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Abstract: Soil quality is related to food security and human survival and development. Due to the acceleration 

of urbanization and the increase in abandoned land, the quality of topsoil has deteriorated, thus resulting in 

land degradation in recent years. In this study, a minimum data set (MDS) was constructed through principal 

component analysis (PCA) to determine the indicator data set for evaluating topsoil quality in Tieling County, 

northeast China. In addition, the soil quality index (SQI) was calculated to analyze the spatial distribution 

characteristics of the topsoil quality in Tieling County and the factors influencing this. The results showed that 

the MDS included total potassium (TK), clay, zinc (Zn), soil organic matter (SOM), soil water content (SWC), 

cation exchange capacity (CEC), pH, and copper (Cu). All other indicators for assessing the topsoil quality in 

the research region may be replaced by the MDS indicators. The overall soil quality of Tieling County showed 

a trend of being low in the east and high in the west, and it gradually increased from the hilly area to the plain 

area. The quality of Tieling County soil is divided into one to five levels, with Grade-Ⅰ being the best and 

grade-Ⅴ being the worst. The proportion of Grade-Ⅱ and grade-Ⅲ is the largest, which is 28.5% and 26.3% 

respectively, and grade-Ⅴ is the smallest, which is 9.6%. The evaluation results are consistent with field 

research, which can provide a reference for other topsoil quality evaluations, and it also provides a basis for 

the formulation of soil quality improvement measures. 

Keywords: soil quality assessment; MDS; principal component analysis；Tieling County 

 

1. Introduction 

Soil is an important natural resource. It is the basis of agricultural production and plays an 

important role in meeting food needs and maintaining human survival and development. Soil quality 

is an important attribute for assessing soil conditions and changes, which is mostly defined as "the 

ability of soil to play a role within the boundaries of natural or managed ecosystems [1]". Higher soil 

quality means higher productivity and better food security [2]. However, in recent decades, countries 

have intensively developed their economies and accelerated industrialization, leading to the 

occupation and conversion of many cultivated lands to land for construction or to developed land. 

Furthermore, as people’s living standards have improved, the urbanization rates have increased, 

resulting in the abandonment and degradation of cultivated land, as well as the deterioration of soil 

quality [3,4]. To prevent agricultural land degradation and to improve crop yield, we must carry out 

soil quality evaluation to grasp soil quality comprehensively and accurately [5]. At the same time, 

soil quality evaluation is also of great significance for the development of agricultural and cultural 

industries, poverty alleviation and rural revitalization. 

Since the United States Department of Agriculture (USDA) released the land potential 

classification system in 1961, many soil quality evaluation methods have been developed [6]. These 

methods include soil quality cards and test kits [7], the soil quality index (SQI) method [8], the fuzzy 

correlation method [9], the dynamic soil quality model [10], and the soil management assessment 
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framework [11–14]. Among these methods, the SQI may be the most common method [15], because 

it fully takes into account the common influence of measured values, weights, and interactions 

among indicators on the evaluation results. However, due to the complexity of the evaluation 

indicators, the whole evaluation process is no small challenge. Therefore, the selection of appropriate 

evaluation indicators is one of the most important factors to consider, and this has a significant impact 

on soil quality evaluation results. In the selection of evaluation indicators, all indicators including 

soil physical, chemical, and biological indicators should be considered [16]. Additionally, more 

attention needs to be given to the changes in the indicator system at different spatial and temporal 

scales. Due to the diversity of soil quality evaluation indicators, the minimum data set (MDS) method 

was adopted in this paper. An MDS can select the most appropriate indicators from the primary ones 

through principal component analysis (PCA) to reduce data redundancy [17]. In addition, the weight 

of selected indicators can be generated during the establishment of an MDS, which reduces the 

subjective influence of human factors on soil quality and is conducive to the subsequent evaluation 

of soil quality. At present, many scholars select indicators through an MDS to simplify the evaluation 

process. For example, Shi Zhihua et al. [18] explored the effects of land use change on environmental 

quality in a red soil hilly region by establishing minimum data sets. Li Ping et al. [19] established an 

MDS to evaluate soil quality in a subtropical region. Rahmanipour, F. [20] completed the evaluation 

of agricultural land soil quality in Ghazvin Province in Iran, and the results proved that the 

evaluation based on an MDS was superior to the evaluation based on the full data set. Other similar 

studies have been carried out in coastal areas, woodlands, grasslands, and wetlands [21,22]. Some 

researchers have even improved the establishment criteria or an MDS and added soil environmental 

factors and land use status into the selection principle of indicators, which has resulted in good results 

being achieved [23]. Zhanjun Liu et al. [24] evaluated the soil quality of high (HPPS), medium (MPPS) 

and low (LPPS) productive yellow clayey paddy soils by using an MDS and the SQI, and they aimed 

to identify the factors limiting rice productivity.  

