigmoid - -
OAR Femur_R Femur_Head_R RtFemHead Hip Right
OAR Femur_L Femur_Head_L LtFemHead Hip Left
OAR Bladder Bladder bladder Bladder
OAR Rectum Rectum rectum Rectum
OAR SmallBowel - bowel -

Target PTV PTV_7920 PTV45Gy PTV 2
Other Other z post rectum ptv4cm Rectum - PTV
Other Other Body nodalCTVfinal Prostate + SV
Other Other CTVp NONPTVBlad PTV 1
Other Other CouchInterior CTVProsSV Bladder - PTV
Other Other PenileBulb External Seminal Vesicles
Other Other Prostate FinalISO Seed Marker 1
Other Other z_rectuminptv MarkedISO Dose 104[%]
Other Other z_dosedec CTVBst Seed Marker 3

Text preprocessing techniques need to be wisely chosen so that important details are not missed,

which may result in poor performance of the model. To avoid this, we restricted ourselves to minimal

text-based preprocessing, which consisted of replacing all the characters except alphabets and digits by

the space character and then lowercasing the alphabets. This helped us in getting rid of the symbols

like ‘_’, ‘-’, ‘+’, etc, which only add a little value to the textual information.

It is vital to choose the precise tokenization algorithm so that most of the terms are present in

the vocabulary of the tokenizer. Our dataset contains clinical data; hence, selecting a medical domain

tokenizer is very relevant. Here, we have used a recent tokenizer that is strong in the biological

domain, BioBERT [29]. This tokenizer breaks up a single word into multiple tokens. For example,

after preprocessing, the BioBERT tokenizer tokenizes the physician given names ‘nodalCTVfinal’ and

‘z_dosedec into ‘nod’, ‘##al’, ‘##CT’, ‘##V’, ‘##final’ and ‘z’, ‘_’, ‘dose’, ‘##de’, ‘##c’, respectively.

After tokenization, the next goal is to produce the feature vectors from the text. We have followed

two ways of generating the feature vectors: a) based on our corpus and b) using the pre-trained word

embeddings. The tokens were converted into the token-ids, and the feature vector was generated

based on our corpus. In this kind of word-embedding technique, the embedding dimensions that gave

the best results are 100 and 200 for prostate and lung cancer patients, respectively. BioBERT-based

pre-trained word embeddings are generated too. Both these embeddings represent contextualized

word embeddings that train a BERT [30] based model over a biomedical and clinical corpus. In our

case, the feature vectors based on our corpus provided excellent results compared to the pre-trained

word embeddings, as the physician-given structure names are not context-dependent. These word

embeddings are used as input to the deep learning model.

3.2.2. Vision-Dose Data

As part of the treatment planning process, physicians annotate regions of interest in the planning

CT image using a manual or semi-automated contouring tool. These annotations are saved in the

DICOM-RT structure set format, which includes the name of each contoured structure and the 3-D

coordinate location of each drawn point. Custom software used in our prior work by Sleeman et

al. [13] extracted these individual points from the training structure set files and connected them for

each corresponding CT image slice to create a number of 2-D hollow bitmaps. Each bitmap was then

made solid with a flood fill algorithm and then combined to create a single volumetric bitmap for each

delineated structure. Each planning image was resized to 96 x 96 x 48 voxels, and the resulting structure

bitmaps were interpolated on this same grid. In addition to the structure set data, the corresponding

planning CT image was filtered to create a bitmap of the bony anatomy, which was also converted into

a feature vector. Figure 1a shows the delineation of a bladder over the corresponding planning CT
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image, and Figure 1b–d shows the resulting bitmap representations. The dose data is also introduced

by recording the dose values in the respective voxels for the particular structure set in the organ.

The voxels inside PTV reasonably receive the highest amount of dose, where as OARs and ‘Other’

structures receive very less amount of dose. Thus, the dose values provide significant information on

top of the delineated images for pointing out the structure-classes based on the magnitude of the dose

received.

(a) (b) (c) (d)

Figure 1. Image and structure set data from a single CT slice: (a) Delineation of a bladder (in blue) over

the corresponding planning CT image (b) Bitmap representation of the bladder (c) Bony anatomy of

the same CT, created with a density-based filter (d) Combination of the structure set and bony anatomy

data.

We have masked each planning CT image with their respective bitmap structure representations

for our final architecture using simple multiplication. Thus, the 3D integer image arrays were converted

to 3D float arrays after masking. Similarly, we have also masked the planning doses with their

respective bitmap representation to get masked dose data. For each structure set, the image and the

dose arrays were concatenated into separate channels, thereby stacking the image and dose information

in a 3D array with two channels. Masking the images and doses with their structure bitmaps is more

memory efficient than using both images and doses along with their respective structure bitmaps.

Using all these three modalities together requires more memory space and time to create, store and

train the data, especially training is highly computationally expensive. However, the masked data

contain all the information present in the three modalities and is significantly less computationally

expensive for training and storing. Hence, masking is highly recommended in case of performance

improvement or in case of marginal drop in performance. In our case, masking improves the model

performances to some extent, as shown in Section 4.2. The computationally-easy step of masking the

images and doses with the help of the corresponding structure bitmaps is shown in Figures 2(a) and

2(b), respectively.
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(a)

(b)

Figure 2. Pictorial Representation of our Masking Step in case of a) images, and b) doses of Prostate RT

Patients.

3.3. Deep Neural Network architectures

We have used CNN, or CNN-based architectures, on the 3D images and doses as CNNs have

previously demonstrated an edge over other deep neural networks (DNN) on vision data [31].

