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Abstract: Recent advancements in Natural Language Processing (NLP), particularly in Large Lan-
guage Models (LLMs), associated with deep learning-based computer vision techniques, have shown
substantial potential for automating a variety of tasks. One notable model is Visual ChatGPT, which
combines ChatGPT’s LLM capabilities with visual computation to enable effective image analysis.
The model’s ability to process images based on textual inputs can revolutionize diverse fields. How-
ever, its application in the remote sensing domain remains unexplored. This is the first paper to
examine the potential of Visual ChatGPT, a cutting-edge LLM founded on the GPT architecture, to
tackle the aspects of image processing related to the remote sensing domain. Among its current
capabilities, Visual ChatGPT can generate textual descriptions of images, perform canny edge and
straight line detection, and conduct image segmentation. These offer valuable insights into image
content and facilitate the interpretation and extraction of information. By exploring the applicability
of these techniques within publicly available datasets of satellite images, we demonstrate the current
model’s limitations in dealing with remote sensing images, highlighting its challenges and future
prospects. Although still in early development, we believe that the combination of LLMs and visual
models holds a significant potential to transform remote sensing image processing, creating accessible
and practical application opportunities in the field.

Keywords: artificial intelligence; image analysis; visual language model

1. Introduction

Remote sensing image processing is a critical task for monitoring and analyzing the
Earth’s surface and environment. It is used in a wide range of fields such as agriculture,
forestry, geology, water resources, and urban planning [1,2]. However, analyzing and inter-
preting large volumes of remote sensing data can be time-consuming and labor-intensive,
requiring specialized knowledge and expertise [2]. In recent years, Large Language Models
(LLMs) emerged as powerful and innovative tools for human assistance in various domains
[3], holding the potential to be implemented in the remote sensing area as well.

As Artificial Intelligence (AI) continues to evolve, novel models demonstrate an
unprecedented ability to understand and generate human-like text, as well as perform
numerous tasks based on human guidance [4]. Among the LLMs, a model named ChatGPT
stands out as a remarkable example, offering immense promise for assisting humans in
multiple activities. The Generative Pre-trained Transformer (GPT), a deep learning model
developed by OpenAI [5], has gained considerable attention as a promising AI technique
for natural language processing tasks.

The GPT model has been trained on extensive text data and can generate human-like
responses to input prompts. This model is particularly useful in tasks such as chatbots, text
summarization, and language translation [5,6]. Recent research, however, has explored
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the application of LLMs models in visual tasks such as image generation, captioning, and
analysis assistance [7]. These models, also known as Visual Language Models (VLMs), can
generate natural language descriptions of images and perform image processing tasks from
text descriptions. One model that is gaining attention is the Visual ChatGPT [8]. Visual
ChatGPT is an extension of ChatGPT that incorporates visual information on its capabilities
while also providing text-based responses in a conversational style.

Although still in its early concepts, the fusion of LLMs and visual models may revolu-
tionize image processing and unlock new practical applications in various fields [9]. In this
context, remote sensing is an area that could directly benefit from this integration. Fine-
tuned VLMs could potentially be used to process and analyze satellite and aerial images to
detect land use changes, monitor natural disasters, and assess environmental impacts, as
well as assist in the classification and segmentation of images for easier interpretation and
decision-making.

In this paper, we discuss the significance, utility, and limitations of the model Visual
ChatGPT in assisting humans in remote sensing image processing. This model has shown
great potential in various applications such as question-answering systems and image
generation and modification. Currently, Visual ChatGPT can perform image processing
tasks like edge detection, line extraction, and image segmentation, which are interesting
for the remote sensing field. The model, however, is not fine-tuned to deal with the
remote sensing domain, thus making it still an early adoption of the tool. Regardless, we
investigate this, as a basis for discussion of its potential, by comparing these tools within
publicly available datasets of remote sensing imagery, thus measuring its capabilities both
quantitatively and qualitatively.

By enabling machines to understand and generate images, Visual ChatGPT paves the
way for numerous applications in image processing. Herein, we discussed how Visual
ChatGPT can be adapted to the remote-sensing domain, where it might revolutionize the
way we process and analyze these images. We examined state-of-the-art developments
in the model, evaluated their capabilities in the context of remote sensing imagery, and
proposed future research directions. Ultimately, this exploration seeks to provide insights
into the integration of VLMs into remote sensing science and community.

2. Visual ChatGPT: A Revolution in Image Analysis and its Potential in Remote
Sensing

Visual ChatGPT is an advanced VLM that combines the capabilities of text-based LLMs
with visual understanding. This revolutionary approach enables machines to analyze
images and generate relevant text or visual outputs, opening up new possibilities for
image analysis and processing. One of the key features of Visual ChatGPT is its ability to
incorporate state-of-the-art algorithms and information into its current model, facilitating
continuous improvement and adaptation [8].

By fine-tuning the model with domain-specific datasets, Visual ChatGPT can become
increasingly proficient in specific tasks, making it an invaluable tool for image analysis.
With its architecture built to process and analyze both textual and visual information, it has
the potential to revolutionize diverse fields. Interaction with Visual ChatGPT involves a
dynamic and iterative process, where users can provide textual input, image data, or both,
and the model responds with relevant information or actions. This flexibility allows for
a wide range of tasks to be performed, including generating images from the user input
text, providing photo descriptions, answering questions about images, performing object
and pose detection, as well as other various image processing techniques, such as edge
detection, straight line detection, scene classification, and image segmentation, which are
interesting in the remote sensing context.

Image processing methods are essential for extracting valuable information from
remote sensing data. However, these techniques often require additional computational
knowledge and can be challenging for non-specialists to implement. VLMs like Visual
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ChatGPT offer the potential to bridge this knowledge gap by providing an accessible
interface for non-experts to analyze image data.

Although still early in its conception, many techniques and methods can be integrated
into VLMs, thus providing the means to perform complex image processing [7,9]. In remote
sensing, tasks such as edge and line detection, scene classification, and image segmentation,
which currently are some of the techniques embedded into Visual ChatGPT’s model, can be
used to perform and enhance the analysis of aerial or satellite imagery and bring important
information to the end user.

Edge detection is an image processing technique that identifies the boundaries between
different regions or objects within an image. In remote sensing, edge detection is vital for
recognizing features on the Earth’s surface, such as roads, rivers, and buildings, and others
[10]. Visual ChatGPT, with its ability to analyze images and generate relevant text or visual
outputs, can be adapted to assist non-experts in executing edge detection tasks of different
objects present in the image. By providing textual input alongside image data, users can
interact with the model to identify boundaries and extract valuable information about the
scene being analyzed.

Straight line detection is another critical image processing technique in remote sensing,
with applications in feature extraction. It involves identifying linear targets in remote
sensing images, such as roads, rivers, and boundaries [11]. Visual ChatGPT can be utilized
to help non-experts perform line detection tasks by processing image data and easily
returning line pattern identification in the images. This capability enables users to extract
additional information about the underlying terrain or land use and cover without requiring
in-depth knowledge of these image-processing techniques.

Scene classification and image segmentation are also essential techniques in remote
sensing for identifying different types of land cover and separating them into distinct
regions. These techniques aid in monitoring land use changes, detecting deforestation,
assessing urban growth, monitoring water reservoirs, and estimating agriculture growth,
among many others [12]. On this, VLMs can be employed to facilitate scene classification
and image segmentation tasks for non-experts. In scene classification, Visual ChatGPT can
be used to detect and describe objects in the image. As for segmentation, with specifically
fine-tuned models, there is the potential for users to obtain results by simply interacting
with the model using textual input [13], allowing them to analyze land changes and monitor
impacts.

However, it is important to note that the current version of Visual ChatGPT has not
been yet specifically trained on remote sensing imagery. Neither have any other VLMs
precisely tuned for this task since the technology is still in an early stage. Nonetheless, the
model’s architecture and capabilities offer a solid foundation for fine-tuning and adapting
it to this domain in future implementations.

By training Visual ChatGPT on remote sensing datasets, it is possible that it can be
tailored to recognize and analyze unique features, patterns, and structures present in aerial
or satellite images. To fully realize its potential, thorough analysis and evaluation of its
usage, impact, practices, and errors in remote sensing applications are necessary. This will
not only assist the development of improved VLMs but also pave the way for more efficient,
accurate, and comprehensive analyses of remote sensing data performed by these tools.

