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Abstract: Providing safe drinking water to people in developing countries is an urgent world-wide 

water problem and a main issue in the UN Sustainability Goals. One of the most efficient and 

cheapest methods to attain these goals is the use of slow sand filters. Slow sand filters can efficiently 

provide safe drinking water to people living in small rural communities not served by central water 

supply systems. The purpose of this review article is to critically summarize and synthesize features 

and advantages of slow sand filtration methods to improve the quality of drinking water with 

special focus on less-developed countries. Even though slow sand filtration is an old technique, its 

efficiency and cost-effectiveness make it important to continue to develop the method in parallel to 

other chemical and biological methods. Thus, there are needs to continue to develop methods for 

slow sand filtration combined with simple disinfection techniques for treatment of microbiological 

pollutants such as bacteria, microbes, viruses, and parasites. These techniques can be applied before 

or after the sand filter application. Studies are also needed to investigate other types of porous 

material in areas where suitable sand and gravel are not readily available. Methods are needed to 

reduce the contents of emerging environmental pollutants such as surfactants and microplastics. 

Also, further studies are needed to determine design criteria (particle size distribution, depth of 

media, residence time, temperature, etc.) for different types of pollutants, existing and emerging. 

Finally, further research is needed to advise on life cycle time, operation (e.g., batch or continuous 

flow), and maintenance procedures (cleaning of media, back-flushing, etc.) for used porous media 

in slow the sand filtration. 

Keywords: slow sand filtration; developing countries: microbes; parasites; turbidity; safe drinking 

water; water treatment 

 

1. Introduction 

Currently, the issue of providing the population with quality drinking water is one of the most 

acute problems in the world. Only 2% of Earth’s water are fresh and the problem of providing safe 

drinking water to the global population in view of climate change is getting worse. In addition, the 

rapid development of industry and emerging pollutants increase the risk of water pollution by 

substances harmful to human health. More than 1 billion people do not have access to safe drinking 

water, 80% of them live in rural areas, and up to 6 million people die each year from illnesses caused 

by contaminated water [1–4]. The greatest risk associated with ingestion is harmful microbial 

infection risk due to human and/or animal fecal contamination. Consumption and infection from 

contaminated water in developing countries cause thousands of deaths every day, mostly affecting 

children under the age of five [2]. According to the World Health Organization [3], the leading causes 

of death among children worldwide, after respiratory disease, are drinking contaminated water and 
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poor hygiene. In 2012, more than half a million deaths in low- and middle-income countries were due 

to drinking poor-quality water [4]. Water, sanitation, and hygiene (WASH) problems cause stunted 

children and great economic losses in the developing world. 

In view of the above, slow sand filtration (SSF) has historically been one of the most important 

methods to treat water for drinking and eradicate WASH problems. Due to its efficiency and low 

cost, SSF is still considered an effective and inexpensive way to provide clean drinking water in less-

developed countries with limited water resources. SSF is recognized by the U.S. Environmental 

Protection Agency (USEPA) and WHO as an inexpensive and reliable way to improve safe drinking 

water [5,6]. Therefore, this method is still used in rural areas and even in some larger cities of the 

world to provide the population with good quality drinking water [7]. Characteristic features of the 

SSF are simple construction, low energy consumption, low filtration rate, no chemical pre-treatment 

of water, and cleaning of filtering layers by scraping the surface or sand removal [8]. However, 

surprisingly only about half a million people in developing countries at present use SSF for drinking 

purposes [7]. In view of this, the objective of this review article is to critically summarize and 

synthesize features and advantages of SSF methods for less-developed countries to improve the 

quality of drinking water. After giving a brief introduction to present main raw water purification 

methods, SSF is summarized and assessed. We close with a reflection on research needs to further 

improve the SSF methods with application to less-developed countries. 

2. Contemporary Raw Water Purification Methods 

To date, there are various methods of treatment of raw water for drinking purposes. Which 

treatment method to be used to treat the water depends on its chemical composition, turbidity and 

size of particles (impurities) present and, purpose of use and distribution system to end users. The 

following contemporary methods to treat raw water are presently often used. 

