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Abstract: This paper suggests a novel one-dimensional (1D) map to address the limitations of

traditional chaotic 1D maps. The main challenge with traditional chaotic 1D maps is the limited

control parameter range and the potential risk of collapsing as a result under the finite precision

implementation. To overcome these limitations, the new 1D map hybridises the traditional logistic

map with tent map, and a linear tent-like function. This hybridization results in a wider range

of control parameters to produce chaotic behavior. The dynamic behavior of the new 1D map

has been analyzed using well known numerical methods, including the bifurcation diagram and

Lyapunov exponent. Both tests have shown their complex and diverse behavior. In addition, a novel

image encryption scheme has been devised using the new function as its pseudo-random-number

generator. The proposed encryption algorithm has been tested and found to be robust and secure,

passing all statistical tests applied to the encrypted images. The results of this study demonstrate

the effectiveness of the new 1D map for use in secure image cryptography applications, providing

a more robust and secure alternative to traditional chaotic 1D maps. The proposed algorithm has

demonstrated high performance in NPCR and UACI tests. It also has shown good results in the MSE

and PSNR tests.

Keywords: chaos; encryption; SHA-256; NPCR; UACI

1. Introduction

The need for privacy security has been felt intensely in the wake of so many multi-media and

social platforms [1] generating significant amounts of unstructured data. To protect from unauthorized

access and cyber-attacks sensitive information being transmitted through communication networks

and the data that is being stored in cloud storage services, cryptographers have explored various

methods of ciphering data. One method is obfuscation done to blur visual identity in photos and videos

in order [2] to perturb or unsettle original data [3] for protecting personal information by encrypting

the etymological origins of data [4], thus making data unreadable by unauthorized users. Another

option is data masking [5], which involves obscuring parts of genomic data to make it unidentifiable

during collection, which will make it staying unidentifiable during transmission and storage too.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Tokenization [6] is another approach, which replaces sensitive data with non-sensitive data tokens

that retain all essential elements of the data without risking its security to protect data confidentiality.

Homomorphic encryption is a more complex method that allows computations to be performed on

encrypted data without the need for decryption [7] that is primarily meant for non-cryptographers.

The process of encryption is a commonly judged by the way how strong the proposed method stands

for protection against different types of attacks [8,9]. It involves the use of an encryption mechanism

using an encrypt key, a communication channel for data transmission, a decryption system, and a key

to decrypt the encrypted data. The strength of an encryption system is determined by the attributes of

the key, such as its secrecy, difficulty to guess, and ability to withstand against exhaustive search [10].

Each of these methods has its own benefits and limitations, and the appropriate method depends on

the specific requirements and circumstances of each application [11,12]. The security of an encryption

scheme is closely linked to the characteristics of the key the scheme uses. For an unbreakable scheme,

the key should be truly random, better to be for use only once, and should be of the same length as

the message, also called a one-time pad (OTP). However, these properties also have drawbacks. For

instance, transmitting a key that is too long over a secure channel may not be practical, and it may

make more sense to send the message itself through it. Furthermore, if the same key is utilized twice,

the adversary may use XOR or frequency analysis to obtain information about the messages, and

create a straightforward running key cipher in disguise.

Despite the importance of the strength of the key, other critically essential factors should be

taken into account, including novel chaotic oscillator for the overall performance of an a novel

design encryption system [13] covering potential perspectives of the proposed PRNG. The results are

produced in the form of the cipher versions of images. These include the computational complexity

of the mathematics representation, the size of generated key, and the unpredictable nature of the

generated sequencing. In addition, the efficiency and practicality of an encryption algorithm should

also be considered, as well as the availability of the necessary computational resources and the ease

of key management, and particularly under the exceptional circumstances cases of COVID-19 [14],

introducing Tokens Shuffling Approach (TSA) for better reliability during the pandemic.

Cryptologists have been tempted to use chaotic functions due to their simple mathematical

representation and randomness [15] by applying the proposed algorithm to some original images to be

reconstructed subsequently, achieving remarkable results in screening the colonoscopy images through

neural networks (NN) [16]. The chaos-based image encryption techniques are highly efficient in case

of multimedia data [17], using chaos game for encryption [18], making them ideal in terms of ease of

implementation for cybersecurity applications [19]. While single 1D chaotic maps are low in cost for

hardware implementation, they are inefficient in practice, as they have limited control parameters and

can converge to a periodic orbit under finite precision implementation [20,21]. To address these issues,

studies have proposed using 2D chaotic maps [22] that offer a balance between hardware complexity

[23] and the chaotic performance [24].

