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Abstract: Multisource meteorological re-analyses are the most reliable forcing data for driving hydrological 

models to simulate streamflow. We aimed to assess the different hydrological responses through hydrological 

modeling in the upper Lancang-Mekong River Basin (LMRB) using the two gridded meteorological datasets, 

climate forecast system reanalysis (CFSR) and the China Meteorological Assimilation Driving Datasets for the 

SWAT model (CMADS). We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root 

mean square error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial 

distributions of the statistical indicators in the CFSR and CMADS, namely, the R, PBIAS, and RMSE values, 

were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was used to do 

hydrological modeling based on CFSR and CMADS meteorological re-analyses in the upper LMRB. Different 

meteorological datasets resulted in significant differences of hydrological responses, which reflected by 

different sensitive parameters and their optimal value. These different calibrated optimal values of sensitive 

parameters further lead to the different simulated water balance components between CFSR- and CMADS-

based SWAT+ model. These findings can help in a better understanding of the strengths and weaknesses of 

different meteorological re-analysis datasets and the roles on the hydrological modeling. 

Keywords: CFSR; CMADS; meteorological variables; hydrological simulations; SWAT+; upper 

Lancang-Mekong River Basin (LMRB) 

 

1. Introduction 

Both climate change and anthropogenic activities influence the changes in streamflow [1]. While 

there are no clear trends of changing streamflow at the global level, they do exist at a regional level. 

As one of the longitudinal large mountainous watersheds, the LMRB has shown sensitivity to the 

impacts of climate change [2] and socio-economic activities and agricultural production. In the past 

few decades, annual streamflow in the LMRB has shown no significant trends and is in a state of 

normal fluctuation [3]. However, greater variability in runoff is expected due to climate change [4] 

and anthropogenic activities [5]. Moreover, studies based on climate projections from general 

circulation models have reported that streamflow in the Lancang-Mekong River will increase 

significantly due to climate change [6,7], leading to an increased risk of flooding [8,9]. In order to 

better understand the changes in hydrological conditions and strengthen the water resource 

management and impact assessment of LMRB, relatively accurate hydrological simulation or 
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hydrological modeling is necessary [10]. Reanalysis datasets are reliable forcing inputs for 

hydrological simulations as they can be used to compensate for the in situ observations in the LMRB 

[10,11]. A review of climate proxies indicated that re-analyses have a large number of climate 

variables that can be easily used for streamflow simulations [12]. However, there are significant 

biases in the different re-analyses due to a variety of data sources, assimilation techniques, and model 

equations [13]. Different meteorological forcing reanalysis products provide us with the opportunity 

to understand the differences between re-analyses and how they behave during hydrological 

modeling in the LMRB. 

In order to investigate the potential applicability of meteorological forcing re-analyses on 

hydrological simulation or prediction, several studies have evaluated meteorological forcing re-

analyses following one of two procedures: (1) comparison of re-analysis products with the 

corresponding observations on spatiotemporal scales [10,13–16]; or (2) comparison of the 

meteorological forcing re-analyses based simulated streamflows with the hydrological observations 

[10,11,14–17]. Several studies have compared the precipitation and temperature of global 

atmospheric re-analyses with the gridded-observed data [10,13]. They compared precipitation and 

temperature from various global and regional meteorological re-analyses with gridded observations, 

and found that there are large differences between the re-analyses and the gridded observations. The 

temperature of CFSR was more realistic than its precipitation, while the precipitation of the CFSR is 

higher than that in the observed data. Owing to the sparse and discontinuous meteorological data 

from East Asia, CMADS was developed to provide regional gridded meteorological re-analyses [18]. 

With the wide application of CMADS in East Asia [19], many studies compared the meteorological 

variables of CFSR and CMADS with the observed data [14–16,20]. Gao et al. [14] and Wang et al. [20] 

evaluated the performance of CMADS and CFSR with gauge observations on two time steps (daily 

and monthly). They found that CFSR tends to overestimate the precipitation, while CMADS tends to 

underestimate it on both time steps. CMADS exhibits a greater accuracy in detecting precipitation 

events [20]. Two studies evaluated CMADS and CFSR in different regions of China [16]. Liu et al. [15] 

found that the performance of precipitation in CFSR and CMADS was poor and CFSR precipitation 

was overestimated in the Qinghai-Tibet Plateau, while Zhang et al. [16] found that the performance 

of precipitation in CFSR and CMADS was good in Northeast China. They all found that the 

performance of max/min temperature was good, but CFSR temperatures were underestimated. The 

performance of humidity and wind speed in the CFSR was inferior to that in the CMADS, with low 

correlation and high bias [15]. 

The differences in meteorological forcing re-analyses can lead to different hydrological 

responses, due to the fact that the errors in meteorological inputs can be propagated through the 

hydrological models into runoff simulations [21,22], such as parameter sensitivity and optimization 

[23,24]. Dile and Srinivasan [17] applied conventional weather observed data and CFSR data in the 

uncalibrated SWAT model, to compare the CFSR-based streamflow simulation with the traditional 

weather-based streamflow simulation in monthly time steps. And the results demonstrated that the 

CFSR-based streamflow simulation had a lower performance rate than did the conventional weather-

based streamflow simulation, and the CFSR-based streamflow simulation substantially 

underestimated streamflow. The water balance components in two streamflow simulation are 

similar, but the contribution of surface streamflow and base flow to total streamflow are different. 

