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Abstract: Barrett’s esophagus (BE) is a premalignant lesion for esophageal adenocarcinoma (EAC). 

Development of Barrett’s esophagus is caused by biliary reflux that provokes intensive mutagenesis 

in stem cells of epithelium in distal esophagus and gastro-esophageal junction. Other possible cell 

origins of Barrett’s esophagus include stem cells of mucosal esophageal glands and their ducts, of 

stomach, residual embryonic cells and circulating bone marrow stem cells.    Classic conception of 

healing of caustic lesion was replaced by idea of cytokine storm that forms inflammatory microen-

vironment for phenotypic shift toward intestinal metaplasia of distal esophagus. The review sum-

marizes contemporary concepts of BE and EAC pathogenesis. 
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1. Introduction 

Barrett’s esophagus (BE) is a premalignant lesion that means a development of intes-

tinal metaplasia in distal esophagus, which is caused by long-term exposure with pre-

dominantly bile reflux. Histological evaluation reveals several gland phenotypes across 

the metaplasia segment intercepted in mosaic fashion [1-4]. These phenotypes include car-

diac, oxynto-cardiac, mature and immature intestinal phenotypes. Complex histological, 

immunohistochemical approach and sequencing of mitochondrial DNA revealed that car-

diac phenotype is the earliest that gives rise to all the other gland phenotypes in metapla-

sia segment during clonal evolution. High mutational load in BE [5,6] along with marked 

clonal heterogeneity [4] serves as a premise for development of dysplasia and esophageal 

adenocarcinoma.  

Two main hypothesis of BE source include classical mechanism of healing of caustic 

injury [2,7-9] and phenotype shift in context of so called “cytokine storm” [10-14]. These 

concepts are not mutually exclusive, but rather complete each other, leading to stem cells 

(SC) reprogramming with subsequent changes in architectonics of esophageal mucosa, 

that includes change in epithelial type and attraction of inflammatory microenvironment 

in lamina propria mucosa and submucosa. Our review analyzes molecular pathways in 

pathogenesis of BE. 

2. Gastro-biliary reflux as inductor of intestinal metaplasia 

Huge evidence suggests that gastro-biliary reflux plays the main role in BE develop-

ment that’s why BE is observed in  2-14% patients with gastro-esophageal reflux disease 
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(GERD) [15-17]. Pathogenetic association of acid and bile reflux with BE is shown in stud-

ies that used pH-metry in human [18-20], and also at laboratory models of BE 

[10,12,13,21,22], and in cell lines [23-34]. Acid reflux provides gradient of pH along the 

segment of metaplasia to reach optimal solubility of bile salts that allow them enter into 

epithelial cells [35].   

Multiple signaling pathways are involved in BE that are activated by bile reflux in-

side the epithelial cells and inspire epithelial-stromal interaction.  Inside epithelial cells 

in distal esophagus bile acids cause injury of organelles including mitochondrial mem-

branes that trigger uncontrolled generation of reactive oxygen species (ROS), oxidative 

stress and DNA damage. Bile acids also drive the release of proinflammatory cytokines, 

including IL1β, IL6, IL8, TNF-α [10,12,13,36-38], PGE2 [24] and COX-2 [25], that activate 

signaling pathway NF-kB, that prevents apoptosis and enhance proliferation of epithelial 

cells that favors regeneration of injury. Therefore development of intestinal metaplasia 

acts as an adaptational mechanism in distal esophagus. At the same time, repeated reflux 

exposure with DNA injury, including TP53, and accumulation of multiple mutations and 

genomic instability drives the way to dysplasia and EAC [4-6,39,40].   

