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Abstract: The main goal of this work is to develop a novel boundary element method (BEM) model 

for analyzing ultrasonic wave propagation in three-temperature anisotropic viscoelastic porous 

media. Because of strong nonlinearity of ultrasonic wave propagation in three-temperature porous 

media problems, the analytical or numerical solutions to the problems under consideration are 

always challenging, necessitating the development of new computational techniques. As a result, 

we use a new BEM model to solve such problems. A time stepping procedure based on the linear 

multistep method is obtained after solving the discretized boundary integral equation with the 

quadrature rule. The calculation of a double integral is required to obtain fundamental solutions, 

but this increases the total BEM computation time. Our proposed BEM technique is used to solve 

the current problem and improve the formulation efficiency. The numerical results are graphed to 

demonstrate the effects of viscosity and anisotropy on the nonlinear ultrasonic stress waves in three-

temperature porous media. The validity, accuracy, and efficiency in the proposed methodology 

were demonstrated by comparing obtained results to the corresponding solution obtained from 

finite difference method (FDM). 

Keywords: boundary element model; ultrasonic wave propagation; three-temperature; anisotropic 

viscoelastic porous media 

MSC: 35Qxx, 65Zxx 

 

1. Introduction 

In recent years, many engineering studies have drawn researchers' attention to investigate the 

mechanical behaviour of viscoelastic porous materials [1–6] due to the positive results obtained in 

applied science, engineering, and technological applications such as biology, biophysics, 

biomechanics, geotechnical engineering, reservoir geomechanics, mining and petroleum 

engineering, geothermal engineering, thermal insulation, and lightweight structural design. Some 

researchers have investigated the effects of magnetic field [7], initial stress [8], rotation and gravity 

[9] on the generalized thermo-viscoelastic diffusion medium. Also, the effects of initial stress and 

temperature-dependent on the thermo-microstretch elastic solid have been investigated with dual-

phase-lag model [10]. Xu et al. [11] studied the effects of viscoelastic dampers with high energy 

dissipation based on an acrylate rubber matrix. Because analytical solutions to the current situation 

are extremely difficult to achieve, numerical methods have emerged as the primary tool for resolving 

these problems such as Pei et al. [12], Ooi et al. [13], Zhou et al. [14], Ng et al. [15], Majchrzak and 

Turchan [16], Bottauscio et al. [17], Deng and Liu [18] and Partridge and Wrobel [19]. The concept of 
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treating biological tissue as a porous medium has been deemed more acceptable for incorporating 

blood flow through arteries implanted in the tissue. One of the computational strategies used to solve 

the bioheat transfer problems of biological tissues [20–22] is the boundary element method (BEM) 

[23–31]. For physical and technological problems, Laplace-domain fundamental solutions are 

generally easier to get than time-domain fundamental solutions [32,33]. As a result, because it 

requires the Laplace-domain fundamental solutions of the problem's governing equations, the 

CQBEM is highly useful for problems that did not have time-domain fundamental solutions. As a 

result, CQBEM broadens the spectrum of engineering problems that can be tackled using traditional 

time-domain BEM. 

The primary goal of this paper is to present a new boundary element model for explaining 

thermomechanical interactions in three-temperature anisotropic viscoelastic porous media. The 

uncoupled governing equations are solved independently, where the bioheat equation is solved first 

using the GBEM based on LRBFCM to obtain the temperature distribution, and then the mechanical 

equation was solved using the CQBEM to obtain the displacements and stresses. The resulting linear 

systems have been solved by communication-avoiding Arnoldi (CA-Arnoldi) preconditioner which 

reduces the number of iterations and the total CPU time. The numerical results demonstrate the 

validity, efficiency and accuracy of the proposed model 

2. Formulation of the Problem 

In the Cartesian system (𝑥, 𝑦, 𝑧), we consider a region Ω = ቄ0 ൏ 𝑥 ൏ 𝛼, , 0 ൏ 𝑦 ൏ 𝛽, 0 ൏ 𝑧 ൏ 𝛾, ቅ 

with a boundary Γ occupied by an anisotropic viscoelastic porous media as shown in Figure 1. 

 

Figure 1. Computational domain of the current problem. 

According to Biot’s model [34] and Darcy’s law [35], the thermo-poroelastic governing equations 

can be expressed as  (𝛻்𝜎)் + 𝐅 = 𝜌𝐮ሷ + 𝜙𝜌௙൫𝐮ሷ ௙ − 𝐮ሷ ൯   (1)𝜁ሶ + 𝛻்𝐪 = 0) (2)𝜎 = ൫𝐶𝑎𝑗𝑙𝑔(𝜏) 𝜒 tr 𝜖 − 𝐴𝑝ത൯𝐈 − 𝔅 𝜃 (3)

𝜖 = 12 (𝛻𝐮்  + (𝛻𝐮்)்)   (4)

𝜁 = 𝐴 tr 𝜖 + 𝜙ଶ𝑅 𝑝̅      (5)
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𝐪 = −𝐾 ൭∇ 𝑝̅ + 𝜌௙𝐮ሷ + 𝜌௘ + 𝜙𝜌௙𝜙 ൫𝐮ሷ ௙ − 𝐮ሷ ൯൱ (6)