2.1. Mechanical filtration 

Mechanical filtration is considered the simplest among the known methods of water 

purification. This method is usually used to purify water from turbidity and various insoluble 

substances. For this purpose, the water to be treated is passed through a porous medium constituting 

a filter. Various solids and filters (sand, gravel, clays, zeolites, bentonites, activated carbon, etc.) are 

used as a permeable porous medium [9–11]. The size of the detained (not passing through the filter) 

particles must be larger than the diameter of "holes" between the filtering particles. According to 

calculations, if diameter of homogeneous spherical filter particles is equal to d, then particles with 

diameter more than 0.15×d do not pass through the filter pores. And when passing water through the 

column filled with powdered activated carbon with particle size of 0.1-1 mm, particles of about the 

same size are detained. 

However, with mechanical filtration it is often difficult to purify water from microorganisms, 

bacteria, and viruses, as the size of these ranges from 0.005 to 3 microns that easily pass through the 

filter. The mechanical filtration method is usually used for pre-treatment of water taken from open 

water bodies (rivers, lakes, reservoirs) from relatively large particles of pollutants. In mechanical 

filtration the treated water usually passes through the filter by gravity [12]. 

2.2. Reverse osmosis 

In this method water is purified from unwanted impurities with the help of a reverse osmosis 

membrane by passing water through the membrane under pressure. The water passes freely through 

the membrane while other substances present in the water are retained [13]. Using this method water 

can be purified from various (even from monovalent) ions and obtain water of high quality (by 

composition close to distilled water). However, this method has several drawbacks [14,15]. First, this 

method has low selectivity, i.e., all "useful" and "harmful" substances for the human body are retained 

during water purification by the membrane. Therefore, to use water purified by this method as 

drinking water, it will be necessary to repeatedly add salts needed for the body. Secondly, the cost of 
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reverse osmosis units is relatively high, and the productivity of the process is usually rather low (20-

30 L/day). Thirdly, before using reverse osmosis, the water must be cleaned of relatively large 

mechanical impurities by filtration. Because large particles clog the pores of the membrane, as a 

result, the performance of the process drops, and the service life of the installation is dramatically 

reduced. 

2.3. Ion exchange 

The purification of contaminated water by this method is based on the ion-exchange process 

occurring between water and the sorbent (ion-exchange resin) [16,17]. The ion exchange method can 

selectively purify water from ions. For this purpose, the raw water is passed through the sorbent (ion 

exchanger). In this case, the ions present in the water are adsorbed on the surface of the sorbent, and 

the water from the ion-exchange resins is transferred to an equivalent number of ions with the same 

charge with respect to the adsorbed ions. For example, the ion exchange process is often used to 

eliminate water hardness (to reduce the concentration of Mg2+ and Ca2+). For this purpose, ion 

exchangers (cation exchangers) containing a harmless cation (e.g., Na+) are used. When hard water is 

passed through the cation exchange resin, an ion exchange process occurs between the water and the 

ion exchange resin, because of which the calcium and magnesium cations present in the water are 

adsorbed on the surface of the cation exchange resin, and sodium cations from the ion exchange resin 

are transferred to the water. The ion exchange process is often used to remove heavy metal cations 

from water and to extract various ions from industrially polluted water [18–20]. The efficiency of the 

ion-exchange process for water treatment largely depends on the exchange capacity of the sorbent, 

i.e., the ability of the sorbent to adsorb a certain amount of ions from the solution composition, and 

on the cost of regeneration of the spent sorbent. 

2.4. Electrochemical purification 

Electrochemical treatment is based on passing a strong electric current through the water to be 

treated [21,22]. When an electric current is applied, substances in the water participate in redox 

reactions (electrolysis), because of which they are transformed into other "harmless" substances. The 

electrochemical method is more efficient in terms of economy and its performance is very high. With 

this method it is possible to purify water from almost all microorganisms and obtain high quality 

water [23]. However, if the water contains various organic substances, under the influence of a strong 

current, they can undergo complex changes, resulting in the formation of harmful substances to the 

environment. Therefore, before using this method, it is necessary to know in advance what 

substances the impurities present in the composition of water can be transformed into during 

electrolysis. 