Bile acid exposure of keratinocyte cell lines EPC1 and EPC2 induce changes in ex-

pression of numerous genes, including genes of squamous differentiation, oxidative 

stress, DNA repair, cell cycle and others [29]. The key event of phenotypic shift toward 

intestinal differentiation is activation of transcriptional factor CDX2. Cholic and de-

hyrdocholic acid cause the most prominent activation of CDX2 in cellular cultures of 

keratinocytes. Moreover, keratinocytes transfected with Cdx2 expression vectors start the 

transcription of MUC2, which is an early sign of cellular reprogramming from squamous 

to intestinal differentiation [23]. This process is caused by activation of signaling pathway 

NF-kB [23,33] and inhibition of NOTCH [26-28]. Bile acids exposure of EAC cell cultures 

(OE19, OE33) and immortalized squamous epithelium (Het-1A) showed decreased ex-

pression of NOTCH receptors that leads to inhibition of transcriptional factor Hes-1 and 

activation of ATOH-1 that directly stimulates the expression of CDX2. Moreover, activa-

tion of NOTCH receptor ligand Dll1 also increases the expression of ATOH-1, and high 

expression of CDX2 inhibits Hes-1, that leads to fixation of intestinal phenotype (Figure 

1).  

 

Figure 1. Notch-signalling pathway inhibition that leads to intestinal differentiation. 
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Notch-signalling pathway inhibition in immortalized keratinocytes leads to changes 

in morphology of basal layer of squamous epithelium with acquisition of columnar fea-

tures with expression of CDX2, KRT8, KRT18, KRT19, KRT20, MUC2, MUC3B, MUC5B, 

MUC17, SOX9, villin, Das-1 and reduced expression of squamous markers CK4, Tap63, 

KRT5, КRT13 и КRT14 [31,32].  

Bile acid exposure in acidic pH of cell line Het-1A leads to hedgehog (Hh) signaling 

pathway activation that is normally seen in esophagus during embyogenesis and is absent 

in squamous epithelium. Hh-signaling in Barrett’s esophagus is realized in both – epithe-

lium and stromal elements. Transmembrane receptor PTCH is activated after binding of 

Hh-ligands and inhibits protein SMO that leads to activation of transcriptional factor Gli 

causing the expression of different genes [41,42], including SOX9 in epithelium and BMP4 

in stromal elements. Due to epithelial-stromal interaction BMP4 activates pSMAD1/5/8 

[43] in keratinocytes that leads to expression of SOX9 [42], that normally is expressed in 

colon. Coactivation of transcriptional factor CDX2 is necessary for development of intes-

tinal phenotype KRT20+ and MUC2+, because CDX2 forms complex with pSMAD and 

binds to promoter of Muc2 to induce its transcription [44].  

 

Figure 2. Hedgehog-signaling pathway in development of intestinal metaplasia in distal esophagus. 

. 

Besides Wang D.H. et al. 2014 [45] revealed that Hh-dependent transcriptional factor 

FOXA2 can induce acquisition of intestinal phenotype without CDX2 activation by direct 

activation of MUC2 expression and via increase of AGR2 expression that controls pro-

cessing of MUC2 (Figure 2). 

Animal models can’t totally elucidate the pathogenesis of BE because after operations 

reflux exposure on esophagus is far from physiological.  At the same time researches on 

cell lines can explain biological mechanisms of bile exposure but they can’t reliably pro-

vide evidence on cellular origins of BE.  

Therefore, development of intestinal metaplasia in distal esophagus is complex and 

multiple stage process that is determined by realization of several complimentary signal-

ing pathways including epithelial-stromal interactions. This process doesn’t imply mature 

epithelial cells but rather involve SC and progenitor cells that give rise to several cell pop-

ulations that via clonal evolution leads to development of BE. 

3. Possible cellular origin of BE 
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Several possible origins of BE were proposed that imply different pathogenetic mech-

anisms. Chronic bile and acid exposure of distal esophagus causes intestinal metaplasia 

due to cellular reprogramming that involves changes in transcriptional factors expression 

and shift in cellular phenotype.  Proposed pathways of cellular reprogramming include 

transdifferentiation of squamous epithelium and transcommitment of progenitor cells 

[40,46-48]. 

Transdifferentiation is a process when one well differentiated cellular type (g.e., 

squamous epithelium) turns into another cellular type (columnar epithelium) [46,49]. Di-

rect transdifferentiation means that change in cellular phenotype doesn’t imply cell divi-

sion. Undirect transdifferentiation first involves dedifferentiation of squamous epithe-

lium to progenitor cells and then acquisition of new phenotype – metaplastic columnar 

epithelium. Therefore undirect transdifferentiation suggests transcommitment of progen-

itor cells as well. The term transcommitment is more precise, because transdifferentiation 

means generation of one cell type from one another while in BE several cellular pheno-

types (lines of differentiation) arise from multipotent SC [50].  

