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Abstract: Highly-skilled migrants and refugees finding employment in low-skill vocations, despite 1

professional qualifications and educational background, has become a global tendency, mainly due 2

to the language barrier. Employment prospects for displaced communities are mostly decided 3

by their knowledge of the sublanguage of the vocational domain they are interested in working. 4

Common vocational domains include agriculture, cooking, crafting, construction, and hospitality. 5

The increasing amount of user-generated content in wikis and social networks provides a valuable 6

source of data for data mining, Natural Language Processing and machine learning applications. This 7

paper extends the contribution of the authors’ previous research on automatic vocational domain 8

identification by further analyzing the results of the machine learning experiments with the domain- 9

specific textual data set, considering 2 research directions: a. predictions analysis and b. data 10

balancing. Wrong predictions analysis and the features that contributed to misclassification, along 11

with correct predictions analysis and the features that were the most dominant, contributed to the 12

identification of a primary set of terms for the vocational domains. Data balancing techniques were 13

applied on the data set to observe their impact on the performance of the classification model. A novel 14

4-step methodology is proposed in this paper for the first time, consisting of successive applications 15

of SMOTE oversampling on imbalanced data. Data oversampling obtains better results than data 16

undersampling in imbalanced data sets, while hybrid approaches perform reasonably well. 17

Keywords: Natural Language Processing; Social Text Mining; Machine Learning; Vocational Domain 18

Identification; Vocational Language; Error Analysis; Class Balancing 19

1. Introduction 20

1.1. Vocational Domains for Migrants and Refugees 21

Migrant employees face multiple challenges deriving from discrimination due to 22

country of origin, nationality, culture, sex, etc. [1–4], while for women in particular, 23

finding employment in high-skill vocations, besides teaching and nursing, is observed to 24

be especially difficult [1,2,5]. A deciding factor regarding the prospects of employment for 25

displaced communities, like migrants and refugees, is the knowledge of not the language of 26

their host country in general, but specifically of the sublanguage of the vocational domain 27

they are interested in working. As a result, highly-skilled migrants and refugees finding 28

employment in low-skill vocations, despite their professional qualifications and educational 29

background, has become a global tendency, with the language barrier being one of the most 30

important factors [1–4,6]. 31

The scope of vocational domains for displaced communities and analyses on their 32

situation in the host country and in their country of origin were examined in recent 33

literature, considering the impact on their work-life balance [2–4]. Both high-skill and 34

low-skill vocations in hospitality, cleaning, manufacturing, retail, crafting, and agriculture 35

consist the most common vocational domains in which migrants and refugees seek and 36
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find employment, according to the findings of the recent research [1–3,6–8]. It is also 37

important to note that unemployment usually affects more the displaced communities than 38

the natives [9]. Overworking, however, due to low-paid jobs, is thriving, as migrants and 39

refugees struggle to increase their earnings, in their efforts to maintain living standards, 40

afford childcare and be able to send remittances to remaining family in their country of 41

origin [2,7]. 42

1.2. Wikipedia and Social Networks 43

With the expansion of the user base of wikis and social networks in the last decade, 44

user-generated content has increased in great amounts. This content provides a valuable 45

source of data for various tasks and applications in data mining, Natural Language Process- 46

ing (NLP) and machine learning. Wikipedia1 is an open data wiki covering a wide scope of 47

topic-related articles written in many languages [10]. Wikipedia’s content generation is a 48

constant collective process derived from the collaboration of its users [11]; as of April 2023, 49

there are approximately 6.6 million Wikipedia articles written in English. 50

1.3. Class Imbalance Problem 51

Imbalanced data sets, in regards of class distribution among their examples, present 52

several challenges in data mining and machine learning. More specifically, the number of 53

examples representing the class of interest is considerably smaller than the ones of the other 54

classes. As a result, standard classification algorithms have a bias towards the majority 55

class, and consequently they tend to misclassify the minority class examples [12]. Most 56

commonly, the class imbalance problem is related to binary classification, though it is not 57

uncommon to present in multi-class problems (like in this paper); since there are more than 58

one minority class, it is more challenging to solve. The class imbalance problem is an issue 59

that affects various aspects of real-world applications that are based on classification due 60

to the fact that the minority class examples are the most difficult to obtain from real data, 61

especially from user-generated content from wikis and social networks, leading a large 62

community of researchers to examine ways to address it [12–18]. 63

1.4. Contribution 64

This paper extends the contribution of the authors’ previous research [19] by exploring 65

the various potential directions deriving from it. The results of the machine learning exper- 66

iments with the domain-specific textual data set created and preprocessed as described in 67

[19] were further processed and analyzed, considering 2 research directions: a. predictions 68

analysis and b. data balancing. 69

More specifically, regarding the predictions analysis, important conclusions were 70

drawn from examining which examples were classified wrongly for each class (wrong 71

predictions) by the Gradient Boosted Trees model which managed to classify correctly most 72

of the examples, as well as which distinct features contributed to their misclassification. In 73

the same line of thought, regarding the correctly classified examples (correct predictions), 74

the examination of the features that were the most dominant leading to the correct classifi- 75

cations for each class contributed to the identification of a primary set of terms highlighting 76

the terminology of the vocational domains. 77

Regarding the data balancing direction, oversampling and undersampling techniques, 78

both separately and in combination as a hybrid approach, were applied on the data set, 79

in order to observe their impact (positive or negative) on the performance of the Random 80

Forest and AdaBoost model. A novel methodology is proposed in this paper for the first 81

time, consisting of successive applications of SMOTE oversampling on imbalanced data, 82

balancing the data considering which is the minority class each time, in 4 steps. By running 83

the experiments following this methodology, the impact of every class distribution, from 84

completely imbalanced to completely balanced, on the performance of the machine learning 85

1 https://en.wikipedia.org/wiki/Main_Page
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model can be examined thoroughly. The process of the class balancing direction enabled 86

the comparison of the performance of this model with balanced data to the performance 87

of the same model with imbalanced data from the previous research [19]. The findings 88

derived from the machine learning experiments of this paper are in accordance with those 89

of the relevant literature [12,17], in terms that data oversampling obtains better results than 90

data undersampling in imbalanced data sets, while hybrid approaches perform reasonably 91

well. 92

1.5. Structure 93

The structure of this paper is the following. Section 2 presents past related work on: 94

a. domain identification on textual data, b. data scraping from social text, and c. data 95

oversampling, undersampling and hybrid approaches. Section 3 describes the stages of 96

data set creation and preprocessing, and the feature extraction process. Section 4 presents 97

the research direction of predictions analysis, including both wrong and correct predictions 98

of the Gradient Boosted Trees model. Section 5 presents the research direction of data 99

balancing, including the novel methodology for successive SMOTE oversampling, as well 100

as experiments with data undersampling and a hybrid approach. Section 6 concludes the 101

paper, discusses the most important findings and draws directions for future work. 102

2. Related Work 103

In this Section, recent literature on domain identification on textual data, including 104

news articles, technical text, open data and Wikipedia articles is presented. Research on 105

data scraping from social text, including social networks and Wikipedia is also described. 106

