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Abstract: The main goal of this work is to develop a novel boundary element method (BEM) model
for analyzing ultrasonic wave propagation in three-temperature anisotropic viscoelastic porous
media. Because of strong nonlinearity of ultrasonic wave propagation in three-temperature porous
media problems, the analytical or numerical solutions to the problems under consideration are
always challenging, necessitating the development of new computational techniques. As a result,
we use a new BEM model to solve such problems. A time stepping procedure based on the linear
multistep method is obtained after solving the discretized boundary integral equation with the
quadrature rule. The calculation of a double integral is required to obtain fundamental solutions,
but this increases the total BEM computation time. Our proposed BEM technique is used to solve
the current problem and improve the formulation efficiency. The numerical results are graphed to
demonstrate the effects of viscosity and anisotropy on the nonlinear ultrasonic stress waves in three-
temperature porous media. The validity, accuracy, and efficiency in the proposed methodology
were demonstrated by comparing obtained results to the corresponding solution obtained from
finite difference method (FDM).

Keywords: boundary element model; ultrasonic wave propagation; three-temperature; anisotropic
viscoelastic porous media
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1. Introduction

In recent years, many engineering studies have drawn researchers' attention to investigate the
mechanical behaviour of viscoelastic porous materials [1-6] due to the positive results obtained in
applied science, engineering, and technological applications such as biology, biophysics,
biomechanics, geotechnical engineering, reservoir geomechanics, mining and petroleum
engineering, geothermal engineering, thermal insulation, and lightweight structural design. Some
researchers have investigated the effects of magnetic field [7], initial stress [8], rotation and gravity
[9] on the generalized thermo-viscoelastic diffusion medium. Also, the effects of initial stress and
temperature-dependent on the thermo-microstretch elastic solid have been investigated with dual-
phase-lag model [10]. Xu et al. [11] studied the effects of viscoelastic dampers with high energy
dissipation based on an acrylate rubber matrix. Because analytical solutions to the current situation
are extremely difficult to achieve, numerical methods have emerged as the primary tool for resolving
these problems such as Pei et al. [12], Ooi et al. [13], Zhou et al. [14], Ng et al. [15], Majchrzak and
Turchan [16], Bottauscio et al. [17], Deng and Liu [18] and Partridge and Wrobel [19]. The concept of
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treating biological tissue as a porous medium has been deemed more acceptable for incorporating
blood flow through arteries implanted in the tissue. One of the computational strategies used to solve
the bioheat transfer problems of biological tissues [20-22] is the boundary element method (BEM)
[23-31]. For physical and technological problems, Laplace-domain fundamental solutions are
generally easier to get than time-domain fundamental solutions [32,33]. As a result, because it
requires the Laplace-domain fundamental solutions of the problem's governing equations, the
CQBEM is highly useful for problems that did not have time-domain fundamental solutions. As a
result, CQBEM broadens the spectrum of engineering problems that can be tackled using traditional
time-domain BEM.

The primary goal of this paper is to present a new boundary element model for explaining
thermomechanical interactions in three-temperature anisotropic viscoelastic porous media. The
uncoupled governing equations are solved independently, where the bioheat equation is solved first
using the GBEM based on LRBFCM to obtain the temperature distribution, and then the mechanical
equation was solved using the CQBEM to obtain the displacements and stresses. The resulting linear
systems have been solved by communication-avoiding Arnoldi (CA-Arnoldi) preconditioner which
reduces the number of iterations and the total CPU time. The numerical results demonstrate the
validity, efficiency and accuracy of the proposed model

2. Formulation of the Problem

In the Cartesian system (x,y,z), we consider a region Q = {0 <x<@a,0<y<p,0<z< y,}

with a boundary T' occupied by an anisotropic viscoelastic porous media as shown in Figure 1.

o a -’

Figure 1. Computational domain of the current problem.