In the evaluation of soil quality, many statistical techniques (such as the grey correlation method, 

artificial neural networks, and principal component analysis) have been widely used for the 

establishment of MDSs and the calculation of the soil quality index [25,26]. In this study, an MDS was 

established through principal component analysis and correlation analysis, because this method has 

strong objectivity, can ensure the minimum loss of original data information, reflects the impact of 

indicators on soil quality, reduces the number of independent soil parameters, and solves the 

multicollinearity problem of indicators to a certain extent. Tieling County was selected as the research 

object in this study. Research in Tieling County is helpful to explore the influence of different 

indicators of the soil quality of different land types. In general, this study has the following objectives: 

(1) the establishment of an MDS for soil quality evaluation indexes in Tieling County; (2) the 

formulation of an SQI to quantitatively analyze the spatial distribution of soil quality in Tieling 

County; and (3) the analysis of the influence of MDS indicators on soil quality. 

2. Materials and Methods 

2.1. Study Area 

The study area is Tieling County (Figure 1), which is located in the northern part of Liaoning 

Province, covering an area of 2262 km2. Tieling County has a continuous plain area in the west and a 

low hilly area in the east, with large relief and uneven soil quality levels in the topsoil layer. It belongs 

to the middle temperate monsoon climate zone. The average annual temperature is 8.2 ℃ , the 

average annual precipitation is 670.7 mm, and the average annual relative humidity is 62%. The main 

soil texture is loam and clay. It has a jurisdiction over 15 towns (farms) with a resident population of 

about 324400, accounting for 13.58% of the total population of Tieling City. It has a county cultivated 

land area of 1087 km2, mostly concentrated in the central plain area, and a per capita cultivated land 

area of 0.27 hm2/ person. In 2021, 2 km2 of high-standard farmland was built, 1.334 km2 of northeast 

black land was protected, and grain output reached 0.69 billion kg. The cultivated land resources of 

Tieling County provide the basis for the grain production of Liaoning Province and even the whole 
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country. Therefore, research on the topsoil of Tieling County is conducive to the rational and efficient 

utilization of cultivated land resources and provides a reference and guarantee for sustainable 

development. 

 

Figure 1. Geographical locations of the study area and soil sampling points. 

2.2. Soil Data Sources and Sample Collection 

Based on the field soil sampling data in Tieling County from 2021, the basic physical and 

chemical properties of the soil and heavy metal pollution content were obtained. In this study, 29677 

plots of cultivated lands were used as evaluation units, ArcGIS was used to create a random point 

tool, and a total of 100 field sampling points were set up to determine the soil’s physical and chemical 

attributes and the total amount of heavy metal elements [27]. Soil sample collection was carried out 

in October 2021. By using GPS, 100 sampling spots were precisely located, and their latitude and 

longitude were noted. Based on the geographical location, two to three locations around the sample 

points were selected to collect 0-20 cm topsoil within a radius of 20 m. The soil samples were collected 

by sampling, mixing, and placing them into polyethylene self-styled bags afterward; they were sealed 

and numbered, air-dried indoors,  foreign matter (gravel, brick, plant roots and other residues) was 

removed from the soil, and tool grinding was used after agate mortar grinding, with 10 orders 

(2.00mm), 20 mesh (0.85mm), and 100 mesh (0.15mm) sieves, which were used to determine the 

physical and chemical properties of the different soil samples in the test and in the analysis of the 

project. 

For the analysis and determination of common physical and chemical soil property indicators, 

we referred to soil agricultural chemical analysis and the following references; a total of 22 physical, 

chemical, and metal pollution indicators were measured. Soil bulk density (BD) was determined by 

the ring tool method [28]. Soil water content (SWC) was determined by the drying method [29]. The 

particle composition of the soil was determined by a laser particle size analyzer. According to 

international classification (ISSS), the measurements were as follows: clay (<0.002 mm), silt (0.002 ~ 

0.02 mm), and sand (0.02 ~ 2.0 mm). Soil pH was measured by the potentiometric method (soil-water 

ratio 1:2.5) [30]. The salt content (WSSC) was determined by the gravimetric method. The content of 

soil organic matter (SOM) was determined by the potassium dichromate volumetric method and by 
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the external heating method [31]. The content of total nitrogen (TN) was determined by the semi-

trace Kelvin method [32]. Total potassium (TK) was determined by the flame photometer method 

[33]. Total phosphorus (TP) was determined by the alkali fusion–Mo-Sb Anti spectrophotometric 

method [34]. The available phosphorus (AvP) was determined by the sodium hydrogen carbonate 

solution-Mo-Sb anti spectrophotometric method [35]. The available potassium (AvK) was 

determined by ammonium acetate extraction and flame photometry [36]. The cation exchange 

capacity (CEC) was determined by the ammonium acetate method [37]. The atomic state contents of 

the soil heavy metal pollution indicators cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), 

and chromium (Cr) were analyzed and determined by flame atomic absorption spectrophotometry 

[38]. Arsenic (As) and mercury Hg were determined by atomic fluorescence spectrometry. 