This paper explores further the trend of expanding the number and range of control parameters

of 1D maps [25] to achieve a wide ranging dynamic behavior [26] by introducing a new 1D map with

embedded parameters for ensuring large scale better control of chaotic behavior. The paper is organised

with Section 2 providing a literature overview of the well-known 1D maps, and Section 3 introducing

the new 1D map and to present the results of verifying its chaotic behavior. In Section 4, a new image

encryption algorithm is suggested that utilizes the map as pseudo-random number generator (PRNG).

The robustness of the proposed encryption scheme is demonstrated by applying known attacks in

Section 5 before concluding the paper in Section 6. The effectiveness of the proposed algorithm

has been proven through rigorous testing, showing that it possess robustness with remarkable

confusion-diffusion properties.
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2. Known 1D chaotic maps

2.1. Logistic map

Logistic maps make powerful tools for the examination of nonlinear systems, which have been

applied to designing encryption schemes in various fields [27]. The simplicity of logistic map allows

for a comprehensive understanding of the underlying dynamics [28], while its complexity can reveal

random-like behavior [29]. It is represented by the discrete-time iterative equation (1) such that each

iteration generates an iterate value:

xn+1 = rxn(1 − xn) (1)

Where 0 < xn < 1 is denoting the state of the system at the nth iteration, and r is the control

parameter that modulates the behavior of the system.

The behavior of the logistic map is contingent upon the value of the control parameter r. For r < 1,

the logistic map converges to a fixed point of zero. As shown in Figure (1a) and (1d) where the various

forms illustrate that for 1 < r < 4 values, the map oscillates between fixed points in a bifurcation

behavior. For r = 4 the solutions of the logistic map demonstrate chaos, implying that small variations

in the initial conditions can result in fundamental differences in the long-term behavior of the system.

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) Phase space of the logistic map, (b) Phase space of the tent map, (c) Phase space of the

Sine map, (d) Bifurcation diagrams of the logistic map, (e) Bifurcation diagram of the tent map, (f)

Bifurcation diagram of the Sine map.

2.2. Tent map

The tent map is a simple, discrete-time dynamical system that is often used to model chaos-based

applications. It is defined by the piece-wise Equation (2):

xn+1 =

{

axn if xn < 0.5

a(1 − xn) if xn ≥ 0.5
(2)

Where x is the state variable, n is the time step, and a is the parameter. The range of the parameter

a for 1 < a < 4 between 0 and 2, determines the upper and lower limits of chaos in the system. For

a ≤ 1, the map is stable and periodic, while for 1 ≤ a ≤ 2, the map is chaotic.
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The tent map is known for its tent-like characteristic shape of its graph, and it is one of the

simplest examples of chaotic systems. It is often used as a prototypical first original example in the

study of chaotic and nonlinear dynamics.

2.3. Sine map

The chaotic Sine map is a nonlinear function that exhibits complex and dynamic behavior. It is

derived from the sine function defined in Equation (3):

xn+1 = sin(ωxn) (3)

Where ω is used as a control parameter that determines the behavior of the map Figure (1a). The

chaotic Sine map has been widely explored for its potential applications in cryptography and image

encryption due to its ability to generate apparently random and unpredictable sequences of numbers.

3. Modified 1D map

Although all the above mentioned maps are simple mathematical functions that have been

individually used in the fields of cryptography alongside other domains. However, they have got

certain limitations when it comes to generating pseudo-random sequences for use in the domain of

cryptography. One of these limitations is the range of control parameters that results in a limited

chaotic behavior. For example, in the case of the logistic map to be fully chaotic to fill the complete

space range f (x) : x → x, x ∈ ℜ : x ∈ [0, 1], the control parameter must be r ≈ 4.

