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Abstract: The EMU(electric multiple units) traction motors are powered by converters. The PWM(pulse width 

modulation) voltage increases the voltage stress borne by the motor insulation system, making the ITSC(inter-

turn short-circuit) fault more prominent. An index based on short-circuit thermal power was proposed in the 

article to evaluate the non-metallic ITSC faults degree. The apFFT(all phase FFT) time-shift phase difference 

correction with double Hanningwindows is used to calculate the fundamental frequency of the traction motor's 

ZSVC（zero sequence voltage component）, the fundamental amplitudes of ZSVC and three-phase current. 

The five parameters are used as fault features to train the SVM (support vector machine)fault diagnosis model. 

The SVM hyper-parameters C and g are optimized by K-CV (K fold cross-validation) and grid search methods. 

The experimental verification was carried out by the EMU electric traction simulation experimental platform. 

According to the non-metallic degree index proposed in this article, the experimental samples were divided 

into three categories, normal, incipient and serious fault samples. The ITSC fault diagnosis accuracy was 100% 

on the training data set and 93.33 % on the test data set. There was no misclassification between normal and 

serious ITSC fault samples. 

Keywords: ITSC fault; traction motor; fault diagnosis; apFFT;SVM 

 

1. Introduction 

Three-phase AC asynchronous motors have become the main motors in industrial equipment 

due to their simple structure, high reliability, and low manufacturing costs [1–3]. The AC-DC-AC 

transmission mode is used in modern EMU traction systems, and three-phase AC squirrel-cage 

asynchronous motors are used as traction motors[4]. The working environment of the EMU traction 

motors is poor. Affected by mechanical stress, thermal stress, and electrical stress, EMU traction 

motors are prone to failure [5,6]. The fault types of three-phase AC asynchronous squirrel-cage 

motors in industrial applications mainly include stator insulation faults (37%), rotor broken bar faults 

(12%), bearing faults (41%), and other faults (10%) [7]. EMU traction motors are powered by inverters 

[8,9], which output PWM voltage. The high voltage stress generated by the PWM voltage makes the 

traction motor insulation system degrade faster [10,11]. The insulation system of an asynchronous 

traction motor is mainly composed of inter-turn insulation and the main insulation system [12]. Due 

to the space and insulation materials limitation, the inter-turn insulation is the weakest part. When 

an ITSC fault occurs, the inter-turn current will circulate between the short-circuit turns, quickly 

generating a large amount of heat [13]. It will reduce the motor's insulation condition and cause inter-

phase or ground short-circuit faults[14]. The ITSC fault duration can vary from a few seconds to 

several hours. When the ITSC fault occurs early, timely maintenance can prevent the fault's further 

expansion and significantly reduce the maintenance cost. Since the ITSC fault of the asynchronous 

traction motor is more hidden than the main insulation system fault, it is more difficult to detect the 

incipient ITSC fault [15,16]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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The ITSC fault diagnosis of three-phase asynchronous motors mainly includes model-based, 

signal process-based, and artificial intelligence-based diagnosis methods [17–19]. An accurate motor 

ITSC fault model is needed for model-based ITSC fault diagnosis. Model-based methods mainly 

include the parameter estimation method and residual estimation method. The parameter estimation 

method estimates the model parameters related to the ITSC fault [20–22]. Based on the three-phase 

asynchronous motor ITSC fault model under the dq axis, the particle filter algorithm is used to 

estimate multiple parameters to detect the stator ITSC fault and assess residual life[23]. This method 

only needs to measure the motor phase voltage and phase current, which is easy to achieve a real-

time and non-intrusive diagnosis. A healthy motor model is necessary for the residual estimation 

method. The residual estimation method takes the detectable variables related to the ITSC fault as 

the state variables. It uses the difference between the state variables of the healthy motor estimated 

by the model and the measured variables as the residual to detect the ITSC fault [24,25]. The three-

phase current is taken as the state variable, and the high-order sliding mode observer is used to 

observe the three-phase current of the healthy motor[26]. The residual of the observed and measured 

values is taken as the index for the ITSC fault. 