Therefore, we build a naive 3D CNN, Residual Network (ResNet), and Vision Geometry Group

(VGG) Network on the masked vision-dose data. We have used 1D CNN on the pre-processed textual

data as CNN performed the best on the texts when compared with the performance of Recurrent

Neural Networks (RNNs) Our network architectures with 1D CNN on the text and 3D CNN, 3D VGG

network, and 3D ResNet on vision-dose are illustrated in Figure 3. Although, the architectures of the

three different networks are somewhat similar, it is interesting to visualize the particular sequence of

layers in each case. It provides a reference to the readers for future replication purposes and enhances

the clarity of the detailed architecture. A CNN [32] is a DNN that uses convolution on the input and

directs the result of convoluting to the next layer. Although multi-layer perceptron neural networks

can be trained on textual data, their performances are often overshadowed by CNNs [33] that can slide

a window of user-defined size on the input data. CNN was first used for sentence classification i.e., a

particular type of text classification task, in 2014 [34]. The hyper-parameters used in CNNs are the

number of input and output channels, convolutional kernels, and filters. RNNs like Simple Recurrent

Unit (SRU), Long Short Term Memory (LSTM) [35], etc. are a class of DNNs that work on the cyclical

connections between nodes, exhibiting temporal dynamic behavior. They are capable of using their

internal state or memory to train inputs of varying length sequences [36].

Our network architecture on text consists of two consecutive layers of 256 and 128 units,

respectively with Rectified Linear Unit (ReLU) [37] activation function after embedding. We have used

1D max pooling after each covolution layer with a constant kernel size of 8. After these two layers, the

features are flattened and concatenated with vision-dose features for the multimodal model. Recurrent

Networks perform well on contextual data as these learn to remember the previous steps. Since, the

textual data in our case contains random physician-given names of the structures, there is not much

context in our textual data. Due to the absence of context, CNNs are more effective here. Hence,

we have chosen CNNs over recurrent networks in this case. We build a DNNs on these multimodal
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datasets with the mentioned networks where the two features (vision-dose and text) are combined,

intermediately and fed through hidden layers before classifying the multi-classes using a classifier

in the end. We have used a batch size of 32, categorical cross-entropy as loss, 200 number of epochs

(except 50 epochs for the architectures with LeakyReLU activation as LeakyReLU converges faster

than ReLU [38]), and Adam as optimizer with an initial learning rate of 0.001 and staircase decay steps

of 10000 at 0.96 decay rate, in training all our DNNs.

(a) (b)

(c)

Figure 3. Overview of our DNN architecture: (a) Customized 3D CNN (on vision-dose) and 1D CNN

(on text), (b) Customized 3D VGG network (on vision-dose) and 1D CNN (on text), (c) Customized 3D

ResNet (on vision-dose) and 1D CNN (on text).

3.3.1. CNN

Our CNN architecture consists of several convolution blocks in sequence, as shown in Figure

3(a). Each convolution block consists of 3D convolution layer with ReLU activation function, 3D
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max-pooling layer, a spatial 3D dropout layer with 20% dropout, and finally, a batch-normalization

layer. The three convolution blocks first consist of a 3D convolution layer where the number of output

channels or convolution filters increases with the increase in the number of convolution blocks i.e., the

increase in the model depth. The convolution kernel size is chosen as 3 except for the first block, where

the kernel size is 9. A global 3D average-pooling is performed at the end of the convolution blocks

for feature reduction based on the global features. The features are finally concatenated with textual

features through an intermediate hidden layer and fed to the final classifying layer with Softmax [39]

activation function through subsequent hidden layers.

3.3.2. VGG Network

VGG network [40], developed by the Visual Geometry Group at Oxford University, caters the first

idea of using blocks. Blocks or the repeated structures in code with any modern DL framework is very

easy to implement and hence , has gained immense popularity. VGG network consists two different

types of blocks, convolutional blocks with max-pooling and fully connected dense blocks.

Instead of using pre-trained VGG network models, we define our customized VGG architecture,

where we can tweak the parameters freely. We took the 2D VGG network as an inspiration to build

the 3D VGG network in our case that can operate on 3D datasets, as shown in Figure 3(b). The VGG

network, firstly, consists of three VGG blocks with 1, 2, and 4 number of convolutions, respectively, in

the blocks in order. Each VGG block consists of a defined number of 3D convolution layers with ReLU

activation and a kernel of size 3. 3D max-pooling with strides=2 is then performed at the end of all the

convolutions in each VGG block. Next, the output of the three consecutive VGG blocks is fed to a 3D

global average-pooling layer. Then, the textual features are integrated intermediately through a hidden

layer and are finally fed to the classifier like in the case of the CNN model. Since, VGGNet performed

the best on some combinations of the data as reported later, we further customized the VGGNet

model for experimentation. Firstly, we made the VGGNet deeper by replacing the convolution layers

inside each block with ResNet layers (discussed in the next subsection). This particular architecture

is inspired by the recently published model in [41]. Secondly, we investigated the performance of

initial VGGnet with ReLU activation function in each convolutional layer and ultimately adding a

LeakyReLU activation after the max-pooling layer. However, these architectures were not effective in

upgrading the best performing results of the prior VGGNet model.