2.3. Soil Quality Evaluation Method 

2.3.1. Indicator Selection 

The multidimensional attribute of soil quality covers many dimensions such as nature, the social 

economy, and the ecological environment. As the basis of agricultural production and development, 

natural conditions, including hydrogeology, soil type, geomorphic characteristics, and other aspects, 

are decisive indicators related to the quality of cultivated land. Slope has a significant impact on 

topsoil quality in Tieling County, hence the index system takes this into account. Soil natural quality 

reflects the background characteristics of cultivated land resources. Because the climate environment 

and planting system of land resources at the county level are similar, the differences were mainly in 

topography, effective soil layer thickness and soil nutrient level. With the rapid advancement of 

urbanization, soil heavy metal pollution has become an important factor affecting crop growth and 

the regional ecological environment, and soil heavy metal content is a key indicator of environmental 

quality, so soil heavy metal is considered as a natural indicator. Due to the correlation among the 

influencing factors, it is necessary to select indicators with high acquisition, strong stability, a large 

influence degree, and indicators that can reflect the difference in soil quality to carry out the relevant 

evaluation. [39]. In this study, SPSS 26.0 software was used for the correlation analysis, so as to 

preliminarily determine whether the primary indicators are suitable for inclusion in the soil quality 

evaluation indicator system. 

2.3.2. Principal Component Analysis (PCA) 

Due to the selection capability of the MDS, principal component analysis was used as a data 

reduction tool to select the most appropriate indicators. SPSS 26.0 software was used to import the 

data of various indicators, analyze their correlation, remove the repetitive information, and convert 

it into a group of irrelevant variables. The new group of variables generated after transformation is 

called the principal component (PC). The PC with an eigenvalue > 1 was screened, and the indicator 

with a load number greater than 0.5 on each PC was classified into a group. If the load number of the 

indicator was greater than 0.5 in multiple PCs, the correlation coefficient between the indicator and 

the other indicators in the group was observed; the indicator was included in the group unless the 

indicator was not significantly correlated with all other indicators. If the indicator is not significantly 

correlated or significantly correlated with other indicators in the same group in different groups, it 

will be classified into a group with a smaller distribution range of correlation coefficients. If the load 

number of the indicator in the PC is less than 0.5, these indicators will be separately divided into a 

group. After grouping all of the indicators, each group was observed, and the indicators whose Norm 

value reached 10% of the maximum Norm value of the group were screened. These indicators were 

screened and correlations between these indicators were observed. If all indicators in this group are 

not significantly correlated (r < 0.5), all indicators in this group will be included in the MDS. If the 

correlation level of the indicators in this group is different, the indicator with the largest Norm value 

will be selected into the MDS. These indicators selected by PCA [40] can reduce the number of 

independent variables and eliminate problems related to multicollinearity. 
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2.3.3. Weight Assignment 

After determining the MDS, the weight of each indicator is calculated based on the common 

factor variance, and the formula is [41]:  𝑤 = 𝐶௜ ∕ 𝑆௜ (1)

where w is the weight of each indicator, 𝐶௜  is the common factor variance of the indicator, and 𝑆௜  is the sum of the common factor variance. 

2.3.4. Indicator Scoring 

The influence of each indicator on soil quality is a relatively fuzzy concept [42]. To evaluate soil 

quality more accurately, the data of each indicator are uniformly converted by a membership 

function. The expert experience method [43] was used to evaluate the influence of grade scores or the 

actual measured values of each indicator on soil quality, and the corresponding membership degree 

of the indicator was determined. The relationship equation between the indicator values and 

membership degree was determined by a scatter plot and a fitting curve, and the corresponding 

membership function of the indicator was finally constructed, as shown in Table 1. 

Table 1. Types of membership functions. 

Indicato

rs 

Type of membership 

function 
Membership function expression 

Parameter Uni

t 
a b 

TK 

Type S  𝜇ሺ௫ሻୀ ൝ 1                                          𝑥 ≥ 𝑏0.9ሺ𝑥 − 𝑎ሻ ∕ ሺ𝑏 − 𝑎ሻ + 0.1          𝑎 < 𝑥 < 𝑏               0.1                                        𝑥 ≤ 𝑎  