On the basis of Bonnet [36], the governing equations can be written as follows [37] 𝐵෠௫෤𝐮ෝ௚(𝐱෤) = 0  for  𝑥෤ ∈ Ω 𝐮ෝ௚(𝐱) = 𝑔ො஽   for  𝑥 ∈ 𝛤஽𝐭̂௚(𝐱) = 𝑔ොே   for  𝑥 ∈ 𝛤ே ቑ  (7)

in which where the operator 𝐵෠୶෤  and the tractions 𝑡̂௚ are defined as 

𝐵෠୶෤ = ൦𝐵୶෤௘ + 𝑠ଶ൫𝜌 − 𝛽𝜌௙൯𝐼 (𝛼 − 𝛽)∇୶෤ −𝔅∇୶෤𝑠(𝛼 − 𝛽)∇୶෤் − 𝛽𝑠𝜌௙ ∆୶෤ + 𝑠𝜙ଶ𝑅 0 ൪, 
𝐭̂௚(𝑥) =  ቎ 𝑇୶௘ −𝛼𝐧𝐱 0𝑠𝛽𝐧𝐱் 𝛽𝑠𝜌௙ 𝐧𝐱் ∇୶ 0቏ ቎𝐮ෝ(𝐱)𝑝̂(𝐱)𝜃(𝐱)቏ , 𝛽 = 𝜙ଶ𝑠𝐾𝜌௙𝜙ଶ + 𝑠𝐾(𝜌௘ + 𝜙𝜌௙)  (8)

According to Fahmy [30], the thermomechanical interactions can be found by treating the soft 

tissue as a thermoporoelastic medium and implementing BEM for solving the governing equations 

(1) and (7). 

The three-temperature radiative diffusion equations are as follows  𝐶௩௘ 𝜕𝜃௘(r, 𝜏)𝜕𝜏 − 1𝜌 ∇ሾ𝕂௘ ∇𝜃௘(r, 𝜏)ሿ = − 𝕎௘௜  (𝜃௘ − 𝜃௜) − 𝕎௘௥  (𝜃௘ − 𝜃௥) (9a)

𝐶௩௜ 𝜕𝜃௜(r, 𝜏)𝜕𝜏 − 1𝜌 ∇ሾ𝕂௜  ∇𝜃௜(r, 𝜏)ሿ =  𝕎௘௜  (𝜃௘ − 𝜃௜)  (9b)

𝐶௩௥ 𝜕𝜃௥(r, 𝜏)𝜕𝜏 − 1𝜌 ∇ሾ𝕂௥ ∇𝜃௥(r, 𝜏)ሿ =  𝕎௘௥  (𝜃௘ − 𝜃௥)  (9c)

in which 𝐶௩ఈ = ቐ𝐶௩ఈ = 𝐶௘        𝛼 = 𝑒𝐶௩ఈ = 𝐶௜        𝛼 = 𝑖𝐶௩ఈ = 𝐶௥𝑇௥ଷ   𝛼 = 𝑟 and 𝕂ఈ = ൞𝔸௘ 𝑇௘ହ/ଶ      𝛼 = 𝑒𝔸௜ 𝑇௜ହ/ଶ      𝛼 = 𝑖𝔸௥  𝑇௥ଷା𝔹     𝛼 = 𝑟 

where 𝑒, 𝑖 and 𝑟 denote electron, ion, and phonon, respectively. 

3. Boundary Element Implementation for the Temperature Field 

The two-dimensions (2D) three-temperature (3T) radiation diffusion equations (9a) – (9c) can be 

written as  ∇ሾ𝕂ఈ ∇𝜃ఈ(r, 𝜏)ሿ + 𝕎തതത(r, 𝜏) = 𝑐ఈ𝜌𝛿ଵ 𝜕𝜃ఈ(r, 𝜏)𝜕𝜏 + 𝑄(r, 𝜏)   (10)

In which 𝑄(r, 𝜏) = ଵିோ𝐱బ 𝑒ቀି𝐫ೌ𝐫బቁ௃(ఛ), 𝐽(𝜏) = ௃బ ఛఛభమ 𝑒ି ഓഓభ , 𝑎 = 1, 2, 3. 
where 

𝕎തതത(𝑟, 𝜏) = ቐ−𝜌 𝕎௘௜  (𝜃௘ − 𝜃௜) – 𝜌 𝕎௘௥  (𝜃௘ − 𝜃௥), 𝛼 = 𝑒, 𝛿ଵ = 1 𝜌 𝕎௘௜  (𝜃௘ − 𝜃௜),                         𝛼 = 𝑖,  𝛿ଵ = 1            𝜌 𝕎௘௥  (𝜃௘ − 𝜃௥),                        𝛼 = 𝑟, 𝛿ଵ = 𝑇௣ଷ        

The total energy per unit mass is as follows 𝑃 = 𝑃௘ + 𝑃௜ + 𝑃௥ , 𝑃௘ = 𝑐௘𝜃௘ , 𝑃௜ = 𝑐௜𝜃௜ , 𝑃௥ = 14 𝑐௥𝜃௥ସ      (11)

The conditions under consideration can be summarized as follows: 𝜃ఈ(𝑥, 𝑦, 0) = 𝜃ఈ଴(𝑥, 𝑦) = 𝑔ଵ(𝑥, 𝜏)   (12)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0908.v1

https://doi.org/10.20944/preprints202304.0908.v1


 4 

 

𝕂ఈ 𝜕𝜃ఈ𝜕𝑛 ฬ୻భ = 0, 𝛼 = 𝑒, 𝑖, 𝜃௣ห୻భ = 𝑔ଶ(𝑥, 𝜏)     (13)

𝕂ఈ 𝜕𝜃ఈ𝜕𝑛 ฬ୻మ = 0, 𝛼 = 𝑒, 𝑖, 𝑟     (14)

Using the fundamental solution to the following differential equation  𝐷∇ଶ𝜃ఈ + 𝜕𝜃ఈ∗𝜕𝑛 = −𝛿(r − 𝑝௜)𝛿(𝜏 − r), 𝐷 = 𝕂ఈ𝜌𝑐       (15)