2.5. Distillation 

The distillation method is based on the conversion of water to steam by heating the solution and 

then condensing the water vapor [24,25]. With this method water can be cleaned from dissolved solid 

impurities, resulting in chemically pure (distilled) water. However, this method is expensive and the 

components (salts) necessary for human organism should be added to the distilled water to be used 

as drinking water. The main disadvantage of this method is the inability to purify water from low 

volatile organic substances by distillation. Therefore, to remove volatile organic compounds, the 

water is usually first passed through an adsorbent (e.g., activated carbon). 

2.6. Sorption 

Sorption refers to the adsorption by solid particles of components of gas mixtures and liquid 

solutions [26–28]. In this method, for the purpose of treatment, contaminated water is passed through 

a vessel filled with sorbent medium. The impurities in the water are adsorbed on the surface of the 

sorbent particles and the purified water flows out from the bottom of the sorbent. In this method the 

degree of water purification depends on many factors: size of the particles (specific surface area) of 
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the adsorbent, nature of the interaction of components present in the water with the adsorbent 

surface, pressure, and temperature. With decreasing particle size (with increasing specific surface 

area) sorption capacity of a solid increases dramatically. Various substances can be used as 

adsorbents [29,30]. To date, the most common (widely used) sorbent for water treatment is activated 

carbon. By activation the specific surface area of carbon can be increased up to 1000-1500 m2/g. 

Activated carbon can be used to purify water from substances of different chemical nature. Therefore, 

activated carbon is one of the main sorbents used in many commercial filtration plants today. 

2.7. Coagulation and flocculation 

Coagulation and flocculation are processes of precipitation of suspended dispersed particles 

present in solutions by adding electrolytes (coagulants) and water-soluble polymers (flocculants) [31–

34]. They can be used to concentrate impurities in a flocculent form, which can be easily removed by 

sedimentation. Introduction of coagulants into suspension leads to reduction of electrostatic 

repulsion force of disperse particles due to neutralization of surface charges and reduction of electro-

kinetic (zeta) potential of particles. Flocculation is a form of coagulation, when fine suspended 

disperse particles in a liquid or gaseous medium, form loose flocculated clusters, i.e., floccules. 

Natural [35,36] and synthetic water-soluble polymers [37,38] and their polycomplexes [39,40] are 

used as flocculants for raw water treatment. 

3. Slow Sand Filtration 

3.1. History 

Filtration methods are traditional techniques of water purification used by mankind since 

ancient times. By filtering, water can be cleaned of sand, silt, turbidity, scale, and other suspended 

particles. According to [41], people used sand and gravel filters as early as 2000 BC in ancient India. 

In ancient times, the Romans built canals near lakes to take advantage of natural filtration through 

the canal walls. 

Modern slow sand filters (SSF) for water purification were first used in the 19th century in 

England. Therefore, they are often called English filters. The first slow filter was built by the English 

engineer James Simpson in 1829 in London to purify water from the river Thames [42,43]. But various 

designs of sand filters were used for water purification in earlier years in several Scottish cities: 

Paisley (1804), Glasgow (1807), and Greenock (1827) [44,45]. In Berlin slow filters were built in 1853, 

in Warsaw in 1880, and in Moscow in 1902 [46]. In the United States the first SSFs were built in 1872 

at Poughkeepsie, New York [47,48], which operated until 1959 [49]. Thus, slow filtration of water has 

been an effective way to prevent the spread of various gastrointestinal diseases through drinking 

water for over 150 years [51]. In 1855 John Snow, in his essay "On the Means of Transmitting Cholera," 

suggested a correlation between the spread of the cholera epidemic and the quality of the water 

supply in Soho [52]. According to Wegelin [53], "no other simple purification process can improve 

the physical, chemical, and bacteriological quality of surface waters better than SSF." In 19th century 

Europe, SSF of water was recommended as one of the effective ways to prevent the spread of an 

infectious disease, the cholera epidemic [54]. SSF can eliminate 90-99% of bacteria and viruses, 

remove 93.3% of fecal coliforms, and completely remove Giardia lamblia cysts and Cryptosporidium 

oocysts [55]. In view of its efficiency for basic raw water treatment and low-cost characteristics, it is 

noteworthy that only about half a million people in developing countries use SSFs obtain a basic 

quality drinking water [7,50]. Obviously, SSF has a much larger role to play in this regard to help 

reaching the UN Developing Goals. 