According to Biot’s model [34] and Darcy’s law [35], the thermo-poroelastic governing equations
can be expressed as

(VT0)T + F = pii + ¢ppg (i, — it) 1)
{+VTq=0) )

0= (Cypg(r) xtre—Ap)I—B 9 (3)
€= %(VuT + (Tu™)7) 4)

2
(=Atre+%ﬁ 5)
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e + L
q=—K<Vﬁ+pfﬁ+%(uf—u)> 6)

On the basis of Bonnet [36], the governing equations can be written as follows [37]

B;i9(%) =0 for x € Q
W9(x) =gp for x €l 7)
t9(x) = gy for x €Iy

in which where the operator By and the tractions 9 are defined as

Bg +5%(p — Boy)l (a—p)Vy —BVy
5 _ )
By s(a — BVE - S%Ag + % o |
TS —an,  O0][a(x) 2
. B N _ $“sKpy
w0 = [sﬁni %nlvx 0 lggﬂ b= K. + oo ®

According to Fahmy [30], the thermomechanical interactions can be found by treating the soft
tissue as a thermoporoelastic medium and implementing BEM for solving the governing equations

(1) and (7).
The three-temperature radiative diffusion equations are as follows
a6,(r,7) 1

Coe—g7— = 5 VIKe V0.(1, D] = = Wer (0 = 6) = Wer (6 = 6) (%)

BBL- (F, T) 1
vi T or _;V[Ki Vo, (r, )] = W,; (6, — 6)) (9b)

26,(r,7) 1
e~ VK 0, (5D)] = Wiy (6~ 6,) ©0)

Coa = Ce a=e A, Tes/z a=e

in which Cpy ={ G =C  @=iandK, =1 A, T/?
Coua =CT? a=r

a=i
A T3B a=r
where e,iandr denote electron, ion, and phonon, respectively.

3. Boundary Element Implementation for the Temperature Field

The two-dimensions (2D) three-temperature (3T) radiation diffusion equations (9a) — (9¢) can be
written as

00, (r,7)

——+e7) (10)
T

V[K, VO, (r, )] + W(r, 1) = c,p8; 3

In which Q(r,7) = t—Re(_ﬁ)](T),](T) = ]:—zre_ﬁ,a =1,2,3.
0 1
where

pWe; (6. —6,), a=i 6 =1

—p We; (6 —0) -p We, (6, —6,),a=e,6,=1
W(r,t) =
p Wer (6. — 6,), a=r,6 = Tz?

The total energy per unit mass is as follows

1
P=P +P;+P,P.=c.0,,P; =c0;,P = Zcreﬁ (11)

The conditions under consideration can be summarized as follows:

0o (x,y,0) = 03(x,y) = g1(x,7) (12)
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00, .
Ko~ T 0,a=e,i, 0;,|F1 = g,(x,7) (13)
Dl —pa=e,i 14
“Tnly, = GE= LT (14)
Using the fundamental solution to the following differential equation
00, K
DV?6, + a: =8 —-p)é(t—-r), D= p—z (15)

The dual reciprocity boundary integral equation corresponding to (10) can be expressed as in
Fahmy [17] as follows

D T D T .
co, =—f f [6,q" — 65q]dS dr+—f f b6y dR dr+f 0.0:|_ dR (16)
Ko Jo Js Ko Jo Jr R =0

which can be expressed as follows

K, 96,
= -0 - == 17
COa _L (6" — O] dS J; 5 o b dR (17)

We assume that the temperature derivative in (17) is approximated as

N
a6, o
L= ped@ (18)
=1
Now, we consider
V20, = f (19)
Thus, from Equation (17), we obtain
N
co= f (6,9 — 65q] dS + Z &/ (t)D? (cé; - f [6lq" —q76z) dS> (20)
s = s
where
. 26,
Gl = -K,—% 21
T =-"Kem 1)
and
o 00(r,T)
. _ 1 T
a/ (1) = ;fjl ot (22)
where f;' are defined as
(F}ji=f7() (23)
By using equations (20) and (22), we get
CO,+H6,=6GQ (24)
where
C=-[HO, -GQ|F'p! (25)
with
{9}” =6/(x) (26)
{@}, =@ 7)