The dual reciprocity boundary integral equation corresponding to (10) can be expressed as in 

Fahmy [17] as follows  

𝐶𝜃ఈ = 𝐷𝕂ఈ න න ሾ𝜃ఈ𝑞∗ − 𝜃ఈ∗𝑞ሿௌ
ఛ

ை 𝑑𝑆 𝑑𝜏 + 𝐷𝕂ఈ න න 𝑏ோ 𝜃ఈ∗ఛ
ை 𝑑𝑅 𝑑𝜏 + න 𝜃ఈ௜ 𝜃ఈ∗หఛୀ଴ோ 𝑑𝑅            (16)

which can be expressed as follows 

𝐶𝜃ఈ = න ሾ𝜃ఈ𝑞∗ − 𝜃ఈ∗𝑞ሿ 𝑑𝑆ௌ − න 𝕂ఈ𝐷ோ  𝜕𝜃ఈ∗𝜕𝜏 𝜃ఈ  𝑑𝑅    (17)

We assume that the temperature derivative in (17) is approximated as 𝜕𝜃ఈ𝜕𝜏 ≅ ෍ 𝑓௝(𝑟)௝𝑎௝(𝜏)ே
௝ୀଵ  (18)

Now, we consider  ∇ଶ𝜃෠ఈ௝ = 𝑓௝  (19)

Thus, from Equation (17), we obtain 

𝐶 𝜃 = න ሾ𝜃ఈ𝑞∗ − 𝜃ఈ∗𝑞ሿ 𝑑𝑆ௌ + ෍ 𝑎௝(𝜏)𝐷ିଵே
௝ୀଵ ቆ𝐶𝜃෠ఈ௝ − න ൣ𝜃ఈ௝𝑞∗ − 𝑞ො௝𝜃ఈ∗൧ 𝑑𝑆ௌ ቇ      (20)

where 

𝑞ො௝ = −𝕂ఈ 𝜕𝜃෠ఈ௝𝜕𝑛  (21)

and 

𝑎௝(𝜏) = ෍ 𝑓௝௜ି ଵே
௜ୀଵ

𝜕𝜃(𝑟௜ , 𝜏)𝜕𝜏  (22)

where 𝑓௝௜ି ଵ are defined as  ሼ𝐹ሽ௝௜ = 𝑓௝(𝑟௜) (23)

By using equations (20) and (22), we get 𝐶 𝜃ሶఈ + 𝐻 𝜃ఈ = 𝐺 𝑄           (24)

where 𝐶 = −ൣ𝐻 𝜃෠ఈ  − 𝐺 𝑄෠൧𝐹ିଵ𝐷ିଵ                    (25)

with ൛𝜃෠ൟ௜௝ = 𝜃෠௝(𝑥௜)         (26)

൛𝑄෠ൟ௜௝ = 𝑞ො௝(𝑥௜)            (27)

Now, we introduce the following functions 𝜃ఈ = (1 − 𝛉) 𝜃ఈ௠ + 𝛉 𝜃ఈ௠ାଵ            (28)
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𝑞 = (1 − 𝛉)𝑞௠ + 𝛉 𝑞௠ାଵ      (29)

where 0 ≤ 𝛉 = ఛିఛ೘∆ఛ೘  ≤ 1, ∆𝜏௠ = 𝜏௠ାଵ − 𝜏௠.  
By differentiating (28), we get 𝜃ሶఈ = 𝑑𝜃ఈ𝑑𝛉 𝑑𝛉𝑑𝜏 = 𝜃ఈ௠ାଵ − 𝜃ఈ௠∆𝜏௠         (30)

Substitution of Equations (31) - (33) into Equation (27), yields ൬ 𝐶∆𝜏௠ + 𝛉𝐻൰ 𝜃ఈ௠ାଵ − 𝛉𝐺𝑄௠ାଵ = ൬ 𝐶∆𝜏௠ − (1 − 𝛉)𝐻൰ 𝜃ఈ௠ + (1 − 𝛉)𝐺𝑄௠ (31)

which can be written as 𝕒Χ = 𝕓                (32)

To solve the resulting linear algebraic systems, the symmetric successive over-relaxation (SSOR) 

method without matrix inversion [38] was efficiently implemented. 

4. Boundary Element Implementation for the Poroelastic Fields 

The representation formula for problem (7) is as follows: 𝐮ෝ௚(𝐱෤) = ൫𝑉෠𝑡̂௚൯ఆ(𝐱෤) − ൫𝐾෡𝐮ෝ௚൯ఆ(𝐱෤) for 𝐱෤ ∈ 𝜴              (33)

where the integral operators are 

൫𝑉෠ 𝐭̂௚൯ఆ(𝐱෤) = න 𝐔෡்(𝐲 − 𝐱෤)𝑡̂௚(𝐲).
௰ 𝑑𝑠𝐲     (34)

൫𝐾෡𝐮ෝ௚൯ఆ(𝐱෤) = න൫𝑇෠𝐲𝐔෡൯்.
௰ (𝐲 − 𝐱෤)𝐮ෝ௚(𝐲) 𝑑𝑠𝐲    (35)

In the Laplace domain, the fundamental solution and associated traction are denoted as [9] 

𝐔෡(r) = ቈ 𝐔෡ ௦(r) 𝐔෡ ௙(r) 0൫𝐏෡௦൯்(r) 𝑃෠௙(r) 0቉,   𝑇෠௬ = ቎ 𝑇𝐲௘ 𝑠𝛼𝐧𝐲 0−𝛽𝐧𝐲் 𝛽𝑠𝜌௙ 𝐧𝐲் ∇ 0቏    with   r ≔ |𝐲 − 𝐱| (36)