3.2. SSF requirements 

A distinction can be made between rapid sand filtration and SSF of water [56–58].  SSFs have 

an effective particle size diameter of 0.15-0.35 mm and a uniformity factor of 1.5-3.0. The effective 

particle size for trapping in fast filters is greater than 0.55 mm with a uniformity factor of less than 

1.5. The water filtration rate in fast filters varies between 4-21 m/h (100-475 m3×m-2×d-1) [59] and in 
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SSF varies from 0.1 to 0.4 m/h (1-8 m3×m-2×d-1) [60]. The difference between these two methods is not 

only in the filtration rate, but most importantly, in the technology of water purification. Table 1 

provides a list of particles frequently present in raw water [61]. 

Table 1. Examples of elements found in raw water [61]. 

Category Group/Name Size (µm) 

Mineral 

Clays (colloidal) 0.001–1 

Silicates No data 

Non-Silicates No data 

Biological 

Virus 0.001–0.1 

Bacteria   0.3–10 

Algae, unicellular  30–50 

Giardia cysts 10 

Parasite eggs 10–50 

Nematode eggs 10 

Cryptosporidium oocysts 4–5 

Other particles 
Amorphous debris, small 1–5 

Organic colloids No data 

SSF refers to biological water treatment methods, although in this case there is also a physical 

(inertial collision and attachment, diffusion, adsorption, and sedimentation) separation of dispersed 

particles [61]. Fast sand filtration is a purely physical method of water treatment. SSF is an effective 

way to remove microbial contaminants and bacteria as well [62,63]. Particles are mainly removed in 

the upper part of the sand layer [64]. Nonpathogenic aerobic microorganisms deposited on the 

surface of the sand filter can metabolize organic matter that enters the filter with the incoming water. 

These microorganisms can prey on bacteria and viruses present in the water [65]. 

SSFs represent many advantages over other water treatment methods. They do not require 

chemical reagents and qualified specialists, are easy to operate, have minimal maintenance and 

manpower requirements, low capital and operating costs and low energy requirements [66–68]. For 

this reason, SSF has found widespread use in rural areas to provide good quality drinking water [69]. 

However, there are some limitations, e.g., SSF is not recommended for water treatment with turbidity 

greater than 5 nephelometric turbidity units (NTU), because high turbidity can lead to filter clogging 

and thereby shorten the life of the filter [70]. Apart from turbidity, for successful application of SSF 

treatment, chlorophyll content in feed water must be <0.05 μg/L; iron and manganese must not exceed 

0.3 and 0.05 mg/L, respectively. The quantity of dissolved heavy metals, pesticides, and colorants 

must be minimal and presence of residual oxidant before filtration is not desired [70]. At the same 

time, SSFs are better at purifying water contaminated with non-clayey impurities [71]. 

In Saskatchewan, Canada [72], a modular SSF polyethylene system was developed and tested 

that incorporated pretreatment and post-treatment processes such as ozone oxidation, pretreatment, 

and biological activated carbon (BAC) filters to provide significant reduction in turbidity, heavy 

metals, color, and organics. In the initial period, the filtration efficiency without the Schmutzdecke 

layer may not be more than 60% [73]. Several studies [74,75] summarizes work on the modification 

of SSFs, which help to eliminate the limitations of the application of this method. 

Currently, for the preparation of potable water in many cases, chemical methods of treatment 

are used. However, the use of reagent methods at small treatment plants may create problems 

associated with the lack of qualified specialists, with the high cost of equipment and chemical 

reagents used for water treatment. This fact leads to the conclusion that reagent-free water treatment 

methods often are better suited for rural areas in developing countries. 
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3.3. SSF biological processes  

There are two important mechanisms regarding the filtration of particles and microorganisms 

through a slow sand layer: the transport mechanism and the attachment mechanism [75]. According 

to the transport mechanism, particles in water that are larger than the pore diameter of the sand layer 

cannot pass through the filter and are retained on the surface of the sand layer. Larger particles are 

mainly retained by the transport mechanism. However, as the particles settle and the biofilm 

"matures" on the surface of the sand layer, the pore diameter of the sand filter gradually decreases. 

