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Abstract: The EMU(electric multiple units) traction motors are powered by converters. The PWM(pulse width
modulation) voltage increases the voltage stress borne by the motor insulation system, making the ITSC(inter-
turn short-circuit) fault more prominent. An index based on short-circuit thermal power was proposed in the
article to evaluate the non-metallic ITSC faults degree. The apFFT(all phase FFT) time-shift phase difference
correction with double Hanningwindows is used to calculate the fundamental frequency of the traction motor's
ZSVC (zero sequence voltage component) , the fundamental amplitudes of ZSVC and three-phase current.
The five parameters are used as fault features to train the SVM (support vector machine)fault diagnosis model.
The SVM hyper-parameters C and g are optimized by K-CV (K fold cross-validation) and grid search methods.
The experimental verification was carried out by the EMU electric traction simulation experimental platform.
According to the non-metallic degree index proposed in this article, the experimental samples were divided
into three categories, normal, incipient and serious fault samples. The ITSC fault diagnosis accuracy was 100%
on the training data set and 93.33 % on the test data set. There was no misclassification between normal and
serious ITSC fault samples.

Keywords: ITSC fault; traction motor; fault diagnosis; apFFT;SVM

1. Introduction

Three-phase AC asynchronous motors have become the main motors in industrial equipment
due to their simple structure, high reliability, and low manufacturing costs [1-3]. The AC-DC-AC
transmission mode is used in modern EMU traction systems, and three-phase AC squirrel-cage
asynchronous motors are used as traction motors[4]. The working environment of the EMU traction
motors is poor. Affected by mechanical stress, thermal stress, and electrical stress, EMU traction
motors are prone to failure [5,6]. The fault types of three-phase AC asynchronous squirrel-cage
motors in industrial applications mainly include stator insulation faults (37%), rotor broken bar faults
(12%), bearing faults (41%), and other faults (10%) [7]. EMU traction motors are powered by inverters
[8,9], which output PWM voltage. The high voltage stress generated by the PWM voltage makes the
traction motor insulation system degrade faster [10,11]. The insulation system of an asynchronous
traction motor is mainly composed of inter-turn insulation and the main insulation system [12]. Due
to the space and insulation materials limitation, the inter-turn insulation is the weakest part. When
an ITSC fault occurs, the inter-turn current will circulate between the short-circuit turns, quickly
generating a large amount of heat [13]. It will reduce the motor's insulation condition and cause inter-
phase or ground short-circuit faults[14]. The ITSC fault duration can vary from a few seconds to
several hours. When the ITSC fault occurs early, timely maintenance can prevent the fault's further
expansion and significantly reduce the maintenance cost. Since the ITSC fault of the asynchronous
traction motor is more hidden than the main insulation system fault, it is more difficult to detect the
incipient ITSC fault [15,16].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The ITSC fault diagnosis of three-phase asynchronous motors mainly includes model-based,
signal process-based, and artificial intelligence-based diagnosis methods [17-19]. An accurate motor
ITSC fault model is needed for model-based ITSC fault diagnosis. Model-based methods mainly
include the parameter estimation method and residual estimation method. The parameter estimation
method estimates the model parameters related to the ITSC fault [20-22]. Based on the three-phase
asynchronous motor ITSC fault model under the dq axis, the particle filter algorithm is used to
estimate multiple parameters to detect the stator ITSC fault and assess residual life[23]. This method
only needs to measure the motor phase voltage and phase current, which is easy to achieve a real-
time and non-intrusive diagnosis. A healthy motor model is necessary for the residual estimation
method. The residual estimation method takes the detectable variables related to the ITSC fault as
the state variables. It uses the difference between the state variables of the healthy motor estimated
by the model and the measured variables as the residual to detect the ITSC fault [24,25]. The three-
phase current is taken as the state variable, and the high-order sliding mode observer is used to
observe the three-phase current of the healthy motor[26]. The residual of the observed and measured
values is taken as the index for the ITSC fault.