3.3.3. ResNet

A residual neural network (ResNet) is an artificial DNN that is based on skipping connections

or shortcuts to jump over some layers. ResNet [42] models have typically been implemented with

double- or triple-layer skips where a ReLU activation and batch normalization layers are used in

between. Prior to the invention of ResNet, the CNN architecture was going deeper and deeper where

ImageNet [43], VGG network, and GoogleNet [44] had 5, 19, and 22 layers, respectively. However,

deep networks are often hard to train when the network depth is increased by simply stacking layers

together. These networks lead to overfitting, as in the case of back-propagation of the gradient to earlier

layers, repeated multiplications may potentially make the gradient very small. Although GoogleNet

was instrumental in adding an auxillary loss in a middle layer for an added supervision, it was not

much effective. Hence, the core idea of ResNet by introducing shortcut connections has made a major

breakthrough in this domain.

Similar to the case of VGG, we use our customized ResNet architecture to tweak the parameters

freely as shown in Figure 3(c). Inspired by the 2D ResNet, we have also developed a 3D ResNet

model with 3D convolutions and max-pooling that can work on 3D data. ResNet model with Our

ResNet architecture consists of a convolution block, followed by three sequential ResNet blocks. The

Convolution block consists of a 3D convolution layer with 32 filters, kernel size of 9 and a stride of

2, followed by batch normalization, ReLU activation and 3D max-pooling. All our ResNet blocks

consist of 2 residual blocks. Each residual block consists of a 3D convolution (kernel size: 3) with batch
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normalization and ReLU activation, followed by another 3D convolution (kernel size: 3) with batch

normalization. The output of this is added to the input of each residual block with ReLU activation

and passed down to the next layer. We perform a 3D max-pooling, followed by a 20% dropout after

the residual blocks. In the first residual blocks of the last two ResNet blocks, the output of the two

subsequent 3D convolutions is added to the input of the residual layer after convolution through

a kernel of size 1 and hence, ReLU activation is applied. We perform a 3D global average-pooling

after the third ResNet block and concatenate it with textual features through a hidden layer. Next,

classification is performed exactly in a similar way as mentioned in the previous two cases.

3.4. Sampling the ‘Other’ Classes

Data imbalance is a very important challenge in training DL architectures. It negatively impacts

the performance by biasing it towards the majority class depending upon the level of imbalance but

a number of studies have demonstrated that it might not be a vital factor [6]. In the prostate cancer

dataset, a high level of imbalance is observed, which contains an extremely high representation of the

‘Other’ class, compared to PTV and the other six OAR classes, which is illustrated in Figure 4(a). Our

training dataset contains 416, 414, 418, 407, 412, 116, 188, and 5432 samples from ’Bladder’, ’Rectum’,

’PTV’, ’Femur_L’, ’Femur_R’, ’SmallBowel’, ’LargeBowel’, and ‘Other’ classes, respectively where

the majority class i.e. ‘Other’ has about thirteen times the number of samples present in the largest

minority class i.e. ’PTV’. It constitutes about 70% of the overall prostate structure name standardization

dataset, which clearly outnumbers the plethora of structures under consideration in the prostate. Since

the majority class presents a substantial amount of imbalance, sampling is potentially very useful in

this case.

(a) (b)

Figure 4. Bar Plots showing a) the distribution of various data classes in the RT Prostate Structure

Naming Dataset, and b) the variation in the number of samples from the ‘Other’ class in different cases

of consideration.

Sampling are two types: undersampling and oversampling. In our case, we have only one majority

class and it is easier to undersample the majority class to prevent the model from biasing towards

the majority class. Plus, oversampling the minority class to some extent will make the models bias

towards these classes with high chances of overtraining them. Hence, we undersampled the majority

class and randomly selected 500 samples from that majority class in each case as the largest minority

only contains 418 samples in the training set. The DNNs performed roughly the same with or without

undersampling the ‘Other’ classes and hence, used undersampling to compare the various DNNs for

data preparation and model selection. Next, we show the performance of the DNNs when the amount

of undersampling is varied. Since, we undersampled the majority classes to 500 samples initially, we
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show the performance of the DNNs when the majority class was undersampled to 500 (about 90.8%

undersampling), 1000 (about 81.6% undersampling), 1500 (about 72.4% undersampling) 2500 (about

54% undersampling), 3500 (about 35.6% undersampling), 4500 (about 17.2% undersampling), and

samples and not oversampled at all as shown in Figure 4(b). Without considering the last case, the

percentage of undersampling ranges from 17.2% (4500 samples) to 90.8% (500 samples). Performances

of the DNNs show that there is a small trade-off between undersampling and model performance.

4. Results

In most cases, our architectures perform strongly on our final model on vision-dose and text data

with or without undersampling. Our models, which are built on both vision-dose and text data, consist

of two different neural network architectures: one for image or dose or both and another for text. In all

those cases, the first mentioned DNN is used on the vision-dose data, and the latter one is used on the

text data. So, a ‘3D CNN and 1D CNN’ method means that a 3D CNN is used on images or doses or

both, and 1D CNN is applied to the text. We explain our evaluation metrics and analyze our results in

the subsections below.