Finally, findings of related work regarding data oversampling, undersampling and hybrid 107

approaches are also analyzed. 108

2.1. Domain Identification on Textual Data 109

Domain identification performed on textual data, including news articles, social media 110

posts, and social text data sets in general, remains an open problem and a very challenging 111

task for researchers. The vast domain diversity along with their particular sublanguage 112

and terminology present several challenges when undertaking domain identification on 113

textual and linguistic data. 114

2.1.1. News Articles 115

Regarding domain identification on news articles, Hamza et al. [20] built a data set 116

containing news articles written in Urdu and annotated with 7 domains as classes according 117

to their topic. Their feature set consisted of unigrams, bigrams and Term Frequency - Inverse 118

Document Frequency (TF-IDF). Following the stages of preprocessing, namely stopwords 119

removal and stemming, they performed text classification to the 7 domains by employing 6 120

machine learning models; Multi-Layered Perceptron (MLP) reached the highest accuracy of 121

91.4%. Their findings showed that stemming did not affect positively the performance of 122

the models, however stopwords removal had worsened it. Another paper by Balouchzahi 123

et al. [21] attempted domain identification on fake news articles written in English and 124

annotated with 6 domains according to their topic. Their ensemble of RoBERTa, DistilBERT 125

and BERT managed up to 85.5% F1 score. 126

2.1.2. Technical Text 127

There are certain researchers who performed domain identification on technical text. 128

Hande et al. [22] classified scientific articles in 7 computer science domains by using 129

transfer learning with BERT, RoBERTa and SciBERT. They found that the ensemble reaches 130

its best performance when the weights are taken into account. In the research of Dowlagar 131

& Mamidi [23], experiments with BERT and XLM-ROBERTa with a Convolutional Neural 132

Network (CNN) on a multilingual technical data set obtained better results in comparison 133

with experiments with Support Vector Machines (SVM) with TF-IDF and CNN. By selecting 134
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the textual data written in Telugu from same data set, Gundapu & Mamidi [24] obtained 135

up to 69.9% F1 score with CNN and a Self-Attention based Bidirectional Long Short-Term 136

Memory (BiLSTM) network. 137

2.1.3. Open Data & Wikipedia Articles 138

Regarding domain identification on open data, Lalithsena et al. [25] performed au- 139

tomatic topic identification by using Map-Reduce combined with manual validation by 140

humans on several data sets from Linked Open Data. In order to designate distinct topics, 141

they used specialized tags for the annotation. 142

In the paper of Nakatani et al. [26], Wikipedia structural feature and term extraction 143

was performed, aiming to score both topic coverage and topic detailedness on web search 144

results, relevant to the related search queries. Saxena et al. [27] built domain-specific 145

conceptual bases using Wikipedia navigational templates. They employed a knowledge 146

graph and then applied fuzzy logic on each article’s network metrics. In the research of 147

Stoica et al. [28], a Wikipedia article by topic extractor was created. Preprocessing included 148

parsing the articles for lower-casing, stopwords removal and embedding generation. The 149

extractor obtained high precision, recall and F1 score up to 90% with Random Forest, SVM 150

and Extreme Gradient Boosting, along with cross-validation. 151

In the authors’ previous research, Nikiforos et al. [19], automatic vocational domain 152

identification was performed. A domain-specific textual data set from Wikipedia arti- 153

cles was created, along with a linguistic feature set with TF-IDF. Preprocessing included 154

tokenization, removal of numbers, punctuation marks, stopwords and duplicates, and 155

lemmatization. 5 vocational domains, in which displaced communities, like migrants and 156

refugees, commonly seek and find employment, were considered as classes. Machine 157

learning experiments were performed with Random Forest combined with AdaBoost, and 158

Gradient Boosted Trees, with the latter obtaining the best performance with up to 99.93% 159

accuracy and 100% F1-score. 160

In Table 1, the performance of the related work mentioned in this subsection is shown, 161

in terms of evaluation metrics such as accuracy and F1 score, and considering the data sets 162

and models that procured the best results for each research paper. 163

Table 1. Performance per research paper. Data sets and models of related work with the best results.

Paper Classes Model Performance

Hamza et al. [20] 7 domains of Urdu
news MLP Accuracy: 91.4%

Balouchzahi et al. [21] 6 domains of English
fake news

Ensemble: RoBERTa,
DistilBERT, BERT F1 score: 85.5%

Hande et al. [22]
7 computer science

domains of scientific
articles

Ensemble: BERT,
RoBERTa, SciBERT

Accuracy: 92%, F1
score: 98%

Dowlagar & Mamidi
[23]

7 multilingual
technical domains

BERT,
XLM-ROBERTa, CNN

F1 score (macro):
80.3%

Gundapu & Mamidi
[24]

6 Telugu technical
domains CNN, BiLSTM F1 score: 69.9%

Stoica et al. [28] 3 topic domains of
Wikipedia

BERT, Random Forest,
Extreme Gradient

Boosting
F1 score: 90%

Nikiforos et al. [19] 5 vocational domains
of English Wikipedia

Gradient Boosted
Trees

Accuracy: 99.9%, F1
score: 100%

2.2. Social Text Data Scraping 164

Data scraping and analysis of textual data from social networks and Wikipedia have 165

been attempted in recent research. "Data analysis is the method of extracting solutions to 166

the problems via interrogation and interpretation of data" [29]. Despite the development of 167
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numerous web scrapers and crawlers, social data scraping and analysis of high quality still 168

present a challenging task. 169

2.2.1. Social Networks 170

Several web scrapers were developed with Python. Scrapy, by Thomas & Mathur [29], 171

scraped textual data from Reddit2 and stored them in CSV files. Another scraper, by Kumar 172

& Zymbler [30], scraped the Twitter API3 to download tweets regarding particular airlines, 173

which then were used as input for sentiment analysis and machine learning experiments 174

with SVM and CNN, reaching up to 92.3% accuracy. 175

2.2.2. Wikipedia 176

Other web crawlers, more focused on Wikipedia data, were built. iPopulator by Lange 177

et al. [10] used Conditional Random Fields (CRF) and crawled Wikipedia to gather textual 178

data from the first paragraphs of Wikipedia articles, and then used them to populate an 179

infobox for each article. iPopulator reached up to 91% average extraction precision with 180

1,727 infobox attributes. Cleoria and a MapReduce parser were used by Hardik et al. [11] 181

to download and process XML files, aiming to evaluate the link-ability factor of Wikipedia 182

pages. 183

In the authors’ previous research, Nikiforos et al. [19], a web crawler was developed 184

by using the Python libraries BeautifulSoup4 and Requests. It scraped Wikipedia’s API, 185

downloading textual data from 57 articles written in English, considering their relevance to 186

5 vocational domains in which refugees and migrant commonly seek and find employment 187

as a criterion. The aim was to extract linguistic information concerning these domains, and 188

perform machine learning experiments for domain identification. 189

2.3. Data Oversampling & Undersampling 190

Data sampling, either oversampling or undersampling, is one of the proposed solu- 191

tions to mitigate the class imbalance problem. Resampling techniques practically change 192

the class distribution in imbalanced data sets by creating new examples for the minority 193

class(es) (oversampling), or removing examples from the majority class (undersampling), 194

or doing both (hybrid) [12,16]. 195

Several researchers proposed data undersampling techniques. Lin et al. [13] proposed 196