The diagnosis method for the ITSC fault based on signal processing is mainly based on the
electrical, magnetic, thermal, vibration, and acoustic signals. The stator ITSC fault is diagnosed by
analyzing and processing the above signals in the time, frequency, or time-frequency domains [27-
29]. The voltage or current signals can be used to realize non-intrusive diagnosis [30], saving costs
without installing additional sensors. For the steady operation state, the FFT algorithm is generally
used to calculate specific frequency components of the current or other signals to detect the ITSC fault
[31]. With the continuous development of new signal processing methods, time-frequency analysis
methods such as wavelet transform, WVD (Wigner-Ville distribution), and HHT (Hilbert-Huang
transform) are also applied to the motors' fault diagnosis [32,33]. The discrete wavelet is used to
decompose the stator current, and the maximum norm of the detail coefficient is used to detect the
incipient ITSC fault [34].

Shallow machine learning and deep learning methods are also applied to motors' stator ITSC
fault diagnosis[35-38]. The ITSC fault diagnosis method based on shallow machine learning is
generally divided into three stages: data preparation, feature extraction, and model training. Particle
swarm optimization and principal component analysis can be used for feature extraction. BP neural
network and SVM models can be used as diagnosis models. BP neural network is trained based on
the phase difference of the three-phase stator current[39]. The trained model can detect and locate
stator the ITSC fault. If the deep learning network model, such as a convolution neural network, is
adopted. Artificially extracting features is unnecessary, and the deep learning network will
automatically extract them. The instantaneous value of the three-phase current is taken as the feature,
the convolution neural network is taken as the diagnosis model, and the trained convolution neural
network can accurately detect the ITSC fault of a three-phase asynchronous motor[40].

The research on the diagnosis method for ITSC fault of asynchronous motors stator has achieved
many positive results, but diagnosis of EMU traction motors stator ITSC fault has unique
requirements. Firstly, in previous studies, the degree of AC motor ITSC fault is generally evaluated
based on the number of short-circuit turns when the inter-turn resistance is fixed. In the non-metallic
short-circuit, the resistance between short-circuit turns is directly related to the damage degree of the
fault to the motor. Secondly, most of the previous studies are in the condition of non-variable
frequency speed regulation, and the steady speed of the motor is fixed. The traction motor will
operate stably at different speeds according to operating conditions. Finally, the traction motor of
EMU adopts vector control or direct torque control based on the current closed-loop. The
fundamental frequency of voltage and current signals cannot be directly obtained, and a spectral
correction method is needed to get a more accurate fundamental frequency.

The article is mainly divided into five parts. After the introduction, it mainly introduced the
measurement method for the traction motor's ZSVC and the apFFT time-shift phase difference
correction method. This method was used to calculate the traction motor's ZSVC fundamental
frequency, the fundamental component amplitudes of the ZSVC and the three-phase current under
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a steady state. In the third part, an ITSC fault evaluating index related to the number of short-circuit
turns and the inter-turn resistance was proposed. The index is based on the thermal power of the
circulating current between short-circuit turns. At the same time, the SVM and the hyper-parameters
optimization method were introduced in this part. In the following work, SVM was used to diagnose
the ITSC fault. The fourth part is the experimental part. The EMU electric traction simulation
experimental platform simulated the steady-state operation of the EMU. According to the fault
degree index proposed in this article, the experimental samples were divided into normal, incipient,
and serious fault samples, and the SVM ITSC fault diagnosis model was trained and tested. The last
part summarizes all the research contents and puts forward the follow-up work.

2. Calculation of Signals Fundamental Component

2.1. ZSVC Measurement method

The traction motors' current is measured for speed and torque control during the operation.
Only the ZSVC needs to be measured additionally. The ZSVC of the three-phase asynchronous motor
can effectively monitor the stator ITSC fault [41,42]. The measurement circuit is relatively simple, and
installing sensors on the motor body is unnecessary. According to the ZSVC definition of a three-
phase asynchronous motor [43,44], as shown in Formula(1), three voltage sensors are needed when
measuring the three-phase voltage.

UO = %(vun + vbn + Z]cn)' (1)

Directly measuring three-phase voltage and calculating ZSVC according to Formula(l) can be
applied to a sinusoidal power supply. The EMU traction motor is powered by an inverter. The
inverter will generate ZSVC inherent in the PWM voltage pulse and related to the PWM modulation
mode. Although its frequency is far from the fundamental frequency, if reasonable compensation and
filtering are not carried out, frequency aliasing will occur, and the measurement will be affected. The
ZSVC measurement of the traction motor in Figure 1 is adopted, and the three balanced resistors can
eliminate the influence of the inverter [45].
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Figure 1. ZSVC measurement circuit.

