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Abstract: Highly-skilled migrants and refugees finding employment in low-skill vocations, despite
professional qualifications and educational background, has become a global tendency, mainly due
to the language barrier. Employment prospects for displaced communities are mostly decided
by their knowledge of the sublanguage of the vocational domain they are interested in working.
Common vocational domains include agriculture, cooking, crafting, construction, and hospitality.
The increasing amount of user-generated content in wikis and social networks provides a valuable
source of data for data mining, Natural Language Processing and machine learning applications. This
paper extends the contribution of the authors’ previous research on automatic vocational domain
identification by further analyzing the results of the machine learning experiments with the domain-
specific textual data set, considering 2 research directions: a. predictions analysis and b. data
balancing. Wrong predictions analysis and the features that contributed to misclassification, along
with correct predictions analysis and the features that were the most dominant, contributed to the
identification of a primary set of terms for the vocational domains. Data balancing techniques were
applied on the data set to observe their impact on the performance of the classification model. A novel
4-step methodology is proposed in this paper for the first time, consisting of successive applications
of SMOTE oversampling on imbalanced data. Data oversampling obtains better results than data
undersampling in imbalanced data sets, while hybrid approaches perform reasonably well.

Keywords: Natural Language Processing; Social Text Mining; Machine Learning; Vocational Domain
Identification; Vocational Language; Error Analysis; Class Balancing

1. Introduction
1.1. Vocational Domains for Migrants and Refugees

Migrant employees face multiple challenges deriving from discrimination due to
country of origin, nationality, culture, sex, etc. [1-4], while for women in particular,
finding employment in high-skill vocations, besides teaching and nursing, is observed to
be especially difficult [1,2,5]. A deciding factor regarding the prospects of employment for
displaced communities, like migrants and refugees, is the knowledge of not the language of
their host country in general, but specifically of the sublanguage of the vocational domain
they are interested in working. As a result, highly-skilled migrants and refugees finding
employment in low-skill vocations, despite their professional qualifications and educational
background, has become a global tendency, with the language barrier being one of the most
important factors [1-4,6].

The scope of vocational domains for displaced communities and analyses on their
situation in the host country and in their country of origin were examined in recent
literature, considering the impact on their work-life balance [2-4]. Both high-skill and
low-skill vocations in hospitality, cleaning, manufacturing, retail, crafting, and agriculture
consist the most common vocational domains in which migrants and refugees seek and
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find employment, according to the findings of the recent research [1-3,6-8]. It is also
important to note that unemployment usually affects more the displaced communities than
the natives [9]. Overworking, however, due to low-paid jobs, is thriving, as migrants and
refugees struggle to increase their earnings, in their efforts to maintain living standards,
afford childcare and be able to send remittances to remaining family in their country of
origin [2,7].

1.2. Wikipedia and Social Networks

With the expansion of the user base of wikis and social networks in the last decade,
user-generated content has increased in great amounts. This content provides a valuable
source of data for various tasks and applications in data mining, Natural Language Process-
ing (NLP) and machine learning. Wikipedia' is an open data wiki covering a wide scope of
topic-related articles written in many languages [10]. Wikipedia’s content generation is a
constant collective process derived from the collaboration of its users [11]; as of April 2023,
there are approximately 6.6 million Wikipedia articles written in English.

1.3. Class Imbalance Problem

Imbalanced data sets, in regards of class distribution among their examples, present
several challenges in data mining and machine learning. More specifically, the number of
examples representing the class of interest is considerably smaller than the ones of the other
classes. As a result, standard classification algorithms have a bias towards the majority
class, and consequently they tend to misclassify the minority class examples [12]. Most
commonly, the class imbalance problem is related to binary classification, though it is not
uncommon to present in multi-class problems (like in this paper); since there are more than
one minority class, it is more challenging to solve. The class imbalance problem is an issue
that affects various aspects of real-world applications that are based on classification due
to the fact that the minority class examples are the most difficult to obtain from real data,
especially from user-generated content from wikis and social networks, leading a large
community of researchers to examine ways to address it [12-18].