4.1. Evaluation Metrics

In order to evaluate the models, we have used the following metrics: precision, recall, and F1-score,

as proposed by the earlier works on this data. These metrics can be macro-averaged, i.e., independently

calculating the values for each class and then averaging the values across the different classes, or

weighted averaged, i.e., independently calculating the values across different classes and then doing a

weighted average of the values of different classes. In the case of a highly imbalanced data set, using

weighted averaged metrics will potentially skew the values towards the majority class/classes. Hence,

we have used macro-averaged metrics across the multi classes (eight classes) instead of weighted

averaged metrics as we were particularly interested in seeing the models’ effectiveness towards the

minority classes. The evaluation metrics are formally expressed as follows:

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall
(3)

4.2. Data Preparation and Selection

The performance of deep networks using both vision-dose and text data on prostate cancer

patients are shown in Table 3. The table shows the performance of CNNs on textual data and CNNs,

ResNet, and VGG network on the vision-dose data, where we vary the nature of the input vision-dose

data. In the first case, we input the bitmaps, delineated images, and doses as 3D arrays with three

channels to the model along with texts. In the second case, we input the masked images and doses

(as mentioned above) as 3D arrays with two channels to the model along with texts. This way, we

made a comparison between a time efficient and a not, so time efficient case only to bring out that the

time-efficient case performs better than the other with respect to the prediction by the deep multimodal

network. These evaluated network performances reported in Table 3 substantiate this. This is because

the learning of a DNN becomes more challenging with large amounts of input data, and in our second

case, we present the same information to the neural network but with a lesser data space when

compared to the first case.
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Table 3. Table showing the performance of the CNN-based Models for the Prostate cancer patients

while data selection.

Data Modality Method Precision Recall F1-score

struc+ image+ dose+ text 3D CNN and 1D CNN 91.93 92.93 92.42

struc+ image+ dose+ text 3D ResNet and 1D CNN 92.72 93.74 93.2

struc+ image+ dose+ text 3D VGG and 1D CNN 93.51 92.99 93.19

masked image+ masked dose+ text 3D CNN and 1D CNN 93.65 93.29 93.4

masked image+ masked dose+ text 3D ResNet and 1D CNN 91.05 94.83 92.76

masked image+ masked dose+ text 3D VGG and 1D CNN 94.66 94.39 94.45

4.3. Model Selection

The performance of the various DNN architectures for the prostate cancer patients when fitted on

the masked vision-dose and text data are shown in Table 4. We have experimented with 3D CNN, 3D

ResNet and 3D VGG Network architectures for the vision-dose data while we have used 1D CNN for

the textual part. 1D CNN on texts performs very well with respect to the macro-averaged F1-Scores. It

can be seen that VGG network can learn geometric features from the data very well (shown in the next

paragraph) and the scope of performance improvement in that case is much limited compared to other

cases. ResNet and simple 3D CNN also put up a strong performances in some cases.

Table 4. Table showing the Model performances for the Prostate cancer patients with varying data

modalities.

Masked Image Masked Dose Text Method Precision Recall F1-score

X - - 3D CNN 71.75 74.81 72.99

X - - 3D ResNet 73.94 74.24 73.92

X - - 3D VGG 76.19 74.46 74.82

- X - 3D CNN 74.18 70.79 72.17

- X - 3D ResNet 74.01 62.94 66.39

- X - 3D VGG 81.53 77.98 79.45

X X - 3D CNN 93.6 91.52 91.93

X X - 3D ResNet 94.23 93.65 93.82

X X - 3D VGG 93.0 94.9 93.8

- - X 1D CNN 92.18 94.24 93.17

X - X 3D CNN and 1D CNN 93.31 92.49 92.83

X - X 3D ResNet and 1D CNN 91.33 95.18 93.15

X - X 3D VGG and 1D CNN 92.24 91.35 91.71

- X X 3D CNN and 1D CNN 91.86 93.66 92.61

- X X 3D ResNet and 1D CNN 90.13 94.97 92.29

- X X 3D VGG and 1D CNN 91.82 93.42 92.54

X X X 3D CNN and 1D CNN 93.65 93.29 93.4

X X X 3D ResNet and 1D CNN 91.05 94.83 92.76

X X X 3D VGG and 1D CNN 94.66 94.39 94.45

The performance of the various architectures for prostate cancer patients with varying

combinations of data modalities is shown in Table 4. It is evident from the first nine rows of the
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table that the networks can learn the geometric features to a great extent from the masked vision-dose

data together, whereas their performance drops when either masked image or masked dose is only

considered. This extablishes the fact that addition of relevant data modalities can lead to a significant

leap in performance. With either of these geomteric modalities, the networks report F1-Scores in early

70’s while with both of these geometric modalities, the F1-Scores elevate to early 90’s. The F1-Scores,

as reported in the table, point out that the performance of VGG and ResNet eclipses the performance

of CNN, consistently to some extent when either masked dose or masked image or both masked

dose-image data is considered. On the other hand, 1D CNNs exhibit a solid performance of 93.17%

F1-Score when trained on the textual data itself. When the text was added on top of the image or dose

data, the performance of VGG only improved over the performances of other models. Thus, it shows

that the 3D VGG network and 1D CNN architecture can improve learning by adding data if the data

contains information vital for decision-making. With all these data modalities, 3D ResNet and 1D CNN

also shows improved performance with a little bit of majority class undersampling which is discussed

in the next subsection. This statement is further justified by the performance of our final data model,

where the DNNs further advanced their learning capability on training on multimodal vision-dose

and text data. The performances of the DNNs on this final data model is reported in Table 3.