Because of this, particles, and microorganisms much smaller than the pore diameter of the sand bed 

can be retained on the surface of the sand bed [76]. The particles (microorganisms) present in the 

water adhere to the sand layer surface through Van der Waals or electrostatic forces of attraction [77–

80]. In this case, formation of chemical (e.g., hydrogen) bonds between particles and solid surface 

cannot be excluded as well. Bacteria (size 0.01-10 μm) [81], viruses (0.01-0.1 μm) [82,83], and colloidal 

particles (0.001-1 μm) [77] are mainly retained by this mechanism. 

3.4. General construction of SSF 

Traditional slow filters are usually tanks up to 6 m wide, up to 60 m long and consisting of four 

layers (Figure 1) [65,75,80]. Drainage is placed on the bottom of the tank. Hollow pipes, bricks, or 

concrete slabs with gaps are usually used as drainage. A supporting layer (approximate thickness of 

0.5 m) of gravel, pebbles or crushed stone is placed on the surface of the drainage. The particle size 

of the supporting layer can vary from 2 to 30 mm. Above the supporting layer a filtering layer of sand 

(thickness 450-1250 mm) is placed with a developed surface and high porosity. The sand particle size 

can vary from 0.2 to 2 mm [84,85]. On the surface of the filtration layer the supernatant water is 

located. The supernatant layer must provide the necessary head to filter water through the porous 

sand layer [8]. The flow rate can be regulated by changing the difference between the head of the 

supernatant water and the height at which the discharge pipe is open to the atmosphere. 

 

Figure 1. Schematic of a general SSF design. 

It is regarded [80] that a sand layer thickness of 0.3 m is sufficient for proper removal of turbidity 

and coliform bacteria, and a thickness of 0.6 m for significant removal of virus from the water 

composition. Changing the thickness of the sand layer affects the removal rates of bacteria and 

viruses. For example, a decrease in sand layer thickness from 0.6 m to 0.3 m resulted in a 0.04% 

decrease in poliovirus (poliovirus) removal (from 99.98% to 99.94%) [65,86], and a 2% decrease in 

coliform removal (from 97% to 95%) observed when filter layer thickness was reduced from 0.97 m 

to 0.48 m [61,87]. 

Depending on the weather conditions, the slow-filter tank can be located outdoors or indoors. 

During the cold winter period it is recommended to conduct the filtration process indoors, especially 
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at subzero temperatures. Over time, as the biofilm thickens, the SSFs gradually lose their efficiency 

and the flow rate through the filter decreases. In this case, it is necessary to rebuild the filter. As a 

rule, the duration of an SSF is from 30 to 60 days, but sometimes it can reach more than 100 days 

[75,80]. 

3.5. Slow sand filter regeneration 

There are two main methods of filter layer regeneration: 1) with removal of the upper 

contaminated layer of sand and 2) with washing of the contaminated sand surface layer directly in 

the filter by mechanical or hydraulic loosening and removal of contaminants by a stream of clean 

water (wet harrowing) [88,89]. In the first method, the top layer of sand is periodically (2-3 times a 

month) removed and washed several times with clean water. After that, the cleaned sand is loaded 

back into the tank. 

3.6. SSF speed mode 

The slow filtration rate depends on the suspended solids content of the raw water. At a particle 

concentration not more than 25 mg/L the filtration speed is 0.08-0.4 m/h [90], and at a particle 

concentration exceeding 25 mg/L the filtration speed varies from 0.1 to 0.2 m/h. 

Contaminated water in slow filters is purified with the help of a "biological film" that forms on 

the surface of the filtering sand layer from algae, bacteria, and settled contaminant particles. Such a 

film is called the hypogeal layer or the Schmutzdecke (German for "dirt layer") [61,76,91–94]. The 

duration of filter maturation significantly affects the rate and degree of removal of microbial and 

organic contaminants by the filter [7,86]. An effective biological film forms during the first 10-40 days 

of the SSF process of water [7,95–97] and provides detention of up to 90-98% of highly dispersed 

solids, bacteria [98], reduction of fecal coliform bacteria, and turbidity per log10 [96], reduction of 

total coliforms and turbidity to 97% [99]. A low filtration rate is necessary for complete biological 

processes in the filter [100,101]. 