Fuka et al. [11] evaluated the simulated streamflows of CFSR data and conventional weather station 

data on a daily time step. They performed separate the SWAT model calibrations for each 

meteorological dataset, and all the results showed that CFSR-based streamflow simulation is as good 

as, or better than, the conventional weather-based streamflow simulation. They speculated that the 

advantage is that the CFSR data represent a watershed area better than does a weather station. Lauri 

et al. [10] assessed the daily streamflow simulation driven by global and regional gridded 

temperature and precipitation datasets in the Mekong River basin. The results demonstrated that the 

CFSR-based streamflow simulation had a lower performance rate than did the remotely sensed 

precipitation-based streamflow simulation. CFSR and CMADS, freely available global and regional 

gridded meteorological re-analyses, contain six consistent meteorological elements. These 
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meteorological elements satisfy the operation of the SWAT model. Gao et al. [14] assessed the 

performance of precipitation data from CMADS and CFSR, as drivers for streamflow simulations, 

and used separate SWAT model calibrations for each meteorological dataset to ensure a relatively 

accurate streamflow simulation. The results demonstrated that the CFSR precipitation-based 

streamflow simulation had a much lower performance rate than did CMADS. They concluded that 

the poor performance of CFSR in streamflow simulation was because CFSR overestimates 

precipitation. However, Wang et al. [20] assessed streamflow simulations based on CFSR 

precipitation and CMADS precipitation with gauge-observed precipitation-based streamflow, the 

SWAT model was calibrated by gauge-observed meteorological elements. They found that CFSR 

precipitation-based streamflow simulation are inferior. Liu et al. [15] and Zhang et al. [16] compared 

CFSR-based streamflow simulation in relation to CMADS-based streamflow simulation on daily and 

monthly time steps. They performed separate SWAT model calibrations for each meteorological 

dataset. The results demonstrated that the CFSR-based streamflow simulation had a lower 

performance rate than did CMADS-based streamflow simulation. An unexpected finding was that 

the performance of traditional weather gauging station-based streamflow simulation is 

unsatisfactory [15], but the reasons were not explained further. However, previous studies focused 

mainly on evaluation of the streamflow simulation, without fully describing the different 

hydrological responses. 

Our study aimed to validate the applicability of the re-analysis datasets and to assess different 

hydrological responses in the SWAT+ model simulations. In addition to the analysis of important 

meteorological variables, such as precipitation and temperature, as conducted in previous studies, 

we analyzed other meteorological variables of the re-analysis datasets, including relative humidity, 

wind speed, and solar radiation. The spatiotemporal characteristics of these meteorological variables 

were validated for the period 2008–2013. We used the newly developed SWAT+ hydrological model 

and SWAT+ parameters sensitivity/optimization toolbox and algorithms to present the different 

hydrological responses based on the different meteorological re-analysis datasets in the upper LMRB. 

The findings can help in a better understanding of the roles of meteorological re-analysis datasets 

and hydrological model structure in hydrological process. 

2. Materials and Methods 

2.1. Study Area 

The upper Lancang-Mekong River is one of the main rivers located in southwest China and is 

the most typical north-south river in the world (Figure 1), with a length of approximately 2129 km 

and a drainage area of 1.87×105 km2. The LMRB spans the tropical, subtropical, and temperate climate 

zones, and possesses unique hydrological characteristics, owing to its great regional variety. Due to 

the monsoon, the upper LMRB is dry and cold in winter and hot and humid in summer, and the 

annual precipitation in the region is distributed unevenly. The precipitation in the wet season in the 

LMRB accounts for the majority of the annual precipitation, and the seasonal changes are significant. 

Therefore, floods and droughts are the major natural disasters in the upper LMRB. According to 

statistical data acquired from the Yunnan Water Resources Department 

(http://wcb.yn.gov.cn/html/shuiziyuangongbao/), the average recurrence of floods in the upper 

LMRB is 9 years for major floods and 3 years for minor ones, and most floods occur between June 

and August. The average flooding frequency in this region is 3–5 years. These natural disasters have 

caused huge losses to agriculture in the downstream areas of Mekong river, which include several 

developing countries. All these countries are highly dependent on agriculture, fishing, and 

hydropower; therefore, the forecasting, governance, and management of floods and droughts in these 

areas are extremely important. 
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Figure 1. DEMs, delineated watershed, and location of the Chiang Sean hydrological station over the 

upper LMRB. 

2.2. Data 

The NCEP CFSR is a new generation of reanalysis product, which provided the best estimate of 

the land surface state from 1979 to 2014 and developed from the global high-resolution atmosphere-

ocean-land surface-sea ice coupling system and data assimilation system [25]. Notably, the CFSR 

datasets have a global high resolution (T382L64). The CFSR datasets provide six meteorological 

variables for hydrological model, including precipitation, maximum/minimum temperatures, 

relative humidity, wind speed, and solar radiation. We downloaded daily meteorological variables 

in the SWAT file format from the SWAT data website (https://swat.tamu.edu/data/cfsr). In order to 

perform grid-to-grid comparison between CFSR and CMADS meteorological re-analyses, the 

coordinates of CFSR were interpolated to those of CMADS by bilinear interpolation method. 

Different from the global reanalysis datasets CFSR, CMADS is a regional reanalysis data 

developed by Dr. Meng Xianyong, mainly covering East Asia (0 ° -65 ° N, 60 ° -160 ° E). The CMADS 

product was constructed through assimilation and correction of the meteorological observation 

(automatic stations, satellites, and radars) and the European Centre for Medium-Range Weather 

Forecasts background field using multiple technologies and scientific methods, including 

resampling, bilinear interpolation, and the loop nesting of data [26]. The assimilation process of 

CMADS is mainly achieved through LAPS and STMAS system. CMADS is available to the public, 

which is benefited for the areas in East Asia, especially for the regions with relatively scarce 

meteorological data. In this study, we used CMADS version 1.0 (1/3 °), which is freely available 

(http://www.cmads.org/). We chose the 6-year common period (i.e., 2008–2013), to evaluate the 

meteorological datasets of the CFSR for the upper LMRB.  