1.4. Contribution

This paper extends the contribution of the authors’ previous research [19] by exploring
the various potential directions deriving from it. The results of the machine learning exper-
iments with the domain-specific textual data set created and preprocessed as described in
[19] were further processed and analyzed, considering 2 research directions: a. predictions
analysis and b. data balancing.

More specifically, regarding the predictions analysis, important conclusions were
drawn from examining which examples were classified wrongly for each class (wrong
predictions) by the Gradient Boosted Trees model which managed to classify correctly most
of the examples, as well as which distinct features contributed to their misclassification. In
the same line of thought, regarding the correctly classified examples (correct predictions),
the examination of the features that were the most dominant leading to the correct classifi-
cations for each class contributed to the identification of a primary set of terms highlighting
the terminology of the vocational domains.

Regarding the data balancing direction, oversampling and undersampling techniques,
both separately and in combination as a hybrid approach, were applied on the data set,
in order to observe their impact (positive or negative) on the performance of the Random
Forest and AdaBoost model. A novel methodology is proposed in this paper for the first
time, consisting of successive applications of SMOTE oversampling on imbalanced data,
balancing the data considering which is the minority class each time, in 4 steps. By running
the experiments following this methodology, the impact of every class distribution, from
completely imbalanced to completely balanced, on the performance of the machine learning
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model can be examined thoroughly. The process of the class balancing direction enabled
the comparison of the performance of this model with balanced data to the performance
of the same model with imbalanced data from the previous research [19]. The findings
derived from the machine learning experiments of this paper are in accordance with those
of the relevant literature [12,17], in terms that data oversampling obtains better results than
data undersampling in imbalanced data sets, while hybrid approaches perform reasonably
well.

1.5. Structure

The structure of this paper is the following. Section 2 presents past related work on:
a. domain identification on textual data, b. data scraping from social text, and c. data
oversampling, undersampling and hybrid approaches. Section 3 describes the stages of
data set creation and preprocessing, and the feature extraction process. Section 4 presents
the research direction of predictions analysis, including both wrong and correct predictions
of the Gradient Boosted Trees model. Section 5 presents the research direction of data
balancing, including the novel methodology for successive SMOTE oversampling, as well
as experiments with data undersampling and a hybrid approach. Section 6 concludes the
paper, discusses the most important findings and draws directions for future work.

2. Related Work

In this Section, recent literature on domain identification on textual data, including
news articles, technical text, open data and Wikipedia articles is presented. Research on
data scraping from social text, including social networks and Wikipedia is also described.
Finally, findings of related work regarding data oversampling, undersampling and hybrid
approaches are also analyzed.

2.1. Domain Identification on Textual Data

Domain identification performed on textual data, including news articles, social media
posts, and social text data sets in general, remains an open problem and a very challenging
task for researchers. The vast domain diversity along with their particular sublanguage
and terminology present several challenges when undertaking domain identification on
textual and linguistic data.

2.1.1. News Articles

Regarding domain identification on news articles, Hamza et al. [20] built a data set
containing news articles written in Urdu and annotated with 7 domains as classes according
to their topic. Their feature set consisted of unigrams, bigrams and Term Frequency - Inverse
Document Frequency (TF-IDEF). Following the stages of preprocessing, namely stopwords
removal and stemming, they performed text classification to the 7 domains by employing 6
machine learning models; Multi-Layered Perceptron (MLP) reached the highest accuracy of
91.4%. Their findings showed that stemming did not affect positively the performance of
the models, however stopwords removal had worsened it. Another paper by Balouchzahi
et al. [21] attempted domain identification on fake news articles written in English and
annotated with 6 domains according to their topic. Their ensemble of RoBERTa, DistilBERT
and BERT managed up to 85.5% F1 score.

2.1.2. Technical Text

There are certain researchers who performed domain identification on technical text.
Hande et al. [22] classified scientific articles in 7 computer science domains by using
transfer learning with BERT, RoBERTa and SciBERT. They found that the ensemble reaches
its best performance when the weights are taken into account. In the research of Dowlagar
& Mamidi [23], experiments with BERT and XLM-ROBERTa with a Convolutional Neural
Network (CNN) on a multilingual technical data set obtained better results in comparison
with experiments with Support Vector Machines (SVM) with TF-IDF and CNN. By selecting
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the textual data written in Telugu from same data set, Gundapu & Mamidi [24] obtained
up to 69.9% F1 score with CNN and a Self-Attention based Bidirectional Long Short-Term
Memory (BiLSTM) network.