SSF can remove pathogenic microorganisms, suspended organic and inorganic contaminants 

[84,102], turbidity [102], bacteria, virus, and enteroparasite cysts [86,102,103,]. Meanwhile, the main 

biological mechanisms responsible for the removal of bacteria in slow sand filters are predation by 

algae, eating detritus by aquatic worms, natural mortality, inactivation, metabolic breakdown, and 

adsorption on the sticky zoogleal surface of the sand [92,102–104]. 

The sorption capacity of the Schmutzdecke layer is estimated through the sorption coefficient 

(Kd), which is calculated using [105]: 𝐾𝐾𝑑𝑑 = 𝐶𝐶𝑠𝑠𝐶𝐶𝑒𝑒 (1) 

where Cs is the milligram of sorbed antimicrobial per kilogram of solid, mg/kg; Ce is the aqueous 

antimicrobial concentration mg/L after 24 h equilibration. Sorption coefficients are normalized to the 

share of organic (Koc = Kd/foc) and organic matter (Kom = Kd/fom) where foc and fom are mass fraction of 

organic carbon and organic matter in the Schmutzdecke layer, respectively. 

3.7. Influence of various factors on SSF 

The size and homogeneity of sand particles essentially influence the efficiency of water 

purification with a SSF [106]. The homogeneity of the particles is determined by the homogeneity 

coefficient. The homogeneity coefficient of sand is defined as the ratio: coarseness at which 60% (by 

weight) of the sand sample pass through the sieve divided by the coarseness at which 10% of the 

same sample (by weight) pass through the sieve, i.e., К60/10 = d60/d10. A uniformity factor of 1 means 

that all particles are the same size. As the uniformity of the sand particles increases, the filtration 

efficiency increases. If the sand particles vary greatly in size, the smaller sand particles will fill the 

gaps between the larger particles, resulting in filter clogging [107]. The most effective sand particle 

size for slow filtration is 0.15-0.35 mm and a uniformity factor of less than 2 [108]. 
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The thickness of the sand layer has a significant influence on the degree of removal of 

contaminants from the water composition by the method of SSF. It is generally assumed that the 

thicker the sand layer, the greater the retention of fine and colloidal particles, viruses, and the better 

the discoloration of water. According to [109], a sand layer 200 mm thick removes 99.5% of fecal 

bacteria. The minimum thickness of the sand layer to remove turbidity and coliform bacteria is 300 

mm, while 600 mm sand thickness is sufficient to remove all viruses [80]. 

According to [65], the key design parameter of SSF controlling water quality is the filter's 

hydraulic residence time (HRT). HRT is determined by:  

HRT = V×n/Q (2) 

where Q is the water volume flow rate, m3/h; V is the total sand volume, m3 and n is the sand porosity. 

The porosity of sand usually ranges from 0.35 to 0.50. This means that 35 to 50% of the volume of the 

active filter is water in contact with microorganisms attached to the sand grains. Reducing the sand 

particle size increases the water-sand contact surface area and the porosity of the material. On the 

other hand, a wide range of particle sizes reduces the porosity of the sand layer, which leads to lower 

HRT. Therefore, the sand must have a sufficiently high homogeneity. According to [65], the use of a 

sand layer consisting of particles with a size of 0.35-1.5 mm provides a high degree of water 

purification at HRT from 8 to 12 hours. 

3.8. Purification of water from ions, bacteria, and microbes 

SSF can also be used to purify water from ions. However, there are chemical impurities that 

cannot be effectively removed by SSF alone. These include sulfate (SO42-), nitrate (NO3-), sodium 

(Na+), calcium (Ca2+), magnesium (Mg2+) ions and water hardness (as CaCO3) [110,111]. According to 

[110], biological treatment converts most ammonium ions (NH4+) to nitrate ions (NO3-). In addition, 

stable colloidal particles are also difficult to remove by SSF [71,72]. 