To overcome this limitation, a new function is introduced that consists of a combination of the

logistic map as given in Equation (1), a piece-wise non-iterative linear tent map y = 1 − |cx − 0.5c| of

Equation (3), and finally the iterative tent map as given in Equation (2). The iterative 1D map is given

by Equation (4):

xn+1 =















rxn(1−xn)(1−|cx−0.5c|+µxn)
2 if x < 0.5

mod(rsin(πxn)(1 − |cx − 0.5c|+ µ(1 − xn)), 1) if x ≥ 0.5

(4)

Where xn and xn+1 show the present and next states respectively. The parameters r and µ are the

control parameters for the logistic map and the tent map with approximate values of 4 and 2. The

control parameter c is a global parameter that modifies the slope of the function and is used to create

different dynamic behaviors as shown in Figure 2.

3.1. Sensitivity to control parameters and initial condition

The sensitivity of this system to small changes in the initial conditions or the control parameter c

is a key aspect to consider when studying its dynamics. Small changes in the initial conditions can lead

to vastly different behavior in the long term, resulting in a highly sensitive system. Similarly, small

changes in the value of the control parameter c can lead to significant changes in the system dynamics.

This is clearly depicted in Figure 3 where perturbations of 10−6 in any of the initial conditions or

control parameters have produced two completely different sequences.
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(a) (b)

(c) (d)

Figure 2. Phase space for the map described in Equation (4), (a) for c = 0, (b) for c = 0.5, (c) for c = 1,

and (d) for c = 1.5.

This property is crucial for ensuring the security and robustness of encryption systems that rely

on chaotic-nature of the resulting PRNGs. Even a small variations in the initial state can lead to vastly

different output sequences, making it extremely difficult for an attacker to predict or reproduce the

sequence without having knowledge of the initial conditions.

(a) (b)

Figure 3. Sensitivity to small perturbations for iterates of the map described in Equation (4) for two

state variables x & y , (a) when xo = 0.01 & yo = xo + 10−6.
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3.2. Bifurcation diagram

The bifurcation diagram of the function of Equation (4) is a powerful tool for understanding its

dynamic behavior. Figure 4 shows visual representation of how the system changes in its response to

changes in the control parameter c. The function does not exhibit any of the usual dynamic behavior

consisting of a sequence in the regions of stable fixed points, periodic orbits and then chaos. Instead,

when setting r = 4 and µ ≈ 2 while varying c, the function shows full chaotic behavior over the range

of 0 ≤ c ≤ 2.

Figure 4. Bifurcation diagram of the function given by Equation (4) showing full chaotic behavior in

the range of 0 ≤ c ≤ |2|.

It is also worth noting that the function can also show chaotic behavior for a range of r values

and specific values of c as can be seen in Figure 4. This suggests that the system behavior is not solely

determined by the control parameter c, but also by other parametric values of r. However, in this

manuscript, we have chosen to focus on studying the properties of the function for changes only the

control parameter c. This allows for a more in-depth analysis of the system’s behavior that relates to

this specific parameter.

(a) (b)

Figure 5. Examples of the bifurcation diagram of (4) depending on r when (a) c = 0.1, (b) c = 1.8

3.3. Lyapunov exponent

The Lyapunov Exponent (LE) is a mathematical tool used to measure the rate of separation of

nearby trajectories in a dynamic system. It is an important concept in the study of chaos theory and

provides a measure of the sensitivity of the system’s behavior to initial conditions.

The Lyapunov Exponent is calculated by taking the average rate of change of the distance between

two nearby trajectories over time. It is represented mathematically as given in Equation (5):
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λ = lim
n→∞

1

n

n−1

∑
i=0

ln
|δ1|
|δo|

(5)

Where, λ denotes the LE, while δ1 and δo show the spacing between the two trajectories. The

positive Lyapunov Exponent implies that the system is sensitive to initial conditions and that small

variations in initial conditions will grow exponentially over time, leading to vastly varying outcomes.

To calculate the Lyapunov Exponent numerically, one can use the method in [30]. which involves

linearizing the system of equations at a given point and then iterating the linearized equations to

calculate the exponential growth rate of the distance between nearby trajectories.

Figure 6 shows that function of Equation (4) has a λ > 0 in the range of −2 ≤ c ≤ 2. This indicates

that the system is chaotic within this range of the control parameter c, as the Lyapunov Exponent

measures the rate of separation of the nearby trajectories, and a positive exponent implies exponential

divergence.