2 undersampling strategies in which a clustering technique is applied during preprocessing; 197

the number of clusters of the majority class were made equal to the number of data 198

points of the minority class. In order to represent the majority class, cluster centers and 199

nearest neighbors of the cluster centers were used by the 2 strategies, respectively. They 200

performed experiments on 44 small-scale and 2 large-scale data sets, resulting in the second 201

strategy approach, combined with a single multilayer perceptron and a C4.5 decision 202

tree, performing better compared to 5 state-of-the-art approaches. Anand et al. [14] 203

introduced an undersampling technique and evaluated it by performing experiments on 204

4 real biological imbalanced data sets. Their technique improved the model sensitivity 205

compared to weighted SVMs and other models in the related work for the same data. Yen 206

& Lee [15] proposed cluster-based undersampling approaches to define representative 207

data as the training set, aiming to increase the classification accuracy for the minority class 208

in imbalanced data sets. García & Herrera [16] presented evolutionary undersampling, 209

a taxonomy of methods which considered the nature of the problem and then applied 210

different fitness functions to achieve both class balance and high performance. Their 211

experiments with numerous imbalanced data sets showed that evolutionary undersampling 212

performs better than other state-of-the-art undersampling models when the imbalance is 213

increased. 214

2 https://www.reddit.com/
3 https://developer.twitter.com/en
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Other researchers experimented with data oversampling and hybrid approaches. 215

Shelke et al. [18] examined class imbalance on text classification tasks with multiple classes, 216

addressing sparsity and high dimensionality of textual data. After applying a combination 217

of undersampling and oversampling techniques on the data, they performed experiments 218

with multinomial Naïve Bayes, k-Nearest Neighbor, and SVMs. They concluded that the 219

effectiveness of resampling techniques is highly data dependent, while certain resampling 220

techniques achieve better performance when combined with specific classifiers. Lopez 221

et al. [12] provided an extensive overview of class imbalance mitigating methodologies, 222

namely data sampling, algorithmic modification and cost-sensitive learning. They dis- 223

cussed the most significant challenges of using data intrinsic characteristics in classification 224

problems with imbalanced data sets; small disjuncts, lack of density in the training set, 225

class overlapping, noisy data identification, borderline instances, and the data set shift 226

between the training and the test distributions. Their experiments on imbalanced data 227

lead to important observations on the reaction of the machine learning algorithms on data 228

with these intrinsic characteristics. One of the most notable approaches is that of Chawla 229

et al. [17]. They proposed a hybrid approach for classification on imbalanced data which 230

achieved better performance compared to exclusively undersampling the majority class. 231

Their oversampling method, also known as SMOTE, produces synthetic minority class 232

examples. Their experiments were performed with C4.5, Ripper and Naive Bayes, while 233

their method was evaluated with the area under the Receiver Operating Characteristic 234

curve (AUC) and the Receiver Operating Characteristic (ROC) convex hull strategy. The 235

SMOTE oversampling method is used in this paper to balance the data set (Section 5). 236

3. Data Set Creation & Preprocessing 237

The data set which was used in the authors’ conference paper [19] was created by 238

scraping 57 articles written in English from Wikipedia’s API4 with Python (BeautifulSoup45, 239

Requests6). The criterion for selecting these specific articles was their relevance to 5 240

vocational domains considered as the most common for refugee and migrant employment 241

in Europe, Canada and the United States of America [1,2,6–8]. 242

The initial textual data set comprised of 6,827 sentences extracted from the 57 Wikipedia 243

articles. The data set was preprocessed in 4 stages, namely: 244

1. Initial preprocessing & Tokenization; 245

2. Numbers & Punctuation marks removal; 246

3. Stopwords removal; 247

4. Lemmatization & Duplicates removal. 248

The data set was tokenized initially to 6,827 sentences and to 69,062 words; the sentences 249

were to be used as training-testing examples, and the words as unigram features. Numbers, 250

punctuation marks and special characters were removed. Stopwords (conjunctions, articles, 251

adverbs, pronouns, auxiliary verbs, etc.) were also removed. Finally, lemmatization was 252

performed to normalize the data without reducing the semantic information, and 912 253

duplicate sentences and 58,393 duplicate words were removed. For more details on these 254

stages of preprocessing refer to [19]. 255

Resulting from the preprocessing stages, the text data set comprised of 5,915 sentences 256

(examples) and 5 classes, ready to be used in machine learning experiments. For each 257

sentence, the domain which was most relevant to each article’s topic, as shown in Table 258

2, was considered as its class, resulting in 5 distinct classes, namely: A. Agriculture, B. 259

Cooking, C. Crafting, D. Construction, and E. Hospitality. The distribution of the sentences 260

to these 5 classes is shown in Figure 1. 261

4 https://pypi.org/project/wikipedia/
5 https://pypi.org/project/beautifulsoup4/
6 https://pypi.org/project/requests/
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Table 2. Wikipedia articles which were scraped to create the data set. By domain categorization.

Agriculture
10 articles

Cooking
17 articles

Crafting
11 articles

Construction
7 articles

Hospitality
12 articles

Agriculture
Glossary of

agriculture
Farm

Farmer
Environmental

impact of
agriculture

History of
agriculture

Intensive
farming

Plant breeding
Subsistence

agriculture
Sustainable
agriculture

Al dente
Al forno
Baking

Charcuterie
Chef

Chef’s uniform
Chocolate
Cooking

Cooking school
Cooking weights
and measures

Cuisine
Denaturation(food)
Garde manger
List of cooking
techniques

Mise en place
Outdoor cooking
Outline of food

preparation

Anvil
Blacksmith
Bladesmith

Coppersmith
Forge

Goldsmith
Gunsmith

Locksmithing
Metalsmith
Silversmith
Whitesmith

Building
Building design
construction
Carpentry

Construction
Constructor
worker
Glossary of
construction

costs
Home

construction

Bellhop
Casino hotel

Check-in
Concierge

Doorman(profession)
Hostel
Hotel

Hotel manager
Maid

Receptionist
Resort
Tourism

2,083

1,620

922

519

771

E

13.0%

D

8.8%

C

15.6%

A

35.2%

B

27.4%

A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality

Distribution of Examples to Classes

Figure 1. Final distribution of sentences as training-test examples to the 5 classes.

A RapidMiner Studio (version 9.10) process, as shown in Figure 2, was used to extract 262

the feature set with TF-IDF and taking into consideration the feature occurrences by pruning 263

features which occur rarely (below 1%) or very often (above 30%), resulting in 109 unigram 264

features. For more details on the operators and parameters of the feature extraction process 265

refer to [19] and RapidMiner Documentation7. 266

Resulting from the feature extraction process, the final text data set comprised of 5,915 267

examples, 109 features and class as label. 268

4. Predictions Analysis 269

The best results on domain identification were obtained with a Gradient Boosted Trees8
270

model and are shown in Table 3. For more information on the operators and parameters of 271

7 https://docs.rapidminer.com/
8 https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/gradient_boosted_trees.

html
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Figure 2. Feature extraction. The Tokenize operator is nested in the Process Documents from Data
operator.