3. Materials and Methods

In this section, we detail the materials and methods used to evaluate the performance
of Visual ChatGPT in remote sensing image processing tasks. The evaluation process is
divided into several stages (Figure 1), focusing on different aspects of the models’ current
capabilities, mainly on image classification, edge, and straight line detection, and image
segmentation.
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Scene Classification:
❑ Precision, Recall, F-Score & Accuracy.

Edge and Line Detection:
❑ TPR, FPR, AUC, Precision, Recall, F-Score & 

Accuracy.

Image Segmentation:
❑ Local SSMI, Global SSMI & UQI.

Set Environment
❑ generate OpenAI Key;
❑ organize image folders.

Define User Prompt:
❑ for Scene Classification;
❑ for Canny Edge Detection;
❑ for Straight Line Detection;
❑ for Segmentation on Image.

Image Selection:

❑ 26-32 images per scene class (LoveDA dataset);
❑ 49 images for edge, line and segmentation (AID dataset).

LoveDA (Wuhan University, Oct 2021): 

❑ 5,987 image chips (Google Earth), 7 landcover categories, 166768 
labels, 3 cities in China. Paper: Wang et al., 2021.

AID: Aerial Scene Classification (Xia et al., 2017):

❑ 10,000 aerial images within 30 categories (airport, bare land, baseball 
field, beach, bridge, ...) collected from Google Earth imagery. Paper: 
Xia et al. 2017.

Image Loading

Foundation Models for 
Visual ChatGPT

Prompt Manager

ChatGPT

Reasoning

Output

OpenAI API

Data Survey Scene Classification

Data Preparation

Edge Detection

Line Detection

Image Segmentation

Evaluation

Figure 1. Diagram of the evaluation process of Visual ChatGPT in remote sensing image processing
tasks. The diagram follows an up-down/left-to-right flow, indicating that the process begins with
a data survey, preparation, and setting up of the environment for loading the images into Visual
ChatGPT. Next, different tasks are performed using the tools provided by Visual ChatGPT, and the
results are stored for analysis where different sets of metrics are applied to evaluate the performance
of the model.

We initiated our evaluation of Visual ChatGPT by assessing its performance in scene
classification tasks. To this end, we used a publicly available dataset containing Google
Earth images labeled by human specialists. We extracted a small portion of this dataset,
considering a subset of its classes for our tests. The model’s classification performance was
compared to the ground-truth labels provided in the dataset.

In the next stage, we qualitatively evaluated the edge and straight line detection
capabilities of Visual ChatGPT on remote sensing imagery, from Google Earth, of another
publicly available dataset. The detected edges and lines were assessed to determine the
model’s effectiveness in identifying target features in the images. The model’s performance
was compared with traditional edge filters and manually labeled lines.

Lastly, we evaluated the image segmentation feature of Visual ChatGPT using the
images from the same previous dataset, which was specifically designed for segmentation
data training. We then compared the resulting segmentations with their corresponding
masks. The comparison was conducted using an associative method in which the classes
identified by the Visual ChatGPT model were associated with the classes labeled in the
dataset.

3.1. Experiment Delineation

To implement Visual ChatGPT, we downloaded the code from Microsoft Github [14],
created a virtual environment, installed the required dependencies, downloaded the pre-
trained models, and started a Flask server. Once the server was running, we imported
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the required libraries on Python code and set the API key for the OpenAI platform access.
The “run_image” function inside the original “visual_chatgpt.py” file was modified to
handle image resizing and captioning. Next, the Visual ChatGPT model was loaded with
the required sub-models.

It is important to point out that Visual ChatGPT provides a different set of tools, but
not all of them are appropriate to deal with tasks related to remote sensing images. In this
sense, we used only the following: “Get Photo Description”, “Answer Question About The
Image”, “Edge Detection On Image”, “Line Detection On Image” and “Segmentation On
Image”. Our code then loops through a folder containing the images and performs the
canny edge and straight line detection, as well as segmentation on each image. It also gets
the default image description of the original loaded image using the Visual ChatGPT model
and then asks a classification question to determine the class of the image. The results are
then stored in a .csv file and used for further evaluation.

Visual ChatGPT utilizes sub-models that are specifically designed to cater to the
different prompts and tools required. For instance, the "Get Photo Description" and "Answer
Question About The Image" tools use models from the HuggingFace library [15] to generate
natural language descriptions of an image and answer questions based on the given image
path and the corresponding question. The "Edge Detection On Image" tool uses the Canny
Edge Detector [16] from the OpenCV library to identify and detect the edges of an image
when given its path. Similarly, the "Line Detection On Image" tool uses the M-LSD Detector
for Straight Line model [17] to detect straight lines in the image. Finally, the "Segmentation
On Image" tool employs the UniFormer Segmentation model [18] to segment different
classes on the given image.

To assess the effectiveness of the Visual Chat-GPT models in handling remote sensing
image data, we surveyed publicly available datasets related to this field. After consideration,
we selected two datasets that would allow us to investigate the model’s capabilities for
performing specific tasks. These datasets were the "AID: Aerial Scene Classification" [19]
and the "LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic
Segmentation" [20]. Both datasets contain Google Earth imagery captured at different times,
with varying lighting conditions and visualization scales. These datasets provide a rich
and diverse set of images that are well-suited for testing the model’s performances.

The AID dataset contains 30 different scene classes and about 200 to 400 samples of
600x600 size for each class, with 10,000 images in total. However, due to the current token
cost associated with using Visual ChatGPT, we selected a small portion of the dataset for
evaluation. We selected between 26 to 32 images, randomly, from the following classes:
“Airport”, “BareLand”, “BaseballField”, “Beach”, “Bridge”, “Center”, “Church”, “Com-
mercial”, “DenseResidential”, “Desert”, “Farmland”, “Forest”, “Industrial”, “Meadow”,
“MediumResidential”, “Mountain”, “Park”. These were stored in a “classes” variable
within our code. We chose these 17 classes to ensure a diverse representation of the scenes.
This brought a total of 515 images to be loaded and described (and, therefore, classified)
by the Visual ChatGPT model. These images were used for evaluating the “Get Photo
Description”, and “Answer Question About The Image” tools.

The LoveDA dataset is composed of 5,987 image chips, being segmented into 7 land-
cover categories (namely: "background", "building", "road", "water", "barren", "forest" and
"farmland), totaling 166,768 labels across 3 cities. This dataset focuses on multi-geographical
environments, variating between “Urban” and “Rural” characteristics, while providing
challenges like multi-scale objects presence; complex background samples, and inconsistent
class distributions. The dataset also provides the segmentation masks used to train image
models. Here we used these masks as our “ground-truth” data and selected a small portion
of the dataset, consisting of 49 images (mixing both “Urban” and “Rural” environments).
These 49 image chips were all used in the evaluation of the “Edge Detection On Image”,
“Line Detection On Image” and “Segmentation On Image” tools.
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3.2. Protocol for Scene Classification Evaluation

We first investigated whether Visual ChatGPT can assist in classifying remote sensing
scenes. To test this, we used the AID dataset (Aerial Scene Classification) [19]. We evaluated
the "Get Photo Description" and “Answer Question About The Image” functions of Visual
ChatGPT by asking it to describe and classify the selected images. For each image, we
asked Visual ChatGPT to choose, based on its image description, with which class it would
associate the image. We directly asked it to choose between each one of the 17 classes,
instead of trying to guess them, thus generating guided predictions. A .csv file was created
with the stored results and compared the Visual ChatGPT classification with the correct
class from the dataset.

We used the confusion matrix from the sklearn library to evaluate the performance of
Visual ChatGPT in classifying the scenes. The confusion matrix is a commonly used tool
in the evaluation of classification models. It provides a summary of the performance of a
model by showing the number of correct and incorrect predictions for each class. We begin
by loading the dataset into a Pandas data frame from the saved .csv file. The set contains
two columns, “image_path” and “answer_to_the_question”, that correspond to the true
and predicted labels for each data point, respectively.

The classes were defined as a list of strings representing the different categories in
the dataset. The “mage_path” and “answer_to_the_question” columns were then con-
verted to NumPy arrays, which are required for generating the confusion matrix, which
was generated using the scikit-learn library’s “confusion_matrix”’ function. The function
takes as input the true labels (y_true), predicted labels (y_pred), and the list of class labels
(classes). Finally, a heatmap was created using the Seaborn library’s “heatmap” function.
The heatmap was customized by adding annotations to show the number of predictions in
each cell. We calculated the Precision, Recall, F-Score and Accuracy metrics to assess the
performance of Visual ChatGPT in comparison to the correct class labeled from the AID
dataset. These metrics can be described as follows [21]:

Precision: Precision measures the proportion of True Positive (TP) instances among the
instances that were predicted as positive. Higher precision means fewer False Positives
(FP).