4.4. Model Performance on varying the number of Majority Class Samples

The performance of the various DNN architectures for prostate cancer patients when trained on a

varying number of samples from ‘Other’ classes are shown in Table 5. The variation in performances

of our architectures (3D CNN and 1D CNN, 3D ResNet and 1D CNN, and 3D VGG network and 1D

CNN) with the variation in the number of samples from the majority class is shown in Figure 5. The

confusion matrices of the top three models by their performances along with that of the top model

for 3D CNN and 1D CNN are shown in Figure 6. The architectures exhibit a strong performance

with or without undersampling the ‘Other’ class, although performances are slightly improved in

most cases with varying degrees of undersampling. The table shows the model performances when

the ‘Other’ class was undersampled at 500, 1000, 1500, 2500, 3500, 4500 samples, respectively. The

F1-Scores provided by 3D CNN and 1D CNN vary between 90.97% and 93.46% at different levels

of undersampling, whereas in the case of 3D ResNet and 1D CNN, it varies between 90.34% and

94.35%. F1-Scores for 3D VGG network and 1D CNN varies between 92.05% and 94.45%. Overall, it

can be pointed out that 3D VGG with 1D CNN consistently performs well in all the cases and it either

outperforms or performs at par with 3D ResNet and 1D CNN. These models have a slight edge over

3D CNN along with 1D CNN on text. This is because VGG network and ResNet are deeper than just

CNNs which has the advantage of using more parameters to learn more from the dataset. Also, the

idea of using residuals from a network performs well on its own and overshadows the performance

of 3D CNN. On the other hand, our VGG network or ResNet architecture is neither too deep nor too

shallow which is useful for effective training and minimizing the chances of probable overtraining. The

performances of the various DNNs vary with the degree of undersampling. The performance of VGG

network gives state-of-the-art results(F1-Score: 94.45%) without the need of any undersampling but it

increases the training time to some extent. The performance of 3D ResNet reaches its crest when the

majority class is undersampled at 3500 samples (F1-Score: 94.35%), which requires less training time

and at the same time obscures the performance of the other architectures. The third best performance

is also reported by 3D VGG and 1D CNN when the majority class is undersampled at 2500 samples

(F1-Score: 94.09%). When the majority class samples are undersampled at 1500 samples, 3D CNN and

1D CNN records its best performance with an F1-Score of 93.46%. In most cases, 3D VGG network

and ResNet has successfully eclipsed the performance of CNN on the vision-dose data along with 1D

CNNs on the text, which establishes the superiority of deeper networks in learning the image and

dose features over others.
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Table 5. Table showing the Model performances for the Prostate cancer patients with varying the

majority class samples.

Total samples from ‘Other’ Class Method Precision Recall F1-score

500 3D CNN and 1D CNN 70.62 89.32 77.26

500 3D ResNet and 1D CNN 76.47 87.21 80.98

500 3D VGG and 1D CNN 71.71 83.61 76.33

1000 3D CNN and 1D CNN 90.99 94.24 92.54

1000 3D ResNet and 1D CNN 89.08 96.91 92.57

1000 3D VGG and 1D CNN 89.82 95.16 92.25

1500 3D CNN and 1D CNN 91.65 95.46 93.46

1500 3D ResNet and 1D CNN 86.63 95.3 90.34

1500 3D VGG and 1D CNN 88.79 96.35 92.05

2500 3D CNN and 1D CNN 87.82 94.7 90.97

2500 3D ResNet and 1D CNN 88.86 96.7 92.38

2500 3D VGG and 1D CNN 92.56 95.76 94.09

3500 3D CNN and 1D CNN 91.74 93.75 92.72

3500 3D ResNet and 1D CNN 93.6 95.47 94.35

3500 3D VGG and 1D CNN 92.48 95.36 93.83

4500 3D CNN and 1D CNN 92.34 92.56 92.38

4500 3D ResNet and 1D CNN 91.54 95.45 93.37

4500 3D VGG and 1D CNN 91.42 92.95 92.12

5432 (No Sampling) 3D CNN and 1D CNN 93.65 93.29 93.4

5432 (No Sampling) 3D ResNet and 1D CNN 91.05 94.83 92.76

5432 (No Sampling) 3D VGG and 1D CNN 94.66 94.39 94.45

The performances on the further modifications of the initial VGGNet i.e., 3D VGGNet with

nested ResNet and 3D VGGNet with LeakyReLU are reported in Table 6. The F1-Scores do not show

improvement over the best performance as reported by 3D VGGNet in Table 5 but the performances

are comparable to that of other networks on the vision-dose and text data. For the case of selecting

only 500 samples from the majority class, these two architectures show superior performances over

the other architectures. In all our architectures, it can be noted that Recall is higher than Precision in

almost all the cases which shows that our architectures are effective in diminishing the effect of false

negatives.
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Figure 5. Line curve showing the variation in F1-Scores of the model with the variation in the number

of samples from the majority ‘Other’ class.

Table 6. Table showing the Class-wise performances of the top three Models for the Prostate cancer

patients.

Total samples from ‘Other’ Class Method Precision Recall F1-score

500 3D VGG with nested ResNet and 1D CNN 86.75 96.37 90.62

500 3D VGG with LeakyReLU and 1D CNN 85.57 96.28 89.74

1000 3D VGG with nested ResNet and 1D CNN 87.37 95.49 90.92

1000 3D VGG with LeakyReLU and 1D CNN 83.56 97.29 88.55

1500 3D VGG with nested ResNet and 1D CNN 89.67 96.27 92.64

1500 3D VGG with LeakyReLU and 1D CNN 91.66 95.4 93.44

2500 3D VGG with nested ResNet and 1D CNN 90.8 93.38 92.02

2500 3D VGG with LeakyReLU and 1D CNN 87.92 96.26 91.5

3500 3D VGG with nested ResNet and 1D CNN 90.57 4 95.6 92.89

3500 3D VGG with LeakyReLU and 1D CNN 88.56 94.75 91.44

4500 3D VGG with nested ResNet and 1D CNN 90.97 93.33 92.11

4500 3D VGG with LeakyReLU and 1D CNN 92.69 92.35 92.51

5432 (No Sampling) 3D VGG with nested ResNet and 1D CNN 92.19 94.71 93.36

5432 (No Sampling) 3D VGG with LeakyReLU and 1D CNN 91.95 94.29 93.04
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Further analysis of the performances of the top three models reveal that the architectures with

or without majority class undersampling perform decently across most of the classes. However, the

models show that it is harder for them to learn the ‘PTV’ and ‘Small Bowel’ classes compared to the

other classes. One of the reasons behind the comparatively poorer learning of the ‘PTV’ class is that

the range of randomness in the physician-given names is vast compared to the other classes. As for