Figure 3. Setup of machine learning experiment with Gradient Boosted Trees. The depicted process is
nested in a Cross Validation operator (10-fold cross validation).

the RapidMiner Studio (version 9.10) experiment with Gradient Boosted Trees, as shown in 272

Figure 3, refer to [19] and RapidMiner Documentation. 273

Table 3. Machine learning experiment results with Gradient Boosted Trees. Accuracy: 99.93%.

Class Precision Recall F1 score

A 100% 100% 100%
B 100% 99.94% 99.97%
C 99.78% 99.89% 99.83%
D 99.81% 99.61% 99.70%
E 99.87% 100% 99.93%

With regards to the high performance of this machine learning model, it is of interest 274

to examine which examples were classified wrongly for each class, as well as which distinct 275

features contributed to their misclassification. In the same line of thought, regarding the 276

correctly classified examples, the examination of the features that were the most dominant 277

leading to the correct predictions would contribute to the identification of a primary set of 278

terms highlighting the terminology of the vocational domains. 279

4.1. Wrong Predictions 280

The Gradient Boosted Trees model showed high performance regarding all classes (Table 281

3), with precision ranging from 99.78% to 100%, recall from 99.61% to 100%, F1 score from 282

99.70% to 100%, while misclassifying a total of 4 examples. 283

The Explain Predictions9 operator is used to identify which features are the most 284

dominant in forming predictions. A model and a set of examples, along with the feature 285

set, are considered as input, in order to produce a table highlighting the features that most 286

strongly support or contradict each prediction, also containing numeric details. For each 287

example, a neighboring set of data points is generated, by using correlation to define the 288

local feature weights in that neighborhood. The operator can calculate model-specific, 289

though model-agnostic global feature weights, deriving directly from the explanations. 290

Explain Predictions is able to work with all data types and data sizes, and can be applied for 291

both classification and regression problems. 292

9 https://docs.rapidminer.com/10.1/studio/operators/scoring/explain_predictions.html
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Figure 4. Setup of process to identify wrong and correct predictions with Explain Predictions operator
and Filter Examples operator. The depicted process is nested in a Cross Validation operator (10-fold
cross validation).

In this case, in which the machine learning model (Gradient Boosted Trees) uses super- 293

vised learning, all supporting local explanations add positively to the weights for correct 294

predictions, while all contradicting local explanations add positively to the weights for 295

wrong predictions. Regarding the parameters for this operator, the maximal explaining 296

attributes were set to 3 and the local sample size was left at the default (500). The sort weights 297

parameter was set to true, along with descending sort direction of the weight values, in 298

order to apply sorting to the resulting feature weights supporting and contradicting the 299

predictions. 300

The Filter Examples10 operator selects which examples are kept and which are removed. 301

In this case, only the misclassified examples (wrong predictions) were kept. Regarding 302

the condition class parameter for this operator, it was set to wrong_predictions, in order to 303

keep only those examples, where the class and prediction were different, meaning that the 304

prediction is wrong. 305

In order to identify the misclassified examples, a RapidMiner Studio (version 9.10) 306

process, as shown in Figure 4, was designed and executed. 307

The 4 misclassified examples were the following: 308

1. WP1: building edifice structure roof wall standing permanently house factory; 309

2. WP2: typically whitesmiths product required decorative finish fire grate coldworking 310

screw lathed machine; 311

3. WP3: organic food; 312

4. WP4: traditional vernacular building method suit local condition climate dispensed 313

favour generic cookie cutter housing type. 314

In Table 4, detailed information is provided for these wrong predictions. Class is the 315

real class of the example, while prediction is the wrongly predicted class for the example. 316

Confidence, with values ranging from 0 to 1, is derived from feature weights regarding 317

both class and prediction. 318

Table 4. Wrong predictions of Gradient Boosted Trees. Class is the real class of the example, and
Prediction is the wrongly predicted class for the example. Confidence, ranging from 0 to 1, and derived
from feature weights regarding both Class and Prediction is shown in the last 2 columns.

No. Class Prediction Confidence
(Class)

Confidence
(Prediction)

WP1 D C 0.14 0.41
WP2 C D 0.12 0.48
WP3 B C 0.11 0.55
WP4 D E 0.17 0.31

The features which contributed to the wrong predictions for each class are shown in 319

Table 5. The effect of the value for each feature is denoted, considering whether it supports, 320

10 https://docs.rapidminer.com/10.1/studio/operators/blending/examples/filter/filter_examples.html

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0907.v1

https://docs.rapidminer.com/10.1/studio/operators/blending/examples/filter/filter_examples.html
https://doi.org/10.20944/preprints202304.0907.v1


Version April 14, 2023 submitted to Computers 10 of 23

contradicts or is neutral to the prediction. The typical value for the specific feature for each 321

class is also provided. 322

Table 5. Features that contributed to the wrong predictions of Gradient Boosted Trees. Effect denotes
whether the specific value of the specific feature supports, contradicts or is neutral to the prediction.
Typical Value is the typical value for the specific feature for each class.

No. Feature(s) Value(s) Effect(s) Typical Value

WP1 building 1 Neutral D: 0
C: 0 and some 1

WP2
typically

fire
product

1
0.66

0.54

Neutral
Contradict

C & D: 0 and
some 1

WP3 food
organic

0.50
0.86 Support

B: 0 & C: 1
B: 0 & C: 0 and

some 1

WP4
local

method
type

0.56
0.47

0.46
Support D: 0 & E: 0 and

some 1

4.2. Correct Predictions 323

The Gradient Boosted Trees model managed to classify correctly most of the examples. 324

Regarding class A, it is of particular interest that all of its examples were classified correctly, 325

while none of the examples of the other classes were classified wrongly to class A. Conse- 326

quently, it is of significance to identify and examine which features were the most dominant 327

leading to the correct predictions for each class, thus contributing to the identification of a 328

primary set of terms for the vocational domains. 329

In order to identify the correctly classified examples, the same RapidMiner Studio 330

(version 9.10) process, as in wrong predictions (Figure 4), was used. The only difference 331

with the previous experiment is that the condition class parameter for the Filter Examples 332

operator was set to correct_predictions, in order to keep only those examples, where the 333

class and prediction were the same, meaning that the prediction is correct. 334

Confidence, with values that can be from 0 to 1, was derived from feature weights 335

for each class; for class A ranging from 0.49 to 0.55, for class B ranging from 0.37 to 0.55, 336

for class C ranging from 0.48 to 0.55, for class D ranging from 0.47 to 0.55, and for class E 337

ranging from 0.54 to 0.55. The features which were the most dominant leading to the correct 338

predictions are shown in Table 6 in a descending order, along with the global weights which 339

were calculated for each one of them. 340
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Table 6. Global weights per feature (descending order). Features with higher weight were more
dominant for the correct predictions of this model than features with lower weight.