Figure 6. Lyapunov exponent of the function in (4) showing positive values in the range of −2 ≤ c ≤ 0.

4. Proposed Encryption Algorithm

Image encryption is a critical component of the information security domain, particularly in the

domain of digital communication. With the proliferation of images being exchanged over various

networks, the need for robust and secure image encryption algorithms has become increasingly

important. The goal of image encryption is to convert an image into a ciphertext, which is unreadable

to anyone unless it is decrypted. The encrypted image should remain confidential, even if intercepted

by any cybernetic attacker.

The image encryption process must be secure, providing a high level of protection against various

attacks, including brute force attacks and statistical attacks. In addition, the encryption process must

be efficient and capable of performing real-time applications. The importance of image encryption

cannot be underemphasized, especially in the case of sensitive images, such as medical or military

images, which require the highest level of protection.

In this paper, the image encryption method is described in detail, providing a technical and

mathematical analysis of the encryption process. The focus is on developing an efficient and secure

image encryption algorithm that satisfies the requirements expected for protection of such levels.

The algorithm will be tested and evaluated using various statistical tests producing results discussed

in detail.

4.1. Encryption steps

The proposed image encryption algorithm is based on a permutation-confusion process that

utilizes the proposed chaotic function as its core Pseudo-Random Number Generator (PRNG) with

different keys k1 and k2.
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The overall key K is composed of two sub-keys, k1 and k2, each of which has a length of 128

bits, with the least significant 64 bits representing the parameter x0 and the most significant 64 bits

representing the parameter c. The generation of these keys is performed through the following steps:

Step 1: Key generation

The 256-bit sequence, referred to as the hash, is generated using the Sha256 algorithm. Key k1 uses the

least 128 bits and k2 uses the most 128 bits. The values of x0 and c for each key are derived from the

hash using Equation (6) to Equation (9):

x0,k1
=

63

∑
i=0

2i · hash(i + 1)

264
(6)

ck1
=

2 ·
63

∑
i=0

2i · hash(i + 65)

264
(7)

x0,k2
=

63

∑
i=0

2i · hash(i + 129)

264
(8)

ck2
=

2 ·
63

∑
i=0

2i · hash(i + 193)

264
(9)

These equations ensure that x0 and c stay in the ranges 0 ≤ x0 ≤ 1 and 0 ≤ c ≤ 2.

Step 2: Permutation stage:

In the permutation stage, a simple and effective algorithm is used to break the correlation between

adjacent pixels in the message image, which is an important step for securing the scheme against

statistical attacks. This is achieved by using the dimension of the original image [M × N] and the

subkey k1 to generate a sequence using the function f (k1). The permuted pixels are then sorted based

on this generated sequence.

The permutation process starts by reading a grayscale message image (Im) with size [M × N].

Each pixel in the image is converted to its binary form (B). The image is then reshaped into a 1D array.

The sequence is generated from a Pseudorandom Number Generator (PRNG) using Equation (4) with

a length of W × n, where n = M × N and W ∈ {3, 4, 5, 6}. The subsequence of length n is extracted

from this generated sequence. This subsequence is sorted while keeping the sorted element original

index. The pixels in 1D Im are also sorted based on this generated sequence.

Step 3: Confusion stage:

In the confusion stage, the goal is to increase the resistance against differential attacks by ensuring that

any small change in the original image leads to nonuniform spreading across the ciphered image.

To achieve this, a stream yi is generated from the function f (k2) and used to replace the bit level

value of each encrypted pixel using the equation (10):

Ci = Imi
⊕ f loor(mod(yi times104, 256)) (10)

Where Im is the permuted pixels, y is the generated sub-sequence, and Ci is the resulting image after

the confusion step.
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5. Results and Analysis

The algorithm is considered to be secure if it can effectively defend against any known forms of

attacks including brute-force key attack, statistical attacks, and similar types of known attacks. The

proposed method is evaluated using various security analysis techniques to demonstrate its robustness.

The analysis has been carried out using a 64-bit double-precision floating point representation,

implemented using 64-bit MATLAB (R2020a) on a Windows 11 operating system, running on a

Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz machine with 16 GB of RAM.