Six potential cellular origins of columnar metaplasia in distal esophagus are pro-

posed:  

• SC and progenitor cells of squamous epithelium  

• SC and progenitor cells of gastro-esophageal junction  

• SC and progenitor cells of submucosal glands and their ducts  

• SC and progenitor cells of first oxyntic gland of stomach 

• Residual embryonic cells  

• Circulating bone marrow-derived multipotent SC  

 

Multilayered epithelium at squamo-columnar junction that consists of several layers 

of immature squamous epithelium covered with mucous-secreting columnar cells favours 

transcommitment of squamous progenitor cells. Multilayered epithelium demonstrates 

ultrastructural and immunohistochemical features of both squamous and columnar epi-

thelium. Scanning electron microscopy (SEM) revealed that multilayered epithelium dis-

played both intercellular ridges (feature of squamous epithelium) and short, stubby mi-

crovilli and bulging mucus (typical for metaplastic columnar epithelium) [51]. Moreover 

basal cells of multilayered epithelium co-expressed CK19 (feature of columnar epithe-

lium) and CK4 typical for squamous epithelium [52]. Multilayered epithelium was asso-

ciated with GERD and doesn’t present in normal gastro-esophageal junction [53]. Based 

on these data and own findings, Chandrasoma P.T. et al. created revolutionary conception 

of cardia as reflux damaged dilated distal esophagus lined with metaplastic columnar ep-

ithelium [54-56]. Therefore first oxyntic gland serves histological demarcation between 

stomach and esophagus.  

Origin of BE from progenitor cells of squamous esophagus was also confirmed by 

Nicholson A.M. et al. 2012 [1], who revealed the same mutations in mitochondrial DNA 

in metaplastic columnar epithelium and adjoined squamous epithelium.  

SC of gastro-esophageal junction were suggested by Jiang M. et al. 2017 [57], who 

showed in multilayered epithelium in transitional zone in human biopsies and in mice 

basal progenitor cells with phenotype p63+ KRT5+ KRT7+. In mice upon ectopic expres-

sion of CDX2 these transitional basal progenitors differentiated into intestinal-like epithe-

lium including MUC2+ TFF3+ goblet cells. These progenitor cells are likely to be the same 

squamous progenitor cells as discussed earlier.   

SC and progenitor cells of submucosal glands of esophagus are other possible source 

of columnar metaplasia. Thorough histological examination showed that multilayered ep-

ithelium was a continuation of submucosal esophageal gland ducts [58,59]. Glickman J.N. 

et al. 2001 [58] revealed the same expressional profile of CK7, 8/18, 19 и 20 in columnar 

epithelium, squamous epithelium, submucosal glands and their ducts. Moreover, the pro-

liferative index of multilayered epithelium of ducts was high in 88% of cases. Therefore 

multilayered epithelium at the surface that is thought to be the earliest sign of reflux injury 

may arise from SC of esophageal submucosal gland ducts.   
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In pigs multipotent SC of submucosal glands are involved in regeneration after injury 

of squamous epithelium. Moreover these cells express columnar epithelial markers SOX9, 

CK7 and CK8 [60]. Owen R.P. et al. 2018 [61] found similar expression of different markers 

(including LEFTY1 and OLFM4) in SC of submucosal glands and SC in metaplastic co-

lumnar epithelium. These findings favors SC of submucosal glands to be the source of BE. 

But the most crucial evidence is that DNA sequencing revealed similar mutations in 

CDKN2A and TP53 (including LOH) in metaplastic epithelium and ducts of submucosal 

glands [62].  