No. Feature Weight No. Feature Weight

1 farmer 0.037 56 time 0.018
2 world 0.036 57 usually 0.018
3 blacksmith 0.034 58 cocoa 0.018
4 using 0.034 59 grain 0.017
5 produce 0.033 60 material 0.017
6 human 0.032 61 chef 0.017
7 developed 0.031 62 growing 0.017
8 plant 0.03 63 process 0.017
9 yield 0.029 64 water 0.017

10 food 0.029 65 form 0.017
11 project 0.029 66 industry 0.016
12 temperature 0.029 67 fat 0.016
13 environmental 0.028 68 field 0.016
14 ingredient 0.028 69 found 0.016
15 america 0.028 70 domesticated 0.015
16 technique 0.028 71 product 0.015
17 united 0.027 72 sometimes 0.015
18 design 0.027 73 europe 0.015
19 heat 0.027 74 crop 0.015
20 system 0.027 75 source 0.015
21 quality 0.026 76 anvil 0.014
22 iron 0.026 77 variety 0.014
23 breeding 0.026 78 various 0.013
24 local 0.025 79 livestock 0.013
25 vegetable 0.025 80 tourism 0.013
26 typically 0.025 81 farm 0.013
27 increase 0.025 82 construction 0.013
28 land 0.024 83 practice 0.013
29 cost 0.024 84 building 0.013
30 agricultural 0.024 85 people 0.012
31 sustainable 0.024 86 natural 0.012
32 common 0.023 87 example 0.012
33 called 0.023 88 level 0.012
34 service 0.023 89 animal 0.012
35 period 0.023 90 organic 0.012
36 cuisine 0.022 91 soil 0.011
37 trade 0.022 92 resort 0.011
38 production 0.022 93 cooking 0.011
39 operation 0.022 94 meat 0.011
40 country 0.022 95 especially 0.01
41 farming 0.022 96 population 0.01
42 include 0.021 97 fire 0.01
43 global 0.021 98 hotel 0.01
44 effect 0.021 99 modern 0.009
45 increased 0.021 100 century 0.009
46 type 0.02 101 change 0.009
47 agriculture 0.02 102 chocolate 0.009
48 method 0.02 103 metal 0.008
49 fertilizer 0.02 104 including 0.008
50 amount 0.02 105 steel 0.008
51 baking 0.02 106 smith 0.007
52 tool 0.019 107 text 0.007
53 oven 0.019 108 management 0.006
54 worker 0.018 109 due 0.006
55 hot 0.018
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4.3. Discussion 341

Regarding the wrong predictions analysis, the 4 misclassified examples were success- 342

fully identified (WP1-WP4), as shown in Table 4. More specifically, 2 examples of class D, 343

namely WP1 and WP4, were wrongly classified to classes C and E, respectively, while 1 344

example of class C, WP2, was misclassified to class D, and 1 example of class B, WP3, was 345

misclassified to class C. It is observed that for all wrong predictions, the confidence for class, 346

which is the real class of the examples, ranges from 0.11 to 0.17 and is significantly lower 347

than the confidence for prediction, which is the wrongly predicted class of the examples 348

and ranges from 0.31 to 0.55. This indicates that these examples quite diverge from the 349

other examples of their class. By examining Tables 5 and 6, this observation is explained as 350

described below. 351

For WP1, the value for the building feature is 1, while typically for examples of D (class) 352

is 0 and of C (prediction) mostly 0 and sometimes 1. Considering that building is the only 353

most dominant feature of WP1, with an assigned feature weight of 0.013, its overall impact 354

on the prediction being neutral is expected. 355

For WP2, the value for the typically feature is 1, for the fire feature is 0.66, and for the 356

product feature is 0.54, while typically the values of all these features for examples of both 357

C (class) and D (prediction) is mostly 0 and sometimes 1. Considering that typically is the 358

most dominant feature of WP2, with an assigned feature weight of 0.025 which is high, its 359

overall impact on the prediction being neutral is expected. The fire and product features 360

contradict the prediction, though due to their quite low feature weights of 0.01 and 0.015, 361

respectively, their effect on the prediction is insignificant. 362

For WP3, the value for the food feature is 0.50 and for the organic feature is 0.86, while 363

typically for examples of B (class) is 0 for both features and of C (prediction) is 1 for the 364

food feature, and mostly 0 and sometimes 1 for the organic feature. Considering that food 365

is the most dominant feature of WP3, with an assigned feature weight of 0.029 which is 366

high, its overall impact on the prediction being positive (support) is expected. The organic 367

feature also supports the prediction, though due to its quite low feature weight (0.012) its 368

effect on the prediction is insignificant. 369

For WP4, the value for the local feature is 0.56, for the method feature is 0.47, and for 370

the type feature is 0.46, while typically the values of all these features for examples of D 371

(class) is 0 and E (prediction) is mostly 0 and sometimes 1. Considering that local is the 372

most dominant feature of WP4, with an assigned feature weight of 0.025 which is high, 373

its overall impact on the prediction being positive (support) is expected. The method and 374

type features also support the prediction, with quite high feature weights of 0.02 for both, 375

having a significant effect on the prediction. 376

Overall, it becomes evident that the main factor that leads the Gradient Boosted Trees 377

model to misclassify the examples is their lack of dominant features supporting the real 378

class more than the prediction, in terms of feature weight. 379

Regarding the correct predictions analysis, it is observed that the confidence for the 380

correct predictions for all classes was considerably high, the lower being for class B in a 381

range from 0.37 to 0.55 and the highest for class E in a range from 0.54 to 0.55. This means 382

that the model could classify the examples of class E more confidently compared to the 383

examples of the other classes. 384

Additionally, the most dominant features, in terms of feature weights, leading to the 385

correct predictions for each class were identified successfully and sorted in a descending 386

order, as shown in Table 6; features with higher weight were more dominant for the correct 387

predictions of this model than features with lower weight. 51 features, which are about half 388

of the 109 features of the extracted feature set, have the highest feature weights, ranging 389

from 0.02 up to 0.037. This indicates that the feature extraction process, as described in 390

Section 3 and [19], performed quite well, producing a robust feature set with great impact 391

on the correct predictions. Finally, it is also observed that among these features, terms 392

relevant to all of the vocational domains are included, thus consisting a primary set of 393

terms for the vocational domains. 394
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Figure 5. Setup of machine learning experiment with Random Forest and AdaBoost. The Random
Forest operator is nested in the AdaBoost operator. The depicted process is nested in a Cross Validation
operator (10-fold cross validation).

5. Data Balancing 395

Another machine learning experiment on domain identification was performed with a 396

Random Forest11 and AdaBoost12 model. The results of this experiment are shown in Table 7. 397

For more information on the operators and parameters of the RapidMiner Studio (version 398

9.10) experiment with Random Forest and AdaBoost, as shown in Figure 5 refer to [19] and 399

RapidMiner Documentation13. 400

Table 7. Machine learning experiment results with Random Forest and AdaBoost. Accuracy: 62.33%.