Now, we introduce the following functions

0, = (1-0) 6" + 6 g+ (28)
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q=(1-0)q™+08qm"" (29)
where 0 <8 =" < 1, At™ = g™t — ¢,
At™m
By differentiating (28), we get
_d6,de _ ortt —on 0)
“dodr A
Substitution of Equations (31) - (33) into Equation (27), yields
¢ L en oI+l — gGQMH = ¢ _a-em 0r + (1 — 0)GQ™ (1)
A QM =g (1-0) Q
which can be written as
aX=h (32)

To solve the resulting linear algebraic systems, the symmetric successive over-relaxation (SSOR)
method without matrix inversion [38] was efficiently implemented.

4. Boundary Element Implementation for the Poroelastic Fields

The representation formula for problem (7) is as follows:
09(x) = (?fg)ﬂ(i) — (I?ﬁg)n(f() fork € (33)

where the integral operators are

(789),(0 = [ 07(y - R)ts ) dsy (34)
r

(F39),0 = [ (50" - Da0) s, @
r

In the Laplace domain, the fundamental solution and associated traction are denoted as [9]

o =| U0 VO )7 Y ST IR 6)
r=|,. ~ , = with r:==|y—x
)@ P of T |-png i o ’
The fundamental solution can be expressed as [35]
o _ (k4 k%) (k,f _k%) —k,r 2 —ksr
00 = g B P 0 R )
where
3V VT -1 3V, rVir—1
e e e AR (38)
Equation (37) can be expressed as
s — T 0
U5(r) = TGt 20 [A+WVyrVir+ 1+ 3w)] + 0(r°) (39)
The fundamental solution can be expressed as
05(r) = 030 + 03 (1)
! |1, - w75 4,200
= — y — X r
U /’l + 2u (40)
ik3
- [((k1 +k2)A,, kfkg)I - <kf +kE—kZ— k_§) vyv§] )

in which
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6
~ 1 e—klr e—kzr e—k3r
O = i Wm0 =D T WD = kD) T W kD GE = K ]
nr | (k3 1) (ks 1) (k3 1) (k3 3) (ki 3) (k3 5)
1 (41)
= — 0 2
G R M
Furthermore, the remaining components of the fundamental solution might be stated as
_ pf(a— BV, r 1 1
f — Yy Z\,—kyr _ Z) okor| — 0
VO = s+ 2002 =1 [(k1 * r) ¢ (kz * r) ¢ ] o) (42)
ur
Pe() = = — e0) (43)
Pr(r) = sl [(kf = ke ™7 — (ki — ke "] = sel +0(@r% (44)
4mrp(kZ—k3) Tt 2T amrf
Now, we apply the following limiting X € 2 > x € I' to (34) to obtain
(789, @) = (739)0) = [ 07 (v - 00890,y (45)
r
In addition, we apply the following limiting method to (35) to obtain [39]
cedim_ (Ku?), ® = [-1(0) + C0]a () + (K9) (%) (46)
in which
C(x) = Lim f (Tyﬁ)T(y —-x)dsy (47)
yeEQ:|y—x|=¢
and
(Ru9)(x) = lim f (Tyﬁ)T(y —x) W (y)dsy (48)
ly-x|ze

By using equations (45) - (48), the boundary integral equation in Laplace domain can be
expressed as

Cx) 19 (x) = (Vi9)(x) — (Ka9)(x) (49)

The poroelastodynamic boundary integral equation can be expressed using the inverse Laplace
transformation as

CWIx,t) =V «t9)(x,t) — (Kud)(x,t) (50)

The fundamental solution is as follows [37]