‘Small Bowel’, it has the lowest representation of samples in the dataset. Hence, the models find it

tough to learn from the infinitesimally smaller representation of the minority ‘Small Bowel’ class. For

effective learning, data augmentation or oversampling can be considered in the future. Apart from

these two classes, the models have displayed a superior performance with a consistent F1-Score of

more than 90.0%. The class-wise performance of the top three models for the prostate cancer patients

are shown in Table 7.

(a) (b)

(c) (d)

Figure 6. Confusion Matrices of the best three predictions for the Prostate Cancer Patients by the

F1-Scores are shown in (a) 3D VGG network and 1D CNN without undersampling, (b) 3D ResNet and

1D CNN with 3500 majority class samples, and (c) 3D VGG network and 1D CNN with 2500 majority

class samples. Confusion Matrices of the best predictions of the architecture for the Prostate Cancer

Patients by the F1-Scores are shown in d) 3D CNN and 1D CNN with 1500 majority class samples.
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Table 7. Table showing the Class-wise performances of the top three Models for the Prostate cancer

patients.

Class
VGG (with 5432 majority class samples) ResNet (3500 majority class samples) VGG (2500 majority class samples)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Bladder 98.1 100 99.04 99.04 100 99.52 98.1 100 99.04

Rectum 97.17 100 98.56 97.17 100 98.56 97.17 100 98.56

PTV (Target) 89.0 85.58 87.25 75.59 92.31 83.12 82.35 94.23 87.89

Femur_L 97.09 99.01 98.04 95.28 100 97.58 95.28 100 97.58

Femur_R 96.26 100 98.1 93.58 99.03 96.23 94.44 99.03 96.68

Small Bowel 92.0 79.31 85.19 96.0 82.76 88.89 82.76 82.76 82.76

Large Bowel 89.58 93.48 91.49 93.48 93.48 93.48 91.49 93.48 92.47

Other 98.11 97.75 97.93 98.69 96.17 97.41 98.92 96.62 97.76

5. Conclusion

In this paper, we have reported the performance of the various multimodal models for RT prostate

structure name standardization. Since all the data types of the multimodal data in each case are not

homogeneous, early integration of the overall data was not performed. Instead, we have performed

early integration of the multimodal geometric data, i.e., vision and dose. Textual data was trained in

parallel at first and then immediately integrated with the geometric feature inside the DNN architecture.

Undersampling the ‘Other’ structures to a little extent has boosted the performance of the DNNs

trained on the entire vision-dose and textual data. The degree of undersampling is also essential for

tuning the model performance, which establishes that an intermediate amount of undersampling

works best in the case of ResNet. In many cases, we have observed that though the overall accuracy

decreases in the case of the multimodal models compared to the textual single view model, the

macro-averaged F1-Score increases, which shows better learning across the different minority classes

and less bias.

It is established for the first time that an architecture considering the 3D masked image and masked

dose with text leads to an overall performance improvement of RT structure name standardization

over using the hand-crafted geometric features with text. In addition, we are the first to show that

using the masked image and masked dose is more time- and performance-efficient when compared

to using bitmaps, delineated images, and doses. Although the performance of the 1D CNN on the

textual data is quite good, the performance enhancement by adding the geometric data still shows

that the neural network model can perform better with the help of the information in the data from

other modalities. Interestingly, we also observed that using a 3D VGG network or 3D ResNet on

the vision-dose data and 1D CNN on the textual data has a slight edge over other DNNs for the

respective modalities. VGG architecture apparently overshadows the other architectures without any

amount of majority undersampling. Hence, we introduced 3D VGGNet with nested ResNet and 3D

VGGNet with LeakyReLU activation along with 1D CNN on textual data to further investigate the

scope of performance improvement. While these architectures produced comparable results, they

could not shroud the performance of the initial VGGNet with 1D CNN. Hence, 3D VGG network on

the masked vision-dose data and 1D CNNs on text exhibit the best performance without the majority

class undersampling and establishes the state-of-the-art with a macro-averaged F1-Score of 94.45%

whereas, 3D ResNet and 1D CNN records the second best performance (F1-Score: 94.35%) when the

majority class is undersampled at 3500. Hence, our unique deep learning-based methods considering

the heterogeneous multimodal data provide state-of-the-art results in automating the prediction of the

standard prostate RT structure names.
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ASTRO American Society for Radiation Oncology

TG Task Group

NLP Natural Language Processing

ML Machine Learning

AI Artificial Intelligence

IRB Institutional Review Board

TPS Treatment Planning System

ROQS Radiation Oncology Quality Surveillance Program

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

RT Radiation Therapy

BioBERT Bidirectional Encoder Representations from Transformers for Biomedical Text Mining

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

SRU Simple Recurrent Unit

LSTM Long Short Term Memory

ResNet Residual Network

VGG Vision Geometry Group

NROP National Radiation Oncology Program

References

1. Mayo, C.S.; Moran, J.M.; Bosch, W.; Xiao, Y.; McNutt, T.; Popple, R.; Michalski, J.; Feng, M.; Marks, L.B.; Fuller,

C.D.; others. American Association of Physicists in Medicine Task Group 263: standardizing nomenclatures

in radiation oncology. International Journal of Radiation Oncology* Biology* Physics 2018, 100, 1057–1066.