The diagnosis method for the ITSC fault based on signal processing is mainly based on the 

electrical, magnetic, thermal, vibration, and acoustic signals. The stator ITSC fault is diagnosed by 

analyzing and processing the above signals in the time, frequency, or time-frequency domains [27–
29]. The voltage or current signals can be used to realize non-intrusive diagnosis [30], saving costs 

without installing additional sensors. For the steady operation state, the FFT algorithm is generally 

used to calculate specific frequency components of the current or other signals to detect the ITSC fault 

[31]. With the continuous development of new signal processing methods, time-frequency analysis 

methods such as wavelet transform, WVD (Wigner-Ville distribution), and HHT (Hilbert-Huang 

transform) are also applied to the motors' fault diagnosis [32,33]. The discrete wavelet is used to 

decompose the stator current, and the maximum norm of the detail coefficient is used to detect the 

incipient ITSC fault [34]. 

Shallow machine learning and deep learning methods are also applied to motors' stator ITSC 

fault diagnosis[35–38]. The ITSC fault diagnosis method based on shallow machine learning is 

generally divided into three stages: data preparation, feature extraction, and model training. Particle 

swarm optimization and principal component analysis can be used for feature extraction. BP neural 

network and SVM models can be used as diagnosis models. BP neural network is trained based on 

the phase difference of the three-phase stator current[39]. The trained model can detect and locate 

stator the ITSC fault. If the deep learning network model, such as a convolution neural network, is 

adopted. Artificially extracting features is unnecessary, and the deep learning network will 

automatically extract them. The instantaneous value of the three-phase current is taken as the feature, 

the convolution neural network is taken as the diagnosis model, and the trained convolution neural 

network can accurately detect the ITSC fault of a three-phase asynchronous motor[40]. 

The research on the diagnosis method for ITSC fault of asynchronous motors stator has achieved 

many positive results, but diagnosis of EMU traction motors stator ITSC fault has unique 

requirements. Firstly, in previous studies, the degree of AC motor ITSC fault is generally evaluated 

based on the number of short-circuit turns when the inter-turn resistance is fixed. In the non-metallic 

short-circuit, the resistance between short-circuit turns is directly related to the damage degree of the 

fault to the motor. Secondly, most of the previous studies are in the condition of non-variable 

frequency speed regulation, and the steady speed of the motor is fixed. The traction motor will 

operate stably at different speeds according to operating conditions. Finally, the traction motor of 

EMU adopts vector control or direct torque control based on the current closed-loop. The 

fundamental frequency of voltage and current signals cannot be directly obtained, and a spectral 

correction method is needed to get a more accurate fundamental frequency. 

The article is mainly divided into five parts. After the introduction, it mainly introduced the 

measurement method for the traction motor's ZSVC and the apFFT time-shift phase difference 

correction method. This method was used to calculate the traction motor's ZSVC fundamental 

frequency, the fundamental component amplitudes of the ZSVC and the three-phase current under 
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a steady state. In the third part, an ITSC fault evaluating index related to the number of short-circuit 

turns and the inter-turn resistance was proposed. The index is based on the thermal power of the 

circulating current between short-circuit turns. At the same time, the SVM and the hyper-parameters 

optimization method were introduced in this part. In the following work, SVM was used to diagnose 

the ITSC fault. The fourth part is the experimental part. The EMU electric traction simulation 

experimental platform simulated the steady-state operation of the EMU. According to the fault 

degree index proposed in this article, the experimental samples were divided into normal, incipient, 

and serious fault samples, and the SVM ITSC fault diagnosis model was trained and tested. The last 

part summarizes all the research contents and puts forward the follow-up work. 

2. Calculation of Signals Fundamental Component  

2.1. ZSVC Measurement method 

The traction motors' current is measured for speed and torque control during the operation. 

Only the ZSVC needs to be measured additionally. The ZSVC of the three-phase asynchronous motor 

can effectively monitor the stator ITSC fault [41,42]. The measurement circuit is relatively simple, and 

installing sensors on the motor body is unnecessary. According to the ZSVC definition of a three-

phase asynchronous motor [43,44], as shown in Formula(1), three voltage sensors are needed when 

measuring the three-phase voltage. 

( )0

1

3 an bn cn
v v v v= + + . (1) 

Directly measuring three-phase voltage and calculating ZSVC according to Formula(1) can be 

applied to a sinusoidal power supply. The EMU traction motor is powered by an inverter. The 

inverter will generate ZSVC inherent in the PWM voltage pulse and related to the PWM modulation 

mode. Although its frequency is far from the fundamental frequency, if reasonable compensation and 

filtering are not carried out, frequency aliasing will occur, and the measurement will be affected. The 

ZSVC measurement of the traction motor in Figure 1 is adopted, and the three balanced resistors can 

eliminate the influence of the inverter [45].  