~ T
T¢ — —~ =~ ~
OO S S | B | o
= —~ ~ = ~ T ~
4 —pny vy ||(P)" 1] T1@)" @
5P,
The Stokes theorem states that the differentiable vector field a(y), (y € I') can be represented
as
f(Vyx a,ny)dsy=—f(a,v)dyy =—f(a,v)dyy=0 (52)
r or ¢
where

f (ny xVy,a)ds, =0 (53)
r
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We can use (53) to obtain the following formula
f(My a)ds, =0,  My= (V) -V}, a=w (54)
r
According to [40], we obtain
f(My v)udsy = — f v(My u)dsy (55)
r r
f(MY v) uds, = f v" (Myu)ds, (56)
r r
By using (40) and (51), we obtain
(T)" = (1 (Osing + Tap)) + saPond = (7§ 0g) +0G) 57)
According to [37], we get
(TS)T = A+ 2)ny V305, —u (ny x (v, x ﬁging)) +2uM, U5, + 0(r®) (58)
which can be expressed using (40) as
(T5)" = Mya28 + 1(077,)A28 + 2u(My05,)" + 0 () (59)
Using (35) and (59), we obtain
(ka). ®) = f [(m,028)a + (1(n77,)828)8 + 2u(M,051,,) @ + 008 ds, (60)
r
Based on [39], we get
(Ra): ) = f [~82%(M,@) + (1(n7V,)A22)a + 2u05 (M, &) + 0(-*)d]ds, (61)
r
The second term of the integral (61) can be expressed as
n’vVr
(n'7,)A52(1) = —5 + 0(*) (62)
where
CS(x) =I1(x) c (x) with c(x) = %;) (63)
Based on [37], the following limit may be rewritten as
Jlim (RR)) () = ~100[-1 + c(]a) + (R8)’ ) (64)
By augmenting US to U and employing (56) we can write (61) as
(Ra)S ® = f —02&(M, ) + (1(n7V,)A2R)@ + 2u0°(M,&) + 0 ()i ds, (65)
r
By dividing the time interval [0, T], we obtain the following integral
t
(F )@ = [ fe-Dg(@ e for t€0,7] (©6)
0
In which
(F @) = Y ity (g ©7)

k=0

According to Lubich formula [41,42], the integration weights w,, can be determined as
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Y@\ i)
o (f) =5~ ( A ) Dz (68)
|z|=R
Using z = Re™'®, the integral equation (68) may be approximated as
-1 & i —e
(f) =~ f(sp¢  with ¢ = eL2+1 and s, = y(i{r ) (69)
By plugging Equation (69) into Equation (67), we get
N R-(n=10) N A
(f * 9)(En) = ; T Zf(Se)("(" 99 =7 ) f G0gGe 70)
with
N
G0 = REgm)g™. 71)
k=0
Based on [39], we get
CWI(x,7) = (w*t9)(x,7) — (k *ud)(x,7) (72)
that can be expressed in Laplace domain as follows
CX)09(x,sp) = (Dt9)(x,sp) — (Eﬁg)(x, Sp), (73)
The discretization of the boundary I' = 2 into N, boundary elements 7, leads to
Ne
r=r,=\ |z 74)

e=1
Now, we use i continuous functions ¢f[k] and j discontinuous functions zpﬁ [k] to define
the following subspaces

Snlk] (FN ,h) = Span{gof‘[k]}%:l, a=>1 (75)

1

Sul(1p 2) = span{yf 1}, =0 (76)

By using (75) and (76), the unknown datum can be approximated as follows

I

WK ~ GKI00 = ) & [Klpf K160 € Syl (Ty 1), (77)
i=1
]
K60 ~ EKI60 = & [kIpf 160 € 8,1 (T 1), (78)
j=1

Thus, we obtain

o ton | [t] [ (c+z?w>] [g,vh

~ = =0...N 7!
VND _(C+KNN) ? u :|€ ( 9)

—Vnw Kyp 9p n
where

Swn = Vo Vop Koy — (C + ENN) (80)

5. Numerical Results and Discussion

In the context of analyzing the BEM model results of solving ultrasonic wave propagation
problems in three-temperature anisotropic viscoelastic porous media. As shown in Figure 2, the BEM
discretization was carried out with 42 boundary elements and 68 internal points.
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Figure 2. BEM model of the current problem.