2.1.3. Open Data & Wikipedia Articles

Regarding domain identification on open data, Lalithsena et al. [25] performed au-
tomatic topic identification by using Map-Reduce combined with manual validation by
humans on several data sets from Linked Open Data. In order to designate distinct topics,
they used specialized tags for the annotation.

In the paper of Nakatani et al. [26], Wikipedia structural feature and term extraction
was performed, aiming to score both topic coverage and topic detailedness on web search
results, relevant to the related search queries. Saxena et al. [27] built domain-specific
conceptual bases using Wikipedia navigational templates. They employed a knowledge
graph and then applied fuzzy logic on each article’s network metrics. In the research of
Stoica et al. [28], a Wikipedia article by topic extractor was created. Preprocessing included
parsing the articles for lower-casing, stopwords removal and embedding generation. The
extractor obtained high precision, recall and F1 score up to 90% with Random Forest, SVM
and Extreme Gradient Boosting, along with cross-validation.

In the authors’ previous research, Nikiforos et al. [19], automatic vocational domain
identification was performed. A domain-specific textual data set from Wikipedia arti-
cles was created, along with a linguistic feature set with TF-IDF. Preprocessing included
tokenization, removal of numbers, punctuation marks, stopwords and duplicates, and
lemmatization. 5 vocational domains, in which displaced communities, like migrants and
refugees, commonly seek and find employment, were considered as classes. Machine
learning experiments were performed with Random Forest combined with AdaBoost, and
Gradient Boosted Trees, with the latter obtaining the best performance with up to 99.93%
accuracy and 100% F1-score.

In Table 1, the performance of the related work mentioned in this subsection is shown,
in terms of evaluation metrics such as accuracy and F1 score, and considering the data sets
and models that procured the best results for each research paper.

Table 1. Performance per research paper. Data sets and models of related work with the best results.

Paper Classes Model Performance
Hamza et al. [20] 7 domanugjvcs)f Urdu MLP Accuracy: 91.4%
. 6 domains of English ~ Ensemble: RoBERTa, ) o
Balouchzahi et al. [21] fake news DistilBERT, BERT F1 score: 85.5%
7 computer science
. .z Ensemble: BERT, Accuracy: 92%, F1
Hande et al. [22] domains (?f scientific ROBERTa, SCiBERT score: 98%
articles
Dowlagar & Mamidi 7 multilingual BERT, F1 score (macro):
[23] technical domains XLM-ROBERTa, CNN 80.3%
Gundapu & Mamidi 6 Telugu te?chmcal CNN, BiLSTM F1 score: 69.9%
[24] domains
3 topic domains of BERT, Random Forest,
Stoica et al. [28] opic comains o Extreme Gradient F1 score: 90%
Wikipedia .
Boosting
o 5 vocational domains Gradient Boosted Accuracy: 99.9%, F1
Nikiforos et al. [19] of English Wikipedia Trees score: 100%

2.2. Social Text Data Scraping

Data scraping and analysis of textual data from social networks and Wikipedia have
been attempted in recent research. "Data analysis is the method of extracting solutions to
the problems via interrogation and interpretation of data" [29]. Despite the development of
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numerous web scrapers and crawlers, social data scraping and analysis of high quality still
present a challenging task.

2.2.1. Social Networks

Several web scrapers were developed with Python. Scrapy, by Thomas & Mathur [29],
scraped textual data from Reddit” and stored them in CSV files. Another scraper, by Kumar
& Zymbler [30], scraped the Twitter API° to download tweets regarding particular airlines,
which then were used as input for sentiment analysis and machine learning experiments
with SVM and CNN, reaching up to 92.3% accuracy.