In the last two decades, so-called bio-sand filters (BSFs) have become widespread. For example, 

the company CAWST (Center for Accessible Water Supply and Sanitation Technology) in Calgary, 

Canada, has developed concrete filters made of bio-sand, which are used in 450 organizations in more 

than 55 countries [73,74]. Triple Quest of Grand Rapids, USA, offers bio-sand filters 60 L HydrAid 

filters made of plastic [65,112,113]. Plastic biosand filters are relatively cheap and lighter than concrete 

BSFs [114]. The authors [65] proposed a modified household plastic filter (BSF). In the new filter 

design the gravel layer is replaced by a thin porous plastic plate placed in a plastic bag. This 

replacement reduces the required filter media and increases the total pore volume in the core. As a 

result, the cost and labor required to install and maintain the filter is reduced. 

A study [115] proposed a household SSF for removal of As, Fe, and Mn from the composition of 

groundwater for rural areas in Vietnam. The sand for filtration was collected from the banks of the 

Red River. It was found that nitrate-reducing Fe(II)-oxidizing and Fe(III)-reducing bacteria were 

present in the dry sand, while microaerophilic Fe(II)-oxidizing bacteria were absent. And, Mn-

oxidizing bacteria were found in the composition of the dry sand. Based on the analysis of the 

composition of the microbial community, the authors concluded that the abiotic processes of 

oxidation of Fe(II) prevail over the biotic oxidation of Fe(II) on the filter. Moreover, Mn-oxidizing 

bacteria played an important role in Mn(II) oxidation and deposition of Mn(III/IV) oxide in a separate 

layer of the sand filter. The formation of Mn(III/IV) oxides promoted abiotic oxidation of As(III) and 

immobilization of As(V) by sorption onto (oxy-hydro) oxides of Fe(III). This resulted in a significant 

reduction of As, Fe, and Mn concentrations in filtered groundwater. 

In several studies [116–118] the design and principle of operation of a slow self-cleaning filter 

for natural water deferrization were proposed. A Birm Regular filter was used as a filter load, which 

simultaneously acts as a catalyst for the reaction of oxidation of Fe2+ by oxygen to Fe3+. Trivalent iron 

cations are hydrolyzed to Fe(OH)3 and then positively charged colloidal particles of Fe(III) hydroxide 

are formed [119]. Positively charged colloidal particles of iron (III) hydroxide are adsorbed on the 

negatively charged surface of the particles of filter media, resulting in the formation of a dense gel-

like adsorption layer on the surface. Such a layer is an effective filtering material. The concentration 
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of Fe(OH)2 varied from 6.0 to 16 mg/L in the model natural water (simulant). It was established that 

the output of the filter to the working mode at Fe3+ concentration in the model solution of 16.0 mg/l 

was not more than 2.0 hours. The analysis of the experimental data obtained for water with iron 

concentration of 16.0 mg/L has shown that at the first stage of filter operation the Fe3+ concentration 

in the treated water decreases from 16.0 to 0.9 mg/L after 20 min of filtration and after 1.5 hr it was 

0.1 mg/L. The maximum allowable concentration for Fe3+ in drinking water is 0.3 mg/L [120]. 

According to the authors, the use of the proposed design for pre-treatment of water from iron ions, 

will significantly reduce the load on the stage of the final purification of water from iron. 

In [121] the possibility of removing cyanobacterial hepatotoxins (microcystins) from the 

composition of water taken from Berlin lakes using SSFs was studied. Two full-scale experiments 

were performed: one experiment was performed with dissolved microcystins extracted from a 

cyanobacterial flower in one of the Berlin lakes. The second experiment was performed with a longer 

exposure of live cyanobacterial cells (collected from the same lake) to the filter. It was found that the 

experiment with dissolved microcystins revealed high rates of microcystin elimination (95%) within 

the sand filter bed and with a half-life for microcystins of about 1 hr. In the second experiment, where 

cell-bound microcystins were used, rather good results (elimination of 85%) were also obtained in 

the first days after application of cyanobacteria. However, as the temperature decreased to 4oC, 

elimination decreased to 60%, which, according to the authors, is associated with a slowing down of 

bacterial biodegradation at low temperature. Thus, it was concluded that at moderate plus 

temperatures, slow filtration through sand can serve as an effective method of removing microcystins 

from drinking water composition. 