Precision =
TP

(TP + FP)
(1)

Recall: Recall measures the proportion of TP instances among the actual positive instances,
thus using False Negatives (FN) into its equation.

Recall =
TP

(TP + FN)
(2)

F-Score: F-Score is the harmonic mean of Precision and Recall. It’s a balanced metric that
considers both false positives and false negatives, with a range from 0 (worst) to 1 (best).

F Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(3)

Overall Accuracy: Accuracy is the proportion of correct predictions (both TP and TN)
among the total number of instances. While it’s a commonly used metric, it is not suitable
for imbalanced datasets.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(4)

Taking into account the substantial number of classes in this problem (n=17), we
computed the baseline accuracy to provide a context for evaluating the model’s overall
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performance. The baseline accuracy, also referred to as "random chance," signifies the
probability of accurately identifying a class by merely selecting the most prevalent class, as:

Baseline Accuracy = max
i

Ni
Ntotal

(5)

where:
ì‘ represents each class in the dataset
Ǹ_i‘ is the number of images in class ‘i‘
Ǹ_total‘ is the total number of images in the dataset.

3.3. Protocol for Edge and Line Detection Evaluation

For the edge and line detections, we asked Visual ChatGPT to perform both the “Edge
Detection On Image”, and “Line Detection On Image” functions, extracting the edge and
straight line features in the images. To investigate its capabilities, we compared them with
two traditional edge detection methods, the Canny filter [16] and the Sobel filter [22] , and
with manual annotation of straight lines present in the images. Both filters were manually
fine-tuned to provide the overall most interesting results, thus differentiating from the
default, fully-automated approach, of Visual ChatGPT. For this, we used the selected 49
images from the LoveDa dataset [20] to be processed by the filters and compared. The
Python programming language was utilized for this implementation, relying on the NumPy,
imageio, and scikit-image libraries.

First, the image file was loaded where the imageio.imread() function was employed
to read the image in grayscale format, simplifying the image for further processing. The
resulting image matrix was converted into a floating-point data type and normalized to the
range of [0, 1] by dividing each pixel value by 255. This normalization step was crucial for
maintaining consistency across images and ensuring the edge detection algorithms could
process them appropriately.

The Canny edge detection filter was applied to the normalized grayscale images. This
was accomplished by passing the image and a sigma value, varying between 1 and 3, to the
feature.canny() function from the scikit-image library. The sigma parameter determines the
amount of Gaussian smoothing applied to the image, effectively controlling the sensitivity
of the algorithm to any noise. The Canny edge detection filter aims to identify continuous
edges in an image by performing non-maximum suppression and double thresholding to
remove unwanted pixels [16]. The resulting edge map consists of pixels representing the
detected edges.

Next, the Sobel edge detection filter was applied to the normalized grayscale images
by implementing the filters.sobel() function from the scikit-image library. This function
calculates the gradient magnitude at each pixel in the image, and the output is a continuous-
valued edge map, providing an approximation of the edge intensity [22]. The Sobel edge
detection algorithm is a simpler method. It is based on the convolution of the image with
two 3x3 kernels, one for the horizontal gradient and one for the vertical gradient. This
method is computationally efficient and straightforward but may be more susceptible to
noise compared to the Canny edge detection filter.

After applying both edge detection filters, we saved the resulting images as 8-bit
grayscale images into separate folders. The conversion to 8-bit grayscale format was
performed by multiplying the processed image arrays by 255 and then casting them to the
unsigned 8-bit integer data type (np.uint8) before saving them with imageio.imwrite. The
data was stored to later be used to compare against the edge detection performed by Visual
ChatGPT.

For the straight line detection approach, we compare the results of the straight lines
detected by Visual ChatGPT with manually labeled lines from the dataset. The manually
labeled lines served as the ground-truth for evaluating its performance. For this, we
identified, in the same 49 images, line aspects like roads, rivers, plantations, and terrain that
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resembled linear characteristics and that are of overall interest when dealing with remote
sensing data. These images were saved and stored in a folder to be promptly loaded and
compared.

As such, we compared both the line and edge detection performances following the
same protocol. To achieve this, we defined a function to load and preprocess the images.
This function takes two image file paths as input (one from Visual ChatGPT and the other
from our “ground-truth”) and performs the following steps: 1. Load the images in the
grayscale format using scikit-image’s io.imread() function; 2. Resize both images to the
same dimensions (512x512 pixels) using scikit-image’s transform.resize() function; 3. Apply
Otsu’s thresholding method to obtain the optimal threshold for each image using scikit-
image’s threshold_otsu() function to create edge and line binary maps, and; 4. Flatten the
binary maps into 1D arrays using NumPy’s “ravel()” function.

Finally, for each image pair, we called the process_images function to obtain the per-
formance metrics and stored them in a list called “results”. After processing the images, we
calculated various performance metrics, such as True Positive Rate (TPR), False Positive
Rate (FPR), Area Under the Curve (AUC), as well as Precision, Recall, F-Score, and Accu-
racy using scikit-learn’s metrics module. These metrics were essential for evaluating and
comparing the performance of the methods in terms of their ability to identify true and
false lines and edges, and overall accuracy. Since we already explained Precision, Recall,
F-Score, and Accuracy, the remaining metrics to be described are [21]:

True Positive Rate (TPR): TPR is the proportion of TP instances among the actual positive
instances. The higher the TPR, the better the model is at identifying true lines and edges.

TPR =
TP

(TP + FN)
(6)

False Positive Rate (FPR): FPR is the proportion of FP instances among the True Negative
(TN) instances. The lower the FPR, the better the model is at avoiding false edge and line
detections.

FPR =
FP

(FP + TN)
(7)

Area Under the Curve (AUC): AUC is a measure of the overall performance of a classifica-
tion model. It’s calculated by plotting the Receiver Operating Characteristic (ROC) curve,
which shows the trade-off between TPR and FPR. AUC ranges from 0 to 1, where a higher
value indicates better performance.

3.4. Protocol for Image Segmentation Evaluation

To evaluate the performance of Visual ChatGPT’s image segmentation capabilities on
remote sensing data, we used the previously separated 49 images from the LoveDa dataset
[20], which includes manually labeled data as masks to segmentation training. The protocol
used for this task comprises a two-step procedure by comparing the Visual ChatGPT’s
segmented output with the manually labeled ground-truth images.

Since Visual ChatGPT doesn’t know which classes to look at on the image, it tries to
guess them based on its current capabilities when implementing the “Segmentation on
Image” function. Thus, it is not possible to perform a "direct" comparison between the
ground-truth classes with which the class Visual ChatGPT imagines it to be. Therefore,
metrics like Precision, Recall, F-Score, and Accuracy are not feasible to evaluate this task.
Since we are comparing two segmented images with different classes, we opted to use
metrics that quantify the similarity or dissimilarity between the images and determine
how well they align with each other. To achieve this, we extracted two key metrics: the
Structural Similarity Index Measure (SSIM) [23] and the Universal Image Quality Index
(UQI) [24].
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The SSIM is a metric used to measure the similarity between two images or patches
based on structural information. It ranges between -1 and 1, with 1 indicating a perfect
match and -1 indicating a complete mismatch. The Sewar library likely provides local and
global SSIM values. Local SSIM averages the score, providing a fine-grained evaluation
and identifying local variations in image quality. Global SSIM computes the score for the
entire image, providing a holistic evaluation of overall similarity. Having both local and
global SSIM scores can help identify areas or regions where image quality is poorer or the
modifications have had a more significant impact. The SSIM equations (both Local and
Global) are defined by [23]:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(8)

where:
x and y are local regions (patches) of the two images being compared
µx and µy are the average intensities of the patches x and y
σ2

x and σ2
y are the variances of the patches x and y

σxy is the covariance between the patches x and y
C1 and C2 are small constants to stabilize the division (typically, C1 = (K1L)2 and C2 =
(K2L)2, where L is the dynamic range of the pixel values, and K1 and K2 are small constants)

Global SSIM(X, Y) =
1
N

N

∑
i=1

SSIM(xi, yi) (9)

where:
X and Y are the two images being compared
xi and yi are local patches of the images X and Y
N is the number of local patches in the images