At the same time there is evidence that metaplastic epithelium arises from LGR5+ SC 

and progenitor cells of first oxyntic gland in the stomach. Quante M. et al. 2012 [63] de-

veloped mice model with permanent overexpression of IL-1β in esophagus  (L2-IL-1β 

mice). At the age of 12-15 months these mice demonstrated MUC5AC+ TFF2+ Notch1+ 

columnar metaplasia of distal esophagus without goblet cells. After treatment of deoxy-

cholic acid these mice developed Barrett’s-like metaplasia with expression of мРНК Tff2, 

Cckbr, Muc5ac, Cdx2, Krt19, Bmp4 and Shh. Inhibition of Notch-signalling pathway led 

to acquisition of intestinal phenotype enriched with goblet cells. These data dive evidence 

that metaplastic epithelium evolves from cardiac to intestinal phenotype. And the reason 

for cardiac phenotype are LGR5+ SC and Dclk1+ progenitor cells of first oxyntic gland that 

proliferate and spread to distal esophagus. The expression of mRNA LGR5 and Dclk1 also 

was seen in human biopsy specimens by real-time PCR. Further research showed the role 

of Notch-signaling pathway and its association with NF-κB activation in LGR5+ SC in 

development of metaplasia, dysplasia and EAC [64].  

LGR5 expression increases in high-grade dysplasia and EAC meaning that LGR5+ SC 

are involved in carcinogenesisе [65,66]. Overexpression of  LGR5 is associated with poor 

survival in EAC patients independently from stage of the disease, age and neoadjuvant 

or adjuvant therapy [66,67].  

Lavery D.L. et al. 2014 [68] demonstrated that metaplastic glands of BE on structural 

level are similar to pyloric glands of the stomach with proliferative zone at the middle 

third of mucosa with expression of LGR at the bottom and bidirectional migration of IdU-

traced cells. Epithelial cells in upper compartment express MUC5AC and TFF1, and in 

lower compartment – TFF2 and MUC6. Goblet cells are localized at the upper third of 

mucosa and express MUC2 and TFF3. Jang B.G. et al. 2015 [69] suggest that LGR5+ in 

areas of intestinal metaplasia in stomach and esophagus with expression of intestinal SC 

markers ASCL2, OLFM4 and EPHB2 are the distinct population of SC that replaces pre-

existing SC.  

Recidual embryonic SC [70,71] and bone marrow-derived multipotent SC [72,73] 

were also suggested as BE cellular origin, but gained little evidence.  

The most established hypothesis of BE origin is transcommitment of multipotent SC 

and progenitor cells. Although seems reasonable that different progenitor cells may be 

involved in pathogenesis of BE (Figure 3), that are responsible for all the cellular pheno-

types of columnar metaplasia. It explains heterogeneity, polyclonal and mosaic spread of 

metaplastic glands.     
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Figure 3. Cellular origins of metaplasia and pathogenesis of BE and EAC. Abbreviations: SE – squa-

mous epithelium, MSCSE – multipotent stem cells of squamous epithelium, REC – residual embry-

onic cells, ME – multilayered epithelium, MSCME – multipotent stem cells of multilayered epithe-

lium, SEG – submucosal esophageal glands, MSCSEG – multipotent stem cells of submucosal esoph-

ageal glands, FOG – first oxyntic gland of the stomach, MSCFOG – multipotent stem cells of first 

oxyntic gland of the stomach,  BMDCSC – bone marrow-derived circulating stem cells, CM – car-

diac-type metaplasia, BE – Barrett’s esophagus, SCBE – stem cells associated with Barrett’s esopha-

gus, EAC – esophageal adenocarcinoma, CSC – cancer-associated stem cells. 

4. Mechanism of injury repair in distal esophagus: experimental findings 

Injury of squamous epithelium of esophagus by reflux causes development of erosive 

esophagitis. Injury repair in distal esophagus is stereotypic [2]: at the first stage granula-

tion tissue forms under a cover of fibrinous exudate for protection of deep tissues, then 

granulations are covered with reparative epithelium without functional properties includ-

ing secretion of mucous.  That the defect is covered with lateral growth of adjacent 

glands/crypts (ulcer-associated mucosal lineage – UACL) till functional epithelium is re-

stored [2,9].  