2. Wright, J.L.; Yom, S.S.; Awan, M.J.; Dawes, S.; Fischer-Valuck, B.; Kudner, R.; Vega, R.M.; Rodrigues, G.

Standardizing normal tissue contouring for radiation therapy treatment planning: an ASTRO consensus

paper. Practical radiation oncology 2019, 9, 65–72.

3. Benedict, S.H.; Hoffman, K.; Martel, M.K.; Abernethy, A.P.; Asher, A.L.; Capala, J.; Chen, R.C.; Chera, B.;

Couch, J.; Deye, J.; others. Overview of the American Society for Radiation Oncology–National Institutes

of Health–American Association of Physicists in Medicine Workshop 2015: Exploring opportunities for

radiation oncology in the era of big data. International Journal of Radiation Oncology• Biology• Physics 2016,

95, 873–879.

4. El Naqa, I.; Li, R.; Murphy, M.J. Machine learning in radiation oncology: theory and applications; Springer, 2015.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2023                   doi:10.20944/preprints202304.1077.v1

https://doi.org/10.20944/preprints202304.1077.v1


20 of 21

5. Kang, J.; Schwartz, R.; Flickinger, J.; Beriwal, S. Machine learning approaches for predicting radiation

therapy outcomes: a clinician’s perspective. International Journal of Radiation Oncology* Biology* Physics 2015,

93, 1127–1135.

6. Bose, P.; Sleeman, W.C.; Syed, K.; Hagan, M.; Palta, J.; Kapoor, R.; Ghosh, P. Deep Neural Network Models

to Automate Incident Triage in the Radiation Oncology Incident Learning System. Proceedings of the

12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics; Association for

Computing Machinery: New York, NY, USA, 2021. doi: 10.1145/3459930.3469518, Art No.: 51.

7. Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug,

M.; Botsis, T. Natural language processing systems for capturing and standardizing unstructured

clinical information: A systematic review. Journal of Biomedical Informatics 2017, 73, 14–29. doi:

https://doi.org/10.1016/j.jbi.2017.07.012.

8. Bose, P.; Roy, S.; Ghosh, P. A Comparative NLP-Based Study on the Current Trends and Future Directions in

COVID-19 Research. IEEE Access 2021, 9, 78341–78355. doi: 10.1109/ACCESS.2021.3082108.

9. Mahendran, D.; McInnes, B.T. Extracting Adverse Drug Events from Clinical Notes, 2021,

[arXiv:cs.CL/2104.10791].

10. Bose, P.; Srinivasan, S.; Sleeman, W.C.; Palta, J.; Kapoor, R.; Ghosh, P. A Survey on Recent Named Entity

Recognition and Relationship Extraction Techniques on Clinical Texts. Applied Sciences 2021, 11. doi:

10.3390/app11188319, Art No.: 8319.

11. Rhee, D.; Nguyen, C.; Netherton, T.; Owens, C.; Court, L.; Cardenas, C. TG263-Net: A deep learning model

for organs-at-risk nomenclature standardization. MEDICAL PHYSICS. WILEY 111 RIVER ST, HOBOKEN

07030-5774, NJ USA, 2019, Vol. 46, pp. E263–E263.

12. Yang, Q.; Chao, H.; Nguyen, D.; Jiang, S. A Novel Deep Learning Framework for Standardizing the Label

of OARs in CT. Artificial Intelligence in Radiation Therapy; Nguyen, D.; Xing, L.; Jiang, S., Eds.; Springer

International Publishing: Cham, 2019; pp. 52–60.

13. Sleeman IV, W.C.; Nalluri, J.; Syed, K.; Ghosh, P.; Krawczyk, B.; Hagan, M.; Palta, J.; Kapoor, R. A Machine

Learning method for relabeling arbitrary DICOM structure sets to TG-263 defined labels. Journal of Biomedical

Informatics 2020, 109, 103527.

14. Syed, K.; Sleeman IV, W.; Ivey, K.; Hagan, M.; Palta, J.; Kapoor, R.; Ghosh, P. Integrated natural language

processing and machine learning models for standardizing radiotherapy structure names. Healthcare.

Multidisciplinary Digital Publishing Institute, 2020, Vol. 8, p. 120.

15. Syed, K.; Sleeman, W.C.; Hagan, M.; Palta, J.; Kapoor, R.; Ghosh, P. Multi-View Data Integration Methods for

Radiotherapy Structure Name Standardization. Cancers 2021, 13. doi: 10.3390/cancers13081796, Art No.: 1796.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436–444.

17. Bose, P.; Sleeman, W.; Srinivasan, S.; Palta, J.; Kapoor, R.; Ghosh, P. Integrated Structure Name Mapping

with CNN. Medical Physics. Wiley 111 River St, Hoboken 07030-5774, NJ USA, 2021, Vol. 48.

18. Sleeman, W.; Bose, P.; Ghosh, P.; Palta, J.; Kapoor, R. Using CNNs to Extract Standard Structure Names While

Learning Radiomic Features. Medical Physics. Wiley 111 River St, Hoboken 07030-5774, NJ USA, 2021, Vol. 48.

19. Hagan, M.; Kapoor, R.; Michalski, J.; Sandler, H.; Movsas, B.; Chetty, I.; Lally, B.; Rengan, R.; Robinson, C.;

Rimner, A.; others. VA-Radiation Oncology Quality Surveillance Program. International Journal of Radiation

Oncology* Biology* Physics 2020, 106, 639–647.