The UQI is a full-reference image quality metric that compares processed images
with the original or reference image (ground-truth in this case). It measures the similarity
between images using their structural information, based on their luminance and contrast.
The UQI calculates the mean, standard deviation, and covariance of luminance and contrast
values for the two images, and combines them using a weighted average to obtain a final
UQI value ranging from 0 to 1. Thus, higher UQI values indicate higher image quality
and similarity between the processed and reference images. This metric is widely used to
evaluate image processing and compression algorithms for both objective and subjective
image quality evaluations. The UQI is defined by the following equation [24]:

UQI(X, Y) =
4σXYµXµY

(σ2
X + σ2

Y)(µ
2
X + µ2

Y)
(10)

where:
X and Y are the two images being compared
µX and µY are the average intensities of the images X and Y
σ2

X and σ2
Y are the variances of the images X and Y

σXY is the covariance between the images X and Y

In the first part of the procedure, we preprocessed the ground-truth images. We begin
by loading the black and white images and converting them to grayscale using the PIL
library. Then, a color map was defined, assigning a specific color to each of the 7-pixel
values in the ground-truth image. These colors were defined based on the colors used by
Visual ChatGPT to return segmented regions of similar characteristics. By iterating over
the width and height of each image, the black and white images were converted to colored

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0926.v1

https://doi.org/10.20944/preprints202304.0926.v1


10 of 28

images using this color map. The final step involves resizing the colored image to a 512x512
resolution and saving it to the appropriate directory.

The second part of the procedure focuses on computing the image quality metrics.
To accomplish this, the necessary libraries were imported, including the Sewar library for
full-reference image quality metrics, the imageio library for image input/output, and the
skimage library for image processing. We then defined a list of dictionaries containing the
file paths for pairs of the ground-truth and the predicted images. As the function iterates
through each image pair, it loads, normalizes, and resizes the ground-truth and predicted
images to the desired size of 512x512 pixels. The images are then converted back to uint8
format. For each image pair, we calculate the SSIM and UQI metrics using the Sewar library.
These metrics were stored in a dictionary and appended to a list.

The SSIM and UQI metrics served as valuable tools for assessing the performance of
Visual ChatGPT’s image segmentation, considering our current limitation on dealing with
different classes. In summary, these metrics were chosen because the SSIM measures the
structural similarity between the predicted and ground-truth images, taking into account
changes in similarity and structures, while the UQI provides a scalar value indicating
the overall quality of the predicted image in comparison to the ground-truth image. By
analyzing these metrics, it was possible to identify areas where the segmentation model
excels or falters, assisting in guiding further model improvement and evaluation.

4. Results
4.1. Scene Classification

We initially evaluated Visual ChatGPT’s ability to classify remote sensing scenes using
the AID dataset [19]. To support this analysis, Figure 2 presents a heatmap visualization of
the calculated confusion matrix, generated from the scene classification predictions.
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Figure 2. Confusion matrix from the evaluated portion of the AID dataset classified by Visual
ChatGPT. The matrix compares the model’s predicted labels against the true labels for all 17 classes.
The color intensity and the numeric values within each cell of the heatmap indicate the number of
instances of the predicted label. When reading the main diagonal, darker-purple shades represent
higher values indicating better model performance for the specific class.

Based on the confusion matrix, we also calculated the Precision, Recall, and F-Score
metrics and displayed them in a horizontal bar chart, presented in Figure 3. The overall
accuracy of the model for this task was 0.381 (or 38.1%), with the averaged weighted values
between all the classes as 0.583 (58.3%), 0.381 (38.1%), and 0.359 (35.9%) for Precision,
Recall, and F-Score, respectively.
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Figure 3. Evaluation metrics from the AID dataset image classified by Visual ChatGPT. The Precision,
Recall, and F-Score values for each of the 17 classes in the scene classification model are displayed,
sorted by F-Score from lowest to highest. Each class is represented by a group of three bars colored
to indicate the Precision (light-pink), Recall (pink-purple), and F-Score (dark-purple) values. The
y-axis displays the class names, and the lengths of the bars represent the corresponding values. A
grey dashed vertical line is plotted at a score of 0.5, serving as a visual reference point for comparison,
indicating the "random-guess" point.

The selected classes offered valuable insights into the model’s ability to interpret satel-
lite imagery. The graphics (Figures 2 and 3) demonstrated that the model more accurately
identified scenes containing Baseball Fields, Bridges, Beaches, and Mountains, as evidenced
by the high F-Scores achieved. Conversely, it struggled to recognize landscapes such as
Bareland, Meadows, and Deserts, resulting in lower performance metrics. Additionally,
the model encountered difficulties in distinguishing urban scenes, including Commercial,
Church, Center, Industrial, and Dense Residential areas. This was indicated by high Preci-
sion values, but low Recall and F-Scores, which fell significantly below the "random-guess"
threshold.

Although the overall accuracy of the model is 38.1%, which might seem relatively
low, it’s important to consider the context of the problem with 17 classes. The "random
chance" (baseline accuracy) for this classification task is about 5.88%. Furthermore, the
Visual ChatGPT model effectively interpreted and classified a considerable number of
images across various classes, demonstrating its potential for handling remote sensing
imagery.

Figure 4 showcases examples of instances that were accurately classified by the model.
Contrarily, Figure 5 displays examples of instances inaccurately classified by it, demonstrat-
ing the necessity for additional tuning. Ensuring the incorporation of appropriate training
sets into the learning process may further enhance the model’s capabilities.
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view of an airport. From the Answer Question About The Image tool, the
answer to the question "What is in this figure?" is "airplane".
Therefore, I would classify the image content as Airport.
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Visual ChatGPT Description: *image/97d1cbdd.png* contains an aerial
aerial photo of a forest. From the Answer Question About The Image
tool, the answer to the question "What is in this figure?" is "trees".
Therefore, I would classify the image content as Forest.

Visual ChatGPT Classification: Forest
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Visual ChatGPT Description: *image/12ea2db6.png* contains a baseball
field with a baseball field. From the Answer Question About The Image
tool, the answer to the question "What is in this figure?" is
"baseball field". Therefore, I would classify the image content as
BaseballField.

Visual ChatGPT Classification: BaseballField

Figure 4. Sample images with correct Visual ChatGPT descriptions and classifications. We highlight
four sample images from the dataset, each depicting a distinct scene. For each image, two accom-
panying text boxes were provided. The first text box contains the description generated by Visual
ChatGPT, while the second text box specifies the scene classification provided by the model. The
images are arranged with each image being accompanied by a title on the left side, indicating its
ground-truth label.

In the first example of Figure 4, an Airport, the model correctly identified the image
as an aerial view of an airport with visible airplanes. The Medium Residential image
example showcases the model’s ability to detect a large group of houses. However, it
incorrectly stated that these houses were located in the "suburbs of Chicago." The Forest
scene example was also accurately classified, as the model identified it as an aerial photo
of a forest with trees covering the landscape. Another instance, a Baseball Field scene,
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received a precise description as a baseball field with clear markings and layout. This was
also the best-identified class in our tests.
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Visual ChatGPT Description: *image/969c933c.png* contains a body of
water. From the Answer Question About The Image tool, the answer to
the question "What is in this figure?" is "kite". Therefore, I would
classify the image content as Park.

Visual ChatGPT Classification: Park
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Visual ChatGPT Description: *image/258e9e91.png*. The observation is
that the image contains an aerial view of the city of Amman, with the
city center. Based on this observation, I would classify the image
content as Center.

Visual ChatGPT Classification: Center
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Visual ChatGPT Description: *image/485aedcb.png* contains a man in a
red shirt and a black shirt standing in the middle east. From the
Answer Question About The Image tool, the answer to the question "What
is in this figure?" is "skier". Therefore, I would classify the image
content as Mountain.

Visual ChatGPT Classification: Mountain
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Visual ChatGPT Description: *image/f00650ee.png* contains an aerial
photo of a farm in the middle of the country. From the Answer Question
About The Image tool, the answer to the question "What is in this
figure?" is "tractor". Therefore, I would classify the image content
as Farmland.

Visual ChatGPT Classification: Farmland

Figure 5. Sample images with incorrect Visual ChatGPT descriptions and misclassifications. We
chose four sample images from the dataset, each accompanied by an incorrect description generated
by Visual ChatGPT. Each image has a title specifying the true label of the scene, while the textboxes
with incorrect descriptions and classifications are placed on the right side of each image.