2.2.2. Wikipedia

Other web crawlers, more focused on Wikipedia data, were built. iPopulator by Lange
et al. [10] used Conditional Random Fields (CRF) and crawled Wikipedia to gather textual
data from the first paragraphs of Wikipedia articles, and then used them to populate an
infobox for each article. iPopulator reached up to 91% average extraction precision with
1,727 infobox attributes. Cleoria and a MapReduce parser were used by Hardik et al. [11]
to download and process XML files, aiming to evaluate the link-ability factor of Wikipedia
pages.

In the authors’ previous research, Nikiforos et al. [19], a web crawler was developed
by using the Python libraries BeautifulSoup4 and Requests. It scraped Wikipedia’s APIL,
downloading textual data from 57 articles written in English, considering their relevance to
5 vocational domains in which refugees and migrant commonly seek and find employment
as a criterion. The aim was to extract linguistic information concerning these domains, and
perform machine learning experiments for domain identification.

2.3. Data Oversampling & Undersampling

Data sampling, either oversampling or undersampling, is one of the proposed solu-
tions to mitigate the class imbalance problem. Resampling techniques practically change
the class distribution in imbalanced data sets by creating new examples for the minority
class(es) (oversampling), or removing examples from the majority class (undersampling),
or doing both (hybrid) [12,16].

Several researchers proposed data undersampling techniques. Lin et al. [13] proposed
2 undersampling strategies in which a clustering technique is applied during preprocessing;
the number of clusters of the majority class were made equal to the number of data
points of the minority class. In order to represent the majority class, cluster centers and
nearest neighbors of the cluster centers were used by the 2 strategies, respectively. They
performed experiments on 44 small-scale and 2 large-scale data sets, resulting in the second
strategy approach, combined with a single multilayer perceptron and a C4.5 decision
tree, performing better compared to 5 state-of-the-art approaches. Anand et al. [14]
introduced an undersampling technique and evaluated it by performing experiments on
4 real biological imbalanced data sets. Their technique improved the model sensitivity
compared to weighted SVMs and other models in the related work for the same data. Yen
& Lee [15] proposed cluster-based undersampling approaches to define representative
data as the training set, aiming to increase the classification accuracy for the minority class
in imbalanced data sets. Garcia & Herrera [16] presented evolutionary undersampling,
a taxonomy of methods which considered the nature of the problem and then applied
different fitness functions to achieve both class balance and high performance. Their
experiments with numerous imbalanced data sets showed that evolutionary undersampling
performs better than other state-of-the-art undersampling models when the imbalance is
increased.

https:/ /www.reddit.com/
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Other researchers experimented with data oversampling and hybrid approaches.
Shelke et al. [18] examined class imbalance on text classification tasks with multiple classes,
addressing sparsity and high dimensionality of textual data. After applying a combination
of undersampling and oversampling techniques on the data, they performed experiments
with multinomial Naive Bayes, k-Nearest Neighbor, and SVMs. They concluded that the
effectiveness of resampling techniques is highly data dependent, while certain resampling
techniques achieve better performance when combined with specific classifiers. Lopez
et al. [12] provided an extensive overview of class imbalance mitigating methodologies,
namely data sampling, algorithmic modification and cost-sensitive learning. They dis-
cussed the most significant challenges of using data intrinsic characteristics in classification
problems with imbalanced data sets; small disjuncts, lack of density in the training set,
class overlapping, noisy data identification, borderline instances, and the data set shift
between the training and the test distributions. Their experiments on imbalanced data
lead to important observations on the reaction of the machine learning algorithms on data
with these intrinsic characteristics. One of the most notable approaches is that of Chawla
etal. [17]. They proposed a hybrid approach for classification on imbalanced data which
achieved better performance compared to exclusively undersampling the majority class.
Their oversampling method, also known as SMOTE, produces synthetic minority class
examples. Their experiments were performed with C4.5, Ripper and Naive Bayes, while
their method was evaluated with the area under the Receiver Operating Characteristic
curve (AUC) and the Receiver Operating Characteristic (ROC) convex hull strategy. The
SMOTE oversampling method is used in this paper to balance the data set (Section 5).

3. Data Set Creation & Preprocessing

The data set which was used in the authors’ conference paper [19] was created by
scraping 57 articles written in English from Wikipedia’s API* with Python (BeautifulSoup4”,
Requests®). The criterion for selecting these specific articles was their relevance to 5
vocational domains considered as the most common for refugee and migrant employment
in Europe, Canada and the United States of America [1,2,6-8].