The fundamental solution can be expressed as [35] 𝐔෡ ௦(r) = 14𝜋r(𝜌 − 𝛽𝜌௙) ቈℝଵ (𝑘ସଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଶଶ) 𝑒ି௞భ୰ − ℝଶ (𝑘ସଶ − 𝑘ଵଶ)(𝑘ଵଶ − 𝑘ଶଶ) 𝑒ି௞మ୰ + (𝐼𝑘ଷଶ − ℝଷ)𝑒ି௞య୰቉          (37)

where ℝ௝ = 3∇𝐲r∇𝐲் r − 𝐼rଶ + 𝑘௝ 3∇𝐲r∇𝐲் r − 𝐼r + 𝑘௝ଶ∇𝐲r∇𝐲் r     (38)

Equation (37) can be expressed as 𝐔෡ ௦(r) = 14𝜋𝜇r(𝜆 + 2𝜇) ൣ(𝜆 + 𝜇)∇𝐲𝑟∇𝐲் r + 𝐼(𝜆 + 3𝜇)൧ + 𝑂(r଴)      (39)

The fundamental solution can be expressed as  𝐔෡ ௦(r) = 𝐔෡௦௦(r) + 𝐔෡௥௦(r)  
            = 1𝜇 ൤𝐼∆𝐲 − 𝜆 + 𝜇𝜆 + 2𝜇 ∇𝐲∇𝐲் ൨ ∆𝐲𝐱ො(r)  

− 1𝜇 ቈቀ(𝑘ଵଶ + 𝑘ଶଶ)∆௬ − 𝑘ଵଶ𝑘ଶଶቁ 𝐼 − ቆ𝑘ଵଶ + 𝑘ଶଶ − 𝑘ସଶ − 𝑘ଵଶ𝑘ଶଶ𝑘ଷଶ ቇ ∇𝐲∇𝐲் ቉ 𝐱ො(r) 

(40)

in which 
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𝐱ො(r) = 14𝜋𝑟 ቈ 𝑒ି௞భ୰(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଷଶ − 𝑘ଵଶ) + 𝑒ି௞మ୰(𝑘ଶଶ − 𝑘ଵଶ)(𝑘ଶଶ − 𝑘ଷଶ) + 𝑒ି௞య୰(𝑘ଵଶ − 𝑘ଷଶ)(𝑘ଶଶ − 𝑘ଷଶ)቉ 

                   = − 1(𝑘ଵଶ − 𝑘ଶଶ)(𝑘ଵଶ − 𝑘ଷଶ)(𝑘ଷଶ − 𝑘ଶଶ) + 𝑂(rଶ)        (41)

Furthermore, the remaining components of the fundamental solution might be stated as 

𝐔෡ ௙(r) = 𝜌௙(𝛼 − 𝛽)∇௬r4𝜋𝑟𝛽(𝜆 + 2𝜇)(𝑘ଵଶ − 𝑘ଶଶ) ൤൬𝑘ଵ + 1r൰ 𝑒ି௞భ୰ − ൬𝑘ଶ + 1r൰ 𝑒ି௞మ୰൨ = 𝑂(r଴)    (42)

𝐏෡௦(r) = 𝐔෡ ௙(r)𝑠 = 𝑂(r଴)       (43)

𝑃෠௙(r) = 𝑠𝜌௙4𝜋𝑟𝛽(𝑘ଵଶ − 𝑘ଶଶ) ሾ(𝑘ଵଶ − 𝑘ସଶ)𝑒ି௞భ௥ − (𝑘ଶଶ − 𝑘ସଶ)𝑒ି௞మ௥ሿ = 𝑠𝜌௙4𝜋𝑟𝛽 + 𝑂(r଴) (44)

Now, we apply the following limiting 𝐱෤ ∈ 𝛺 → 𝐱 ∈ 𝛤 to (34) to obtain 

lim𝐱෤∈𝛺→𝐱∈௰ ൫𝑉෠ 𝐭̂௚൯ఆ (𝐱෤) = ൫𝑉෠𝐱ො௚൯(𝐱) ≔ න 𝐔෡்.
௰ (𝐲 − 𝐱)𝐭̂௚(𝐲)𝑑𝑠𝐲      (45)

In addition, we apply the following limiting method to (35) to obtain [39] lim௫෤∈𝛺→௫∈௰ ൫𝐾෡𝐮ෝ௚൯ఆ (𝐱෤) = ሾ−𝐼(𝐱) + 𝐶(𝐱)ሿ𝐮ෝ௚(𝐱) + ൫𝐾෡𝐮ෝ௚൯(𝐱)    (46)

in which 

𝐶(𝐱) = 𝑙𝑖𝑚ఌ→଴ න ൫𝑇෠𝐲𝐔෡൯்(𝐲 − 𝐱).
௬∈ఆ:|௬ି௫|ୀఌ 𝑑𝑠𝐲     (47)

and  

൫𝐾෡𝐮ෝ௚൯(𝐱) = limఌ→଴ න ൫𝑇෠𝐲𝐔෡൯்(𝐲 − 𝐱).
|௬ି௫|ஹఌ 𝐮ෝ௚(𝐲)𝑑𝑠𝐲       (48)

By using equations (45) - (48), the boundary integral equation in Laplace domain can be 

expressed as 𝐶(𝐱) 𝐮ෝ௚ (𝐱) = ൫𝑉෠𝐭̂௚൯(𝐱) − ൫𝐾෡𝐮ෝ௚൯(𝐱)             (49)

The poroelastodynamic boundary integral equation can be expressed using the inverse Laplace 

transformation as 𝐶(𝐱)𝐮௚(𝐱 , 𝑡) = (𝑉 ∗ 𝐭௚)(𝐱 , 𝑡) − (𝐾𝐮௚)(𝐱 , 𝑡) (50)