17.58

3 

27.42

3 

g 

kg-1 

SOM 
13.32

1 

43.43

1 

g 

kg-1 

SWC 
14.46

2 

50.88

3 
% 

CEC 6.947 
57.45

1 

cmo

l kg-

1 

Zn 

Type reverse S  𝜇ሺ௫ሻୀ ൝ 1                                          𝑥 ≤ 𝑎0.9ሺ𝑥 − 𝑏ሻ ∕ ሺ𝑎 − 𝑏ሻ + 0.1          𝑎 < 𝑥 < 𝑏               0.1                                        𝑥 ≤ 𝑎  

26.18

6 

86.97

9 

mg 

kg-1 

Cu 19.83 
43.33

7 

mg 

kg-1 

Clay 
Type parabola   𝜇ሺ௫ሻୀ ൞ 1                                                     𝑏ଶ ≥ 𝑥 ≥ 𝑏ଵ0.9ሺ𝑥 − 𝑎ଵሻ ∕ ሺ𝑏ଵ − 𝑎ଵሻ + 0.1               𝑎ଵ < 𝑥 < 𝑏ଵ    0.9ሺ𝑥 − 𝑎ଶሻ ∕ ሺ𝑏ଶ − 𝑎ଶሻ + 0.1               𝑎ଶ > 𝑥 > 𝑏ଶ    0.1                                            𝑥 ≤ 𝑎ଵ 𝑜𝑟 𝑥 ≥ 𝑎ଶ

7.225 
16.25

3 
% 

pH 4.345 6.946  

1) x is the measured value of the indicator, and a and b are the lower and upper limits of the indicator. TK=total 

potassium; SOM = soil organic matter; SWC= soil water content; CEC = cation exchange capacity. 2) Parameters 

a and b were obtained through interpolation analysis of the sampled data of each indicator. 

2.3.5. Developing the Soil Quality Index 

After calculating the weight of each indicator and the score of each area, the soil quality index 

was further calculated: 

SQI=𝛴𝐴௜ ⋅ 𝑋௜ᇱ  (2)
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where type of 𝐴௜  is each evaluation indicator’s weight and 𝑋௜ᇱ is each evaluation indicator’s 

membership degree value. 

3. Results 

3.1. Statistical Analysis of Indicators and Establishment of MDS 

Descriptive statistical analysis was carried out on the quantitative indicators (Table 2). The 

average effective soil layer thickness was 38cm, indicating that the soil had good fertility. The mean 

slope of the terrain was 1.35°, which was low and suitable for crop growth. The average soil BD was 

1.25 g cm -3, which was relatively moderate. The mean pH value was 5.78, which was slightly acidic. 

The average soil water content was 26.35%. The mean value of EC was 50.85 μS cm-1, which was 

greater than the critical point of the crop growth barrier. Soil improvement should be carried out in 

areas with values greater than 50 [44]. The mean soil organic matter was 21.14 g kg -1 . The mean 

values of total nitrogen, total carbon, total potassium, and total phosphorus were 1.33g kg-1, 12.31 g 

kg-1, 24.71g kg-1, and 0.63g kg-1, respectively, which were relatively high. The mean value of available 

phosphorus was 34.49 mg kg -1. The mean value of available potassium was 101.73 mg kg -1. The mean 

value of cation exchange capacity was 15.19 cmol kg -1. The mean values of copper, zinc and lead 

were 31.11 cmol kg-1, 60.88 cmol kg-1 and 23.19 cmol kg-1, respectively, which were all relatively high. 

There were significant differences between the maximum and minimum contents of soil elements in 

Tieling County, with the coefficient of variation between 0.03-1.41. Generally, coefficient of variation 

(CV) ≤0.1 is considered as indicating a weak variation, 0.1 < CV < 1.0 is considered as indicating a 

moderate variation, and CV≥1.0 is considered as indicating a strong variation [45]. In conclusion, the 

pH, bulk density, silt, and total potassium of the soil in Tieling County showed weak variation, and 

the factors were relatively stable with a small variation range. SWC, EC, clay, SOM, and TN showed 

moderate variation. The ESLT and slope had strong variation, and the elements were unstable with 

a large variation range. 

Table 2. Descriptive statistics of the soil indicators. 