The Visual ChatGPT model, however, misinterpreted and misclassified images across
various classes, thus the reason why it presented lower accuracy overall. This highlights
the challenges the model faces when handling aerial or satellite imagery, but it’s mostly
because it hasn’t incorporate appropriate training sets of remote sensing data into its
learning process.
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The first example of Figure 5 features a Beach, and the model recognizes the presence
of a body of water and a "kite flying in the sky". However, Visual ChatGPT incorrectly
classifies the image content as Park. This misclassification may have resulted from the
additional objects present in the image. The Commercial example depicts an aerial view of
a city center with various buildings, but Visual ChatGPT mistakenly classifies the image
content as Center. This instance highlights the challenges in accurately classifying this
dataset, primarily due to the similarities between urban centers and commercial areas.
The Desert example showcases a desert landscape, but the model incorrectly assumes it
contains "a person wearing a red shirt and black shorts in the Middle East". Oddly, Visual
ChatGPT misclassifies the image content as Mountain. In the Meadow example, the model
identifies the scene as an aerial photo of farmland, wrongfully noting a "visible tractor",
and therefore erroneously classifies it as Farmland.

The possible reasons for these mistakes can be attributed to the presence of similar
features between the misclassified and true classes, or the model’s reliance on specific
visual cues that might not be present in every instance. These examples demonstrate
the challenges and pitfalls in classifying certain aspects of an image. Nevertheless, some
of the responses of Visual ChatGPT indicate its potential to accurately identify elements
within these images, if fine-tuning and additional data training implementations were to
be incorporated.

4.2. Edge Detection

In this section, we examine the performance of Visual ChatGPT’s submodel in edge
detection for remote sensing images. As the LoveDa dataset [20] did not provide edge
ground-truth labels created by human specialists, and considering the labor-intensive and
challenging nature of the edge labeling task for innumerous objects, we opt to compare
Visual ChatGPT’s edge detection capabilities with the Canny and Sobel filters. This compar-
ison highlights the similarities between the automated edge detection by Visual ChatGPT
and these well-established methods.

The Canny edge detection method is generally more accurate and robust to noise
compared to the Sobel edge detection. It is particularly useful for remote sensing images,
where the presence of noise is common due to atmospheric effects, sensor limitations, or
image acquisition conditions. The filter is effective in detecting continuous edges and
suppressing noise, which is essential for accurately delineating features and boundaries in
the images.

The Sobel edge detection algorithm is computationally efficient, making it suitable for
large-scale remote sensing data processing. However, the Sobel edge detection method is
more susceptible to noise compared to the Canny edge detection, which might lead to false
edges or missing features. Despite its limitations, Sobel edge detection can still provide
valuable information about the presence and direction of edges, particularly when applied
to high-quality remote sensing images with minimal noise.

Figure 6 illustrates that, for most image pairs, Visual ChatGPT achieves a True Positive
Rate (TPR) above the "random-guess" threshold. However, due to the high False Positive
Rate (FPR) observed, its Precision and F-Score are understandably lower than the other
metrics.
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Figure 6. Swarm comparison of the performance metrics for both Canny and Sobel edge detections.
The top subplot displays the results of our Canny edge filter when compared to that of Visual
ChatGPTs. The bottom subplot shows the results of the Sobel edge filter when compared to Visual
ChatGPT’s results. For each metric, the swarm plot displays the distribution of values measured by
the multiple pairs of compared images, with the median value labeled on the plot. Although not all
individual data points are shown, the swarm plot gives a general indication of the trend of the values.
We included a red dashed line at y=0.5 to indicate the "random-guess" point.

When examining the TPR values, the edge detector model employed by Visual Chat-
GPT, which is based on the Canny edge from the OpenCV library, demonstrated greater
similarity to our Canny edge filter compared to the Sobel filter. This outcome aligns with
expectations since they are based on the same method, but considering we manually ad-
justed the Canny filter parameters to possibly yield superior visual results for each image.
The findings are noteworthy as they reveal that the automated task performed by Visual
ChatGPT closely approximates what a human might deem suitable.

However, it is crucial to acknowledge the substantial FPR and the low F-Score values.
This can be primarily attributed to Visual ChatGPT’s detector being sensitive to certain
types of land cover, particularly in densely forested areas and heavily populated urban
regions. Figure 7 presents image examples of the detection results in such locations, which
exhibit overall enhanced similarity with both Canny and Sobel filters.
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Figure 7. A comparison of the edge detection techniques on three example images. Each row
corresponds to a different example, and each column represents a distinct visualization: the original
RGB image, the Visual ChatGPT detection result, the Canny Edge Detection visualization, and the
Sobel Edge Detection visualization. The visualizations are displayed using the “viridis” colormap
symbolizing the magnitude of the detection, specifically in Sobel’s. The TPR values of the Canny and
Sobel images in comparison to Visual ChatGPT’s detection are overlaid in the lower-left corner.

In areas covered with vegetation, Visual ChatGPT exhibited greater sensitivity than
the Canny filter, though not as much as the Sobel filter. This pattern was also observed in
built-up regions, particularly those with taller structures. Despite these limitations, Visual
ChatGPT is capable of providing visually pleasing results in specific instances, such as
detecting roads and bodies of water edges. However, the model generated a significant
number of False Positives, which is undesirable as it introduces noise when interpreting
the image. Figure 8 showcases image examples where the FPR was among the highest
observed, illustrating how farmlands and even less dense vegetation can influence the
detection process.
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Figure 8. A visual comparison of edge detection techniques applied to three example images that
returned low similarity. It showcases the original RGB images, Visual ChatGPT detection, Canny
Edge Detection, and Sobel Edge Detection results. The visualizations use the ’RdPu’ colormap
indicating the magnitude of the edges, specifically useful for visualizing Sobel’s detection. The FPR
values, comparing both images with Visual ChatGPT’s result, are displayed in the lower-left corner
of the respective Canny and Sobel images.

These images demonstrate the differences in edge detection performance between the
Canny and Sobel methods, as they indicate how difficult it is to extract this feature in certain
conditions or areas characteristics. To enhance Visual ChatGPT’s edge detection model on
such instances, it is crucial to fine-tune it using a dataset tailored for edge detection tasks,
incorporating proven methods like the Canny or Sobel filters, and adopting regularization
techniques to prevent overfitting. Additionally, augmenting training data, evaluating alter-
native architectures, utilizing ensemble methods, and applying post-processing techniques
can also further improve the model’s performance. By adopting these strategies, Visual
ChatGPT could deliver more accurate and reliable edge detection results.

4.3. Straight Line Detection

Straight line detection in remote sensing images serves various purposes, such as
building extraction, road detection, pipeline identification, etc. It proves to be a potent tool
for image analysis, offering valuable insights for users. The evaluation of Visual ChatGPT’s
model for detecting straight lines employed the same protocol as edge detection. However,
unlike the previous approach, we used manually labeled images, providing a more accurate
ground-truth sample. Figure 9 presents a swarm plot illustrating the evaluation metrics
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used to compare Visual ChatGPT’s detection results with their respective ground-truth
counterparts.
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Figure 9. A swarm plot comparing performance metrics for the straight line detection model from
Visual ChatGPT. The plot displays the distribution of values for each metric, with median values
indicated in black text. We include a red dashed line at y=0.5 as a reference point for the "random-
guess" threshold. While not all individual data points are displayed, the swarm plot provides an
overall representation of the direction of the values.

The results revealed that, concerning line detection, Visual ChatGPT’s performance
was quantitatively subpar. Given that lines typically constitute a small proportion of an
image’s pixels, metrics such as Accuracy are not well-suited for accurate measurement due
to significant class imbalance. Moreover, the model generated a strikingly high number
of False Positives compared to its TPR, primarily because it identified certain object edges
as lines. To address this issue and provide a clearer understanding, we showcase image
examples in Figure 10, which highlight the disparities in line detection between rural and
urban areas. By examining such visual comparisons, we noted the model’s limitations and
potential areas for improvement.
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Figure 10. Comparative visualization of original RGB images (top row), manually annotated images
(middle row), and Visual ChatGPT-generated images (bottom row) for four different sets. True
positive rate (TPR) values are displayed in white text on the ChatGPT-generated images. This side-
by-side comparison of the three types of images allows for a clear assessment of the performance and
accuracy of the ChatGPT model in comparison to the manually annotated ground-truth.