According to this model repair of local injury leads to proliferation of progenitor cells 

in squamous epithelium and first oxyntic gland in the margins of ulceration. Repeated 

reflux exposure drives a selection of clones resistant in these conditions that are mucous 

secreting cardiac-type epithelium. Consecutively columnar epithelium spreads more and 

more in distal esophagus and goes through clonal evolution to form all the gland pheno-

types of BE. Therefore similar to pyloric gland compartmentalization pattern [50,68] may 

be explained by typical process of healing injury with UACL that gives phenotype of py-

loric metaplasia all through gastrointestinal tract [8,9,74].  

Surgical model of esophagojejunostomy in rat prevents migration of SC from stom-

ach to esophagus. Two weeks after operation there was ulceration in distal esophagus 

near the anastomosis that was epithelized by distal margin with immature crypts of jeju-

num [7]. Metaplastic crypts had phenotype similar to epithelium of small intestine with 

expression of CDX2, villin, CD10, MUC2 and negative expression of gastric markers 

(MUC5AC and MUC6), intestinal marker Das-1 and squamous marker p63. Reepitheliza-

tion of ulcer caused epithelial to mesenchymal transition (positive expression of Е-cad-

herin in epithelial cells of newly developed crypts and co-expression of E-cadherin and 
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TWIST in spindle-like cells in stroma at margin of ulcer) and migration of cells from jeju-

num to distal esophagus. At proximal margin of ulcer there was proliferation of immature 

squamous epithelium.  

In cell cultures of BE without dysplasia and dysplastic BE bile salts also activate epi-

thelial to mesenchymal transition (decreased expression of cadherin 1, increased expres-

sion of fibronectin 1, vimentin and matrix metalloprotease 2, and increase in cell mobility), 

that was associated with VEGF signaling [75]. Phipps S.M. et al. 2020 [76] found genes 

GPS1 and RRM2, that were suppressed by low pH that caused epithelial to mesenchymal 

transition in BE with high-grade dysplasia and EAC. Therefore bile salts at low level of 

pH induce epithelial to mesenchymal transition and modulate both reparation of injury 

at distal esophagus and invasion in EAC.  

5.«. Cytokine storm» provides microenvironment for BE development 

Conception of reflux induced and cytokine mediated injury of mucosa in distal 

esophagus was proposed by Souza R.F. et al. 2009, 2010, 2016, 2017 [10-13,77]. Souza R.F. 

et al. 2009 [77] found that in rats after esophagoduodenostomy ulcers appeared weeks 

after operation that’s why they can’t be initiated directly by acid and bile reflux in manner 

of caustic injury. Rather authors observed morphological features of reflux esophagitis 

with lymphocytic infiltration of submucosa at the 3rd day after operation. Then lympho-

cytic infiltration spread into lamina propria mucosa and in squamous epithelium. Infiltra-

tion of lamina propria significantly increased at the end of first week and in epithelium – 

3 weeks after operation. Intensity of infiltration was stable from 3rd to 8th week after op-

eration. On the 3rd day after operation infiltrate was composed only from CD3+CD20- T-

lymphocytes, but since the 7th day few neutrophils presented as well.  Basal cell hyper-

plasia was observed 1 week after operation and papillary hyperplasia developed 2 weeks 

and reached the peak 4 weeks after operation. And only from the 4th week there were 

found erosions in distal esophagus. The dynamics of morphological changes were associ-

ated with levels of IL-8 in different compartments of mucosa and submucosa. Other stud-

ies demonstrated the role of other pro-inflammatory cytokines IL-1β [37,38] and TNFα 

[78,79] in reflux-induced injury of esophageal mucosa. These cytokines cause chemoat-

traction of immune cells and activate NF-κB signaling that leads to persistent inflamma-

tion. Therefore the pathogenesis of erosive esophagitis is associated with immune cells 

mediated injury caused by release of proinflammatory cytokines by keratinocytes with 

chemoattraction of T-lymphocytes and other immune cells.   

This model was validated on biopsies of patients with severe reflux esophagitis 1-2 

weeks after cessation of protone pump inhibitors (PPIs). Histological findings included 

huge infiltration of mucosa with predominantly CD3+ T-lymphocytes with few or absent 

neutrophils and eosinophils, with aggravation of basal cells and papillary hyperplasia and 

increased spongiosis [78]. Immunohistochemical evaluation showed overexpression of 

HIF-2α and phosphorylated p65, that was associated with increased levels of mPNA of 

proinflammatory cytokines IL-8, IL-1β, TNF-α, COX-2 and ICAM-1 [79,80].  