The fundamental solution is as follows [37] 

൫𝑇෠𝐲𝐔෡൯் = ⎣⎢⎢⎢
⎡ ൦ 𝑇෠𝐲௘ 𝑠𝛼𝐧𝐲−𝛽𝐧𝐲் 𝛽𝑠𝜌଴௙ 𝐧𝐲் ∇𝐲൪ ቈ 𝐔෡ ௦ 𝐔෡ ௙൫𝐏෡௦൯் 𝑃෠௙ ቉⎦⎥⎥⎥

⎤் = ቈ 𝐓෡௦ 𝐓෡௙൫𝐐෡ ௦൯் 𝑄෠௙቉்      (51)

The Stokes theorem states that the differentiable vector field a(𝑦), (𝑦 ∈ 𝛤) can be represented 

as 

න൫∇𝐲 ×  a, 𝑛𝐲 ൯.
௰ 𝑑𝑠𝐲 = − න(a, 𝑣),

డ௰ 𝑑𝛾𝐲  = − න(a, 𝑣),
థ 𝑑𝛾𝐲 = 0         (52)

where 

න൫𝑛𝐲 × ∇𝐲, a ൯.
௰ 𝑑𝑠𝐲 = 0     (53)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0908.v1

https://doi.org/10.20944/preprints202304.0908.v1


 7 

 

We can use (53) to obtain the following formula  

න൫𝑀𝐲 a ൯.
௰ 𝑑𝑠𝐲 = 0, 𝑀𝐲 = ൫∇𝐲∇𝐲் ൯் − ∇𝐲∇𝐲் , a = 𝑣𝑢       (54)

According to [40], we obtain 

න൫𝑀𝐲 𝑣൯.
௰ 𝐮𝑑𝑠𝐲 = − න 𝑣൫𝑀𝐲  𝐮൯,

௰ 𝑑𝑠𝐲         (55)

න൫𝑀𝐲 𝑣൯்.
௰ 𝐮𝑑𝑠𝐲 = න 𝑣்.

௰ ൫𝑀𝐲 𝐮൯𝑑𝑠𝐲       (56)

By using (40) and (51), we obtain ൫𝐓෡௦൯் = ቀ𝑇𝐲௘൫𝐔෡௦௜௡௚௦ + 𝐔෡௥௘௚௦ ൯ቁ் + 𝑠𝛼𝑃෠௦𝐧𝐲் = ൫𝑇𝐲௘  𝐔෡௦௜௡௚௦ ൯் + 𝑂(r଴) (57)

According to [37], we get ൫𝐓෡௦൯் = (𝜆 + 2𝜇)𝑛𝐲∇𝐲் 𝐔෡௦௜௡௚௦ − 𝜇 ቀ𝒏𝐲 × ൫∇𝐲 × 𝐔෡௦௜௡௚௦ ൯ቁ + 2𝜇𝑀𝐲𝐔෡௦௜௡௚௦ + 𝑜(r଴) (58)

which can be expressed using (40) as ൫𝐓෡௦൯் = 𝑀𝐲∆𝐲ଶ𝑋෠ + 𝐈൫𝐧்∇𝐲൯∆𝐲ଶ𝑋෠ + 2𝜇൫𝑀𝐲𝐔෡௦௜௡௚௦ ൯் + 𝑜(r଴)        (59)

Using (35) and (59), we obtain ൫𝑘෠𝐮ෝ൯Ω௦ (𝐱෤) = න ቂ൫𝑀𝐲∆𝐲ଶ𝑋෠൯𝐮ෝ + ൫𝐈൫𝐧்∇𝐲൯∆𝐲ଶ𝑋෠൯𝐮ෝ + 2𝜇൫𝑀𝐲𝐔෡௦௜௡௚௦ ൯்𝐮ෝ + 𝑂(r଴)𝐮ෝቃ 𝑑𝑠𝐲.
┌       (60)

Based on [39], we get 

൫𝐾෡𝐮ෝ൯Ω௦ (𝐱෤) = නൣ−∆𝐲ଶ𝑋෠൫𝑀𝐲𝐮ෝ൯ + ൫𝐈൫𝐧்∇𝐲൯∆𝐲ଶ𝑥ො൯𝐮ෝ + 2𝜇𝑈෡௦௦൫𝑀𝐲𝐮ෝ൯ + 𝑂(r଴)𝐮ෝ൧𝑑𝑠𝐲.
┌         (61)

The second term of the integral (61) can be expressed as ൫𝐧்∇𝐲൯∆𝐲ଶ𝑥ො(r) = 𝐧்∇𝐲ೝ4𝜋𝑟ଶ + 𝑂(r଴)           (62)

where 𝐶௦(𝐱) = 𝐼(𝐱) 𝑐 (𝐱)   with   𝑐(𝐱) = 𝜙(𝐱)4𝜋  (63)

Based on [37], the following limit may be rewritten as  limఆ∋௫෤→௫∈௰൫𝐾෡𝐮ෝ൯ఆ௦ (𝐱෤) = −𝐼(𝐱)ሾ−1 + 𝑐(𝐱)ሿ𝐮ෝ(𝐱) + ൫𝐾෡𝐮ෝ൯௦(𝐱) (64)

By augmenting 𝑈෡௦௦ to 𝑈෡௦ and employing (56) we can write (61) as 

൫𝐾෡𝐮ෝ൯ఆ௦ (𝐱෤) = න −∆𝐲ଶ𝐱ො൫𝑀𝐲𝐮ෝ൯ + ൫𝐈൫𝐧்∇𝐲൯∆𝐲ଶ𝐱ො൯𝐮ෝ + 2𝜇𝑈෡௦൫𝑀𝐲𝐮ෝ൯ + 𝑂(r଴)𝐮ෝ.
௰ 𝑑𝑠𝐲       (65)