In addition to meteorological forcings, other land surface data are needed for delineating the 

watershed, including DEMs, land use, and soil type. The 90 meter DEM were acquired from the 
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National Aeronautics and Space Administration and the Department of Defense’s National Imagery 

and Mapping Agency. The land use data were obtained from the Earth Resources Observation and 

Science Center, which adopts USGS LULC 24 classification standard. The soil type data were required 

from the Food and Agriculture Organization of the United Nations [27], which was published in 2003 

(https://www.fao.org). The gauged streamflow at the Chiang Sean hydrological station, obtained 

from the Mekong River commission. 

There are eight main LULC types in the upper LMRB (Table.S1), including grassland, mixed 

forest, evergreen broad-leaved forest, tundra, savanna, deciduous broad-leaved forest, shrub land 

and irrigated farmland and pasture. The coverage area of grasslands and mixed forests exceeds half 

of the total watershed area, and are mainly distributed in the upstream and downstream regions, 

respectively. There are 11 identified soil types and two dominant soil textures (loam and 

sandy_clay_loam) in the upper LMRB (Table.S2). More information on soil type are listed in Table S2 

of the supplementary materials. Based on these geographical data, the upper LMRB were delineated 

to achieve a stream network based on QGIS Interface for SWAT+ 2.0. We created four subbasins from 

the DEM by specifying area thresholds and outlet. To ensure accurate Landscape unit of HRUs to 

separate floodplain and upslope areas, we created 110 landscape units by demarcating the floodplain 

simply as a buffer drawn around the stream reaches. For each landscape unit, the largest potential 

HRUs was chosen to be the dominant HRU, sharing the same land use, soil, and slope range [28]. 

Streamflow was generated from each HRU separately and then determine the route to obtain the total 

streamflow for the watershed, which provided a much better physical description of the water 

balance [29,30]. 

2.3. Evaluation Index 

The performance of the CFSR meteorological datasets was evaluated for the 6-year common 

period (2008–2013), using R, PBIAS, and RMSE. R was used to measure the correlation between the 

variables of CFSR and CMADS; if the R value was close to 1, the two variables were considered to be 

linearly related. Furthermore, PBIAS in this study is a measure of the average trend of CFSR greater 

than or less than CMADS [31,32]. The optimal PBIAS value was considered as 0 (%). Low absolute 

values indicated an accurate model simulation, such as a good model performance could be ±25 %. 

A positive value of PBIAS indicated an overestimation (by the model), whereas a negative value 

indicated an underestimation. Finally, the RMSE was used for measuring the differences between 

values predicted by the model and the observed values, a smaller value indicating better model 

performance. 

R= 
∑�Xt-X���Yt-Y���∑�Xt-X��2�∑�Yt-Y��2

, (1) 

PBIAS= 
∑(Xt-Yt)×100∑Yt

, (2) 

RMSE= � 1

N
∑ (Xt-Yt)

2, (3) 

where Xt indicates the meteorological variables of the CFSR datasets, Yt indicates the meteorological 

variables of the CMADS datasets, including six mereological elements, and X� and Y� indicate the 

average values of the CFSR and CMADS meteorological variables, respectively. 

The Nash-Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), and PBIAS were 

used to evaluate the hydrological model simulations based on the CFSR and CMADS meteorological 

datasets, respectively, for the 6-year common period (2008–2013). The NSE reflects the degree of fit 

between the simulated and observed streamflow [33]. If NSE approaches 1, it indicates the most 

accurate hydrological simulation. Moriasi et al. [34] recommended the use of performance ratings to 

measure the SWAT performance. For the monthly time step, 0.75 < NSE < 1 and PBIAS < ±10 % 

indicated that the hydrological simulations were very good. The values of 0.65 < NSE < 0.75, and ±10 

% ≤฀PBIAS ≤ ± 15 % indicated that hydrological simulations were good; 0.50 < NSE < 0.65 and ± 15 
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%฀≤ PBIAS ≤฀± 25 % indicated that the hydrological simulations were satisfactory; while NSE ≤฀0.5 

and PBIAS ≥ ± 25 % indicated that the hydrological simulations were unsatisfactory. Note that R2 was 

used to measure the accuracy of the simulated streamflow. The equations used to calculate the 

statistical indexes are shown below: 

NSE=1-
∑ (Qo

t -Qm
t )

2

∑ (Qo
t -Qo

t����)2 , (4) 

R2=
(∑ (Qo

t -Qo
t����)∑ (Qm

t -Qm
t�����))2∑ (Qo

t -Qo
t����)2∑ (Qm

t -Qm
t�����)2 , (5) 

PBIAS= 
∑�Qm

t -Qo
t �×100∑Qo
t , (6) 

where Qo
t ，Qm

t ，Qo
t����  , Qm

t�����  denote the observed, simulated, observed average, and simulated 

average streamflows at time t, respectively.  

2.4. Hydrological Models 

The SWAT model aims to predict the long-term effects of land management practices on the 

production of water, sediment and agricultural chemicals in large complex watersheds with different 

soil, land use and management conditions [30]. Note that the SWAT+ is a completely restructured 

version of the SWAT. As a semi-distribution hydrological model, the SWAT+ can effectively simulate 

the flow and pollutant transport of rivers under different conditions and scenarios across a wide 

range of spatiotemporal scales. Bieger et al. [29] concluded that the SWAT+ model is more flexible in 

terms of the delineation and interaction of the spatial objects in a watershed, while offering users the 

opportunity to achieve a more realistic spatial representation of their target watershed areas. 

In this study, we used a new and free SWAT+ model version 2.0.6 to do the hydrological 

modeling in the upper LMRB based on QSWAT+ platform, which is the Quantum GIS 3.16 Interface 

for SWAT+. The SWAT+ model provides diverse options of physical processes at watershed level. 