 

Figure 1. ZSVC measurement circuit. 

2.2. ApFFT time-shift phase difference correction 

The apFFT time-shift phase difference correction mainly includes two parts, apFFT and time-

shift phase difference correction. ApFFT algorithm can effectively suppress spectrum leakage caused 

by data truncation [46–48]. As shown in Figure 2, the required data points for the N-order spectrum 

analysis are x(-N+1), x(-N+2), …, x(-1), x(1), …,x(N-2), x(N-1) and total 2N-1 data points. W is a 

convolution window formed by convolution operation with the front window W1 and the flipped 

rear window W2. The front W1 window and rear window W2 are rectangular windows. It is called 

windowless apFFT spectral analysis. One of the front windows W1 or rear W2 is a rectangular window. 
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It is called single-window apFFT spectral analysis. Neither the front window W1  nor the rear 

window W2 is rectangular. It is called double window apFFT spectrum analysis. 

 

Figure 2. N-order apFFTcalculation method. 

The N-order apFFT spectrum analysis mainly includes the preprocessing of 2N-1 point data and 

the FFT calculation. If the data is processed by windowless apFFT, it is equivalent to do the following 

operations on the data: first, divide 2N-1 data points into N segments with length N according to 

Formula (2); Then rotate the N segment data, taking the Nth data point, i.e., x (0), as the first data 

point of the data segment; 

0
0 1 2 1[ ( ), ( ), ( ),..., ( - )]Tx x x x x N= ,

 

1
1 0 1 2[ (- ), ( ), ( ),..., ( - )]Tx x x x x N= ,

 

2
2 1 0 3[ (- ), (- ), ( ),..., ( - )]Tx x x x x N= ,

 

…… 

1
1 2 0

-
[ (- ), (- ),..., ( )]T

N
x x N x N x= + + .

 

(2) 

Finally, add the shifted N segments of data by bit and normalize them to get xap in Formula (3), 

which is the N data points obtained after the windowless apFFT preprocessing. 

1
0 1 1 1 1 1 1= + + +[ ( ),( - ) ( ) (- ),..., ( - ) ( - ) (- )]T

ap
x Nx N x x N x N N x

N
.
 

(3) 

Perform N-point FFT on xap, that is, get the calculation result Xap (k) of windowless apFFT. 

The second part of apFFT time-shift phase difference correction algorithm is time-shift phase 

difference correction[48,49]. The single-frequency complex exponential signal with frequency ω*, 

initial phase θ0, and amplitude A is: 

0
*( )( ) j w nx n Ae += , (4) 

The data points are divided into two segments of the same length, as shown in Figure 3. The 

data interval of the first segment is [-N+1, N-1], assuming the spectral serial number is k*, the phase 

value of apFFT main spectral line is: 

0

*( )
X

k = ,
 

(5) 

( 1)x N− +
1

z
−

( 2)x N− + ( 2)x N −
1

z
−

( 1)x N −
1

z
− 1

z
−1

z
−

(1)x(0)x( 1)x −( 2)x −

1 2W=W *W







FFT

ap (0)X ap (1)X
ap ( 2)X N − ap ( 1)X N −
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( )x n

L 2 1N −

1N− +

2 1N −

1N L− + + 1N − 1N L− +

 

Figure 3. Data truncation for time-shift phase difference correction. 

The second data segment starts after the first data segment moving L data points. The data range 

is [-N+1+L, N-1+L]. The central data point of this data segment is x(-L), as shown in Figure 3. If apFFT 

is performed on the second segment of data, the phase of apFFT main spectral line is *( )
XL

k , which 

is the approximate estimation of the phase of data point x(-L), that is: 

0

* *

X L
( )k L  = − ,

 
(6) 

The estimation of signal frequency can be obtained from Formula (5) and Formula (6): 

( ) ( )* * *ˆ / /
X XL

k k L L    = − =   ,
 

(7) 

To eliminate the "phase ambiguity" phenomenon [50], the frequency estimation after phase 

compensation [51]: 

( ) ( ) 2* * * *ˆ / /
X XL

k k L k N    = − +  ,
 

(8) 

For the double-window apFFT, the signal amplitude estimation can be obtained: 

( )
( ) 2

g

*

* *

ˆ
ˆ

Y k
A

F k  
=

 −
.