2.2. ApFFT time-shift phase difference correction

The apFFT time-shift phase difference correction mainly includes two parts, apFFT and time-
shift phase difference correction. ApFFT algorithm can effectively suppress spectrum leakage caused
by data truncation [46-48]. As shown in Figure 2, the required data points for the N-order spectrum
analysis are x(-N+1), x(-N+2), ..., x(-1), x(1), ...,.x(N-2), x(N-1) and total 2N-1 data points. W is a
convolution window formed by convolution operation with the front window Wi and the flipped
rear window Wa2. The front W1 window and rear window W2 are rectangular windows. It is called
windowless apFFT spectral analysis. One of the front windows Wi or rear W2 is a rectangular window.
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It is called single-window apFFT spectral analysis. Neither the front window W1 nor the rear
window W2 is rectangular. It is called double window apFFT spectrum analysis.
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Figure 2. N-order apFFTcalculation method.

The N-order apFFT spectrum analysis mainly includes the preprocessing of 2N-1 point data and
the FFT calculation. If the data is processed by windowless apFFT, it is equivalent to do the following
operations on the data: first, divide 2N-1 data points into N segments with length N according to
Formula (2); Then rotate the N segment data, taking the Nth data point, i.e., x (0), as the first data
point of the data segment;

x, =[%(-2), x(1), %(0),..., x(N-3)[, )

Xy, =[XN+1),x(-N+2),..,x(0)] .
Finally, add the shifted N segments of data by bit and normalize them to get xapin Formula (3),

which is the N data points obtained after the windowless apFFT preprocessing.

ap

x = %[Nx(O),(N— Dx(1) + X(-N +1), ..., x(N - 1) + (N - )x(-D)]". 3)

Perform N-point FFT on xap, that is, get the calculation result Xap (k) of windowless apFFT.

The second part of apFFT time-shift phase difference correction algorithm is time-shift phase
difference correction[48,49]. The single-frequency complex exponential signal with frequency w*,
initial phase 6o, and amplitude A is:

X(T’l) — Aej(w’nwo) (4)

7

The data points are divided into two segments of the same length, as shown in Figure 3. The
data interval of the first segment is [-N+1, N-1], assuming the spectral serial number is k¥, the phase
value of apFFT main spectral line is:

*

0,(k)=6,, (3)
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Figure 3. Data truncation for time-shift phase difference correction.

The second data segment starts after the first data segment moving L data points. The data range
is [-N+1+L, N-1+L]. The central data point of this data segment is x(-L), as shown in Figure 3. If apFFT
is performed on the second segment of data, the phase of apFFT main spectral line is ,_ ("), which

is the approximate estimation of the phase of data point x(-L), that is:
o, (K)=6,-0L, (6)
The estimation of signal frequency can be obtained from Formula (5) and Formula (6):
i =[ou(K)-u (K )]11=8011, )

To eliminate the "phase ambiguity" phenomenon [50], the frequency estimation after phase
compensation [51]:

& =0 (K)-g (K )]/ L+2K7IN, ®)

For the double-window apFFT, the signal amplitude estimation can be obtained:

r(x)

P S B
IF, (K- )

)

In equation (9), Y(k") is the value of the double-window apFFT at the point k’; F, (k*Aa)—aA)*) is

obtained from binging (kan) -@ ) into the Fourier transform of the window function. Generally, the

window function is a cosine window, and its Fourier transform expression is determined.
3. Fault Diagnosis Method for Stator ITSC Fault of Traction Motor

3.1. Stator ITSC fault degree index

In previous studies, only the metallic short-circuit of windings is generally considered. The two
windings are directly short-circuited without any resistance, and the motor's ITSC fault degree is
evaluated by the number of short-circuit turns. In most cases, the metallic ITSC fault is caused by the
expansion of the non-metallic ITSC fault. The non-metallic ITSC fault means some resistance between
short-circuit turns. In this case, evaluating the ITSC fault only by the number of short-circuit turns is
insufficient. The heat mainly causes damage to the traction motor caused by the ITSC fault. If the heat
generated by the inductance is ignored, the thermal power of the inter-turn resistance is:

2
pUl TN e, N (10)
f Rf st*Rf
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Ps is the thermal power of the inter-turns resistance, Uz is the short-circuit turns voltage, Rsis the
inter-turn resistance, U is the motor phase voltage, and N is the total number of turns of each phase
winding. From Formula(10), it can be concluded that the heat generated by the short-circuit current

2
after the ITSC fault is in direct proportion to N
st * Rf

Define the fault degree index of ITSC fault:

A= Nfz —&*L

t st*Rf_Ns \/E

According to Formula(11), the ITSC fault degree index As is related to the short-circuit turns
number and the inter-turn resistance.

(11)

3.2. SVM model for fault diagnosis of ITSC fault and hyper-parameters optimization

The apFFT time shift phase difference spectrum correction algorithm is used to calculate the
fundamental frequency of ZSVC, the fundamental component amplitudes of the traction motor's
ZSVC and the three-phase current. The SVM-based fault diagnosis model of ITSC fault is established
with the five parameters as input. The traction motor ITSC condition is divided into normal, incipient,
and serious faults using the proposed index. Support Vector Machine (SVM) is a machine learning
method based on statistical theory, mainly used to solve classification and regression problems [52—
55]. Its core idea is to complete the model training based on the structural risk minimization principle.
It has nonlinear solid approximation ability, good generalization performance, and good results in
dealing with small samples and nonlinear problems. SVM uses nonlinear mapping ¢#(x) to map the
original data to the high-dimensional space to deal with nonlinear regression problems of
multidimensional data.

The C-SVC model is a relatively standard two-class SVM model. The training set is:

T={(x,¥,),(x,¥ )} e (XxY), (12)
x, eX=R"y, eY={l,-1}(i=1,2,-,1), x; is the characteristic vector.
Select kernel function K (x, xv) and appropriate parameter C. The standard kernel functions

K (x, x/) mainly include linear, polynomial, and radial basis kernel functions. Lagrange dual problem

of the original problem is:

a (13)

J

. 1<
ffgngzzwjai“j’((xwxj)—

!
=l j=1 =
l
st Yye =0, 0<a<C,i=1,1,
i1
. . o
Get the optimal solution: a, :(0‘1 e )

Select a positive component of 0< (Z; <C from @", and calculate the threshold accordingly:

1
b=y, -2 va K(x,. —xj) (14)
i=1
The constructed decision function is:
!
f(x) =sgn[2a:yiK(x,xi)+b*j (15)
i=1

If the Gaussian radial basis function is used as the kernel function, g is the parameter of the
Gaussian radial basis function:
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2
i J

K(x,,x)=exp| - g =exP(—g Ix. —X,-||2) (16)

In the SVM classification model, the selection of model penalty parameter C and Gaussian kernel
function parameter g is directly related to the model performance. The K-CV is a standard cross-
validation algorithm. The training data set is evenly divided into K sub-datasets in model training.
Each sub-data set is used as the validation set in turn, and the rest K-1 sub-datasets are used as the
training set to train K models. The average mean square error (MSE) of K models on the validation
set is used as the performance index. The mean square error is:

1 _
Suse = =2 (% =3’ (17)
i=1

In Formula(17), n is the number of samples, y; is the predicted value, y; is the target value.

Grid search is to select several discrete points on each dimension of the parameter space
according to certain rules. The discrete points of different dimensions intersect in the parameter space
to obtain the discrete solution. Calculate each discrete solution to obtain the optimal solution. Figure
4 is the flow chart of the hyper-parameter optimization using the K-CV and grid search method. Take
the grid point as C=22, g=2b, the step size is 1, and initialize the range of a and b. Divide the training
samples equally. Each subset is used as a validation set, and the rest K-1 subsets are used as training
sets to train K models and calculate the average MSE of the K models on the K validation sets. After
calculating all the combinations of C and g at all grid intersections, C and g at the minimum average

MSE are the optimal solutions.

Initialize parameters range

|

Divide samples

l.—

SelectCand g

}

Calculate average MSE

All C and g are
calculated

Yes

Output the best
Candg

Figure 4. Flow chart of the hyper-parameters optimization.