By dividing the time interval ሾ0, 𝑇ሿ, we obtain the following integral 

(𝑓 ∗ 𝑔)(𝜏) = න 𝑓(𝜏 − 𝑡)𝑔(𝑡)௧
଴ 𝑑𝑡  for   𝜏 ∈ ሾ0 , 𝑇ሿ       (66)

In which 

(𝑓 ∗ 𝑔)(𝜏௡) ≈ ෍ 𝜔௡ି௞∆ఛ௡
௞ୀ଴ ൫𝑓መ൯𝑔(𝜏௞)             (67)

According to Lubich formula [41,42], the integration weights 𝜔௡ can be determined as 
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𝜔௡∆ఛ൫𝑓መ൯ ≔ 12𝜋𝑖 න 𝑓መ ቆ𝛾(𝑧)∆𝜏 ቇ 𝑧ି(௡ାଵ)𝑑𝑧|௭|ୀோ             (68)

Using 𝑧 = 𝑅𝑒ି௜ఝ, the integral equation (68) may be approximated as  

𝜔௡∆ఛ൫𝑓መ൯ ≈ 𝑅ିଵ𝐿 + 1 ෍ 𝑓መ௅
ℓୀ௢ (𝑠ℓ)𝜁 ℓ௡      with  𝜁 = 𝑒 ଶగ௜௅ାଵ  𝑎𝑛𝑑  𝑠ℓ = 𝛾൫𝑅𝜁ିℓ൯∆𝜏           (69)

By plugging Equation (69) into Equation (67), we get 

(𝑓 ∗ 𝑔)(𝜏௡) ≈ ෍ 𝑅ି(௡ି௞)𝑁 + 1ே
௞ୀ଴ ෍ 𝑓መே

ℓୀ଴ (𝑠ℓ)𝜁ℓ(௡ି௞)𝑔(𝜏௞)  ≈ 𝑅ି௡𝑁 + 1 ෍ 𝑓መே
ℓୀ଴ (𝑠ℓ)𝑔ො(𝑠ℓ)𝜁ℓ௡     (70)

with  

𝑔ො(𝑠ℓ) = ෍ 𝑅௞ே
௞ୀ଴ 𝑔(𝜏௞)𝜁ିℓ௞ .        (71)

Based on [39], we get 𝐶(𝐱)𝐮௚(𝐱, 𝜏) = (𝑣 ∗ 𝐭௚)(𝐱, 𝜏) − (𝑘 ∗ 𝐮௚)(𝐱, 𝜏) (72)

that can be expressed in Laplace domain as follows 𝐶(𝐱)𝐮ෝ௚(𝐱, 𝑠ℓ) = (𝑣ො𝐭̂௚)(𝐱, 𝑠ℓ) − ൫𝑘෠𝐮ෝ௚൯(𝐱, 𝑠ℓ),      (73)

The discretization of the boundary 𝛤 = 𝜕𝛺 into 𝑁௘ boundary elements 𝜏௘̅ leads to 

𝛤 ≈ 𝛤ℎ = ራ 𝜏̅𝑒
𝑵𝒆

𝑒=1          (74)

Now, we use 𝕚 continuous functions 𝜑௜ఈሾ𝑘ሿ and 𝕛 discontinuous functions 𝜓௝ఉሾ𝑘ሿ to define 

the following subspaces 𝑆௛ሾ𝑘ሿ൫𝛤ே ,௛൯ ≔ 𝑠𝑝𝑎𝑛ሼ𝜑௜ఈሾ𝑘ሿሽ௜ୀଵ𝕚 , 𝛼 ≥ 1          (75)

𝑆௛ሾ𝑘ሿ൫𝛤஽ ,௛൯ ≔ 𝑠𝑝𝑎𝑛 ቄ𝜓௝ఉሾ𝑘ሿቅ௝ୀଵ𝕛 , 𝛽 ≥ 0         (76)

By using (75) and (76), the unknown datum can be approximated as follows 

𝐮ෝ௚ሾ𝑘ሿ(𝐱) ≈ 𝐮ෝ௛௚ሾ𝑘ሿ(𝐱) = ෍ 𝐮ෝ௛ ,௜௚ ሾ𝑘ሿ𝜑௜ఈூ
௜ୀଵ ሾ𝑘ሿ(𝐱) ∈ 𝑆௛ሾ𝑘ሿ൫𝛤ே ,௛൯,    (77)

𝐭̂௚ሾ𝑘ሿ(𝐱) ≈ 𝐭̂௛௚ሾ𝑘ሿ(𝐱) = ෍ 𝐭̂௛ ,௝௚௃
௝ୀଵ ሾ𝑘ሿ𝜓௝ఉሾ𝑘ሿ(𝐱) ∈ 𝑆௛ሾ𝑘ሿ൫𝛤஽ ,௛൯,       (78)

Thus, we obtain  

ቈ𝑉෠஽஽ 𝑉෠ே஽ −𝐾෡஽ே           −൫𝐶 + 𝐾෡ேே൯቉ℓ ൥ 𝐭̂஽,௛௚𝐮ෝே,௛௚ ൩ℓ = ቈ−𝑉෠஽ே−𝑉෠ேே     ൫𝐶 + 𝐾෡஽஽൯𝐾෡ே஽           ቉ℓ ൥𝑔ොே ,௛௚𝑔ො஽ ,௛௚ ൩ℓ  ℓ = 0. . . 𝑁         (79)

where  𝑆መேே ≔ 𝑉෠ே஽𝑉෠஽஽ିଵ𝐾෡஽ே − ൫𝐶 + 𝐾෡ேே൯       (80)

5. Numerical Results and Discussion 

In the context of analyzing the BEM model results of solving ultrasonic wave propagation 

problems in three-temperature anisotropic viscoelastic porous media. As shown in Figure 2, the BEM 

discretization was carried out with 42 boundary elements and 68 internal points. 
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Figure 2. BEM model of the current problem. 