5.1. Encryption quality analysis

5.1.1. Key space analysis

The proposed encryption algorithm utilizes two keys, k1 and k2, in its permutation and confusion

stages, respectively. Both keys consist of a control parameter c and an initial condition x0. The key

space of the algorithm is determined by the range of possible values for c and x0. It is safe to say

that even with the fastest computers available today the time required to brute-force a 256-bit key

would be much greater than than the estimated age of the universe. For example, consider a 64-bit

key, a typical Intel(R) Core(TM) i7 computer with a clock speed of 1.8 billion cycles per second would

take approximately 5.8 × 1016 years to perform a brute-force attack on a 64-bit key. This demonstrates

the importance of selecting strong cryptography keys in order to ensure the security and integrity of

sensitive information.

Further, both keys are designed to have a large key-space in the floating point representation

format, which ensures that the encryption algorithm is secure against key brute-force attacks. The

use of different keys for the permutation and confusion stages further increases the security of the

encryption algorithm by making it more difficult for an attacker to crack the encryption open for a

grasp of the message.

5.1.2. Key sensitivity analysis

The results of encryption algorithm’s sensitivity to changes analysis are presented in Figure 7,

where a pixel-by-pixel subtraction has been performed between two encrypted images, ∇I′ =

|I′1(K1) − I′2(K2)|, using two slightly different keys K1 and K2, where K1 and K2 differ only by a

small amount in one of their control parameters such that δ = K1(c1)− K2(c2) < 10−8.

The noisy appearance of encrypting a high resolution image 3264 × 4841 I′ in Figure (7d) confirms

that the algorithm produces different encrypted images, I′1 using K1 in Figure (7b) and I′2 using K2 in

Figure (7d).

(a) (b) (c) (d)

Figure 7. Sensitivity of the encryption algorithm to small change in the key K. (a) original high

resolution image 3264 × 4841 , (b) encrypted image I′1 obtained using K1, (c) encrypted image I′2
obtained using K2 = K1 + 10−8 in one ot its control parameters c, and (d) the absolute pixel-by-pixel

difference between I′1 and I′2, which confirms the production of two distinct encrypted images.

5.1.3. MSE and PSNR

The Mean Squared Error (MSE) measures the average of the squared differences between the

original and the encrypted image. The lower MSE value indicates that the encrypted image is more

similar to the original image, and so a lower MSE value image has a lower level of distortion.
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The Peak Signal-to-Noise Ratio (PSNR) is a measure of the quality of the encrypted image

compared to the original image. It is calculated as the ratio of the maximum possible power of a signal

and the power of the distortion caused by the encryption process. The higher PSNR value indicates

that the encrypted image is of higher quality and has less distortion compared to the original image as

a result of encryption.

To further demonstrate the robustness of the proposed method, the previously mentioned tests

have been conducted by making slight changes to keys k1 and k2. The Mean Square Error (MSE) and

Peak Signal-to-Noise Ratio (PSNR) have been calculated using Equation (11) and Equation (12):

MSE =
1

mn

m

∑
i=1

n

∑
j=1

(pi,j − qi,j)
2 (11)

PSNR = 20log10
(MAXp)√

MSE
(12)

Where m and n are the number of rows and columns in the image, p is the original image and q is

the embedded image. The results of these calculations are listed in Table 1, showing two encrypted

images c1 and c1 as a function of variations in the keys k1 and k2. The obtained numbers confirm the

sensitivity of the scheme to small changes in the key. Since k1 is used for permuting the pixels and k2

is used for changing the gray levels, the results in the table demonstrate that the scheme has shown a

good level of confusion-diffusion properties.

Table 1. Mean Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) of two encrypted images.

Changed Parameter MSE PSNR(dB)

k1 10.872 × 103 7.767
k2 10.921 × 103 7.748

Table 1 shows the MSE and PSNR values of two encrypted images that were generated by

changing the parameters k1 and k2 in an image encryption scheme. Both MSE values are relatively

high, indicating that the ciphered images are significantly different from the original image. Meanwhile,

both PSNR values are relatively low, indicating that the level of distortion in the ciphered images is

high compared to the original image.

This is a desirable property of a good image encryption scheme since it implies that the ciphered

image has undergone both confusion and diffusion.