To demonstrate the numerical results obtained by the proposed technique, the following
physical parameters were used:
The elasticity tensor

[Cn €z Gz O 0 0 1
Iclz Ci1 Cis 8 8 8 I
=|C3 (i3 C33
Cartg =1°0" 0" 0 € 0 0 ®1)
0 0 0 0 Cu O
0 0 0 0 0 Ce
E*vZ — EE, E?vZ + EEyv

Ch=a7 VQREVE + Eg(v — 1))’ C2=—a% V)(2EVE + Eo(v — 1))

EE,v E2(v—1)

Ciz = — ,Cy3 = —
13 2EV2 + E;(v—1)" "% 2EvE + Ey(v—1)

1
Cys = Uo, Ce6 = 5(611 —C12)

For anisotropic viscoelastic porous media, we considered the following physical parameters [43]
v =0.95,v5 = 0.49, 4y = 20.98 GPa, E = 22 kPa, E, = 447 kPa
and therefore
k, = 1243 kPa, k, = 442 kPa

and
ps = 1600 kg/m3, p; = 1113 kg/m?, p = 25 MPa, ¢ = 0.15 and Q/R = 0.65.

Figures 3, 4 and 5 show the distributions of the nonlinear thermal stress 0, 01,, and g,, waves
along x;-axis for electron, ion, phonon and total 3T with and without viscosity effect. Figure 3 shows
the distribution of the nonlinear thermal stress 017 waves for electron (6 = 6,), ion (8 = 6;), phonon
(6 =6,), and total 3T (6 =6, + 0; + 6,) with and without viscosity effect. Figure 4 shows the
distribution of the nonlinear thermal stress 01, waves for electron (6 = 6,), ion (6 = 6;), phonon
(6 =6,) and total (6 =6, +6; + 6, ) with and without viscosity effect. Figure 5 shows the
distribution of the nonlinear thermal stress 6,, waves for electron (6 = 6,), ion (6 = 6;), phonon
(6 = 6,), and total (6 = 6, + 6; + 6,) with and without viscosity effect.
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011 [Pa]

_12 1 1 1 1 1 1
0 0.5 1 1.5 2 2:9 3 3.5
X1
- With viscosity =6 L —— Without viscosity
- With viscosity 6 =6; —— Without viscosity
+ With viscosity 6 = Gr —— Without viscosity
. With viscosity @ = Be + Bi + Br —— Without viscosity

Figure 3. Propagation of the nonlinear thermal stress 0,; waves along x;-axis for electron, ion,
phonon and total 3T with and without viscosity effect.

25 ) T T T T T
20 o |
15 1
S
= 10 1
S
5 -
0
_5 | 1 1 1 1 1
0 0.5 1 1.5 2 2:9 3 3.5
X1
« With viscosity 60=20, —— Without viscosity
+ With viscosity 6 =0, —— Without viscosity
+ With viscosity 6 =0, —— Without viscosity
- With viscosity @ = @ e + Hi + 97. —— Without viscosity

Figure 4. Propagation of the nonlinear thermal stress 0, waves along x;-axis for electron, ion,
phonon and total 3T with and without viscosity effect.
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022 [Pa]

_25 L 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
X1
- With viscosity 0 =86 p ——— Without viscosity
- With viscosity 0 =0, —— Without viscosity
+ With viscosity 6 = 91. —— Without viscosity
+ With viscosity § = Be + 9i + Gr —— Without viscosity

Figure 5. Propagation of the nonlinear thermal stress o0,, waves along x;-axis for electron, ion,
phonon and total 3T with and without viscosity effect.