 Unit Minimum Maximum Mean SD CV 

ESLT cm 0.00  150.00 38.00  53.56  1.41  

Slope ° 0.00  5.00  1.35  1.71  1.27  

BD g cm-3 0.95  1.58  1.25  0.11  0.09  

pH  4.54  6.89  5.78  0.36  0.06  

SWC % 14.65  49.67  26.35  5.08  0.19  

EC μS cm-1 29.58  90.18  50.85  9.59  0.19  

WSSC % 0.12  0.37  0.21  0.04  0.19  

Clay % 7.93  16.28  12.15  1.44  0.12  

Silt % 68.57  79.17  74.62  2.04  0.03  

Sand % 7.02  19.83  13.22  2.45  0.19  

SOM g kg-1 13.37  39.65  21.14  3.91  0.19  

TN g kg-1 1.01  2.13  1.33  0.16  0.12  

TC g kg-1 7.92  22.40  12.31  2.28  0.19  

TK g kg-1 17.96  27.52  24.71  1.59  0.06  

TP g kg-1 0.38  1.02  0.63  0.12  0.18  

AvP mg kg-1 7.38  99.82  34.49  10.87  0.32  

AvK mg kg-1 47.30  360.07  101.73  27.03  0.27  

CEC cmol kg-1 7.41  55.41  15.19  5.05  0.33  

Cu mg kg-1 19.96  43.46  31.11  4.21  0.14  

Zn mg kg-1 26.29  87.52  60.88  7.72  0.13  

Pb mg kg-1 9.82  48.12  23.19  4.53  0.20  

Hg mg kg-1 0.01  0.22  0.09  0.04  0.46  

As mg kg-1 1.64  15.39  9.84  2.94  0.30  

Cd mg kg-1 0.02  0.22  0.06  0.02  0.33  

Ni mg kg-1 18.38  68.32  32.17  6.41  0.20  
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Cr mg kg-1 46.65  279.04  90.06  26.07  0.29  

1) The number of samples was 100. 

2) ESLT=effective soil layer thickness; BD= bulk density; SWC= soil water content; EC=electrical conductivity; 

WSSC= water-soluble salt content; SOM = soil organic matter; TN=total nitrogen; TC=total carbon; TK=total 

potassium; TP=total phosphorus; AvP= available phosphorus; AvK =available potassium; CEC = cation 

exchange capacity. 

As can be seen from Tables 3 and 4, PCA was carried out on 26 indicators, and 7 principal 

components with eigenvalues greater than 1 were selected, and their eigenvalues were 6.118, 4.072, 

3.589, 2.706, 1.854, 1.186 and 1.094. The cumulative contribution rate reached 79.307%. Finally, eight 

indicators including TK, clay, Zn, SOM, SWC, CEC, pH and Cu were selected for the MDS. 

Table 3. Principal component analysis results. 

Component 
Initial Eigenvalues 

Total Percentage of variance accumulation (%) 

1 6.118 23.532 23.532 

2 4.072 15.662 39.194 

3 3.589 13.805 52.999 

4 2.706 10.409 63.408 

5 1.854 7.130 70.538 

6 1.186 4.560 75.098 

7 1.094 4.209 79.307 

Table 4. Indicators included in the Minimum data set. 

Indicators 
Component 

Group Norm Included 
1 2 3 4 5 6 7 

TK -0.756 -0.214 0.336 -0.098 -0.255 0.073 0.099 1 2.074 Yes 

Slope 0.704 -0.043 0.036 -0.204 0.003 0.027 -0.251 1 1.805  

Ni 0.689 -0.327 0.253 0.439 -0.009 -0.116 0.253 1 2.064  

As -0.652 0.270 0.250 0.058 -0.443 -0.024 0.036 1 1.884  

TP 0.599 -0.422 0.357 0.279 0.132 0.297 -0.077 1 1.956  

Silt 0.592 0.518 0.217 0.055 -0.100 -0.058 -0.156 1 1.881  

Cr 0.591 -0.364 0.209 0.459 0.013 -0.152 0.349 1 1.909  

Pb 0.574 -0.066 0.454 0.003 -0.078 -0.147 0.101 1 1.693  

ESLT 0.548 -0.067 0.138 -0.297 -0.024 -0.015 -0.294 1 1.512  

Cd -0.545 0.129 0.161 0.277 -0.434 0.437 -0.009 1 1.681  

SOM 0.431 0.693 -0.455 0.104 0.072 0.228 0.163 2 2.026 Yes 

TC 0.429 0.689 -0.456 0.103 0.074 0.233 0.170 2 2.019  

Sand -0.315 -0.676 -0.407 0.315 0.062 -0.005 0.113 2 1.866  

TN 0.497 0.671 -0.320 -0.062 0.150 0.285 0.203 2 2.008  

AvP 0.006 -0.618 0.432 -0.139 0.366 0.299 0.119 2 1.666  

SWC -0.441 0.498 0.237 0.424 0.183 -0.331 -0.155 6 1.794 Yes 

Cu 0.031 0.044 0.739 0.390 -0.249 0.211 0.118 3 1.635 Yes 

Hg 0.285 0.056 0.580 -0.427 0.227 -0.209 -0.128 3 1.568  

pH -0.324 0.435 0.542 -0.254 -0.203 0.073 0.177 3 1.689 Yes 

Avk 0.088 -0.075 0.474 -0.348 0.399 0.421 -0.121 6 1.345  

BD -0.167 -0.340 -0.457 0.138 -0.234 0.247 -0.326 6 1.341  

Clay -0.300 0.420 0.388 -0.615 0.036 0.090 0.028 4 1.720 Yes 

Zn 0.428 0.316 0.440 0.489 -0.285 0.222 -0.091 6 1.784 Yes 

EC -0.553 0.148 0.094 0.443 0.564 0.158 -0.143 1 1.799  

WSSC -0.553 0.148 0.094 0.443 0.564 0.158 -0.143 1 1.799  

CEC -0.368 -0.048 -0.017 -0.366 0.270 0.034 0.572 5 1.314 Yes 

1)ESLT= effective soil layer thickness; BD= bulk density; SWC= soil water content; EC= electrical conductivity; 