To demonstrate the numerical results obtained by the proposed technique, the following 

physical parameters were used: 

The elasticity tensor 

𝐶௔௕௟௚ = ⎣⎢⎢
⎢⎢⎡𝐶ଵଵ𝐶ଵଶ𝐶ଵଷ000

𝐶ଵଶ𝐶ଵଵ𝐶ଵଷ000
𝐶ଵଷ𝐶ଵଷ𝐶ଷଷ000

000𝐶ସସ00
0000𝐶ସସ0

00000𝐶଺଺⎦⎥⎥
⎥⎥⎤             (81)

𝐶ଵଵ = 𝐸ଶ𝑣଴ଶ − 𝐸𝐸଴(1 + 𝑣)(2𝐸𝑣଴ଶ + 𝐸଴(𝑣 − 1)) , 𝐶ଵଶ = − 𝐸ଶ𝑣଴ଶ + 𝐸𝐸଴𝑣(1 + 𝑣)(2𝐸𝑣଴ଶ + 𝐸଴(𝑣 − 1)) 

𝐶ଵଷ = − 𝐸𝐸଴𝑣2𝐸𝑣଴ଶ + 𝐸଴(𝑣 − 1) , 𝐶ଷଷ = − 𝐸଴ଶ(𝑣 − 1)2𝐸𝑣଴ଶ + 𝐸଴(𝑣 − 1) 

𝐶ସସ = 𝜇଴, 𝐶଺଺ = ଵଶ (𝐶ଵଵ − 𝐶ଵଶ) 
For anisotropic viscoelastic porous media, we considered the following physical parameters [43] 𝑣 = 0.95, 𝑣଴ = 0.49, 𝜇଴ = 20.98 GPa, 𝐸 = 22 kPa, 𝐸଴ = 447 kPa 

and therefore 𝑘ଵ = 1243 kPa, 𝑘ଶ = 442 kPa 

and 𝜌௦ = 1600 𝑘𝑔/𝑚ଷ, 𝜌௙ = 1113 𝑘𝑔/𝑚ଷ, 𝑝 = 25 𝑀𝑃𝑎, 𝜙 = 0.15 and 𝑄/𝑅 = 0.65. 

Figures 3, 4 and 5 show the distributions of the nonlinear thermal stress 𝜎ଵଵ, 𝜎ଵଶ, and 𝜎ଶଶ waves 

along 𝑥ଵ-axis for electron, ion, phonon and total 3T with and without viscosity effect. Figure 3 shows 

the distribution of the nonlinear thermal stress σଵଵ waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon 
(𝜃 = 𝜃௥ ), and total 3T (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥ ) with and without viscosity effect. Figure 4 shows the 

distribution of the nonlinear thermal stress σଵଶ waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon 
( 𝜃 = 𝜃௥ ), and total ( 𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥ ) with and without viscosity effect. Figure 5 shows the 

distribution of the nonlinear thermal stress σଶଶ waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon 
(𝜃 = 𝜃௥), and total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥) with and without viscosity effect. 
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Figure 3. Propagation of the nonlinear thermal stress σଵଵ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T with and without viscosity effect. 

 

Figure 4. Propagation of the nonlinear thermal stress σଵଶ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T with and without viscosity effect. 
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Figure 5. Propagation of the nonlinear thermal stress σଶଶ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T with and without viscosity effect. 

Figures 6, 7 and 8 show the distributions of the nonlinear thermal stress 𝜎ଵଵ, 𝜎ଵଶ, and 𝜎ଶଶ waves 

along 𝑥ଵ-axis for electron, ion, phonon and total 3T for isotropic and anisotropic viscoelastic porous 

structures. Figure 6 shows the distribution of the nonlinear thermal stress σଵଵ waves for electron 

(𝜃 = 𝜃௘ ), ion (𝜃 = 𝜃௜ ), phonon (𝜃 = 𝜃௥ ), and total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥ ) for isotropic and anisotropic 

viscoelastic porous structures. Figure 7 shows the distribution of the nonlinear thermal stress σଵଶ 

waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon (𝜃 = 𝜃௥), and total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥) for isotropic 

and anisotropic viscoelastic porous structures. Figure 8 shows the distribution of the nonlinear 

thermal stress σଶଶ waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon (𝜃 = 𝜃௥), and total (𝜃 = 𝜃௘ + 𝜃௜ +𝜃௥) for isotropic and anisotropic viscoelastic porous structures. 
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Figure 6. Propagation of the nonlinear thermal stress σଵଵ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T for isotropic and anisotropic viscoelastic porous structures. 

 

Figure 7. Propagation of the nonlinear thermal stress σଵଶ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T for isotropic and anisotropic viscoelastic porous structures. 
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Figure 8. Propagation of the nonlinear thermal stress σଶଶ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T for isotropic and anisotropic viscoelastic porous structures. 

The validity of the outcomes of the suggested technique was not supported by any published 

works. On the other hand, some literary works can be seen as special cases of the considered general 

work. 