3.3. ITSC fault diagnosis procedure based on SVM model

As shown in Figure 5, the EMU traction motors ITSC fault diagnosis based on SVM includes two
stages: model training and online diagnosis. In the model training stage, ZSVC and three-phase
current are first measured with the circuit proposed in the article. Second, apFFT time-shift phase
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difference correction algorithm is used to calculate ZSVC fundamental frequency, the fundamental
amplitudes of ZSVC and the three-phase current. Third, the ZSVC fundamental frequency, the
amplitude of ZSVC, and the three-phase current are used as features. Based on the ITSC fault index
Ag, the samples are divided into three categories, normal, incipient, and serious fault. Fourth, the K-
CV method divides all the samples into training and validation samples. The K-CV and grid search
method is used to optimize the hyper-parameters. Last, the optimal ITSC fault diagnosis model is
saved. In the online diagnosis stage, the ITSC fault features are acquired similarly to the training stage.
The optimal ITSC fault diagnosis model is loaded, and input the fault features to the SVM model to
predict the ITSC category.

A
ZSVC and three phase
current measurement
(training)

ZSVC and three phase
current measurement

(diagnosis)

ApFFT calculates
fundamental frequency
and amplitude

A 4

ApFFT calculates
fundamental frequency

A
Classify samples based

optimal

on index A and amplitude
R
SVM model hype-parameters |

| optimized by K-CV and grid search v |
| Training samples(CV) Validation samples(CV) | 4
| Load optimal model
| " I

Training traction motor Traction motor ITSC |
| ITSC fault diagnosis fault diagnosis SVM
| SVM model model validation |

I— | /Output diagnosis resultj/

| No
| odel validation |

Figure 5. Procedure of the ITSC fault diagnosis based on SVM model.
4. EMU Electric Traction Simulation Experimental Platform

4.1. Overall design of the experimental platform

The experimental data are acquired from the mutual feed electric traction simulation
experimental platform, shown in Figure 6. The platform mainly includes the tested system and the
accompanying system. The tested system mainly includes 5120 variable frequency speed control
system and the tested motor. 5120 controls the tested motor to operate according to the experimental
conditions. S120 system mainly includes the CU320-2PN control unit, ALM rectifier, and MM inverter
modules. The accompanying system mainly includes the accompanying motor and the H1000
converter. The PCI-6229 NI-DAQ gives the H1000 converter work instructions. The DC power supply
of the tested system is obtained from the DC link of the accompanying system. When the tested motor
works in the motor state, the accompanying motor works in the generator state. The accompanying
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system feeds electric energy back to the DC link to realize DC energy mutual feedback. The
experimental platform has the advantages of energy saving, less pollution to the power grid, flexible
experimental conditions design, etc.

Tested System

|
I |
| I
| |
Rectifier Inverter
={O=k: el
( ( I

s : ALM) | MM) | | |
|
AC | | I |
| ' I |
| A | I A |
| ' I |
| : [ !

, | |
Traction | l
: Control Unit | : }1\2;3,{:?9 !
| CU320-2PN | i - :
: | | J
| I | |
[ ' [ |
, | i |

Figure 6. Energy mutual feed electric traction simulation experimental platform.

Figure 7 shows the main parts of the experimental platform. The tested motor is a three-phase
AC asynchronous squirrel-cage motor with three-phase winding taps pulled out, whose parameters
are shown in Table 1. The accompanying motor is a normal motor with the same type and power.

Inter-turn
Resistor

H1000 Converter

Figure 7. Main parts of the EMU electric traction simulation experimental platform.

Table 1. Rated parameters of the tested motor.

Parameter value Parameter value
Power 5.5kW Frequency 50Hz
Voltage 380V Speed 1445rpm
Current 11.7A Turns per phase 164
Poles 4 Connection mode Y

4.2. Setting ITSC faults on tested motor

Figure 8 shows that the winding taps are pulled out at different stator winding turns during
manufacturing to simulate the ITSC fault. The taps can be connected externally to simulate the short-
circuit fault between different turns. The power resistor simulates the inter-turn resistor between non-
metallic short-circuit turns. The vacuum circuit breaker conveniently controls the short-circuit of
different turns loop.
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Figure 8. Stator winding taps pulled out of the tested motor.