Driving SWAT+ model, we used the Penman/Monteith method, the Soil Conservation Service’s curve 

number method and the variable storage routing method to calculate PET, estimate surface runoff 

and determine the route of streamflow in the channel respectively. 

2.5. SWAT+ Parameter Sensitivity Analysis and Calibration Tool 

In our study, we used a new and free SWAT+ Toolbox v1.0 to carry out the parameter sensitivity 

analysis (SA), as well as calibration and validation, for the upper LMRB. Sobol’ method, an available 

quantitative SA method in the SWAT+ Toolbox, was used in this study for the upper LMRB, which 

can indicate the degree of sensitivity of the parameters according to the contributions of each 

parameter to the final output results [35,36]. SA is the identification of parameters that are sensitive 

to the hydrological processes in different study areas [37,38]. Based on several studies [35,39,40], we 

considered 24 commonly used parameters, along with their previously established reference ranges, 

for the parameter sensitivity analysis. For Sobol’s quantitative SA, we specify 100 seed for each 

parameter, then 5000 samples were randomly generated from 24 tunable parameter ranges [41,42]. 

We can obtain the 1st order sensitivity results of each parameter after 5000 times SWAT+ model 

simulation run. The sensitivities of the parameters were ranked by the absolute value of the 1st order 

sensitivity. After determining the model-sensitive parameters, we calibrated the sensitive 

parameters, using the observed streamflow obtained from Chiang Sean station, as reference. In order 

to represent the realistic physical process in the SWAT+ model, we use calibration procedure to 

improve the fitting degree between simulated streamflow and observed streamflow [43]. The SWAT+ 

Toolbox provides an available dynamically dimensioned search (DDS) automatic calibration 

algorithm [44], which can automatically expand the search to find a good solution without tuning 

algorithm parameter. The DDS automatic calibration algorithm have an outstanding performance in 

both convergence speed and parameter sets searching ability [45,46]. Finally, we validated the 
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optimal parameter value of the SWAT+ model for the streamflow simulation. According to the time 

length of meteorological datasets and the observed streamflow from the Chiang Saen Station, we 

chose 2008 as the warming-up period, 2009–2010 as the calibration period, and 2011–2013 as the 

validation period. 

3. Results 

3.1. Spatial Annual Average Distribution of CFSR Dataset and the Difference for LMRB 

We evaluated six meteorological variables of the CFSR dataset using a multi-source 

meteorological dataset (CMADS). For grid-to-grid comparisons, we consistently interpolated the 

spatial resolution of the two datasets to 0.3°. The difference maps were computed by subtracting the 

average annual meteorological variables of the CMADS dataset from the average annual values of 

CFSR dataset. Figure 2 portrays the annual average of the six meteorological variables from 2008–

2013 and the differences between the average annual values of the CFSR and CMADS datasets. The 

spatial distributions of the annual mean precipitation values of these two datasets were highly 

similar, indicating less precipitation in the northwest region and more precipitation in the southeast 

region. However, the average annual precipitation of the CFSR dataset was generally 300–600 mm 

higher than that of the CMADS across the whole basin, with the range being 252–1488 mm in the 

CMADS dataset and 429–2495 mm in the CFSR dataset. There are some studies have found that the 

precipitation is often overestimated by CFSR datasets [15,20,47]. They indicated that the degree of 

overestimation of the CFSR data for 2008–2013 was more noticeable than that of other precipitation 

products; the increase of the precipitation is significant circa 2006. These phenomena may be 

attributed to single-point observation errors [20,47]. However, there is an exception, in that, the CFSR 

dataset has an area of less than 300 mm annual precipitation in the upper part of the basin. Lauri et 

al. [10] also presented data showing a lower average annual precipitation in the upper LMRB over 

the 1999–2005 period. Lorenz and Kunstmann [13] also concluded that there seems to be a significant 

bias in the estimation of precipitation at mid to high latitudes by CFSR, which can be explained by 

the excessive activity in the daily cycle of atmospheric composition over North America [48]. 

Additionally, some studies found that the CMADS often underestimates precipitation because the 

daily precipitation recorded by CMORPH satellites always underestimates light rainfall events (due 

to the interference of surface reflectivity) [15,16,49]. Furthermore, complex orographic features, as 

well as the effects of the Pacific and Indian Ocean monsoons, are the reasons for the high spatial 

heterogeneity of the precipitation, which reduces the accuracy of the precipitation both in CMADS 

and CFSR [15].    

The spatial distributions of the annual mean max/min temperatures in the CFSR and CMADS 

datasets were highly similar; the temperature increased gradually from the upper to lower reaches 

of the basin. However, both the average annual max/min temperatures of the CFSR were generally 

lower than those of the CMADS; notably, the maximum temperature of the CFSR is lower in the 

upper part of the basin, with a negative 6 ℃ bias. The minimum temperature of the CFSR is generally 

lower in the whole basin and there were no significant regional differences. Lauri et al. [10] also found 

that the average annual temperature is lower in the upper LMRB over the 1999–2005 period. Liu et 

al. [15] found that the maximum and minimum temperatures of CMADS and CFSR were both 

underestimated in the Qinghai-Tibet Plateau. Wang et al. [47] found that the CFSR temperature 

anomaly in tropical regions is greater than that in mid to high latitudes.  