As observed, farmland areas exhibit a large number of lines, primarily due to plan-
tations and tractor roads between them. Identifying these lines can be challenging, even
for human specialists. However, Visual ChatGPT managed to detect a considerable num-
ber of roads interspersed among the plantation fields. It was capable of identifying the
boundaries of these fields, which is an important aspect of feature extraction for these areas.
In urban settings, however, extracting streets can be difficult, mainly because objects and
shadows partially obscure them. These are also heavily dense areas, with multiple objects
overlapping the streets.

Figure 10 also highlights the overall best and worst results in its 3rd and 4th columns,
featuring dirt roads and a paved highway, respectively. For the dirt roads, it is understand-
able that their winding nature may pose a challenge for the model. Conversely, the paved
highways represent the best overall detections by Visual ChatGPT, showcasing its potential
in these contexts.

Improving Visual ChatGPT’s line detection and extraction capabilities in remote
sensing imagery involves practically the same procedures as described previously, like
fine-tuning the model on a tailored dataset, augmenting training data, and also applying
pre-processing techniques to enhance input image quality. Additionally, incorporating
domain-specific knowledge, exploring alternative model architectures, utilizing ensemble
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methods, and employing enhanced post-processing techniques can further optimize its
performance on returning satisfying results.

4.4. Image Segmentation

As stated, image segmentation is the process of partitioning an image into homoge-
neous regions based on features such as color, texture, or spectral properties, with multiple
applications in image analysis. However, for the Visual ChatGPT model, handling remote
sensing data can be challenging due to the diverse and complex nature of these images.
Factors such as varying spatial resolutions, the presence of shadows, seasonal variations,
and spectral similarities among different land cover types may hinder the model’s perfor-
mance, necessitating further optimization or the integration of domain-specific knowledge
to effectively address these complexities. Still, VLMs can provide a valuable approach to
the image segmentation task by enabling non-expert users to perform segmentation using
text-based guidance. This capability has the potential to be integrated into remote sensing
applications.

However, in the case of Visual ChatGPT, our tests with various prompts revealed that
controlling the "Segmentation on Image" tool was not as feasible as it was for the "Get
Image Description" and "Answer Question About Image" tools. Consequently, we were
unable to guide Visual ChatGPT to segment specific classes from our images. As a reminder,
since classification metrics like Precision, Recall, and F-Score necessitate matching classes
in both ground-truth and predicted values, these metrics were unsuitable for comparing
Visual ChatGPT’s performance in this task. Instead, we employed metrics that assessed the
similarity between image pairs, which, when combined with qualitative analysis, offered
insight into the model’s effectiveness in handling this type of data.

To evaluate the predictions of Visual ChatGPT, we compared the ground-truth data
from the LoveDA dataset [20] to the segmented images generated by the model. Figure 11
presents the values of both Local and Global SSIM metrics, as well as the UQI values for
this comparison. The Local SSIM metric is particularly noteworthy in this context, as it is
designed to focus on local variations during image analysis. Meanwhile, the Global SSIM
calculates a score for the entire image, offering a comprehensive assessment of overall
similarity. The UQI metric compares structural information based on luminance and
contrast between colors, making it a more suitable metric for overall performance.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value

Local SSIM

Global SSIM

UQI

0.63
0.68 0.82

0.70
0.75 0.83

0.84
0.88 0.94

Image Comparison Metrics for the Segmented Images

Figure 11. Horizontal box plots comparing image comparison metrics (Local SSIM, Global SSIM, and
UQI) for the segmented images with the Visual ChatGPT model. The 25th, 50th (median), and 75th
percentiles are displayed on each box plot, allowing for a clear assessment of the central tendency
and spread of the data, and a red dashed line at x=0.5 serves as a reference point.
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In our comparison, the majority of the data revealed notable similarity values, with
more pronounced negative effects on local analysis (Local SSIM) than on the full-scale
(Global SSIM and UQI) assessment. These images predominantly featured farmlands, as
well as scenes with both urban and rural elements, resulting in a more varied landscape.
Contrarily, some images exhibited high similarity with the ground-truth data. These images
typically displayed less diverse features, such as extensive vegetation cover, large bodies of
water, or densely clustered structures of a similar nature. To corroborate this, Figures 12
and 13 were included, showcasing both the challenges and potential of the Visual ChatGPT
segmentation model. This visual comparison enables a clear evaluation of the model’s
performance to the manual annotations.
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Figure 12. Examples of labeled images compared to the Visual ChatGPT segmentations that scored
higher on the similarity metrics. The top row displays the original RGB images, the middle row
shows the manual annotations, and the bottom row presents the Visual ChatGPT segmentations. In
the bottom row, Local SSIM (LSSIM) values are displayed in the left corner of each segmented image,
providing a quantitative measure of the similarity between the annotations and the Visual ChatGPT
segmentations.
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Figure 13. Examples of labeled images juxtaposed with Visual ChatGPT segmentations that scored
the lowest on similarity metrics. The top row features the original RGB images, the middle row
highlights manual annotations, and the bottom row exhibits the Visual ChatGPT segmentations. In
the bottom row, LSSIM values are shown, in black or white depending on its background, for each
segmented image, offering a quantitative assessment of the dissimilarity between the ground-truth
and the model’s segmentations.

Visual ChatGPT utilizes a powerful image segmentation model underneath, thus
making it an impressive tool. However, its knowledge is not specifically associated with
aerial or satellite imagery, but more with the terrestrial type of images, while the segmenta-
tion classes are more diverse. Additionally, the model was not effective in incorporating
additional textual information to segment remote sensing images, as our tests have shown
that by asking the model to segment images, with or without human instructions, it yielded
the same results. Furthermore, Visual ChatGPT did not indicate appropriately which
classes it has segmented over the investigated images, even when prompted with a specific
command. Instead, the model segments the image and uses the "Answer Question about
Image" function to respond to it, using information about the context of the original RGB
image rather than the labels/classes that it identified.

The segmentation model demonstrates both potential and challenges when dealing
with various land cover types. While the model shows promising performance in images
with less diverse features or densely clustered structures of a similar nature, it encounters
difficulties in accurately segmenting more complex scenes. The difficulties primarily arise
in the local analysis, as evidenced by lower Local SSIM values, which could be attributed
to the model’s limited exposure to such diverse data during training.
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Nonetheless, Visual ChatGPT’s ability to achieve high similarity with ground-truth
data in certain cases indicates that, with targeted improvements, it could be adapted to
effectively handle a wider range of land covers and deliver more accurate segmentation
results. As such, to fully realize the potential of Visual ChatGPT in these scenarios, further
improvements and fine-tuning are required to better handle the diverse and intricate
characteristics of different land types.

5. Discussion: Improving Visual Language Models for Remote Sensing Analysis

With the constantly increasing amount of remote sensing data available, there is
a growing need for efficient methods to process and analyze this data [25]. As VLMs
continue to evolve and improve, their applications in multiple fields are expected to expand
significantly. By incorporating additional techniques and algorithms, it can become a
powerful tool for non-experts to analyze and understand complex remote-sensing images.
In this section, we explore the future perspectives of these technologies in remote sensing
practice, discuss possible applications, and outline the necessary research directions to
guide their development and improvement.

Firstly, to apply VLMs to remote sensing data, it would be necessary to collect a
large dataset of labeled images. This may involve manually annotating the images, which
can be a time-consuming and expensive process [26]. Alternatively, transfer learning
techniques can be used to fine-tune pre-trained models on a smaller set of labeled images,
possibly reducing the amount of labeled data required for training [27]. By learning from a
limited number of examples, few-shot learning models, for instance, can develop better
generalization capabilities [28], as they can be more robust to variations in remote sensing
data. Such an approach can enable the models to recognize and analyze unique features,
patterns, and structures present in satellite or aerial images, thereby significantly improving
their performance and applicability in this domain.

By adapting VLMs like Visual ChatGPT for remote sensing analysis, we can also
create powerful tools to aid professionals, students, and enthusiasts in their work. These
models can facilitate the development of image and data processing, provide guidance in
choosing and applying the most appropriate algorithms and techniques, and offer insights
into the interpretation of remote sensing data [29]. The models can help users overcome
coding challenges, offer guidance on data processing techniques, and facilitate collaboration
between individuals with varying levels of expertise and study fields [7,9]. In turn, this
assistance can enhance the efficiency and accuracy of remote sensing workflows, allowing
them to focus on higher-level tasks and decision-making.