 

(9) 

In equation (9), Y(k*) is the value of the double-window apFFT at the point k*; ( )g

* *ˆF k   −  is 

obtained from binging ( )* *ˆk   − into the Fourier transform of the window function. Generally, the 

window function is a cosine window, and its Fourier transform expression is determined. 

3. Fault Diagnosis Method for Stator ITSC Fault of Traction Motor 

3.1. Stator ITSC fault degree index 

In previous studies, only the metallic short-circuit of windings is generally considered. The two 

windings are directly short-circuited without any resistance, and the motor's ITSC fault degree is 

evaluated by the number of short-circuit turns. In most cases, the metallic ITSC fault is caused by the 

expansion of the non-metallic ITSC fault. The non-metallic ITSC fault means some resistance between 

short-circuit turns. In this case, evaluating the ITSC fault only by the number of short-circuit turns is 

insufficient. The heat mainly causes damage to the traction motor caused by the ITSC fault. If the heat 

generated by the inductance is ignored, the thermal power of the inter-turn resistance is: 

2
2 2

2

2

f

sf f
f

f f s f

( )
U

N
NU N

P U
R R N R


= = = 


,

 

(10) 
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Pf is the thermal power of the inter-turns resistance, Uf is the short-circuit turns voltage, Rf is the 

inter-turn resistance, U is the motor phase voltage, and Ns is the total number of turns of each phase 

winding. From Formula(10), it can be concluded that the heat generated by the short-circuit current 

after the ITSC fault is in direct proportion to
2

f

2

s f

N

N R
. 

Define the fault degree index of ITSC fault: 

2

f f

f 2

ss f f

1N N

NN R R
 = = 


.

 

(11) 

According to Formula(11), the ITSC fault degree index λf is related to the short-circuit turns 

number and the inter-turn resistance. 

3.2. SVM model for fault diagnosis of ITSC fault and hyper-parameters optimization 

The apFFT time shift phase difference spectrum correction algorithm is used to calculate the 

fundamental frequency of ZSVC, the fundamental component amplitudes of the traction motor's 

ZSVC and the three-phase current. The SVM-based fault diagnosis model of ITSC fault is established 

with the five parameters as input. The traction motor ITSC condition is divided into normal, incipient, 

and serious faults using the proposed index. Support Vector Machine (SVM) is a machine learning 

method based on statistical theory, mainly used to solve classification and regression problems [52–
55]. Its core idea is to complete the model training based on the structural risk minimization principle. 

It has nonlinear solid approximation ability, good generalization performance, and good results in 

dealing with small samples and nonlinear problems. SVM uses nonlinear mapping  x( )  to map the 

original data to the high-dimensional space to deal with nonlinear regression problems of 

multidimensional data.  

The C-SVC model is a relatively standard two-class SVM model. The training set is: 

( ) ( ) 1 1
, , , , ( )l

l l
X Y=  T x y x y , (12) 

1 1 1 2, { , }( , , , )n

i i
X Y i l =  = − =x R y , xi is the characteristic vector. 

Select kernel function ( ),K x x


 and appropriate parameter C. The standard kernel functions 

( ),K x x


mainly include linear, polynomial, and radial basis kernel functions. Lagrange dual problem 

of the original problem is: 

( )
1 1 1

1

2
min ,

j l l

i j i j i j j
i j j

y y K x x


  
= = =

−  , (13) 

1

0 0 1. . , , , ,
l

i i i
i

s t y C i l 
=

= = , 

Get the optimal solution: ( )T

1

* * *, ,
l

 =α  

Select a positive component of 0 *

j
C   from *α , and calculate the threshold accordingly: 

( )
1

* *
l

j i i i j
i

b y y K x x
=

= − −  (14) 

The constructed decision function is: 

( )
1

* *( ) sgn ,
l

i i i
i

f x y K x x b
=

 
= + 

 
  (15) 

If the Gaussian radial basis function is used as the kernel function, g is the parameter of the 

Gaussian radial basis function: 
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( ) ( )
2

2

2
, exp exp

i j

i i j
K g



 − = − = − −  
 

x x
x x x x  (16) 

In the SVM classification model, the selection of model penalty parameter C and Gaussian kernel 

function parameter g is directly related to the model performance. The K-CV is a standard cross-

validation algorithm. The training data set is evenly divided into K sub-datasets in model training. 