4.3. Signal measurement of the tested motor

The signal measurement is shown in Figure 9. The DL850E ScopeCorder is used for signal
measurement. The LPF (low pass filter) is set to 400Hz, and the sampling frequency is 2000Hz. The
A621 passive current probe is used to collect the inter-turn current. This current cannot be measured
in the actual application. If the inter-turn current is too large, it will generate heat quickly to burn the
motor. E3N active current probe is used to measure the three-phase current of the tested motor. The
DP-50 voltage probe is used to measure the ZSVC using the measurement circuit as shown in Figure
2. The ZSVC measurement balanced resistors are three 15k() (1kW) power resistors.

Figure 9. Signals measurement of the tested motor.

5. Analysis of ITSC Fault Diagnosis Model Based on Experimental Samples

During the experiment, the S120 converter system controlled the tested motor to operate in the
torque control mode, and the tested motor output a fixed electromagnetic torque. The H1000
converter controlled the accompanying motor according to the speed control mode, and the
accompanying motor ran at a fixed speed. This experimental operation mode can simulate the steady
operation conditions of EMU traction or electric braking at different speeds and torques.

5.1. Analysis of motor signal with ITSC fault

The tested fault motor ran with 900rpm rotating speed, 10Nm electromagnetic torque, 12 short-
circuit turns in the a-phase stator winding, and 1Q inter-turn resistor. The insulation fault occurred
at around 20s. It can be seen from Figure 10a that when the stator winding ITSC fault occurs, a
sinusoidal inter-turn current with the same fundamental frequency as the power supply will be
generated between the short-circuit turns. Figure 10b shows the three-phase current before and after
the ITSC fault. Although the amplitude of the short-circuit current has reached about 104, it has little
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impact on the three-phase current. Figure 10c shows the three-phase voltage output by the converter
after the 400Hz LPF filter, and the output waveform conforms to the saddle waveform of SVPWM.
Figure 10d shows the ZSVC before and after the ITSC fault, and the ZSVC will be studied and
analyzed later.
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Figure 10. Signals of the tested system before and after ITSC fault: (a) Inter-turn current of the tested
motor; (b) Three-phase current of the tested motor; (c) Three-phase voltage of S120 inverter module;
(d) ZSVC of the tested motor.

5.2. Analysis of ITSC fault features

The tested motor setting speed was 900rpm, and the setting electromagnetic torque was 10Nm.
There was an ITSC fault in a-phase winding. The frequency of the ZSVC fundamental component,
the fundamental amplitudes of ZSVC and the three-phase current were calculated using the apFFT
time-shift spectrum correction algorithm with double Hanning windows. Based on Formula(11), 20
different indexes Ar were calculated according to 5 different numbers of short-circuit turns and 4
different inter-turn resistance, as shown in Table 2.

Table 2. The ITSC fault set and the degree index At.

T~ tums 5 7 12 20 25
resistance
1 0.03049 0.04268 0.07317 0.12195 0.15244
2 0.02156 0.03018 0.05174 0.08623 0.10779
4 0.01524 0.02134 0.03659 0.06098 0.07622
8 0.01078 0.01509 0.02587 0.04312 0.05390
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Figure 11 shows the relation of ZSVC fundamental amplitude with fault degree index A:. It can
be seen from Figure 11a that the ZSVC fundamental amplitude of the tested motor increases with the
fault degree index A:r. The fundamental amplitude of the ZSVC was about 0.2V under normal
conditions, mainly caused by the asymmetry of the three-phase winding. It can be seen from Figure
11b that the fundamental amplitude of a-phase current increases with the ITSC fault degree. The b-
phase and c-phase currents change little. Similarly, due to the unbalance of the three-phase winding,
the three-phase current is unbalanced under normal conditions.
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Figure 11. Influence of ITSC fault on the tested motor signal fundamental amplitude: (a) Influence of
ITSC fault on ZSVC fundamental amplitude; (b) Influence of ITSC fault on three-phase current
fundamental amplitude.