Class Precision Recall F1 score

A 49.06% 97.60% 65.29%
B 91.52% 51.30% 65.74%
C 95.05% 41.65% 57.92%
D 91.67% 31.79% 47.20%
E 98.21% 35.54% 52.19%

Regarding the model’s accuracy of 62.33%, it is important to bear in mind that, despite 401

being quite lower than the accuracy of the Gradient Boosted Trees model (99.93%), it is 402

significantly above the randomness baseline by 42.33%, considering that the randomness 403

for a 5-class problem is at 20%. 404

Examining the model’s results (Table 7) more closely, it was noted that, despite its 405

precision for classes B, C, D, and E being high, ranging from 91.52% to 98.21%, the recall for 406

these classes was low, ranging from 31.79% to 51.30%. Also considering its low precision 407

(49.06%) and high recall (97.60%) for class A, this examination highlighted that a lot of 408

the examples were classified wrongly to class A. As a result, it becomes evident that the 409

Random Forest and AdaBoost model tended to classify most of the examples to class A. Due 410

to the fact that the examples of class A consist the majority of the examples in the data set 411

(35.20%, Figure 1), this tendency can be attributed to the imbalance of data. 412

Consequently, it is of interest to examine whether applying data balancing techniques 413

on the data set (oversampling and undersampling), has any impact, positive or negative, 414

on the performance of the Random Forest and AdaBoost model. 415

5.1. Data Oversampling 416

As a first step towards addressing data imbalance, SMOTE oversampling [17] was 417

applied in a successive manner on the data set, balancing the data by oversampling, re- 418

garding which is the minority class each time. Consequently, a RapidMiner Studio (version 419

11 https://docs.rapidminer.com/9.10/studio/operators/modeling/predictive/trees/parallel_random_forest.
html

12 https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/ensembles/AdaBoost.html
13 https://docs.rapidminer.com/
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Figure 6. Setup of SMOTE Upsampling.

9.10) process, as shown in Figure 6, was designed and executed 4 times. The 4 derived 420

oversampled data sets were then used as input for the machine learning experiments with 421

Random Forest and AdaBoost. 422

The SMOTE Upsampling14 operator practically applies the Synthetic Minority Over- 423

sampling Technique, as defined in the paper by Chawla et. al. [17]. More specifically, the 424

algorithm considers only the examples of the minority class, and the k nearest neighbours 425

for each example are searched. Then a random example and a random nearest neighbour 426

for this example is selected, resulting in the creation of a new example, on the line between 427

the two examples. 428

Regarding the parameters for this operator, the number of neighbours was left at the 429

default (5), while normalize and round integers were set to true, and nominal change rate was 430

set to 0.5, in order to make the distance calculation solid. The equalize classes parameter was 431

set to true to draw the necessary amount of examples for class balance, along with auto detect 432

minority class set to true to automatically upsample the class with the least occurrences. 433

The set of machine learning experiments with successive applications of SMOTE 434

oversampling as described below, follows a novel methodology, proposed in this paper for 435

the first time. The methodology steps are the following: 436

1. Detect the minority class; 437

2. Resample the minority class with SMOTE oversampling; 438

3. Run the machine learning experiment; 439

4. Repeat steps 1-3 until the data set is balanced (no minority class exists). 440

By running the experiments following this methodology, the impact of every class distri- 441

bution, from completely imbalanced to completely balanced, on the performance of the 442

machine learning model can be examined thoroughly. 443

In the first machine learning experiment, class D is the minority class, with its examples 444

representing merely the 8.8% of the data set (Figure 1). After applying SMOTE, class D 445

represented 27.9% of the data set with 2,083 examples (Figure 7). The results of the Random 446

Forest and AdaBoost with SMOTE are shown in Table 8. 447

Table 8. Machine learning experiment results with Random Forest and AdaBoost with SMOTE. Accu-
racy: 66.01%.

Class Precision Recall F1 score

A 94.30% 69.13% 79.77%
B 92.67% 49.20% 64.27%
C 94.47% 38.94% 55.14%
D 46.65% 99.33% 63.48%
E 98.19% 35.28% 51.90%

In the second machine learning experiment, class E is the minority class, with its 448

examples representing the 10.3% of the data set (Figure 7). After applying SMOTE, class E 449

represented 23.7% of the data set with 2,083 examples (Figure 8). The results of the Random 450

Forest and AdaBoost with SMOTE (2 times) are shown in Table 9. 451

14 https://docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending/smote.
html
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Figure 7. Distribution of examples to classes after applying SMOTE (1 time).
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Figure 8. Distribution of examples to classes after applying SMOTE (2 times).

Table 9. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (2 times).
Accuracy: 65.72%.

Class Precision Recall F1 score

A 93.46% 67.93% 78.67%
B 92.20% 47.41% 62.62%
C 94.51% 37.31% 53.49%
D 60.50% 72.35% 65.89%
E 48.57% 83.68% 61.46%

In the third machine learning experiment, class C is the minority class, with its ex- 452

amples representing the 10.5% of the data set (Figure 8). After applying SMOTE, class C 453

represented 20.9% of the data set with 2,083 examples (Figure 9). The results of the Random 454

Forest and AdaBoost with SMOTE (3 times) are shown in Table 10. 455

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2023                   doi:10.20944/preprints202304.0907.v1

https://doi.org/10.20944/preprints202304.0907.v1


Version April 14, 2023 submitted to Computers 16 of 23

2083

2083

2083

2083

1620

B
16.3%

E
20.9%

D
20.9%

A
20.9%

C
20.9%

A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality

Distribution of Examples to Classes after SMOTE 3

Figure 9. Distribution of examples to classes after applying SMOTE (3 times).
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Figure 10. Distribution of examples to classes after applying SMOTE (4 times).

Table 10. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (3
times). Accuracy: 64.35%.

Class Precision Recall F1 score

A 95.14% 66.73% 78.44%
B 91.72% 46.48% 61.69%
C 38.44% 96.54% 54.98%
D 89.68% 58.38% 70.72%
E 95.48% 49.64% 65.32%

In the fourth machine learning experiment, class B is the minority class, with its 456

examples representing the 16.3% of the data set (Figure 9). After applying SMOTE, class B 457

represented 20% of the data set with 2,083 examples (Figure 10). The results of the Random 458

Forest and AdaBoost with SMOTE (4 times) are shown in Table 11. 459
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Figure 11. Setup of machine learning experiment with Random Forest and AdaBoost with Sample.
The Random Forest operator is nested in the AdaBoost operator, which is nested in a Cross Validation
operator (10-fold cross validation).

Table 11. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (4
times). Accuracy: 64.09%.