A potential for Visual ChatGPT or VLMs, in general, is that they can be seamlessly
integrated with a variety of geospatial tools and platforms to significantly elevate user
experience. By combining advanced models with existing geospatial software, toolboxes,
or cloud-computation platforms, users can access an enriched suite of functionalities that
cater to a wide range of applications. This integration not only amplifies the capabilities of
existing tools [30] but also unlocks innovative possibilities for analyzing and interpreting
geospatial data. By leveraging the natural language understanding and visual processing
abilities of VLMs, the interaction with these platforms can become more intuitive, leading
to improved efficiency and accessibility.

In essence, the improved versions of VLMs can be applied to a wide range of remote
sensing tasks. These applications can benefit from the model’s ability to provide real-
time feedback, generate code snippets, and analyze imagery, thus streamlining the overall
process. For example, a model could be trained to identify common patterns in remote
sensing data and generate code to automatically detect and analyze these patterns. This
has the potential to help to speed up the processing of large datasets and minimize the
intricacies of manual intervention.

As for applications, VLMs can be expanded to encompass various essential image tasks,
such as texture analysis, principal components analysis, object detection, and counting, but
also curated to domain-specific remote sensing practices as well. By integrating change
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detection algorithms [31] into these VLMs, for instance, users can interact with the models
to automatically identify landscape alterations, facilitating the monitoring and assessment
of the impacts caused by human activities and natural processes on the environment.
Anomaly detection, a technique that identifies unexpected or unusual features in remote
sensing images [32], can also greatly benefit from this integration. Time series analysis
is also a valuable method that involves analyzing changes to reveal patterns, trends, and
relationships in land cover [33] and could be added to it. Consequently, by incorporating
tailored algorithms into VLMs, users can examine multiple images over time, gaining
insights into the dynamics of the Earth’s surface.

Furthermore, the integration of machine and deep learning algorithms specifically
designed for remote sensing applications, such as convolutional neural networks and
vision transformers [34,35], can help enhance the performance and capabilities of visual
models. These methods can improve the VLM’s ability to recognize and analyze complex
patterns, structures, and features in remote sensing images, leading to more accurate and
reliable results. Currently, there are multiple networks and deep learning models trained
for various remote sensing tasks that are available and could be potentially implemented
[36,37].

Overall, the potential for VLMs like Visual ChatGPT to aid in remote sensing image
processing is vast and varied. As the technology continues to evolve and improve, we will
likely see an increasing number of innovative applications in this field, with new features
and capabilities being developed to meet the specific needs of users. Looking to the future,
it is likely that VLMs will continue to play an increasingly important role in image data
analysis. As these models become more advanced and better integrated with existing tools
and workflows, they have the potential to greatly improve the efficiency and accuracy of
remote sensing practices.

In short, to guide the development and improvement of VLMs in remote sensing,
several research directions could be explored:

• Investigating the optimal methods and strategies for fine-tuning and adapting models
to remote sensing tasks;

• Developing performance benchmarks and evaluation metrics specific to remote sens-
ing applications on these models;

• Exploring the integration of these models with other remote sensing tools and plat-
forms, such as Geographic Information Systems (GIS), for a seamless user experience;

• Conducting user studies to understand how the models can best work for these data
and how they can be adjusted to user behavior;

• Studying the limitations and biases of the models when applied to remote sensing
imagery, and devising strategies to mitigate them.

And, in terms of applicability, the following areas can also be considered to be pursued, thus
contributing to enhancing the development of VLMs in remote sensing imagery processing:

• Investigating the effectiveness of incorporating domain-specific knowledge and exper-
tise into the models, such as spectral indices;

• Examining the scalability and efficiency of the models when working with large-scale
remote sensing datasets;

• Assessing the robustness and generalizability of the models across various remote
sensing data types, including multispectral, hyperspectral, Synthetic-Aperture Radar
(SAR), and LiDAR;

• Evaluating these models for real-time or near-real-time remote sensing analysis;
• Exploring the potential of combining VLMs with other advanced machine learning

techniques, such as reinforcement learning;
• Investigating the implementation for data fusion tasks, where information from differ-

ent remote sensing sensors or platforms are combined.
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6. Conclusions

In this article, we investigated the applicability and performance of Visual ChatGPT,
a VLM, for various remote sensing imagery processing tasks, highlighting its current
capabilities, limitations, and future perspectives. We have demonstrated the effectiveness
and problems of this model in various remote sensing tasks, such as image classification,
edge and line detection, and image segmentation. Additionally, we have discussed its role
in assisting users and facilitating the work of professionals, students, and enthusiasts in the
remote sensing domain by providing an intuitive, easy-to-learn, and interactive approach
to image processing.

While Visual ChatGPT shows promise in its current state, there is still plenty of room
for improvement, fine-tuning, and adaptation to better suit the unique needs of remote
sensing analysis. Future research could focus on optimizing these models for domain-
specific tasks, investigating novel directions, and addressing limitations and biases. By
doing so, we can unlock the capacity of these AI-driven tools in a wide range of remote
sensing applications, varying from environmental monitoring and disaster management to
precision agriculture and infrastructure planning.

In light of our findings, the integration of VLMs into remote sensing has immense
potential to transform the way we process and analyze Earth’s surface data. With continued
evolution and adaptation to the specific needs of aerial/satellite data, these models can
prove to be essential resources in assisting important challenges in image processing. It is
crucial to emphasize the significance of ongoing research in this area and encourage further
exploration of the capabilities of Visual ChatGPT, as well as other VLMs in dealing with
remote sensing tasks in the near future.

Author Contributions: Conceptualization, L.P.O.; methodology, L.P.O., E.L.L., W.N.G., and A.P.M.R.;
validation, L.P.O., and A.P.M.R.; formal analysis, L.P.O.; investigation, L.P.O., and A.P.M.R.; data
curation, L.P.O., and E.L.L.; writing—original draft preparation, L.P.O.; writing—review and editing,
L.P.O.; visualization, L.P.O., and A.P.M.R.; supervision, J.M.J.; project administration, J.M.J.; funding
acquisition, J.M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) - Finance Code 001. The authors are funded by the Support Foundation
for the Development of Education, Science, and Technology of the State of Mato Grosso do Sul
(FUNDECT; 71/009.436/2022) and the Brazilian National Council for Scientific and Technological
Development (CNPq; 433783/2018-4, 310517/2020-6; 405997/2021-3; 308481/2022-4; 305296/2022-1).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Inteligence
AUC Area Under the Curve
FN False Negative
FP False Positive
FPR False Positive Rate
GIS Geographic Information Systems
GPT Generative Pre-trained Transformer
LLMs Large Language Models
NLP Natural Language Processing
SAR Synthetic-Aperture Radar
SSIM Structural Similarity Index Measure
TN True Negative
TP True Positive
TPR True Positive Rate
UQI Universal Image Quality Index
VLM Visual Language Model

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0926.v1

https://doi.org/10.20944/preprints202304.0926.v1


27 of 28

References
1. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote

sensing: Achievements and challenges. Remote Sensing of Environment 2020, 241, 111716. https://doi.org/10.1016/j.rse.2020.111
716.

2. Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.;
Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and
Geoinformation 2021, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456.