WSSC= water-soluble salt content; SOM = soil organic matter; TN= total nitrogen; TC= total carbon; TK= total 
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potassium; TP= total phosphorus; AvP= available phosphorus; AvK = available potassium; CEC = cation 

exchange capacity. 

The correlation analysis of eight indicators in the MDS (Table 5) showed that the correlation 

coefficients among all of the indicators were less than 0.5, indicating a weak correlation. The MDS 

reduced data redundancy and could well replace the full data set to evaluate the topsoil quality in 

the study area. 

Table 5. Correlation coefficients of MDS indicators. 

 pH SWC Clay SOM TK CEC Cu Zn 

pH 1.000 0.360 0.464 -0.129 0.483 0.328 0.427 0.124 

SWC 0.360 1.000 0.187 -0.003 0.244 0.169 0.238 0.115 

Clay 0.464 0.187 1.000 -0.062 0.391 0.322 0.070 -0.113 

SOM -0.129 -0.003 -0.062 1.000 0.412 -0.197 -0.197 0.295 

TK 0.483 0.244 0.391 0.412 1.000 0.335 0.306 -0.256 

CEC 0.328 0.169 0.322 -0.197 0.335 1.000 0.015 -0.251 

Cu 0.427 0.238 0.070 -0.197 0.306 0.015 1.000 0.470 

Zn 0.124 0.115 -0.113 0.295 -0.256 -0.251 0.470 1.000 

1)SWC=soil water content; SOM=soil organic matter; TK=total potassium; CEC=cation exchange capacity. 

3.2. Spatial Interpolation Analysis 

Since the indicator data quantity of the sampling points could not replace the entire data, 

interpolation analysis was carried out on the graded data of the entirety of Tieling County, and the 

total number of map spots was 29,677. The interpolation results for all the MDS indicators are shown 

in Figure 2. As Figure 2 shows, the spatial distribution of indicators in the MDS is inconsistent. The 

overall distribution trends of pH, SWC, TK, and CEC are high in the western plain, low in the eastern 

mountains and hills, and at their highest in the southern part of clay. The content of the remaining 

areas increases gradually from east to west. The content of SOM in the eastern parts is the highest 

and in the central parts, it is low, and the distribution of the other areas is relatively uniform; the 

content of Cu is the highest in the central parts and the content of Zn is highest in the central and 

eastern parts. All of the spatial distribution features are related to slope, soil type and human 

activities. Due to the large slope in the eastern hilly area and the infiltration of rain, the content of 

SWC is low. At the same time, as the slope increases, it is easy for the soil particles to migrate 

downslope, so the content of clay is less in the eastern parts. In the middle of the study area, the sandy 

soil is not conducive to SOM accumulation, while the loam and clay areas have relatively high SOM. 
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Figure 2. Interpolation result for the indicators. Note: SWC= soil water content; SOM= soil organic 

matter; TK= total potassium; CEC= cation exchange capacity; Cu=copper; Zn=zinc. 

3.3. Soil Quality Evaluation Based on MDS 
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The weight of indicators in the MDS was calculated according to the variance of common factors 

(Table 6). The soil quality index of Tieling County was calculated according to the membership value 

and weight of each indicator (Table 7). The range of soil quality index scores of each evaluation unit 

was 0.395-0.677, with an average value of 0.518. Based on the ArcGIS-natural breakpoint method, soil 

quality was classified intoⅠ-Ⅴlevels; the Ⅰ-level soil quality was the best, Ⅴ level soil quality was 

the worst, and the spatial distribution map of soil quality based on the MDS was created (Figure 3). 

Table 6. Weights of soil indicators in the Minimum data set. 

Indicator Common factor variance Weight 

TK 0.849 0.119 

Clay 0.808 0.114 

Zn 0.858 0.121 

SOM 0.977 0.137 

SWC 0.847 0.119 

CEC 0.526 0.074 

PH 0.73 0.103 

Cu 0.809 0.114 

Total 7.113 1 

SWC=soil water content; SOM=soil organic matter; TK=total potassium; CEC=cation exchange capacity; 

Cu=copper; Zn=zinc. 

Table 7. Soil quality index distribution. 