The initial textual data set comprised of 6,827 sentences extracted from the 57 Wikipedia
articles. The data set was preprocessed in 4 stages, namely:

1.  Initial preprocessing & Tokenization;

2. Numbers & Punctuation marks removal;
3. Stopwords removal;

4. Lemmatization & Duplicates removal.

The data set was tokenized initially to 6,827 sentences and to 69,062 words; the sentences
were to be used as training-testing examples, and the words as unigram features. Numbers,
punctuation marks and special characters were removed. Stopwords (conjunctions, articles,
adverbs, pronouns, auxiliary verbs, etc.) were also removed. Finally, lemmatization was
performed to normalize the data without reducing the semantic information, and 912
duplicate sentences and 58,393 duplicate words were removed. For more details on these
stages of preprocessing refer to [19].

Resulting from the preprocessing stages, the text data set comprised of 5,915 sentences
(examples) and 5 classes, ready to be used in machine learning experiments. For each
sentence, the domain which was most relevant to each article’s topic, as shown in Table
2, was considered as its class, resulting in 5 distinct classes, namely: A. Agriculture, B.
Cooking, C. Crafting, D. Construction, and E. Hospitality. The distribution of the sentences
to these 5 classes is shown in Figure 1.

https:/ /pypi.org/project/wikipedia/
https:/ /pypi.org/project/beautifulsoup4/

6 https:/ /pypi.org/project/requests/
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Table 2. Wikipedia articles which were scraped to create the data set. By domain categorization.

Agriculture Cooking Crafting Construction Hospitality
10 articles 17 articles 11 articles 7 articles 12 articles
Al dente
Agriculture Al fgrno
Glossary of Baking
aericulture Charcuterie
EON. Chef Anvil Building Bellhop
Chef’s uniform . Building design Casino hotel
Farmer Blacksmith . .
. Chocolate . construction Check-in
Environmental . Bladesmith .
. Cooking . Carpentry Concierge
impact of . Coppersmith : .
. Cooking school Construction Doorman(profession)
agriculture . . Forge
. Cooking weights . Constructor Hostel
History of Goldsmith
. and measures . worker Hotel
agriculture .. Gunsmith
. Cuisine e Glossary of Hotel manager
Intensive - Locksmithing . .
. Denaturation(food) . construction Maid
farming Metalsmith .
. Garde manger . . costs Receptionist
Plant breeding . 2 Silversmith
. List of cooking - - Home Resort
Subsistence . Whitesmith . .
. techniques construction Tourism
agriculture Mi
. ise en place
Sustainable .
aoriculture Outdoor cooking
& Outline of food
preparation
Distribution of Examples to Classes
A: Agriculture, B: Cooking, C: Crafting, D: Construction, E: Hospitality
E
13.0%
771
D A
8.8% 519 35.2%
c 922
15.6%
1,620 B
— 27.4%

Figure 1. Final distribution of sentences as training-test examples to the 5 classes.

A RapidMiner Studio (version 9.10) process, as shown in Figure 2, was used to extract
the feature set with TF-IDF and taking into consideration the feature occurrences by pruning
features which occur rarely (below 1%) or very often (above 30%), resulting in 109 unigram
features. For more details on the operators and parameters of the feature extraction process
refer to [19] and RapidMiner Documentation”’.

Resulting from the feature extraction process, the final text data set comprised of 5,915
examples, 109 features and class as label.

4. Predictions Analysis

The best results on domain identification were obtained with a Gradient Boosted Trees®
model and are shown in Table 3. For more information on the operators and parameters of

7 https://docs.rapidminer.com/
8 https://docs.rapidminer.com/9.10/studio/operators/modeling /predictive/ trees/ gradient_boosted_trees.
html
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Figure 2. Feature extraction. The Tokenize operator is nested in the Process Documents from Data

operator.
Gradient Boosted Trees Apply Model Performance

mod lab lab % tes
tes unl ¥ med per exa per
thr per

Figure 3. Setup of machine learning experiment with Gradient Boosted Trees. The depicted process is

nested in a Cross Validation operator (10-fold cross validation).

the RapidMiner Studio (version 9.10) experiment with Gradient Boosted Trees, as shown in
Figure 3, refer to [19] and RapidMiner Documentation.