Notably, the spatial distribution of the annual relative humidity was consistent with that of the 

annual precipitation, with less relative humidity in the northwest and more relative humidity in the 

southeast. The relative humidity of the CFSR was generally higher than that of the CMADS in the 

whole basin. Precipitation is the key factor that affects relative humidity, which may be the main 

reason that the CFSR has a higher relative humidity than the CMADS. Some studies found that the 

relative humidity in the CFSR dataset was inaccurate [15,50], as it was higher than in the observations 

[50]. The spatial distributions of the annual wind speed in the CFSR and CMADS datasets were highly 

similar, but the wind speed of the CFSR was significantly higher than that of the CMADS in the upper 
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part of the basin, by approximately 2 m/s. We noted that the wind speed was high in the plateau area, 

and it decreased gradually with decreasing elevation. It has been demonstrated that wind speed in 

CFSR and CMADS is overestimated compared with the observed speed in high altitude regions 

[15,51]. Another significant difference between the CFSR and CMADS was solar radiation. The 

annual solar radiation of the CFSR was significantly lower than that of the CMADS; in particular, the 

solar radiation was 1500-MJ/m2 lower in the downstream region. 

 

Figure 2. Spatial distribution of the six meteorological variables of the CFSR and CMADS. 

3.2. Evaluating the Meteorological Variables of CFSR in the Upper LMRB 

After comparing the spatial annual average distribution of the CFSR dataset in the upper LMRB, 

we evaluated the applicability of the meteorological variables of the CFSR when CMADS was 

considered as the observational reference. The evaluation indices include R, PBIAS, and RMSE, and 

the calculation was based on the daily meteorological variables for January 1, 2008 to December 31, 

2013. The spatial distributions of the R, PBIAS, and RMSE of the six meteorological variables of CFSR 

and CMADS are shown in Figure 3. In terms of precipitation, the R values increased from the 

upstream region to the downstream region, from 0.14 to 0.56, indicating that the precipitation values 

in the CFSR dataset were accurate in the downstream region. The values of PBIAS were positive 

almost everywhere in the whole basin, which implies that the precipitation amount in the CFSR was 

higher than that in the CMADS. The highest positive PBIAS values (above 500) were in the upper 

part of the basin. However, the negative PBIAS values were also in the upper part of the basin, 

implying that the precipitation amount in the CFSR were lower than that in the CMADS. Future 

research is needed to discover why there is this contradiction. The RMSE values increased from the 

upstream region (2.6) to the downstream region (16.7), indicating that larger deviation of 

precipitation in the downstream region and smaller deviation in the upstream region. 
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Figure 3. Spatial distributions of R, PBIAS, and RMSE of the six meteorological variables of CFSR and 

CMADS. 

In terms of the max/min temperatures, the R values were positive and high over the entire 

LMRB, reaching a maximum of 0.95. This indicates that the maximum and minimum temperatures 

of the CFSR were accurate for most areas. However, there were deviations in the PBIAS and RMSE 

values. The PBIAS values for maximum temperature were negative in the upstream region, but 

positive in the downstream region, indicating that the maximum temperatures of the CFSR were 

lower than that of CMADS in the upstream region, but higher than that of CMADS in the downstream 

region. Notably, the greatest positive (706.9 %) and negative (–821.1 %) PBIAS values for maximum 

temperature were observed in the middle and upper reaches of the upper LMRB, implying the great 

deviation for maximum temperature values between CFSR and CMADS. The PBIAS values for 

minimum temperature were negative across the whole basin, indicating that the minimum 

temperatures of the CFSR were lower than that of CMADS. The most negative PBIAS values were 

observed in the upstream region, and decreased gradually from the upstream to the downstream 

regions. The RMSE values for maximum and minimum temperatures were similar to the PBIAS 

results, but the RMSE of the maximum temperature was generally smaller than that of the minimum 

temperature (10.0 compared to 23.5). 

The R values of the relative humidity in the two datasets portrayed a stronger positive 

correlation in the downstream regions, and the PBIAS and RMSE values of the relative humidity were 

small in the downstream regions, indicating that the two datasets are highly similar in the 

downstream regions. However, the deviations of the relative humidity were rather large in the 

upstream regions, with CFSR values being higher than CMADS values. The R values of the wind 

speed were moderate, while the PBIAS and RMSE values are small in the upstream regions, 

indicating that the wind speed of the CFSR was closer to that of the CMADS in the downstream 

regions. However, deviations in wind speed were positive and large in the upstream regions, where 
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the wind speed of the CFSR was higher than that of the CMADS. The R of the solar radiation between 

the CFSR and CMADS was high over the entire basin, and the PBIAS and RMSE values were small 

in the upstream regions, indicating that the solar radiation of the CFSR was closer to that of the 

CMADS in the upstream regions. However, the deviations in solar radiation were negative and large 

in the downstream regions, where the solar radiation of the CFSR was lower than that of the CMADS. 

The area average values of the statistical indicators for the six CFSR meteorological variables are 

shown in Table 1. Note that the indicators for maximum temperature, relative humidity, and solar 

radiation of the CFSR were close to those of the CMADS with strong correlations (R≥0.65) and small 
negative deviations (PBIAS≤25%), but the precipitation and wind speed of the CFSR portrayed low 
correlations (R≤0.50) and large positive deviations (PBIAS≥25%) with those of the CMADS. The 

minimum temperatures of the CFSR have a high correlation (R is 0.65) and large negative deviations 

(PBIAS is –127.71%) with that of CMADS. For RMSE, the temperature data portrayed the highest 

values, in the range of 9–16. The precipitation and solar radiation portrayed moderate values, and 

the relative humidity and wind speed parameters exhibited the smallest errors. 

Table 1. Area average values of the statistical indicators for the six meteorological variables between 

CFSR and CMADS. 