3. Ge, Y.; Hua, W.; Ji, J.; Tan, J.; Xu, S.; Zhang, Y. OpenAGI: When LLM Meets Domain Experts, 2023, [arXiv:cs.AI/2304.04370].
4. Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language

Models, 2023, [arXiv:cs.CL/2303.18223].
5. OpenAI. GPT-4 Technical Report, 2023, [arXiv:cs.CL/2303.08774].
6. Liu, Y.; Han, T.; Ma, S.; Zhang, J.; Yang, Y.; Tian, J.; He, H.; Li, A.; He, M.; Liu, Z.; et al. Summary of ChatGPT/GPT-4 Research

and Perspective Towards the Future of Large Language Models, 2023, [arXiv:cs.CL/2304.01852].
7. Zhang, L.; Agrawala, M. Adding Conditional Control to Text-to-Image Diffusion Models, 2023, [arXiv:cs.CV/2302.05543].
8. Wu, C.; Yin, S.; Qi, W.; Wang, X.; Tang, Z.; Duan, N. Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation

Models, 2023, [arXiv:cs.CV/2303.04671].
9. Zhang, J.; Huang, J.; Jin, S.; Lu, S. Vision-Language Models for Vision Tasks: A Survey, 2023, [arXiv:cs.CV/2304.00685].
10. Abraham, J.; Wloka, C. Edge Detection for Satellite Images without Deep Networks, 2021, [arXiv:cs.CV/2105.12633].
11. Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: a review. International

Journal of Remote Sensing 2020, 41, 6248–6287. https://doi.org/10.1080/01431161.2020.1736732.
12. Kotaridis, I.; Lazaridou, M. Remote sensing image segmentation advances: A meta-analysis. ISPRS Journal of Photogrammetry and

Remote Sensing 2021, 173, 309–322. https://doi.org/10.1016/j.isprsjprs.2021.01.020.
13. Li, X.; Ding, H.; Zhang, W.; Yuan, H.; Pang, J.; Cheng, G.; Chen, K.; Liu, Z.; Loy, C.C. Transformer-Based Visual Segmentation: A

Survey, 2023, [arXiv:cs.CV/2304.09854].
14. Microsoft. TaskMatrix. https://github.com/microsoft/TaskMatrix, 2023. GitHub repository.
15. Li, J.; Li, D.; Xiong, C.; Hoi, S. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding

and Generation, 2022, [arXiv:cs.CV/2201.12086].
16. Canny, J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,

PAMI-8, 679–698. https://doi.org/10.1109/TPAMI.1986.4767851.
17. Gu, G.; Ko, B.; Go, S.; Lee, S.H.; Lee, J.; Shin, M. Towards Light-weight and Real-time Line Segment Detection, 2022,

[arXiv:cs.CV/2106.00186].
18. Li, K.; Wang, Y.; Zhang, J.; Gao, P.; Song, G.; Liu, Y.; Li, H.; Qiao, Y. UniFormer: Unifying Convolution and Self-attention for

Visual Recognition, 2022, [arXiv:cs.CV/2201.09450].
19. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation of

Aerial Scene Classification. IEEE Transactions on Geoscience and Remote Sensing 2017, 55, 3965–3981. https://doi.org/10.1109/tgrs.
2017.2685945.

20. Wang, J.; Zheng, Z.; Ma, A.; Lu, X.; Zhong, Y. LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic
Segmentation, 2022, [arXiv:cs.CV/2110.08733].

21. Powers, D.M.W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, 2020,
[arXiv:cs.LG/2010.16061].

22. Sobel, I.; Feldman, G.M. An Isotropic 33 image gradient operator, 1990. https://doi.org/10.13140/RG.2.1.1912.4965.
23. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE

Transactions on Image Processing 2004, 13, 600–612. https://doi.org/10.1109/tip.2003.819861.
24. Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Processing Letters 2002, 9, 81–84. https://doi.org/10.1109/97.9

95823.
25. Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities.

Proceedings of the IEEE 2016, 104, 2207–2219. https://doi.org/10.1109/jproc.2016.2598228.
26. Sun, X.; Wang, B.; Wang, Z.; Li, H.; Li, H.; Fu, K. Research Progress on Few-Shot Learning for Remote Sensing Image

Interpretation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021, 14, 2387–2402. https:
//doi.org/10.1109/jstars.2021.3052869.

27. Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing images
using transferable deep models. Remote Sensing of Environment 2020, 237, 111322. https://doi.org/10.1016/j.rse.2019.111322.

28. Alayrac, J.B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Hasson, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.; et al. Flamingo:
a Visual Language Model for Few-Shot Learning, 2022, [arXiv:cs.CV/2204.14198].

29. Lobry, S.; Marcos, D.; Murray, J.; Tuia, D. RSVQA: Visual Question Answering for Remote Sensing Data. IEEE Transactions on
Geoscience and Remote Sensing 2020, 58, 8555–8566. https://doi.org/10.1109/tgrs.2020.2988782.

30. Mialon, G.; Dessì, R.; Lomeli, M.; Nalmpantis, C.; Pasunuru, R.; Raileanu, R.; Rozière, B.; Schick, T.; Dwivedi-Yu, J.; Celikyilmaz,
A.; et al. Augmented Language Models: a Survey, 2023, [arXiv:cs.CL/2302.07842].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0926.v1

https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.jag.2021.102456
http://xxx.lanl.gov/abs/2304.04370
http://xxx.lanl.gov/abs/2303.18223
http://xxx.lanl.gov/abs/2303.08774
http://xxx.lanl.gov/abs/2304.01852
http://xxx.lanl.gov/abs/2302.05543
http://xxx.lanl.gov/abs/2303.04671
http://xxx.lanl.gov/abs/2304.00685
http://xxx.lanl.gov/abs/2105.12633
https://doi.org/10.1080/01431161.2020.1736732
https://doi.org/10.1016/j.isprsjprs.2021.01.020
http://xxx.lanl.gov/abs/2304.09854
https://github.com/microsoft/TaskMatrix
http://xxx.lanl.gov/abs/2201.12086
https://doi.org/10.1109/TPAMI.1986.4767851
http://xxx.lanl.gov/abs/2106.00186
http://xxx.lanl.gov/abs/2201.09450
https://doi.org/10.1109/tgrs.2017.2685945
https://doi.org/10.1109/tgrs.2017.2685945
http://xxx.lanl.gov/abs/2110.08733
http://xxx.lanl.gov/abs/2010.16061
https://doi.org/10.13140/RG.2.1.1912.4965
https://doi.org/10.1109/tip.2003.819861
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/jproc.2016.2598228
https://doi.org/10.1109/jstars.2021.3052869
https://doi.org/10.1109/jstars.2021.3052869
https://doi.org/10.1016/j.rse.2019.111322
http://xxx.lanl.gov/abs/2204.14198
https://doi.org/10.1109/tgrs.2020.2988782
http://xxx.lanl.gov/abs/2302.07842
https://doi.org/10.20944/preprints202304.0926.v1


28 of 28

31. Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A
Review. Remote Sensing 2022, 14, 871. https://doi.org/10.3390/rs14040871.

32. Hu, X.; Xie, C.; Fan, Z.; Duan, Q.; Zhang, D.; Jiang, L.; Wei, X.; Hong, D.; Li, G.; Zeng, X.; et al. Hyperspectral Anomaly Detection
Using Deep Learning: A Review. Remote Sensing 2022, 14, 1973. https://doi.org/10.3390/rs14091973.

33. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS
Journal of Photogrammetry and Remote Sensing 2016, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008.

34. Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data
fusion: A comprehensive review. International Journal of Applied Earth Observation and Geoinformation 2022, 112, 102926. https:
//doi.org/10.1016/j.jag.2022.102926.

35. Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.S.; Khan, F.S. Transformers in Remote Sensing: A Survey.
Remote Sensing 2023, 15, 1860. https://doi.org/10.3390/rs15071860.

36. Bai, Y.; Zhao, Y.; Shao, Y.; Zhang, X.; Yuan, X. Deep learning in different remote sensing image categories and applications: status
and prospects. International Journal of Remote Sensing 2022, 43, 1800–1847. https://doi.org/10.1080/01431161.2022.2048319.

37. Papoutsis, I.; Bountos, N.I.; Zavras, A.; Michail, D.; Tryfonopoulos, C. Benchmarking and scaling of deep learning models for
land cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing 2023, 195, 250–268. https://doi.org/10.1016/
j.isprsjprs.2022.11.012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0926.v1

https://doi.org/10.3390/rs14040871
https://doi.org/10.3390/rs14091973
https://doi.org/10.1016/j.isprsjprs.2016.03.008
https://doi.org/10.1016/j.jag.2022.102926
https://doi.org/10.1016/j.jag.2022.102926
https://doi.org/10.3390/rs15071860
https://doi.org/10.1080/01431161.2022.2048319
https://doi.org/10.1016/j.isprsjprs.2022.11.012
https://doi.org/10.1016/j.isprsjprs.2022.11.012
https://doi.org/10.20944/preprints202304.0926.v1

	Introduction
	Visual ChatGPT: A Revolution in Image Analysis and its Potential in Remote Sensing
	Materials and Methods
	Experiment Delineation
	Protocol for Scene Classification Evaluation
	Protocol for Edge and Line Detection Evaluation
	Protocol for Image Segmentation Evaluation

	Results
	Scene Classification
	Edge Detection
	Straight Line Detection
	Image Segmentation

	Discussion: Improving Visual Language Models for Remote Sensing Analysis
	Conclusions
	References