The electromagnetic torque was set to 10Nm, and the ITSC fault degree index A¢ was 0.07317.
The influence of the fundamental frequency on the ZSVC and three-phase current was analyzed at 4
different speeds. It can be seen from Figure 12a that in the process speed regulation, the fundamental
frequency changes with the experimental system setting speed. According to the control
characteristics of variable frequency speed regulation, the three-phase voltage increases linearly with
the increase in speed. The ZSVC also increases with the tested motor's fundamental frequency under
the same A:. Figure 12a shows that the a-phase current does not change much, but the b-phase and c-
phase currents decrease significantly with the increase of the fundamental frequency. The asymmetry
of the three-phase current becomes more and more prominent.
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Figure 12. Influence of frequency on the tested motor signal fundamental amplitude: (a) Influence of
frequency on ZSVC fundamental amplitude; (b) Influence of frequency on three-phase current
fundamental amplitude.
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According to the analysis above, the ZSVC fundamental component amplitude and the three-
phase current asymmetry increases with the ITSC fault degree under fixed electromagnetic torque
and speed. The three-phase current amplitude can reflect the electromagnetic torque value, and the
speed is approximately linear with the fundamental frequency. Therefore, the ZSVC fundamental
frequency, the fundamental amplitudes of ZSVC and the three-phase current are selected as the
features to establish the ITSC fault diagnosis model.

5.3. Analysis of SVM ITSC Fault Diagnosis Model Performance

The tested motor's data acquisition conditions are shown in Table 3. The tested motor with each
fault degree index operated under 4 different speeds and electromagnetic torques. There were 20
different ITSC fault degree Ar samples under each speed and electromagnetic torque, as shown in
Table 2. So 320 fault samples were obtained. The samples with 0.03018<A:<<0.06098 were defined as
incipient ITSC fault samples. The samples with 0.06098<A¢ were defined as serious ITSC fault samples.
Thus the ITSC fault samples were divided into 112 incipient and 112 serious ITSC fault samples.
Under each different speed and electromagnetic torque, 7 normal samples needed to be acquired. So
112 normal samples were obtained. Selected 92 samples from each category as training samples to
establish an SVM-based ITSC fault diagnosis model. Selected 20 samples from each category as the
test samples to test the fault diagnosis model. The grid search range was a=[-5,5],b= [-5,5].The
parameter K was 3 in the K-CV method.

Figure 13 shows the prediction results of the SVM-based ITSC fault diagnosis model on the
experimental samples. The model's prediction accuracy on the training data set is 100%, which can
correctly detect and evaluate the fault degree of the ITSC fault. The prediction accuracy on the test
data set is 93.33%. The confusion matrix in the test set shows that the misclassifications occur between
the normal and the incipient samples, between the incipient and the serious fault samples. There is
no misclassification between the normal and the serious fault samples.
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2-incipiant 2-inciphent 10.0%
@ | 0
& &
T 3-sarious T 3-serious 50%
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= (=
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Figure 13. Confusion matrix of ITSCfault diagnosis SVM model: (a) Confusion matrix of SVM model
on the training data set; (b) Confusion matrix of SVM model on the test data set.

Table 3. The working condition and the ITSC fault setting.

Speed (rpm) Torque(Tm) Turns Resistance (Q)
450,600,750,900 2,10,18,26 5,7,12,20,25 1,2,4,8

6. Conclusions

The ITSC fault diagnosis of the asynchronous traction motor significantly ensures the EMU's
safe operation and saves maintenance costs. The non-metallic ITSC fault degree assessing index At
was proposed based on the short-circuit thermal power. The index As is related to the number of
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short-circuit turns and inter-turn resistance. ApFFT time-shift phase difference spectrum correction
with double Hanning windows can accurately calculate the fundamental frequency of ZSVC, the
fundamental amplitudes of ZSVC, and the three-phase current when the fundamental frequency of
the vector control motor is unknown. The five parameters are used as fault features. SVM is used as
the ITSC fault diagnosis model, and the SVM model hyper-parameters C and g are optimized by K-
CV and the grid search method. The proposed method was verified by the EMU electric traction
simulation experimental platform. According to the fault degree index A¢ proposed in this paper, the
experimental samples were divided into three categories: normal, incipient fault, and serious fault.
The prediction accuracy of the SVM model on the training data set was 100%, and the prediction
accuracy on the test data set was 93.33%. There was no misclassification between normal samples
and serious faults. The EMU traction motors work at different speeds and torque points during
operation. The prediction results of different steady-state operating points can be integrated to
improve the accuracy of the fault diagnosis model.
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