Figures 9, 10 and 11 show the distributions of the nonlinear thermal stress 𝜎ଵଵ, 𝜎ଵଶ, and 𝜎ଶଶ 

waves along 𝑥ଵ-axis for electron, ion, phonon and total 3T using the finite difference method (FDM) 

[44] and current BEM. Figure 9 shows the distribution of the nonlinear thermal stress σଵଵ waves for 

electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon (𝜃 = 𝜃௥), and total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥) for FDM and BEM. Figure 

10 shows the distribution of the nonlinear thermal stress σଵଶ waves for electron (𝜃 = 𝜃௘), ion (𝜃 =𝜃௜), phonon (𝜃 = 𝜃௥), and total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥) for FDM and BEM. Figure 11 shows the distribution 

of the nonlinear thermal stress σଶଶ waves for electron (𝜃 = 𝜃௘), ion (𝜃 = 𝜃௜), phonon (𝜃 = 𝜃௥), and 

total (𝜃 = 𝜃௘ + 𝜃௜ + 𝜃௥) for FDM and BEM. These figures clearly show that the BEM and FDM are in 

excellent agreement, supporting the validity and precision of our proposed BEM approach. 
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Figure 9. Propagation of the nonlinear thermal stress σଵଵ  waves along 𝑥ଵ -axis for electron, ion, 

phonon and total 3T for FDM and BEM. 

 

Figure 10. Propagation of the nonlinear thermal stress σଵଶ  waves along 𝑥ଵ-axis for electron, ion, 

phonon and total 3T for FDM and BEM. 
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Figure 11. Propagation of the nonlinear thermal stress σଶଶ  waves along 𝑥ଵ-axis for electron, ion, 

phonon and total 3T for FDM and BEM. 

Table 1 shows a comparison of required computer resources for the current BEM results and 

FDM results of Hu et al. [44] of modeling of ultrasonic wave propagation problems in three-

temperature anisotropic viscoelastic porous media. 

Table 1. A comparison of the required computer resources for modeling of ultrasonic wave 

propagation problems in three-temperature anisotropic viscoelastic porous media. 

 BEM FDM 

Number of nodes 66 40000 

Number of elements 36 16000 

CPU time (min) 2 160 

Memory (MByte) 1 140 

Disc space (MByte) 0 200 

Accuracy of results (%) 1 2.0 

6. Conclusion 

The main goal of this article is to develop a novel boundary element model for describing 

ultrasonic thermomechanical interactions in three-temperature anisotropic viscoelastic porous 

media. Analytical or numerical solutions are always difficult due to the strong nonlinearity of 

ultrasonic wave propagation in three-temperature porous media problems, necessitating the 

development of new computational techniques. As a result, we employ a new BEM model to address 

such problems. The considered BEM model has low RAM and CPU usage due to its advantages such 

as dealing with more complex shapes of porous media and not requiring the discretization of the 
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internal domain. As a result, the considered BEM is a powerful and adaptable for modeling ultrasonic 

wave propagation in three-temperature anisotropic viscoelastic porous media. To obtain 

fundamental solutions, a double integral must be calculated, but this increases the total BEM 

computation time. To solve the current problem and improve formulation efficiency, we propose a 

BEM technique. The numerical results are graphed to show the effects of viscosity and anisotropy on 

nonlinear ultrasonic stress waves in porous media at three temperatures. The proposed 

methodology's validity, accuracy, and efficiency were demonstrated by comparing the obtained 

results to the corresponding solution obtained using the finite difference method (FDM). The findings of this paper contribute to the development of mathematical models that can be applied in biology, 

bioengineering and medicine 
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Nomenclature 

 

  

∗ Convolution with respect to time 𝑔ො஽ Dirichlet datum Γ Boundary 𝑔ොே Neumann datum 𝛤஽ Dirichlet boundary 𝐽 Non-Gaussian temporal profile 𝛤ே Neumann boundary 𝐽଴ Total energy intensity 𝛿௜௝ Kronecker delta (𝑖, 𝑗 = 1, 2) 𝑘௜௝ Thermal conductivity tensor 𝜖 Linear strain tensor 𝕂ఈ Heat conductive coefficients  𝜃 Temperature field 𝑘 poroelastic freedom degrees μ଴ Shear moduli 𝑛 Outward unit normal vector 𝜒 Viscoelastic constant 𝑝̅ Fluid pressure 𝜁 Fluid volume variation 𝑝௜ Singular points 𝜌 = 𝜌௘(1 − 𝜙) + 𝜙𝜌௙ Bulk density 𝐪 Specific flux of the fluid 𝜌௘ Elastic density R = |𝐲 − 𝐱| Euclidean distance 𝜌௙ Fluid density 𝑄 Heat source intensity 𝜎 Total stress tensor 𝑅 Irradiated surface absorptivity 𝜏 Time 𝐭̂௚ Generalized tractions 𝜏ଵ Laser pulse time characteristic Tr Trace of a matrix 𝜙 = ௏೑௏   Porosity 𝐔෡௥௦(r) Regular displacement 

Ω Region 𝐔෡௦௦(r) Singular displacement 𝐴 =  𝜙(1 + 𝑄/𝑅) Biot’s coefficient 𝐮 Displacement 𝔅 Stress-temperature coefficients 𝐮௙ Fluid displacement 𝐵௫෤௘ Linear elastostatics operator 𝜈 Poisson’s ratio 𝑐 Specific heat  𝕎௘௜& 𝕎௘௣ Energy exchanging coefficients 𝐶௔௝௟௚ Constant elastic moduli 𝕎௘௜ = 𝜌𝔸௘௜𝜃௘ି ଶ/ଷ
 𝐸௜ Young’s moduli 𝕎௘௣ = 𝜌𝔸௘௣𝜃௘ି ଵ/ଶ
 𝐅 Body forces 𝑥, 𝑦 Space coordinates 𝐺௜௝ Shear moduli 𝐱 Source point 

  𝐲 Considered point 
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