Class Precision Recall F1 score

A 95.52% 65.53% 65.29%
B 40.79% 85.84% 65.74%
C 58.84% 62.17% 57.92%
D 90.00% 58.33% 47.20%
E 96.20% 48.58% 52.19%

5.2. Data Undersampling 460

In another set of experiments, undersampling was applied on the data set, balancing 461

the data by undersampling the classes represented by the most examples. Consequently, 462

a RapidMiner Studio (version 9.10) process, as shown in Figure 11, was designed and 463

executed. The derived undersampled data set was then used as input for the machine 464

learning experiments with Random Forest and AdaBoost. 465

The Sample15 operator has basic principles common to the Filter Examples operator, 466

taking a set of examples as input and procuring a subset of it as output. However, while 467

Filter Examples follows previously specified conditions, Sample is centered on the number of 468

examples and class distribution in the resulting subset, producing samples in a random 469

manner. 470

Regarding the parameters for this operator, sample was set to absolute, in order for it 471

to be created consisting of an exact number of examples. The balance data parameter was 472

set to true, in order to define different sample sizes (by number of examples) for each class, 473

while the class distribution of the sample was set with sample size per class. Examples of 474

classes A and B were reduced to 1,183 for each one, which is the mean of the number of 475

all examples in the data set. The sample sizes for each class are shown in Figure 12. The 476

results of this experiment are shown in Table 12. 477

Table 12. Machine learning experiment results with Random Forest and AdaBoost with Sample. Accu-
racy: 62.84%.

Class Precision Recall F1 score

A 94.34% 66.27% 77.85%
B 41.77% 96.53% 58.30%
C 94.94% 44.79% 60.86%
D 88.57% 41.81% 56.80%
E 96.40% 41.63% 58.14%

A hybrid approach combining data oversampling and undersampling was also tested. 478

In this experiment, both the SMOTE Upsampling operator and the Sample operator were 479

15 https://docs.rapidminer.com/10.1/studio/operators/blending/examples/sampling/sample.html
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Figure 12. Distribution of examples to classes after applying Sample.

Figure 13. Setup of machine learning experiment with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. The Random Forest operator is nested in the AdaBoost operator, which is nested
in a Cross Validation operator (10-fold cross validation).

applied on the data set, balancing the data by undersampling the classes represented 480

by the most examples and oversampling the classes represented by the least examples, 481

respectively. Consequently, a RapidMiner Studio (version 9.10) process, as shown in Figure 482

13, was designed and executed. The derived undersampled data set was then used as input 483

for the machine learning experiments with Random Forest and AdaBoost. 484

Regarding the parameters for Sample and SMOTE Upsampling, they were set in the 485

same way as in the previous experiments. After applying them, examples of classes A and 486

B were reduced to 1,183 for each one, which is the mean of the number of all examples in 487

the data set, while examples of class D were added resulting also in 1,183 for this class. 488

The sample sizes for each class are shown in Figure 14. The results of this experiment are 489

shown in Table 13. 490

Table 13. Machine learning experiment results with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. Accuracy: 63.35%.

Class Precision Recall F1 score

A 95.29% 66.69% 78.46%
B 39.79% 95.52% 56.17%
C 93.62% 44.58% 60.39%
D 83.27% 57.23% 67.83%
E 97.52% 40.73% 57.46%

5.3. Discussion 491

Regarding the machine learning experiments’ results with Random Forest and AdaBoost 492

with SMOTE oversampling, it is observed that the accuracy and overall performance, 493

as shown in Tables 8, 9, 10, and 11, have improved compared to those of Random Forest 494
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Figure 14. Distribution of examples to classes after applying Sample and SMOTE.

and AdaBoost with imbalanced data, as shown in Table 7. More specifically, accuracy has 495

increased from 62.33% up to 66.01%, and F1 score increased from 65.29% up to 79.77% for 496

class A, maintained up to 65.74% for class B, maintained up to 57.92% for class C, increased 497

from 47.20% up to 70.72% for class D, and increased from 52.19% up to 65.32% for class 498

E. It is also noteworthy that, despite the overall performance of the model getting slightly 499

worse with each iteration (each added SMOTE oversampling), it is still significantly better 500

than the performance of the experiment with completely imbalanced data; even the lowest 501

accuracy (64.09%), which is that of the fourth machine learning experiment with SMOTE, is 502

quite higher than the accuracy (62.33%) of the experiment with completely imbalanced data. 503

Additionally, the values of precision, recall and F1 score seem to be distributed more evenly 504

among the classes with each iteration, thus mitigating any emerging bias of the model 505

towards one particular class. Another important observation from these experiments is 506

that, in a classification task where 1 of the 5 vocational domains may be considered as the 507

class of interest, e.g. for trying to exclusively detect articles of a specific vocational domain 508

from a corpus to filter relevant content, the application of SMOTE oversampling for the 509

class of interest would have a positive effect on the results of this classification task. 510

Regarding the machine learning experiments’ results with Random Forest and AdaBoost 511

with Sample, it is observed that the accuracy and overall performance, as shown in Table 12, 512

have improved slightly compared to those of Random Forest and AdaBoost with imbalanced 513

data, as shown in Table 7. More specifically, accuracy has increased from 62.33% to 62.84%, 514

and F1 score increased from 65.29% to 77.85% for class A, reduced from 65.74% to 58.30% 515

for class B, increased from 57.92% to 60.86% for class C, increased from 47.20% to 56.80% for 516

class D, and increased from 52.19% to 58.14% for class E. Comparing to the results obtained 517

with SMOTE oversampling (Tables 8, 9, 10, and 11), undersampling has worse performance 518

in terms of accuracy and class precision, recall and F1 score. 519

Regarding the machine learning experiments’ results with Random Forest and AdaBoost 520

with Sample and SMOTE oversampling (hybrid approach), it is observed that the accuracy 521

and overall performance, as shown in Table 13, have marginally improved compared to 522

those of Random Forest and AdaBoost only with Sample (Table 12). More specifically, accuracy 523

has increased from 62.84% to 63.35%, and F1 score increased from 77.85% to 78.46% for 524

class A, reduced from 58.30% to 56.17% for class B, reduced from 60.86% to 60.39% for class 525

C, increased from 56.80% to 67.83% for class D, and reduced from 58.14% to 57.46% for 526

class E. In any case, the performance of this experiment is better than that of the experiment 527

with completely imbalanced data. Overall, these experiments indicate that when applying 528

both data undersampling and oversampling in a hybrid approach, the results are better 529

than only applying undersampling, but worse than only applying oversampling for this 530

data set. 531
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The findings derived from the machine learning experiments of this paper are in 532

accordance with those of the relevant literature [12,17], in terms that data oversampling 533

obtains better results than data undersampling in imbalanced data sets, while hybrid 534

approaches perform reasonably well. 535

6. Conclusions 536

Displaced communities, like migrants and refugees, face multiple challenges in seek- 537

ing and finding employment in high-skill vocations in their host country, deriving from 538

discrimination. Unemployment and overworking phenomena usually affect more the dis- 539

placed communities than the natives. A deciding factor for their prospects of employment 540

is the knowledge of not the language of their host country in general, but specifically of 541

the sublanguage of the vocational domain they are interested in working. Consequently, 542

more and more highly-skilled migrants and refugees worldwide are finding employment 543

in low-skill vocations, despite their professional qualifications and educational background, 544

with the language barrier being one of the most important factors. Both high-skill and 545

low-skill vocations in agriculture, cooking, crafting, construction, and hospitality, among 546