Meteorological Variables R PBIAS RMSE 

Precipitation 0.35 85.47 6.68 

Maximum temperature 0.68 -18.45 9.39 

Minimum temperature 0.65 -127.71 15.71 

Relative humidity 0.65 20.01 0.18 

Wind speed 0.47 103.36 1.52 

Solar radiation 0.72 -12.11 5.45 

3.3. Comparison of the Hydrological Features between CFSR-Based SWAT+ and CMADS-Based SWAT+ 

3.3.1. Model Parameter Sensitivity Based on the CFSR and CMADS 

In order to compare the hydrological features based on two different meteorological re-analyses 

in the upper LMRB, we first needed to compare the model parameter sensitivity. We used Sobol’s 

method to screen the sensitive parameters. Figure 4 portrays the first order sensitivities of a total of 

24 commonly used parameters based on the two different meteorological re-analyses, the CFSR and 

CMADS. We noted that the sensitive parameters based on the CFSR, where the first order sensitivity 

was greater than 0, were highly consistent with those based on the CMADS. However, the sensitivity 

of these parameters (in terms of both the datasets) were different. Overall, we determined 17 

consistent sensitive parameters: esco, k, snomelt_tmp, awc, lat_ttime, snofall_tmp, perco, slope, 

alpha, snomelt_lag, snomelt_min, revap_co, surlag, canmx, epco, cn2, and snomelt_max. Two 

sensitive parameters were inconsistent: flo_min, which was sensitive based on the CFSR only, and 

revap_min, which was sensitive based on the CMADS only. Finally, we chose all 19 sensitive 

parameters, both consistent and inconsistent, for which the first order sensitivity was greater than 0 

in both the CFSR and CMADS, to carry out parameter calibration and validation. 
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Figure 4. First order sensitivity of 24 commonly used parameters for streamflow simulation based on 

the two different meteorological re-analyses, CFSR and CMADS, under Sobol’s method. 

Note: soil evaporation compensation factor (esco), saturated hydraulic conductivity of soil layer (k), 

snowmelt temperature (snomelt_tmp), available water capacity of soil layer (awc), lateral flow travel 

time (lat_ttime), snowfall temperature (snofall_tmp), percolation coefficient (perco), average slope 

steepness in HRU (slope), alpha factor for groundwater recession curve (alpha), snowmelt lag factor 

(snomelt_lag), minimum snowmelt temperature (snomelt_min), fraction of pet to calculate revap 

(revap_co), minimum aquifer storage to allow return flow (flo_min), surface-runoff lag time (surlag), 

maximum canopy storage (canmx), plant water-uptake compensation factor (epco), soil conservation 

service (SCS) runoff curve number adjustment factor (cn2), and maximum snowmelt temperature 

(snomelt_max), threshold depth of water in shallow aquifer required to allow revap to occur 

(revap_min), effective hydraulic conductivity of main channel alluvium (chk), Manning's "n" value 

for the main channel (chn), Manning's "n" value for overland flow (ovn), average slope length for 

erosion (slope_len), and fraction of transmission losses from main channel that enter deep aquifer 

(trmsrch) 

3.3.2. Model Calibration and Validation Based on CFSR and CMADS 

To further assess the capability of the SWAT+ hydrological model for streamflow simulations 

based on the two different meteorological re-analyses in the upper LMRB, we used DDS for the model 

parameters calibration, and then used streamflow simulation for validation using the observed 

monthly streamflow at Chiang Sean hydrological station. The hydrological simulation period was 

from January 2008 to December 2013. We chose 2008, one year, as the warm-up period, 3 years from 

2009 to 2011 as the calibration period, and 2 years from 2012 to 2013 as the validation period. Table 2 

portrays the calibrated optimal values, and the value range and change types of the 19 sensitive 

parameters for each meteorological reanalysis. The calibrated optimal values of the 19 sensitive 

parameters were very different for the two meteorological re-analyses, with these differences being 

reflected mainly in the most sensitive parameters, including esco, slope, epco, and surlag. Of note, 

the optimal values of the parameters were positive for the CFSR but negative for the CMADS. This 

was seen in, for example, awc. Note that esco, revap_min and awc all affect the process of 

evaporation. To adjust for the higher precipitation of CFSR, the evaporation based on CFSR may need 

a greater value. However, the calibrated optimal values of some parameters were consistent, 

including revap_co, cn2, lat_ttime, and perco. Based on the results comparison of the re-analyses as 

explained in Sections 4.1 and 4.2, the differences in the meteorological re-analyses may be the reason 

for the different calibrated optimal values. 
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Table 2. The calibrated optimal values of the 19 sensitive parameters for SWAT+ based on the two 

meteorological re-analyses, namely, CFSR and CMADS. 

Parameters Min Max Change Type* 
Parameter 

Group 

Optimal Values 

CFSR CMADS 

esco 0 1 replace HRU 0.274 0.072 

slope -50 50 relative HRU 2.377 47.689 

revap_co 0.02 0.2 replace Aquifer 0.184 0.198 

epco 0 1 replace HRU 0.046 0.717 

canmx 0 100 replace HRU 46.584 30.641 

surlag 0.05 24 replace Basin 2.738 13.966 

alpha 0 1 replace Aquifer 0.075 0.264 

awc -25 25 relative Soil 15.516 -15.443 

cn2 -20 20 relative HRU -19.682 -18.928 

flo_min 0 5000 replace Aquifer 1704.311 3329.009 

k -80 80 relative Soil 78.688 42.922 

lat_ttime 0.5 180 replace HRU 118.878 126.252 

revap_min 0 500 replace Aquifer 451.913 231.766 

snofall_tmp -5 5 replace HRU 3.482 4.602 

snomelt_lag 0 1 replace HRU 0.591 0.976 

snomelt_max 0 10 replace HRU 3.314 0.235 

snomelt_min 0 10 replace HRU 8.177 4.773 

snomelt_tmp -5 5 replace HRU -2.919 -3.637 

perco 0 1 replace HRU 0.901 0.773 

Note: *Relative change: increases/ decreases the current value by a specified value; Replace: the specified value 

takes the place of the old parameter value. 