Each sub-data set is used as the validation set in turn, and the rest K-1 sub-datasets are used as the 

training set to train K models. The average mean square error (MSE) of K models on the validation 

set is used as the performance index. The mean square error is: 

2

MSE
1

1 n

i i
i

y y
n


=

= −( )  (17) 

In Formula(17), n is the number of samples, yi is the predicted value, ̅yi is the target value. 

Grid search is to select several discrete points on each dimension of the parameter space 

according to certain rules. The discrete points of different dimensions intersect in the parameter space 

to obtain the discrete solution. Calculate each discrete solution to obtain the optimal solution. Figure 

4 is the flow chart of the hyper-parameter optimization using the K-CV and grid search method. Take 

the grid point as C=2a, g=2b, the step size is 1, and initialize the range of a and b. Divide the training 

samples equally. Each subset is used as a validation set, and the rest K-1 subsets are used as training 

sets to train K models and calculate the average MSE of the K models on the K validation sets. After 

calculating all the combinations of C and g at all grid intersections, C and g at the minimum average 

MSE are the optimal solutions. 

 

Figure 4. Flow chart of the hyper-parameters optimization. 

3.3. ITSC fault diagnosis procedure based on SVM model 

As shown in Figure 5, the EMU traction motors ITSC fault diagnosis based on SVM includes two 

stages: model training and online diagnosis. In the model training stage, ZSVC and three-phase 

current are first measured with the circuit proposed in the article. Second, apFFT time-shift phase 
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difference correction algorithm is used to calculate ZSVC fundamental frequency, the fundamental 

amplitudes of ZSVC and the three-phase current. Third, the ZSVC fundamental frequency, the 

amplitude of ZSVC, and the three-phase current are used as features. Based on the ITSC fault index 

λf, the samples are divided into three categories, normal, incipient, and serious fault. Fourth, the K-

CV method divides all the samples into training and validation samples. The K-CV and grid search 

method is used to optimize the hyper-parameters. Last, the optimal ITSC fault diagnosis model is 

saved. In the online diagnosis stage, the ITSC fault features are acquired similarly to the training stage. 

The optimal ITSC fault diagnosis model is loaded, and input the fault features to the SVM model to 

predict the ITSC category. 

 

Figure 5. Procedure of the ITSC fault diagnosis based on SVM model. 

4. EMU Electric Traction Simulation Experimental Platform 

4.1. Overall design of the experimental platform 

The experimental data are acquired from the mutual feed electric traction simulation 

experimental platform, shown in Figure 6. The platform mainly includes the tested system and the 

accompanying system. The tested system mainly includes S120 variable frequency speed control 

system and the tested motor. S120 controls the tested motor to operate according to the experimental 

conditions. S120 system mainly includes the CU320-2PN control unit, ALM rectifier, and MM inverter 

modules. The accompanying system mainly includes the accompanying motor and the H1000 

converter. The PCI-6229 NI-DAQ gives the H1000 converter work instructions. The DC power supply 

of the tested system is obtained from the DC link of the accompanying system. When the tested motor 

works in the motor state, the accompanying motor works in the generator state. The accompanying 
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system feeds electric energy back to the DC link to realize DC energy mutual feedback. The 

experimental platform has the advantages of energy saving, less pollution to the power grid, flexible 

experimental conditions design, etc. 

 

Figure 6. Energy mutual feed electric traction simulation experimental platform. 

Figure 7 shows the main parts of the experimental platform. The tested motor is a three-phase 

AC asynchronous squirrel-cage motor with three-phase winding taps pulled out, whose parameters 

are shown in Table 1. The accompanying motor is a normal motor with the same type and power. 

 

Figure 7. Main parts of the EMU electric traction simulation experimental platform. 

Table 1. Rated parameters of the tested motor. 

Parameter value Parameter value 

Power 5.5kW Frequency 50Hz 

Voltage 380V Speed 1445rpm 

Current 11.7A Turns per phase 164 

Poles 4 Connection mode Y 

4.2. Setting ITSC faults on tested motor 

Figure 8 shows that the winding taps are pulled out at different stator winding turns during 

manufacturing to simulate the ITSC fault. The taps can be connected externally to simulate the short-

circuit fault between different turns. The power resistor simulates the inter-turn resistor between non-

metallic short-circuit turns. The vacuum circuit breaker conveniently controls the short-circuit of 

different turns loop. 

Tested Motor Accompanying Motor

Inter-turn

Resistor S120 System H1000 Converter

Winding

Taps
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Figure 8. Stator winding taps pulled out of the tested motor. 