5.1.4. Histogram Analysis

The distribution of color intensities in an image can be visualized through a histogram. The more

robust encryption scheme should result in an encrypted image with a more uniform histogram, even

if the original image had a weak intensity distribution. The histograms of the original images have

unique intensity distributions that characteristically representing the images as shown in Figure 8.

In contrast, the histograms of all the encrypted images exhibit a uniform shape, showing no unique

features for potential decryption purposes. This indicates that the proposed algorithm can effectively

resist statistical attacks.

5.1.5. Correlation Analysis

The security of an image against statistical attacks is often dependent on the correlation between

adjacent pixels. A robust encryption scheme should aim to break this correlation in the (V) vertical,

(H) horizontal, and (D) diagonal directions. To quantify this, we calculate the correlation coefficient

between pairs of adjacent pixels, denoted by rxy. This is done by selecting S random pairs of adjacent

pixels and substituting them into the Equation (13) to Equation (18):
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(a)

(b)

(c) (d)

(e) (f) (g) (h)

(i)

(j)

(k) (l)

(m) (n) (o) (p)

Figure 8. Comparison of encrypted images with original images, their histograms, encrypted versions,

and histograms of encrypted images (displayed vertically) is shown, with each subfigure labeled as:

(a–d) original image, (e–h) histogram, (i–l) encrypted image, (m–p) histogram of encrypted image.
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D(x) =
1

S

S

∑
i=1

(xi − E(x))2 (13)

D(y) =
1

S

S

∑
i=1

(yi − E(y))2 (14)

E(x) =
1

S

S

∑
i=1

xi (15)

E(y) =
1

S

S

∑
i=1

yi (16)

cov(x, y) =
1

S

S

∑
i=1

(xi − E(x))(yi − E(y)) (17)

rxy =
cov(x, y)

√

D(x)D(y)
(18)

Where xi and yi are the values of the selected adjacent pixels. The results of this calculation are as

shown in Figure 9, which demonstrate that the correlation is strong and compact in the original image,

but scattered and weak in the encrypted image. Further results of this analysis for different images

are as listed in Table 4, which show that all of the encrypted images have weak correlation and hence

show resilience against statistical attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Correlation analysis of 3000 of adjacent pixels in an original and encrypted image include: (a)

the original image, (b) its diagonal correlation, (c) its horizontal correlation, (d) its vertical correlation,

(e) the encrypted image, (f) its diagonal correlation, (g) its horizontal correlation, and (h) its vertical

correlation.

Table 2. Vertical, horizontal and diagonal correlation of some images and their encrypted ones.

Original image Ciphered image

File name Size V-correlation H-correlation D-correlation V-correlation H-correlation D-correlation

bird.png 2625x2250 0.9876 0.9736 0.9706 -6.46E-04 0.0188 -0.0061
lion.png 2362x3047 0.971 0.9764 0.957 0.0189 -0.0164 0.0198

pyramids.png 4755x3090 0.9894 0.9908 0.9841 -0.0033 -0.038 0.0143
sphinx.png 1704x2272 0.9793 0.9839 0.9733 0.0253 0.0126 0.0058
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5.1.6. Information Entropy

The benefit of using entropy as a measure of information security in cryptography is that it

provides a quantitative measure of the uncertainty or randomness in the data distribution, which is

directly related to the security of the ciphering algorithm. The higher entropy value indicates a more

uniform distribution of data and less information to be extracted from it, resulting in a more secure

ciphering algorithm. Entropy is a measure of the overall randomness of an image or a system that is as

expressed by Equation (19):

H = −
2n

∑
i=1

P(mi) log2 P(mi) (19)

Where n represents the number of bits of the color intensity, and P(mi) is the probability of a color

intensity, mi, in the image. The higher the entropy value the more uniform distribution will be the

encrypted image leaving almost nothing as information that can be extracted from the image. Local

Shannon entropy, on the other hand, analyzes the randomness of the image at a local scale. The local

entropy of non-overlapping blocks of an image is calculated using Equation (20):

LSE =
1

k

k

∑
i=1

H(IBi
) (20)

Where k is the number of blocks, H(IBi
) is the Shannon entropy of the block. In this paper, the significant

values are α = 0.05, α = 0.01, α = 0.001, k = 30 and block size of 1936 pixels. In cryptography, the

higher the entropy of an encrypted image, the more secure it is considered to be, as it contains less

information that can be extracted by an attacker. Table 3 shows to confirm that the proposed scheme

falls within this critical interval of different image sizes.