20. Srivastava, N.; Salakhutdinov, R. Learning representations for multimodal data with deep belief nets.

21. Liu, K.; Li, Y.; Xu, N.; Natarajan, P. Learn to Combine Modalities in Multimodal Deep Learning, 2018,

[arXiv:stat.ML/1805.11730].

22. Shi, J.; Zheng, X.; Li, Y.; Zhang, Q.; Ying, S. Multimodal Neuroimaging Feature Learning With Multimodal

Stacked Deep Polynomial Networks for Diagnosis of Alzheimer’s Disease. IEEE Journal of Biomedical and

Health Informatics 2018, 22, 173–183. doi: 10.1109/JBHI.2017.2655720.

23. Radu, V.; Tong, C.; Bhattacharya, S.; Lane, N.D.; Mascolo, C.; Marina, M.K.; Kawsar, F. Multimodal Deep

Learning for Activity and Context Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1.

doi: 10.1145/3161174, Art. No.: 157.

24. Yao, J.; Zhu, X.; Zhu, F.; Huang, J. Deep Correlational Learning for Survival Prediction from Multi-modality

Data. Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017; Descoteaux, M.;

Maier-Hein, L.; Franz, A.; Jannin, P.; Collins, D.L.; Duchesne, S., Eds.; Springer International Publishing:

Cham, 2017; pp. 406–414.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2023                   doi:10.20944/preprints202304.1077.v1

http://xxx.lanl.gov/abs/2104.10791
http://xxx.lanl.gov/abs/1805.11730
https://doi.org/10.20944/preprints202304.1077.v1


21 of 21

25. Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better:

Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Transactions on Geoscience

and Remote Sensing 2021, 59, 4340–4354. doi: 10.1109/TGRS.2020.3016820.

26. Yang, X.; Lin, Y.; Wang, Z.; Li, X.; Cheng, K.T. Bi-Modality Medical Image Synthesis Using Semi-Supervised

Sequential Generative Adversarial Networks. IEEE Journal of Biomedical and Health Informatics 2020,

24, 855–865. doi: 10.1109/JBHI.2019.2922986.

27. Wu, P.; Chang, Q. Brain Tumor Segmentation on Multimodal 3D-MRI using Deep Learning Method. 2020

13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics

(CISP-BMEI), 2020, pp. 635–639. doi: 10.1109/CISP-BMEI51763.2020.9263614.

28. Lu, L.; Wang, H.; Yao, X.; Risacher, S.; Saykin, A.; Shen, L. Predicting progressions of cognitive outcomes via

high-order multi-modal multi-task feature learning. 2018 IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018), 2018, pp. 545–548. doi: 10.1109/ISBI.2018.8363635.

29. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: a pre-trained biomedical language

representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240.

30. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 2018.

31. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E.; others. Deep learning for computer vision:

A brief review. Computational intelligence and neuroscience 2018, 2018.

32. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proceedings of the IEEE 1998, 86, 2278–2324.

33. Lakhotia, S.; Bresson, X. An Experimental Comparison of Text Classification Techniques. 2018 International

Conference on Cyberworlds (CW). IEEE, 2018, pp. 58–65.

34. Kim, Y. Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics:

Doha, Qatar, 2014; pp. 1746–1751. doi:10.3115/v1/D14-1181.

35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735–1780.

36. Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review.

Future Computing and Informatics Journal 2018, 3, 334–340. doi:https://doi.org/10.1016/j.fcij.2018.10.003.

37. Li, Y.; Yuan, Y. Convergence Analysis of Two-layer Neural Networks with ReLU Activation. Advances

in Neural Information Processing Systems; Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.;

Vishwanathan, S.; Garnett, R., Eds. Curran Associates, Inc., 2017, Vol. 30.

38. Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. 2020 IEEE Symposium

on Computers and Communications (ISCC), 2020, pp. 1–7. doi:10.1109/ISCC50000.2020.9219587.

39. Gold, S.; Rangarajan, A.; others. Softmax to softassign: Neural network algorithms for combinatorial

optimization. Journal of Artificial Neural Networks 1996, 2, 381–399.

40. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014.

doi:10.48550/ARXIV.1409.1556.

41. Haque, M.F.; Lim, H.Y.; Kang, D.S. Object Detection Based on VGG with ResNet Network. 2019

International Conference on Electronics, Information, and Communication (ICEIC), 2019, pp. 1–3.

doi:10.23919/ELINFOCOM.2019.8706476.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition, 2015.

doi:10.48550/ARXIV.1512.03385.

43. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. Advances in Neural Information Processing Systems; Pereira, F.; Burges, C.; Bottou, L.;

Weinberger, K., Eds. Curran Associates, Inc., 2012, Vol. 25.

44. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going Deeper With Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2023                   doi:10.20944/preprints202304.1077.v1

https://doi.org/10.3115/v1/D14-1181
https://doi.org/https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1109/ISCC50000.2020.9219587
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.23919/ELINFOCOM.2019.8706476
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.20944/preprints202304.1077.v1

	Introduction
	Related Works
	Purpose of Study

	Dataset
	Methods
	Data Modality and Multimodal Learning
	Data Pre-processing
	Textual Data
	Vision-Dose Data

	Deep Neural Network architectures
	CNN
	VGG Network
	ResNet

	Sampling the `Other' Classes

	Results
	Evaluation Metrics
	Data Preparation and Selection
	Model Selection
	Model Performance on varying the number of Majority Class Samples

	Conclusion
	References