Figures 6, 7 and 8 show the distributions of the nonlinear thermal stress o,4,07,, and g,, waves
along x;-axis for electron, ion, phonon and total 3T for isotropic and anisotropic viscoelastic porous
structures. Figure 6 shows the distribution of the nonlinear thermal stress o;; waves for electron
(6 =8,), ion (8 = 6;), phonon (8 = 6,), and total (6 = 8, + 6; + 6,.) for isotropic and anisotropic
viscoelastic porous structures. Figure 7 shows the distribution of the nonlinear thermal stress o,
waves for electron (6 = 6,), ion (6 = 6;), phonon (8 = 6,), and total (68 = 6, + 6; + 6, for isotropic
and anisotropic viscoelastic porous structures. Figure 8 shows the distribution of the nonlinear
thermal stress o, waves for electron (8 = 6,), ion (6 = 6;), phonon (6 = 6,), and total (6 = 6, + 6; +
0,) for isotropic and anisotropic viscoelastic porous structures.
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0
-50
= -100
&
§ _150
-200
=250 ¢-
-300 . . : :
0 0.5 1.5 2 2.5 3
X1
Isotropic 6 = Qe ——  Anisotropic
Isotropic 6 = Qi —— Anisotropic
+  lIsotropic 6 =0, ——  Anisotropic
. Isotropic 60 =0,+ 6, +6, —— Anisotropic

3

Figure 6. Propagation of the nonlinear thermal stress 0,; waves along x;-axis for electron, ion,
phonon and total 3T for isotropic and anisotropic viscoelastic porous structures.
1.5 : : : :
3
&
iy -
_2 1 1 1 1
0 0.5 1.5 2 2.5 3 3.5
X1
Isotropic 6 = 0e ——  Anisotropic
Isotropic 6 = 01 —— Anisotropic
- Isotropic 6 =0, ——  Anisotropic
+  Isotropic =86 e + 91 + HT ——  Anisotropic

Figure 7. Propagation of the nonlinear thermal stress 0, waves along x;-axis for electron, ion,

phonon and total 3T for isotropic and anisotropic viscoelastic porous structures.


https://doi.org/10.20944/preprints202304.0908.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 April 2023 doi:10.20944/preprints202304.0908.v1

13

03, [Pa]

-12 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
X1
Isotropic 6 = He —— Anisotropic
. Isotropic 6 = Bi —— Anisotropic
+  Isotropic 0 =0, ——  Anisotropic
+  Isotropic 6 = Oe + Hi + 91. ——  Anisotropic

Figure 8. Propagation of the nonlinear thermal stress o,, waves along x;-axis for electron, ion,
phonon and total 3T for isotropic and anisotropic viscoelastic porous structures.

The validity of the outcomes of the suggested technique was not supported by any published
works. On the other hand, some literary works can be seen as special cases of the considered general
work.

Figures 9, 10 and 11 show the distributions of the nonlinear thermal stress oy4,0,, and o,
waves along x;-axis for electron, ion, phonon and total 3T using the finite difference method (FDM)
[44] and current BEM. Figure 9 shows the distribution of the nonlinear thermal stress ¢,; waves for
electron (6 = 6,),ion (6 = 6;), phonon (6 = 6,.), and total (8 = 8, + 6; + 6,) for FDM and BEM. Figure
10 shows the distribution of the nonlinear thermal stress ¢,, waves for electron (6 = 8,), ion (8 =
0;), phonon (8 = 6,.), and total (8 = 6, + 6; + 6,.) for FDM and BEM. Figure 11 shows the distribution
of the nonlinear thermal stress 0,, waves for electron (6 = 6,), ion (6 = 6;), phonon (6 = 6,), and
total (6 = 6, + 6; + 6,) for FDM and BEM. These figures clearly show that the BEM and FDM are in
excellent agreement, supporting the validity and precision of our proposed BEM approach.
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- FDM 0 =0,+ 0; + 60, —— BEM