others, consist the most common vocational domains in which migrants and refugees seek 547

and find employment, according to the findings of the recent research. 548

In the last decade, due to the expansion of the user base of wikis and social networks 549

user-generated content has increased exponentially, providing a valuable source of data for 550

various tasks and applications in data mining, Natural Language Processing and machine 551

learning. However, minority class examples are the most difficult to obtain from real data, 552

especially from user-generated content from wikis and social networks, creating a class 553

imbalance problem that affects various aspects of real-world applications that are based on 554

classification. Especially for multi-class problems, like the one addressed in this paper, it is 555

more challenging to solve. 556

This paper extends the contribution of the authors’ previous research [19] on automatic 557

vocational domain identification by further processing and analyzing the results of the 558

machine learning experiments with the domain-specific textual data set, considering 2 559

research directions: a. predictions analysis and b. data balancing. 560

Regarding the predictions analysis direction, important conclusions were drawn from 561

identifying successfully and examining the 4 misclassified examples (WP1-WP4) for each 562

class (wrong predictions) by the Gradient Boosted Trees model, which managed to classify 563

correctly most of the examples, as well as which distinct features contributed to their 564

misclassification. An important finding is that the misclassified examples quite diverge 565

from the other examples of their class, since for all wrong predictions, the confidence for 566

class, which is the real class of the examples, is significantly lower (from 0.11 to 0.17) than 567

the confidence for prediction (from 0.31 to 0.55), which is the wrongly predicted class of the 568

examples. More specifically, the feature values of WP1-WP4 are the main factor for their 569

misclassification, by being either neutral or supporting more the wrong over the correct 570

prediction. Even when they contradict the wrong prediction, like the features of WP2 and 571

WP3, they do not have a significant effect due to their feature weights being quite low. 572

In conclusion, the main factor that leads the Gradient Boosted Trees model to misclassify 573

the examples is their lack of dominant features supporting the real class more than the 574

prediction, in terms of feature weight. 575

In the same line of thought, the examination of the correctly classified examples 576

(correct predictions) resulted in several findings. The confidence for the correct predictions 577

for all classes was considerably high, the lower being for class B (from 0.37 to 0.55) and the 578

highest for class E (from 0.54 to 0.55), meaning that the model could classify the examples 579

of class E more confidently compared to the examples of the other classes. Additionally, 580

the most dominant features, in terms of feature weights, leading to the correct predictions 581

for each class were identified successfully and sorted in a descending order; features with 582

higher weight were more dominant for the correct predictions of this model than features 583

with lower weight. Another important finding concerning the most dominant features is 584
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the fact that about half of the features of the extracted feature set have the highest feature 585

weights (from 0.02 up to 0.037), therefore indicating that the feature extraction process, as 586

described in Section 3 and [19], performed quite well, producing a robust feature set with 587

great impact on the correct predictions. It is important to note that among these features, 588

terms relevant to all of the vocational domains are included, thus consisting a primary set 589

of terms for the vocational domains. 590

Regarding the data balancing direction, oversampling and undersampling techniques, 591

both separately and in combination as a hybrid approach, were applied on the data set, 592

in order to observe their impact (positive or negative) on the performance of the Random 593

Forest and AdaBoost model. A novel methodology is proposed in this paper for the first 594

time, consisting of successive applications of SMOTE oversampling on imbalanced data, 595

balancing the data considering which is the minority class each time, in 4 steps. By running 596

the experiments following this methodology, the impact of every class distribution, from 597

completely imbalanced to completely balanced, on the performance of the machine learning 598

model can be examined thoroughly. The process of the class balancing direction enabled 599

the comparison of the performance of this model with balanced data to the performance of 600

the same model with imbalanced data from the previous research [19]. 601

More specifically, the machine learning experiments’ results with Random Forest and 602

AdaBoost with SMOTE oversampling have obtained significantly improved overall perfor- 603

mance and accuracy (up to 66.01%) compared to those of Random Forest and AdaBoost with 604

imbalanced data, while maintaining or surpassing the achieved F1 score per class. A major 605

finding is that, despite the overall performance of the model getting slightly worse with 606

each iteration (each added SMOTE oversampling), it is still significantly better than the 607

performance of the experiment with completely imbalanced data; even the lowest accuracy 608

(64.09%), which is that of the fourth machine learning experiment with SMOTE, is quite 609

higher than the accuracy (62.33%) of the experiment with completely imbalanced data. 610

Moreover, the values of precision, recall and F1 score seem to be distributed more evenly 611

among the classes with each iteration, thus mitigating any emerging bias of the model 612

towards one particular class. Another important finding is that, in a classification task 613

where 1 of the 5 vocational domains may be considered as the class of interest, e.g. for 614

trying to exclusively detect articles of a specific vocational domain from a corpus to filter 615

relevant content, the application of SMOTE oversampling for the class of interest would 616

have a positive effect on the results of this classification task. 617

The machine learning experiments’ results with Random Forest and AdaBoost with 618

Sample showed slightly improved overall performance and accuracy (62.84%) compared to 619

those of Random Forest and AdaBoost with imbalanced data, while surpassing the achieved 620

F1 score per class, except from class B. Comparing to the results obtained with SMOTE 621

oversampling, undersampling has worse performance in terms of accuracy and class 622

precision, recall and F1 score. The machine learning experiments’ results with Random 623

Forest and AdaBoost with Sample and SMOTE oversampling (hybrid approach) showed 624

marginally improved overall performance and accuracy (63.35%) compared to those of 625

Random Forest and AdaBoost only with Sample, while surpassing the achieved F1 score for 626

classes A and D. However, the performance of this experiment is better than that of the 627

experiment with completely imbalanced data. In conclusion, these experiments indicate 628

that when applying both data undersampling and oversampling in a hybrid approach, 629

the results are better than only applying undersampling, but worse than only applying 630

oversampling for this data set. The findings derived from the machine learning experiments 631

of this paper are in accordance with those of the relevant literature [12,17], in terms that 632

data oversampling obtains better results than data undersampling in imbalanced data sets, 633

while hybrid approaches perform reasonably well. 634

Potential directions for future work include the automatic extraction of domain-specific 635

terminology, to be used as a component of an educational tool for sublanguage learning 636

regarding specific vocational domains in host countries, aimed to help displaced communi- 637

ties, like migrants and refugees, overcome the language barrier. This terminology extraction 638
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task could use the terms (features) that were identified in this paper as the most dominant 639

for vocational domain identification. Moreover, a more vocational domain-specific data set 640

could be created to perform a more specialized domain identification task in vocational 641

subdomains, especially considering the set of terms identified in this paper. Experiments 642

with a data set consisting of either more Wikipedia articles or textual data from other wikis 643

and social networks as data sources could be performed. Using a different feature set, e.g. 644

with n-grams and term collocations, could also be attempted. Finally, another potential 645

direction for future work could be the application of the novel methodology of successive 646

SMOTE oversampling proposed in this paper in combination with undersampling tech- 647

niques and/or on other imbalanced data sets, in order to test its performance in different 648

class imbalance problems. 649
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