Table 3. Global and local Shannon entropy of the proposed algorithm.

Global entropy Local Shannon entropy

File name Size
α = 0.05 α = 0.01 α = 0.001

hl∗
le f t = 7.901901305 hl∗

le f t = 7.901722822 hl∗
le f t = 7.901515698

original Image Encrypted Image hl∗
right = 7.903037329 hl∗

right = 7.903215812 hl∗
right = 7.903422936

bird 2625 × 2250 7.559383165 7.999966812 7.902673265 7.902100541 7.902336555
lion 2362 × 3047 4.868976964 7.999975018 7.902084826 7.902600108 7.902215068

pyramids 4755 × 3090 6.840163701 7.999988669 7.902317244 7.90294224 7.902561135
sphinx 1704 × 2272 6.951101185 7.999956064 7.902838446 7.901851957 7.902802677

5.2. Resistance to differential attack

Net Pixel Change Rate (NPCR)

NPCR is a measure of the robustness of an image encryption algorithm. It is defined as the percentage

of pixels in a given encrypted image that change when one bit of the original image changes. NPCR is

commonly used to evaluate the strength of an encryption algorithm against chosen-plaintext attacks,

where an attacker attempts to determine the encryption key by observing how changes to the plaintext

affect the encrypted image. The NPCR is given by Equation (21) and Equation (22):

NPCR =
∑

N
i=1[Ci 6= Ei]

N
× 100 (21)

N ∗
α =

L + Φ−1(α)
√

L/T

L + 1
(22)

Where N is the total number of pixels in the encrypted image, Ci and Ei are the i-th pixel values

of the original image and the encrypted image, respectively. The numerator of the equation counts

the number of pixels that differ between the original and encrypted images, and the denominator
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normalizes this count to the total number of pixels in the image. The resulting percentage value gives

a measure of the NPCR of the encryption algorithm. The higher the NPCR value, the more robust will

be the algorithm against chosen plain-text attacks.

Table 4. NPCR and UACI score results for 26 images with different sizes.

NPCR test result UACI test result
File name Score% Status Ref.[26] Ref.[25] Score % Status Ref.[26] Ref.[25]

Dimention 256×256 N ∗
α ≥ 99.5527% U ∗−

α ,U ∗+
α = (33.2255%, 33.7016%)

5.1.09 99.6094 pass 99.588 99.5941 33.4659 pass 33.5688 33.4722
5.1.10 99.5773 pass 99.6689 99.5728 33.4735 pass 33.5222 33.6179
5.1.11 99.585 pass 99.5743 99.5743 33.5218 pass 33.4894 33.5225
5.1.12 99.5789 pass 99.6277 99.5758 33.3434 pass 33.4975 33.3374
5.1.13 99.617 pass 99.5712 99.6459 33.5078 pass 33.5465 33.5497
5.1.14 99.5895 pass 99.5697 99.6170 33.2638 pass 33.5711 33.5752

Dimention 512×512 N ∗
α ≥ 99.581% U ∗−

α ,U ∗+
α = (33.3445%, 33.5826%)

5.2.08 99.5956 pass 99.5998 99.5918 33.429 pass 33.5446 33.4202
5.2.09 99.5895 pass 99.6086 99.6040 33.4564 pass 33.4976 33.3967
5.2.10 99.6014 pass 99.6048 99.5987 33.411 pass 33.3785 33.5028
7.1.01 99.6052 pass 99.5934 99.6014 33.4872 pass 33.4887 33.4886
7.1.02 99.6193 pass 99.6094 99.6056 33.5014 pass 33.5073 33.4162
7.1.03 99.612 pass 99.6025 99.5975 33.4781 pass 33.4612 33.5348
7.1.04 99.6136 pass 99.6189 99.6006 33.4653 pass 33.5243 33.4449
7.1.05 99.6357 pass 99.6094 99.6109 33.3931 pass 33.4804 33.4587
7.1.06 99.6033 pass 99.6105 99.6113 33.4627 pass 33.4292 33.4813
7.1.07 99.6086 pass 99.6078 99.5968 33.3644 pass 33.4592 33.4569
7.1.08 99.6147 pass 99.6052 99.6117 33.4791 pass 33.4667 33.4746
7.1.09 99.6204 pass 99.604 99.6151 33.5324 pass 33.4781 33.4900

boat.512 99.6067 pass 99.6365 99.6009 33.4882 pass 33.4683 33.3759
gray21.512 99.5876 pass 99.6178 99.5937 33.4121 pass 33.545 33.4828
ruler.512 99.6239 pass 99.6231 99.6021 33.4651 pass 33.4407 33.4163