Bile acid exposure in acidic pH leads to increase of ROS in keratinocytes and meta-

plastic epithelium in BE [81] that leads to HIF-2α stabilization [82], translocation in nu-

cleus and binding with  HIF-responsive elements (HRE), that triggers synthesis and re-

lease of proinflammatory cytokines. Therefore, HIF-2α regulates inflammatory response 

to reflux injury that is associated with NF-κB signaling via p65 hosphorylation (Figure 4).   
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Figure 4. NFkB signaling pathway in pathogenesis of reflux esophagitis and BE. 

NF-κB activation in distal esophagus not only leads to persistence of inflammation 

but induces development of intestinal metaplasia via activation of CDX2, which is crucial 

for intestinal differentiation. CDX2 harbors binding site for NF-κB and may act as a down-

stream target for NF-κB [12,13,23,33]. Moreover after exposure of deoxycholic acid NF-κB 

directly activates MUC2 expression [83].  

Levels of IL-8 and IL-1β rise in line erosive esophagitic – BE – EAC that is accompa-

nied with increase in level of NF-κB [37] that leads to epithelial cells proliferation and 

prevention of apoptosis that promotes carcinogenesis [36]. 

Other important cytokine in BE pathogenesis is IL-6. L2-IL-1β/IL-6−/− deficient mice 

didn’t develop metaplasia in distal esophagus [63]. IL-6 is produced in metaplastic epi-

thelium and causes activation and translocation of STAT3 in nucleus with concecutive 

synthesis of antiapoptotic proteins Bcl-xL and Mcl-1 [84-86]. This signaling pathway fa-

vors epithelial cells survival in reflux aggressive environment. Moreover, autocrine IL-6 

signaling in EAC induces cell proliferation and angiogenesis that promotes cancer pro-

gression (Figure 5). Interaction and reciprocal activation of IL-6/STAT3 and NF-κB path-

ways forms persistent inflammation and drives carcinogenesis.  
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Figure 5. IL-6/STAT3-signaling pathway in BE. 

6. Genomic alterations in BE carcinogenesis 

Repeated bile acid exposure in acidic pH causes oxidative stress in squamous and 

metaplastic epithelium in BE, that leads to DNA damage [24] and particularly double-

strand breaks [87,88]. Moreover, hydrochloric acid in the lumen of esophagus reacts with 

nitrites of saline that causes the release of nitric oxide (NO), that per se may lead to double-

strand breaks of DNA [87,89-91]. In turn, double-strand breaks are the most hazardous as 

they repair with loss of origin DNA sequence that contributes to frameshift and truncating 

mutations, and to loss of large DNA regions including several genes that may lead to loss 

of heterozygotici (LOH).  

Mutataional load in BE without dysplasia widely vary an is estimated as 0,42-1,28 

mutations per 1 Mbase and higher [6,92-94]. Expectedly, Mutataional load increases in 

line: BE without dysplasia – low grade dysplasia – high grade dysplasia – EAC [95], reach-

ing 7,33-9,9 mutations per 1 Mbase in EAC [94,96,97]. The higher mutational load is asso-

ciated with higher risk of neoplastic progression [6,92,98]. However, small series of sam-

ples was observed in most studies. On a large sample of patients Eluri S. et al. 2018 [93] 

showed no differences in mutational load in progressors and non-progressors in large 

sample series.   

The most important for neoplastic progression in metaplastic segment are clones 

with mutations in TP53 that provokes exponential increase of genetic abnormalities. TP53 

mutations are demonstrated in 72% of EAC [96]. New generation sequencing showed that 

these mutations may arise years before histological diagnosis of dysplasia in progressors 

and are seen only in 2,5-5% of non-progressors [5,6,99]. 