4.3. Signal measurement of the tested motor 

The signal measurement is shown in Figure 9. The DL850E ScopeCorder is used for signal 

measurement. The LPF (low pass filter) is set to 400Hz, and the sampling frequency is 2000Hz. The 

A621 passive current probe is used to collect the inter-turn current. This current cannot be measured 

in the actual application. If the inter-turn current is too large, it will generate heat quickly to burn the 

motor. E3N active current probe is used to measure the three-phase current of the tested motor. The 

DP-50 voltage probe is used to measure the ZSVC using the measurement circuit as shown in Figure 

2. The ZSVC measurement balanced resistors are three 15kΩ (1kW) power resistors. 

 

Figure 9. Signals measurement of the tested motor. 

5. Analysis of ITSC Fault Diagnosis Model Based on Experimental Samples 

During the experiment, the S120 converter system controlled the tested motor to operate in the 

torque control mode, and the tested motor output a fixed electromagnetic torque. The H1000 

converter controlled the accompanying motor according to the speed control mode, and the 

accompanying motor ran at a fixed speed. This experimental operation mode can simulate the steady 

operation conditions of EMU traction or electric braking at different speeds and torques. 

5.1. Analysis of motor signal with ITSC fault 

The tested fault motor ran with 900rpm rotating speed, 10Nm electromagnetic torque, 12 short-

circuit turns in the a-phase stator winding, and 1Ω inter-turn resistor. The insulation fault occurred 

at around 20s. It can be seen from Figure 10a that when the stator winding ITSC fault occurs, a 

sinusoidal inter-turn current with the same fundamental frequency as the power supply will be 

generated between the short-circuit turns. Figure 10b shows the three-phase current before and after 

the ITSC fault. Although the amplitude of the short-circuit current has reached about 10A, it has little 
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impact on the three-phase current. Figure 10c shows the three-phase voltage output by the converter 

after the 400Hz LPF filter, and the output waveform conforms to the saddle waveform of SVPWM. 

Figure 10d shows the ZSVC before and after the ITSC fault, and the ZSVC will be studied and 

analyzed later. 

 

Figure 10. Signals of the tested system before and after ITSC fault: (a) Inter-turn current of the tested 

motor; (b) Three-phase current of the tested motor; (c) Three-phase voltage of S120 inverter module; 

(d) ZSVC of the tested motor. 

5.2. Analysis of ITSC fault features 

The tested motor setting speed was 900rpm, and the setting electromagnetic torque was 10Nm. 

There was an ITSC fault in a-phase winding. The frequency of the ZSVC fundamental component, 

the fundamental amplitudes of ZSVC and the three-phase current were calculated using the apFFT 

time-shift spectrum correction algorithm with double Hanning windows. Based on Formula(11), 20 

different indexes λf were calculated according to 5 different numbers of short-circuit turns and 4 

different inter-turn resistance, as shown in Table 2. 

Table 2. The ITSC fault set and the degree index λf. 

      turns 

resistance 
5 7 12 20 25 

1 0.03049 0.04268 0.07317 0.12195 0.15244 

2 0.02156 0.03018 0.05174 0.08623 0.10779 

4 0.01524 0.02134 0.03659 0.06098 0.07622 

8 0.01078 0.01509 0.02587 0.04312 0.05390 
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Figure 11 shows the relation of ZSVC fundamental amplitude with fault degree index λf. It can 

be seen from Figure 11a that the ZSVC fundamental amplitude of the tested motor increases with the 

fault degree index λf. The fundamental amplitude of the ZSVC was about 0.2V under normal 

conditions, mainly caused by the asymmetry of the three-phase winding. It can be seen from Figure 

11b that the fundamental amplitude of a-phase current increases with the ITSC fault degree. The b-

phase and c-phase currents change little. Similarly, due to the unbalance of the three-phase winding, 

the three-phase current is unbalanced under normal conditions. 

 

Figure 11. Influence of ITSC fault on the tested motor signal fundamental amplitude: (a) Influence of 

ITSC fault on ZSVC fundamental amplitude; (b) Influence of ITSC fault on three-phase current 

fundamental amplitude. 

The electromagnetic torque was set to 10Nm， and the ITSC fault degree index λf was 0.07317. 