Figure 9. Propagation of the nonlinear thermal stress 0,; waves along x;-axis for electron, ion,
phonon and total 3T for FDM and BEM.
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Figure 10. Propagation of the nonlinear thermal stress o1, waves along x;-axis for electron, ion,
phonon and total 3T for FDM and BEM.
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Figure 11. Propagation of the nonlinear thermal stress o,, waves along x;-axis for electron, ion,
phonon and total 3T for FDM and BEM.

Table 1 shows a comparison of required computer resources for the current BEM results and
FDM results of Hu et al. [44] of modeling of ultrasonic wave propagation problems in three-
temperature anisotropic viscoelastic porous media.

Table 1. A comparison of the required computer resources for modeling of ultrasonic wave
propagation problems in three-temperature anisotropic viscoelastic porous media.

BEM FDM
Number of nodes 66 40000
Number of elements 36 16000
CPU time (min) 2 160
Memory (MByte) 1 140
Disc space (MByte) 0 200
Accuracy of results (%) 1 2.0

6. Conclusion

The main goal of this article is to develop a novel boundary element model for describing
ultrasonic thermomechanical interactions in three-temperature anisotropic viscoelastic porous
media. Analytical or numerical solutions are always difficult due to the strong nonlinearity of
ultrasonic wave propagation in three-temperature porous media problems, necessitating the
development of new computational techniques. As a result, we employ a new BEM model to address
such problems. The considered BEM model has low RAM and CPU usage due to its advantages such
as dealing with more complex shapes of porous media and not requiring the discretization of the
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internal domain. As a result, the considered BEM is a powerful and adaptable for modeling ultrasonic
wave propagation in three-temperature anisotropic viscoelastic porous media. To obtain
fundamental solutions, a double integral must be calculated, but this increases the total BEM
computation time. To solve the current problem and improve formulation efficiency, we propose a
BEM technique. The numerical results are graphed to show the effects of viscosity and anisotropy on
nonlinear ultrasonic stress waves in porous media at three temperatures. The proposed
methodology's validity, accuracy, and efficiency were demonstrated by comparing the obtained
results to the corresponding solution obtained using the finite difference method (FDM). The findings
of this paper contribute to the development of mathematical models that can be applied in biology,
bioengineering and medicine
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Nomenclature
* Convolution with respect to time ap Dirichlet datum
r Boundary gn Neumann datum
Ip Dirichlet boundary ] Non-Gaussian temporal profile
Iy Neumann boundary Jo Total energy intensity
6; Kronecker delta (i,j = 1,2) kij Thermal conductivity tensor
€ Linear strain tensor K, Heat conductive coefficients
0 Temperature field k poroelastic freedom degrees
Ko Shear moduli n Outward unit normal vector
X Viscoelastic constant P Fluid pressure
¢ Fluid volume variation pi Singular points
p = pe(1 — @) + ¢p; Bulk density q Specific flux of the fluid
Pe Elastic density R = |y — x| Euclidean distance
Py Fluid density Q Heat source intensity
Total stress tensor R Irradiated surface absorptivity
T Time t9 Generalized tractions
T Laser pulse time characteristic Tr Trace of a matrix
) = va Porosity U:(r) Regular displacement
Q Region Us(r) Singular displacement
A = ¢(1+ Q/R) Biot's coefficient u Displacement
B Stress-temperature coefficients uy Fluid displacement
¢ Linear elastostatics operator v Poisson’s ratio
c Specific heat W& W,, Energy exchanging coefficients
Cajig Constant elastic moduli W, = pA,;0, %>
E; Young’'s moduli Wep = pAcy0, 1/2
F Body forces Xy Space coordinates
Gij Shear moduli X Source point
y Considered point
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