Dimention 1024×1024 N ∗
α ≥ 99.5952% U ∗−

α ,U ∗+
α = (33.4040%, 33.5231%)

5.3.01 99.6078 pass 99.6063 99.6078 33.4627 pass 33.4725 33.4706
5.3.02 99.6084 pass 99.602 99.6009 33.483 pass 33.4983 33.4801
7.2.01 99.5984 pass 99.6073 99.6010 33.4672 pass 33.4723 33.4664

Dimention 1704×1704 N ∗
α ≥ 99.602% U ∗−

α ,U ∗+
α = (33.4326%, 33.4945%)

sphinx 99.6099 pass - - 33.4517 pass - -

Dimention 2362×2362 N ∗
α ≥ 99.604% U ∗−

α ,U ∗+
α = (33.4408%, 33.4863%)

lion 99.6079 pass - - 33.4658 pass - -

Dimention 2625×2625 N ∗
α ≥ 99.6034% U ∗−

α ,U ∗+
α = (33.4385%, 33.4886%)

bird 99.6108 pass - - 33.4701 pass - -

Dimention 4755×4755 N ∗
α ≥ 99.6056% U ∗−

α ,U ∗+
α = (33.4476%, 33.4794%)

pyramids 99.6081 pass - - 33.4597 pass - -

Unified Average Changing Intensity (UACI)

UACI is a metric used to calculate the difference in average intensity between two encrypted images,

denoted as C and C′. The difference is calculated using equation (23):

UACI(C, C′) = ∑
i,j

|C(i, j)− C(i, j)|
T × L

(23)

Where L is the maximum level of color intensity and T is the total number of pixels in the image.

The result of UACI is declared as “Pass” if it falls within the interval [U ∗−
α , U ∗+

α ].

Where µU and σU are given by Equation (25) and Equation (26):

µU =
L + 2

3L + 3
(24)

σU =
(L + 2)(L2 + 2L + 3)

18(L + 1)2LT
(25)
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In this article, 27 grayscale images of different sizes and intensities are subjected to both the

NPCR and UACI tests with α = 0.05. The results in Table 4 show that all scores are with PASS grades,

indicating that the proposed system has good confusion and diffusion properties that make them to

withstand differential attacks while ensuring data security.

6. Discussion and Conclusion

This paper has introduced a novel 1D chaotic function that exhibits complete chaotic behavior

across a broad range of a single control parameter c ∈ [−2, 2]. This new chaotic function has been

utilized as the core of a Pseudo-Random Number Generator (PRNG) in an image encryption proposed

scheme, which has been subjected to various tests to determine its robustness. The key space analysis

has indicated that the proposed scheme had a key space size of 256 bits, which is sufficient to withstand

brute force attacks. The sensitivity analysis has demonstrated that the scheme has been sensitive to any

small changes in the key, with acceptable values of Mean Squared Error (MSE) Peak Signal-to-Noise

Ratio (PSNR). The histogram analysis has revealed a uniform distribution of pixel values, indicating

good image quality after encryption. The algorithm also passed the entropy analysis test for significant

parameter values of α = {0.05, 0.01, 0.01}, indicating high randomness in the generated PRNs.

Moreover, the proposed encryption scheme has been found to be resistant to differential attacks

based on the results of testing it on 28 grayscale images of various sizes for NPCR and UACI. Overall,

the tests have demonstrated that the proposed image encryption scheme, which employs a hybrid

chaotic map as its PRNG, exhibits good confusion and diffusion properties. These findings contribute

to the field of image encryption and chaos-based cryptography by providing a suitable solution for

systems that possess a wide range of chaotic behavior in their control parameters. The proposed

scheme can be utilized for secure transmission and storage of confidential images.
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