The influence of the fundamental frequency on the ZSVC and three-phase current was analyzed at 4 

different speeds. It can be seen from Figure 12a that in the process speed regulation, the fundamental 

frequency changes with the experimental system setting speed. According to the control 

characteristics of variable frequency speed regulation, the three-phase voltage increases linearly with 

the increase in speed. The ZSVC also increases with the tested motor's fundamental frequency under 

the same λf. Figure 12a shows that the a-phase current does not change much, but the b-phase and c-

phase currents decrease significantly with the increase of the fundamental frequency. The asymmetry 

of the three-phase current becomes more and more prominent. 

 

Figure 12. Influence of frequency on the tested motor signal fundamental amplitude: (a) Influence of 

frequency on ZSVC fundamental amplitude; (b) Influence of frequency on three-phase current 

fundamental amplitude. 
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According to the analysis above, the ZSVC fundamental component amplitude and the three-

phase current asymmetry increases with the ITSC fault degree under fixed electromagnetic torque 

and speed. The three-phase current amplitude can reflect the electromagnetic torque value, and the 

speed is approximately linear with the fundamental frequency. Therefore, the ZSVC fundamental 

frequency, the fundamental amplitudes of ZSVC and the three-phase current are selected as the 

features to establish the ITSC fault diagnosis model. 

5.3. Analysis of SVM ITSC Fault Diagnosis Model Performance 

The tested motor's data acquisition conditions are shown in Table 3. The tested motor with each 

fault degree index operated under 4 different speeds and electromagnetic torques. There were 20 

different ITSC fault degree λf samples under each speed and electromagnetic torque, as shown in 

Table 2. So 320 fault samples were obtained. The samples with 0.03018≤λf＜0.06098 were defined as 

incipient ITSC fault samples. The samples with 0.06098≤λf were defined as serious ITSC fault samples. 

Thus the ITSC fault samples were divided into 112 incipient and 112 serious ITSC fault samples. 

Under each different speed and electromagnetic torque, 7 normal samples needed to be acquired. So 

112 normal samples were obtained. Selected 92 samples from each category as training samples to 

establish an SVM-based ITSC fault diagnosis model. Selected 20 samples from each category as the 

test samples to test the fault diagnosis model. The grid search range was a=[-5,5],b= [-5,5].The 

parameter K was 3 in the K-CV method. 

Figure 13 shows the prediction results of the SVM-based ITSC fault diagnosis model on the 

experimental samples. The model's prediction accuracy on the training data set is 100%, which can 

correctly detect and evaluate the fault degree of the ITSC fault. The prediction accuracy on the test 

data set is 93.33%. The confusion matrix in the test set shows that the misclassifications occur between 

the normal and the incipient samples, between the incipient and the serious fault samples. There is 

no misclassification between the normal and the serious fault samples. 

 

Figure 13. Confusion matrix of ITSCfault diagnosis SVM model: (a) Confusion matrix of SVM model 

on the training data set; (b) Confusion matrix of SVM model on the test data set. 

Table 3. The working condition and the ITSC fault setting. 

Speed（rpm） Torque(Tm) Turns Resistance (Ω) 

450,600,750,900 2,10,18,26 5,7,12,20,25 1,2,4,8 

6. Conclusions 

The ITSC fault diagnosis of the asynchronous traction motor significantly ensures the EMU's 

safe operation and saves maintenance costs. The non-metallic ITSC fault degree assessing index λf 

was proposed based on the short-circuit thermal power. The index λf is related to the number of 
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short-circuit turns and inter-turn resistance. ApFFT time-shift phase difference spectrum correction 

with double Hanning windows can accurately calculate the fundamental frequency of ZSVC, the 

fundamental amplitudes of ZSVC, and the three-phase current when the fundamental frequency of 

the vector control motor is unknown. The five parameters are used as fault features. SVM is used as 

the ITSC fault diagnosis model, and the SVM model hyper-parameters C and g are optimized by K-

CV and the grid search method. The proposed method was verified by the EMU electric traction 

simulation experimental platform. According to the fault degree index λf proposed in this paper, the 

experimental samples were divided into three categories: normal, incipient fault, and serious fault. 

The prediction accuracy of the SVM model on the training data set was 100%, and the prediction 

accuracy on the test data set was 93.33%. There was no misclassification between normal samples 

and serious faults. The EMU traction motors work at different speeds and torque points during 

operation. The prediction results of different steady-state operating points can be integrated to 

improve the accuracy of the fault diagnosis model. 
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