Two simulated monthly streamflows, based on the corresponding calibrated SWAT+ model 

parameters forced by the two different meteorological re-analyses, with the observed monthly 

streamflow at the Chiang Sean hydrological station during the calibration period (2009–2010) and 

validation period (2011–2013) periods, are shown in Figure 5. The statistical measures used to 

evaluate the simulated streamflow included the NSE coefficient, PBIAS, and R2. The higher the values 

of NSE and R2, the smaller the value of PBIAS and the more accurate the simulated streamflow. Both 

the simulated monthly streamflow performed well during the calibration period, with NSE values 

all greater than 0.8, R2 values greater than 0.88, and PBIAS values less than 15 %. The performances 

were still good during the validation period, with NSE values greater than 0.65, R2 values greater 

than 0.70, and PBIAS values less than 11 %. Overall, the model performance driven by the CFSR 

dataset was better than that driven by the CMADS dataset, with higher NSE and R2 values and the 

smaller PBIAS values. According to the hydrograph in Figure 5, the CFSR-based and CMADS-based 

SWAT+ simulated streamflow can essentially simulate the observed peak and low streamflow, but 

the CMADS-based SWAT+ simulated streamflow tended to underestimate the peak and low 

streamflow. Therefore, we noted that CFSR met the demands for simulating streamflow through 

SWAT+ hydrological model in the upper LMRB. 
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Figure 5. Comparison of the simulated monthly streamflow, based on the corresponding calibrated 

SWAT+ model parameters forced by the two different meteorological reanalyses, with the observed 

monthly streamflow and precipitation at the Chiang Sean hydrological station during the calibration 

(2009–2010) and validation (2011–2013) periods. 

To understand the mechanism behind the simulated monthly streamflow, we analyzed the 

simulated water balance based on the corresponding calibrated SWAT+ model parameters forced by 

the two different meteorological re-analyses, as shown in Figure 6, which were obtained from the 

model check component in the SWAT+ Editor. Although the precipitation in the CFSR-based SWAT+ 

simulation was much higher than that in the CMADS-based SWAT+ simulation across the entire 

basin, only 49% of the precipitation of CFSR is converted to streamflow while 82% of the precipitation 

of CMADS is converted. Furthermore, the evaporation and transpiration (ET) in the CFSR-based 

SWAT+ simulation were also higher than that in the CMADS-based SWAT+ simulation, which may 

be another reason that the CFSR-based and CMADS-based SWAT+ simulated streamflow did not 

differ greatly. The higher percolation and baseflow in the CMADS-based SWAT+ simulation may 

lead to the lower simulated peak and low streamflow. Several factors can cause different responses 

between the meteorological estimates and hydrological outputs, including the sensitive parameters 

and their calibrated optimal values in the SWAT+ hydrological model. Gao et al. [14] concluded that 

the conversion of precipitation to runoff is a highly complex nonlinear process. Therefore, the 

discrepancies between the two meteorological forcings do not transfer linearly to runoff. This may 

result in significant differences in the simulated streamflow forced by the two different 

meteorological re-analyses, CFSR and CMADS. 
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Figure 6. Simulated water balance based on the corresponding calibrated SWAT+ model parameters 

forced by the two different meteorological re-analyses, CFSR and CMADS. 

4. Discussion 

4.1. Differences in Meteorological Forcings 

Several previous studies have compared the meteorological elements of global or local re-

analyses with gauge-observed data [10,13,14,16,20]. Such comparisons may introduce errors and 

uncertainties between the re-analyses and the gauged observations due to spatial scale differences. 

However, a comparison between re-analyses and grided observed data, such as the CMADS, can 

improve our understanding of how meteorological elements behave [52]. For the comparison of the 

precipitation and temperature between global atmospheric re-analyses and the observed data, Tian 

et al. [52] concluded that precipitation of the CFSR is higher than the observed data and CMADS, 

while the maximum/minimum temperatures of the CFSR are generally lower than the observed data 

and CMADS. These findings are also consistent with the results of another study on the Mekong 

River basin [10].  

The comprehensive meteorological datasets of the CMADS render the comparison of the other 

meteorological variables (wind speed, relative humidity, and solar radiation) of the CFSR in the 

upper LMRB possible. Our results found that the precipitation, relative humidity, and wind speed of 

the CFSR were higher than those of the CMADS, while the max/min temperatures and solar radiation 

were lower than those of the CMADS. There is a need to investigate the reason why the temperatures 

and solar radiation of the CFSR are lower than those of the CMADS and why the CFSR exhibits higher 

wind speeds than does the CMADS. Meng et al. [26] concluded that temperature has a relatively 

greater RMSE in the southern and western parts of the Yunnan province, and a minority of stations 

in the region show negative biases when compared to the observations from the national automatic 

stations. Relative humidity and wind speed showed positive bias effect in the southern parts of the 

Yunnan province [26]. However, the factors influencing the accuracy of CMADS have not yet been 

systematically analyzed [26]. The main reason for the differences between the CMADS and CFSR was 

the differences in the observation data source and assimilation methods. The observation data source 

of the CMADS included about 40,000 regional encrypted stations that observed various surface 

meteorological elements, 2421 automatic stations, and 131 radar detection stations [26]. The 

LAPS/STMAS system, a comprehensive analytical system, was adopted to assimilate the source data 

in the CMADS. The CFSR data were acquired using a multi-source data assimilation system. For 

example, the precipitation of CMADS is mainly based on the global precipitation products from 
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CMORPH adjusted by observed precipitation [26]. However, the precipitation of CFSR is generated 

by merging the CFSR background precipitation, global daily gauge analysis and the satellite 

precipitation [25]. We note that it is normal for the meteorological data of the CFSR and CMADS to 

be different, despite quality control being carried out for both datasets. 