SQI Grade Area (km2) Proportion (%) 

0.589-0.677 Ⅰ 141.31  17.0  

0.539-0.589 Ⅱ 245.11 28.5  

0.503-0.539 Ⅲ 224.96  26.3  

0.462-0.503 Ⅳ 166.49  18.6  

0.395-0.462 Ⅴ 71.48  9.6 

SQI=soil quality Index. 

 

Figure 3. Spatial distribution of the soil quality. 
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It can be seen from Figure 3 that the spatial distribution of the soil quality in the study area has 

the strong regularity. In general, the soil quality in the northwest of the study area was better than 

that in the southeast, and the main grades were grades Ⅱ  andⅢ . The soil quality gradually 

increased from the hilly area to the plain area, which was consistent with the field survey results, 

indicating that the results were reliable and that the indicators in the constructed MDS had certain 

applicability for soil quality evaluation in the study area. According to the statistical analysis, the 

proportion of soil mass area of each grade in the study area was as follows: Grade Ⅱ (28.5%) > Grade 

Ⅲ (26.3%) > Grade Ⅳ (18.6%) > Grade Ⅰ (17.0%) > Grade Ⅴ (9.6%). The Ⅰ -level SQI is between 

0.589 and 0.677, covering an area of 184.72 km2. It is mainly distributed in the western and central 

parts of the plain with high SWC content, which is the dominant factor, and the pH is neutral. 

Therefore, the soil quality in the topsoil layer is high. The Ⅱ -level soil quality index is distributed 

between 0.539 and 0.589, with an area of 309.60 km2, accounting for the largest proportion. It is mainly 

distributed in the western and central areas and is mostly clustered around the Ⅰ -level area. The 

Ⅱ -level area has more SWC and SOM contents, less Cu content, and a neutral pH, so the soil quality 

in the topsoil is higher. The Ⅲ -level soil quality index is between 0.503-0.539 and covers an area of 

285.37 km2. Most of the soil is distributed in the northwest and southern parts of the plain in massive 

form, and some parts of the soil are distributed in the eastern hilly area. The high contents of SWC 

and TK in this area is the main influencing factor, and the soil quality in the topsoil is relatively high. 

The level Ⅳ soil quality index ranges from 0.462 to 0.503, covering an area of 202.40 km2, mainly 

distributed in the east-central region, that is, near the junction of the plain and hills. The level Ⅳ area 

has less SWC and SOM contents and more Cu content, which are the main influencing factors. The 

soil quality in the topsoil layer is relatively poor. The Ⅴ-level soil quality index is distributed in the 

range of 0.395-0.462, with an area of 104.52 km2. It is mainly distributed in the eastern hilly area with 

poor geographical conditions, such as Baiqizhai Manzu Township. The contents of Cu and Zn in this 

area are high, and the contents of SWC and SOM are low, so the soil quality in the topsoil is low. 

4. Discussion 

In contrast to Figure 2 and Figure 3, it can be deduced that the distribution pattern of topsoil 

quality for pH, SWC, TK, and SOM is "high in the northwest and low in the southeast", as can also be 

seen from Table 6. This is because these four indicators have a high weight. The pH content is higher 

in the western and central parts, which is neutral and conducive to soil microbial activity and crop 

growth, so the soil quality is higher. The other regions have more acidic or alkaline soil, so the soil 

quality also decreases to different degrees. The influence of SWC, TK and SOM content on soil quality 

is like that of pH, and their contents result in higher soil quality. The high Cu and Zn contents in the 

eastern part of the study area have a negative effect on soil quality, and the low SOM content has a 

small effect on the improvement of soil quality, so the soil quality is poor. However, in the western 

parts, low Zn, Cu and high SWC, CEC, TK and neutral pH are conducive to the improvement of SOM 

and soil evolution, and thus the soil quality is higher. 

When the spatial distribution of the indicators contents is combined with different cultivated 

land types in the statistical analysis (Table 8), the area of dryland is the largest, 849.43 km2, accounting 

for more than 78%, and its average soil quality is the highest, followed by the paddy field and the 

irrigated land. As can be observed, dry land is primarily used for agriculture in the study region, 

followed by paddy fields. In the dryland, the paddy field, and the irrigated land, the proportion of 

excellent land (grade Ⅲ and above) was close and they all exceeded 70%, and the distribution of the 

three types was the highest in grade Ⅱ and the lowest was in grade Ⅴ, which was the same as with 

the overall soil quality distribution, indicating that the land use structure of different land types in 

the study area was reasonable and the overall quality was good. For example, Fayez Raiesi obtained 

important indicators for in arid and semi-arid land by studying soil quality in different land types 

and environments, and quantified land use conversion effects on soil quality [46]. 