TP53 mutations facilitate realization of further genetic mechanisms of carcinogenesis 

in BE. Thus, loss of function mutations of TP53 provoke exponential growth in number of 

mutations due to impaired mechanisms of DNA repair and apoptosis. Moreover mutated 

p53 acquires non-canonical functions, such as induction of epithelial to mesenchymal 

transition, activation of NF-kβ and others [100]. 
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Mutations of TP53 serve as bifurcation in realization of different genetic mechanisms 

(Figure 6). Classical pathway with gradual increase in number of mutations with consec-

utive inactivation of suppressor genes (CDKN2A, SMAD4 и TP53) is rarely observed. 

More often (62,5% of EAC) mutations of TP53 induce rapid whole genome doubling and 

chromosome instability with amplification of oncogenes in cancer cells [5]. Third pathway 

includes catastrophic genetic events such as chromothripsis, kataegic and breakage-fu-

sion-bridge due to impaired DNA reparation [39,97,101].  

Chromothripsis is a catastrophic genomic event with simultaneous large genomic re-

arrangement including chromosomal shattering, gains and losses that involve regions 

with several genes and may cause rapid activation of oncogenes and inactivation of tumor 

suppressor genes [102]. Particularly, chromothripsis may lead to amplification of MYC 

and MDM2 oncogenes [97].   

Genetic catastrophes are also associated with TP53 mutations. Rausch T. et al. 2012 

[103] showed such association in children with Sonic-Hedgehog medulloblastoma as a 

part of Li-Fraumeni syndrome. Authors elucidated 3 mechanisms of chromothripsis 

linked with TP53 mutations: 1) critical telomere shortening followed by chromosome end-

to-end fusions, 2) premature chromosome compaction due to cell cycle impairment (G2/M 

transition checkpoint), 3) impaired DNA repair and apoptosis induction mechanisms. 

High frequency of TP53 mutations and telomere shortening can explain high frequency 

of chromothripsis in EAC – 30-32,5% of cases [97,101].  

 

Figure 6. Genetic mechanisms of neoplastic progression in BE. . 

Chromothripsis often coexists with kataegis. Kataegis is a region of hypermutation 

with cluster changes C>T and C>G in TpC dinucleotides, that was first described in breast 

cancer [104,105]. Kataegis is associated with activity of apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide (APOBEC) protein members. APOBEC protein family is a 

group of cytosine deaminases that target nucleic acids to induce C > U changes that may 

induce mutations [106]. In cytoplasm APOBECs prevent replication of DNA-containing 

viruses (first of all human immunodeficiency virus) and serve as a component of innate 

retroviral defense [107]. APOBEC target single stranded DNA and produce cluster of 

strand-coordinated mutations. Kataegis is observed at points of DNA fragmentation dur-

ing chromothripsis after telomere crisis [108]. The frequency of kataegis in EAC varies 

from 31 to 86,4% of cases [97,101].  

Breakage-fusion-bridge begins with loss of telomeres followed by fusion of chromo-

some ends or sister chromatid fusion with formation of double-minute chromosomes that 

break during anaphase [109]. This process repeats through several cell cycles leading to 

inverted duplications with amplification of certain chromosome regions. Malignant trans-

formation is induced when such amplified regions include oncogenes. Breakage-fusion-

bridge cycle is seen in 27% cases of EAC. It triggers amplification of potent oncogenes 

RCF3, MDM2, VEGFA, BCAT1 and KRAS [97,101].  
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These data give evidence that genomic catastrophes are important in malignant 

transformation of BE and represent an alternative mechanism of carcinogenesis. Genomic 

catastrophes that are frequently revealed in high grade dysplasia and EAC may probably 

be a reason for rapid neoplastic progression in BE [39,94,97,101]. Moreover, catastrophic 

events are a point of no return when malignant transformation becomes indispensable 

[110].   

7. Conclusions 

Development of intestinal metaplasia in distal esophagus is a multiple step process 

that takes place under exposure of bile reflux in acidic pH that acts as a trigger for creation 

of proinflammatory microenvironment. Bile acids exposure and cytokine storm causes re-

programming of SC and progenitor cells that leads to development of cardiac metaplasia 

and then via clonal evolution it gives rise to different cell populations along the metaplasia 

segment. Increase in clonal diversity and active mutagenesis with massive genome rear-

rangements underlie neoplastic progression to EAC.  
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