In [105] the efficiency of removal of water-soluble antimicrobials such as sulfamethazine (SMZ), 

tylosin (TYL), sulfamethoxazole (SMX), trimethoprim (TRI) and lincomycin (LIN) from water in rural 

areas by SSF was studied. Basalt sand was used as filtering material. Water-soluble antimicrobials 

are used in livestock and poultry production to promote growth and prevent bacterial infections. In 

rural areas, surface water may be contaminated by antimicrobials from wastewater or by diffuse 

contamination from the application of manure and processed biological solids containing 

antimicrobial residues to the soil [122–124]. Experiments were carried out using coarse (fast) and SSF 

methods. The coarse filter showed low antimicrobial removal efficiency. SSF showed effectiveness in 

removing antimicrobials, with the sorption of drugs on the surface of the filter layer changing as 

follows: TYL > TRI > LIN > SMX > SMZ. At the end of the 14-day period of the SSF study, the following 

results were obtained: >99% TRI removal, <25% LIN removal and <4% sulfonamide antimicrobial 

removal from the contaminated river water. 

In [125], slow and fast sand filtration methods were used to remove Triactinomyxon actinospores 

(Tams) of the salmon parasite Myxobolus cerebralis from contaminated water.  Sand with a particle 

diameter of 0.180 mm was used as filter material.  The sand cushion of the filter was 17.8 cm and the 

support gravel was 17.8 cm. Aquarium fish were used as targets of Tams infestation. Tams were 

introduced into fish rearing systems over sand filters. The rapid filtration method was tested with two 

backwashing regimes. In the first, a continuous backwash was performed, and in the second, flow was 

diverted past the fish tanks for 5 min after backwashing. SSF through a sand filter without backwashing 

served as a control for the two fast filters. After 60 days, clinical signs of circling behavior and black tails 

were seen among the positive controls. Polymerase chain reaction (PCR) analysis for Myxobolus 

cerebralis showed that infections were absent in both fast sand filter water treatments. Whereas 1.6% of 

all fish were infected with the SSF treatment. Based on these results, the authors concluded that both 

fast and SSFs can be used to remove Tams from the water composition and the backwash method is 

important for the reliable functioning of fast sand filters [125]. 

5. Conclusions 

The above review shows that there are ample possibilities for simple, cost-effective, yet effective 

applications for extended use of slow sand filtration (SSF), especially in rural areas that are difficult 

to reach by central raw water treatment plants. The efficiency and cost-effectiveness of the SSF make 

this method especially suited for less-developed countries. Filters are easy to manufacture from local 
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material and do not require expensive additional chemicals or complicated operation and 

maintenance. The following reflections and conclusions can be made regarding SSF and possibilities 

to extend its use: 

SSF functions rather well as bio-filters that are important for less-developed countries. However, 

to further continue to develop methods for SSF, combined use with disinfection techniques for further 

water purification from microbiological pollutants such as bacteria, microbes, viruses, and parasites 

can be performed. These techniques can be applied before or after the SSF application. 

1. Studies are needed to investigate SSF using other types of basic material in areas where suitable 

sand and gravel are not readily available. This is especially important for less-developed 

countries and regions where sand or gravel are not readily available.  

2. It is becoming especially important, especially for less-developed countries, to test and develop 

SSF methods to reduce contents of emerging environmental pollutants such as surfactants and 

microplastics. 

3. Further studies are needed to determine design criteria (particle size distribution, depth of 

media, residence time, temperature, etc.) for different types of pollutants, existing and emerging. 

4. Further research is needed to advise on life cycle time, operation (e.g., batch or continuous flow), 

and maintenance procedures (cleaning of media, backflushing, etc.) for used porous media in 

SSF.  

5. Surprisingly few people in less-developed countries still have not access to SSF to obtain safe 

drinking water. This is noteworthy in view of the SSF simplicity and efficiency in preventing 

WASH diseases. Obviously, SSF has a much larger role to play in helping to reach the UN 

Developing Goals. 
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