4.2. Differences in Hydrological Model Response 

Various studies have reported that the performance of meteorological re-analyses in discharge 

modeling varies depending on the situation compared to rain gauge data [10,11,14–17,20]. However, 

their results indicate that the CFSR could be a valuable option for hydrological simulation in areas 

with limited data. In this study, we compared the hydrological responses between the CFSR-based 

SWAT+ simulation and the CMADS-based SWAT+ simulation under the same watershed 

delineation, hydrological model, parameter sensitivity analysis, and calibration method. However, 

two different meteorological re-analyses led to different sensitivity and calibrated optimal values of 

the consistent parameters, which further led to a different hydrological response. Moreover, the 

simulations with the CFSR and CMADS yielded significant differences in the water balance 

components in the upper LMRB. For example, higher precipitation led to a lower conversion rate to 

streamflow and higher evaporation and transpiration, according to the water balance in this study. 

Therefore, a different watershed delineation, hydrological model, the parameter sensitivity analysis, 

and calibration method would lead to different hydrological responses. In order to make hydrological 

simulation more efficient in evaluating the performance of meteorological re-analyses in discharge 

modeling, we created four subbasins and 110 HRUs from the DEM by specifying the default area 

thresholds for channel (1716 km2) and for stream (17160 km2). As the small area thresholds create 

more subbasins and HRUs, they require more computing time for hydrological simulation, which 

may affect the hydrological responses.  

The comprehensive meteorological datasets for hydrological modeling are beneficial in 

understanding the hydrological responses and water balance components. The availability of wind 

speed, relative humidity, and solar radiation data in the CFSR and the CMADS makes calculating 

hydrological components in watersheds more flexible. For example, this study used the Penman–

Montieth methods to calculate PET, while other studies were limited by the use of the Hargreaves 

method to calculate PET [17], which only requires maximum and minimum temperatures. 

4.3. Limitations 

In addition to the input meteorological data and hydrological model parameters, anthropogenic 

activities can influence streamflow simulation, especially due to reservoir and dam construction. Lu 

et al. [53] concluded that Chinese dams can reduce the low water-discharge and monthly mean values 

of water discharge averaged through the entire pre- and post-dam period, with the largest decrease 

occurring in Summer. Han et al. [2] concluded that the mean annual streamflow changed significantly 

after construction of the large hydropower plant, Nuozhadu, began, inferring that anthropogenic 

activities contributed to ~ 43–95 % of this change. Reservoir construction was the most significant 

factor affecting the streamflow in the region; other anthropogenic activities that affected the 

streamflow were agricultural, industrial, and domestic water use [2]. In this present study, we 

focused on how the CFSR meteorological datasets influenced the streamflow driven by the SWAT+ 

model simulation of the upper LMRB. Future studies should focus on the impact of anthropogenic 

activities, such as reservoir and dam construction and agricultural irrigation, on the streamflow 

simulation in the upper LMRB. 

5. Conclusions 

Our study aimed to assess the different hydrological responses through hydrological modeling 

in the upper LMRB using the two common open gridded meteorological datasets, CFSR and CMADS. 

This study evaluated the suitability of six meteorological variables from the CFSR and CMADS that 
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are commonly used to force the SWAT+ model, along with analyzing the differences in the 

hydrological modeling. We arrived at the following conclusions:  

All the meteorological variables of the CFSR and CMADS datasets exhibited similar spatial 

average annual distributions; however, precipitation, relative humidity, and wind speed in the CFSR 

were greater than those in the CMADS. Further, the temperatures and solar radiation were lower in 

the CFSR. The spatial distributions of the statistical indicators in the CFSR and CMADS, namely, the 

R, PBIAS, and RMSE values, were different. The temperatures and solar radiation in the CFSR and 

CMADS exhibited strong correlations across the entire basin, while precipitation and relative 

humidity portrayed strong correlations in the downstream regions. Additionally, wind speed 

exhibited an irregular spatial distribution of correlation over the entire river basin. The PBIAS results 

indicated that precipitation, relative humidity, and wind speed portrayed positive deviations across 

the entire basin. Minimum temperature and solar radiation portrayed negative deviations across the 

entire basin. Notably, the maximum temperature yielded a positive deviation in the downstream and 

a negative deviation in the upstream regions. These conclusions were further confirmed by the result 

of RMSE and the area average values of the statistical indicators.  

For a comparison of the hydrological features of the CFSR- and CMADS-based SWAT+ models, 

we compared the sensitive parameters and simulated the monthly streamflow. Different 

meteorological datasets resulted in significant differences of hydrological responses, which reflected 

by different sensitive parameters and their optimal value. Nineteen sensitive parameters (from the 

total of 24 parameters) for the CFSR and CMADS models were mostly the same, with only 2 being 

inconsistent, namely flo_min and revap_min. However, the sensitivities of these parameters were 

different. The calibrated optimal values of the 19 sensitive parameters were very different for the two 

meteorological re-analyses, reflected mainly in the most sensitive parameters, including esco, slope, 

epco, and surlag. These different calibrated optimal values of sensitive parameters further lead to the 

different simulated water balance components between CFSR- and CMADS-based SWAT+ model. 

The monthly streamflow simulated using the CFSR-based SWAT+ model was superior to that 

simulated using the CMADS-based SWAT+ model from 2008-2013, with higher NSE and lower 

PBIAS values. These results indicate that CFSR can better meet the demand of driving the SWAT+ 

model to simulate the streamflow in the upper LMRB. This study advances our understanding of the 

strengths and weaknesses of different meteorological forcings and their performances, and helps to 

determine the applicable hydrological models for the upper LMRB. 
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