In this study, the SQI was used to characterize topsoil quality in Tieling County, and the MDS 

was constructed by comprehensive means such as PCA, correlation analysis and Norm value. There 
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were 26 primary indicators in total. After MDS screening, the soil quality evaluation system in the 

study area was composed of eight indicators: TK, clay, Zn, SOM, SWC, CEC, pH, and Cu, and the 

filtering rate of the indicators reached more than 60%. Before, the comprehensive weighted index 

method was used to cover all the factors, but there were too many factors, and the results were 

redundant and complicated. The MDS system established in this study was simple and practical, 

with accurate characterization and easy application, but judging by its results, a lack of soil bulk 

density and effective soil layer thickness, which were selected frequently, were not included in the 

MDS. From the perspective of the construction of the system, soil bulk density was grouped with 

SWC and Zn in the screening process of MDS indicators. However, the Norm value of SWC was the 

largest and highly correlated with other indicators in the group, so the soil BD did not enter the MDS; 

similarly, the effective soil layer thickness did not enter the MDS. From the perspective of data 

analysis, the range of BD in the study area was 0.95 to 1.58 g cm-3, the mean value was 1.25 g cm-3, the 

standard deviation was 0.11, and the coefficient of variation was 0.09, indicating that the BD data 

were relatively centralized and had little change, and could not be used as a key indicator to 

distinguish the soil quality of each unit. The same was true for the thickness of the effective soil layer. 

Therefore, the construction of the MDS should be combined with the region, research scale and local 

land use status. The MDS constructed by soil quality evaluation in different regions and different 

scales is different [47]. 

Compared with other county scale topsoil quality evaluation, this study also has some 

advantages. First, previous studies mostly used full data to evaluate the soil in the study area in 

question, and the evaluation process in such studies was complicated and laborious. In this study, 

the full data were screened and filtered, and the MDS was constructed through PCA to evaluate the 

soil quality, to simplify the indicator system, and to streamline the evaluation process [48]. Secondly, 

the membership function is used in this study to transform the indicator value uniformly, which is 

convenient for the accurate calculation of the SQI. However, there are also some shortcomings in this 

study. One is that the indicator system only uses natural indicators, but not site indicators [49], so it 

is impossible to analyze the impact of site characteristics on topsoil quality in the study area. Another 

problem is that the study area was not analyzed on a time scale, and it is impossible to know the long-

term changes of various indicators and their effects on soil quality [50]. Therefore, we will strengthen 

the research on these two aspects in the future to build a more complete MDS system. 

Table 8. Distribution of soil mass in different soils. 

Classification Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Total 

Dry land 
Area(km2) 141.31  245.11  224.96  166.49  71.48  849.43  

Proportion(%) 16.64  28.86  26.48  19.60  8.41  100  

Paddy field 
Area(km2) 40.25  58.91  55.96  33.83  29.94  218.89  

Proportion(%) 18.39  26.91  25.57 15.46  13.68  100  

Irrigable land
Area(km2) 3.16  5.59  4.44  2.08  3.10  18.38  

Proportion(%) 17.22  30.40  24.18  11.32  16.88  100  

Total 
Area(km2) 184.72  309.60  285.37  202.40  104.52  1086.61  

Proportion(%) 17.00  28.49  26.26  18.63  9.62  100  

5. Conclusions 

In this study, eight indicators including TK, clay, Zn, SOM, SWC, CEC, pH and Cu were selected 

from 26 indicators to form the soil quality indicator system of Tieling County. By using the MDS 

method, the MDS indicators can replace all of the primary indicators to evaluate soil quality in Tieling 

County. The soil quality index in Tieling County ranges from 0.395 to 0.677, with an average value of 

0.518. Based on the ArcGIS-natural breakpoint method, the soil quality was classified into Ⅰ-Ⅴ 

grades, with the Ⅰ grade having the best soil quality and the Ⅴ grade having the worst soil 

quality. It can be seen that the soil quality of Tieling County showed a trend of being low in the east 

and high in the west, and it gradually increased from low hilly to plain areas. The main grades of soil 
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quality were Ⅱ (28.5%) and Ⅲ (26.3%), and Ⅴ area was the smallest, accounting for 9.6%. The 

spatial distribution of the soil quality is similar to the results of previous studies. However, there are 

still some limitations in this study, such as the absence of site indicators in the indicator system and 

the lack of evaluation studies on a time scale. 

The results of this study reveal the need for accurate monitoring of soil quality. Continuous 

anthropogenic influences and environmental changes can lead to continuous soil quality degradation 

and affect the implementation of soil remediation measures. For example, especially near farmland 

with good quality, the establishment of factories should be reduced. Meanwhile, attention should be 

paid to the maintenance of soil texture, reducing pollutant content, and avoiding nutrient loss. In 

addition, soil quality should be constantly monitored, evaluation indicators should be updated 

according to local conditions, and temporal and spatial variability should be paid attention in order 

to provide a basis for the development of protection measures. 
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