Table 3. Machine learning experiment results with Gradient Boosted Trees. Accuracy: 99.93%.

Class Precision Recall F1 score
A 100% 100% 100%
B 100% 99.94% 99.97%
C 99.78% 99.89% 99.83%
D 99.81% 99.61% 99.70%
E 99.87% 100% 99.93%

With regards to the high performance of this machine learning model, it is of interest
to examine which examples were classified wrongly for each class, as well as which distinct
features contributed to their misclassification. In the same line of thought, regarding the
correctly classified examples, the examination of the features that were the most dominant
leading to the correct predictions would contribute to the identification of a primary set of
terms highlighting the terminology of the vocational domains.

4.1. Wrong Predictions

The Gradient Boosted Trees model showed high performance regarding all classes (Table
3), with precision ranging from 99.78% to 100%, recall from 99.61% to 100%, F1 score from
99.70% to 100%, while misclassifying a total of 4 examples.

The Explain Predictions’ operator is used to identify which features are the most
dominant in forming predictions. A model and a set of examples, along with the feature
set, are considered as input, in order to produce a table highlighting the features that most
strongly support or contradict each prediction, also containing numeric details. For each
example, a neighboring set of data points is generated, by using correlation to define the
local feature weights in that neighborhood. The operator can calculate model-specific,
though model-agnostic global feature weights, deriving directly from the explanations.
Explain Predictions is able to work with all data types and data sizes, and can be applied for
both classification and regression problems.

®  https://docs.rapidminer.com/10.1/studio/ operators/scoring /explain_predictions.html


https://docs.rapidminer.com/10.1/studio/operators/scoring/explain_predictions.html
https://doi.org/10.20944/preprints202304.0907.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 April 2023 d0i:10.20944/preprints202304.0907.v1

9 of 23

Multiply Apply Model (2) Performance (2

Multiply (2)

Figure 4. Setup of process to identify wrong and correct predictions with Explain Predictions operator
and Filter Examples operator. The depicted process is nested in a Cross Validation operator (10-fold
cross validation).

In this case, in which the machine learning model (Gradient Boosted Trees) uses super-
vised learning, all supporting local explanations add positively to the weights for correct
predictions, while all contradicting local explanations add positively to the weights for
wrong predictions. Regarding the parameters for this operator, the maximal explaining
attributes were set to 3 and the local sample size was left at the default (500). The sort weights
parameter was set to true, along with descending sort direction of the weight values, in
order to apply sorting to the resulting feature weights supporting and contradicting the
predictions.

The Filter Examples'” operator selects which examples are kept and which are removed.
In this case, only the misclassified examples (wrong predictions) were kept. Regarding
the condition class parameter for this operator, it was set to wrong_predictions, in order to
keep only those examples, where the class and prediction were different, meaning that the
prediction is wrong.

In order to identify the misclassified examples, a RapidMiner Studio (version 9.10)
process, as shown in Figure 4, was designed and executed.

The 4 misclassified examples were the following:

—

WP1: building edifice structure roof wall standing permanently house factory;

2. WP2: typically whitesmiths product required decorative finish fire grate coldworking
screw lathed machine;

3. WP3: organic food;

4. WP4: traditional vernacular building method suit local condition climate dispensed

favour generic cookie cutter housing type.

In Table 4, detailed information is provided for these wrong predictions. Class is the
real class of the example, while prediction is the wrongly predicted class for the example.
Confidence, with values ranging from 0 to 1, is derived from feature weights regarding
both class and prediction.

Table 4. Wrong predictions of Gradient Boosted Trees. Class is the real class of the example, and
Prediction is the wrongly predicted class for the example. Confidence, ranging from 0 to 1, and derived
from feature weights regarding both Class and Prediction is shown in the last 2 columns.

. L. Confidence Confidence
No. Class Prediction (Class) (Prediction)
WP1 D C 0.14 0.41
WP2 C D 0.12 0.48
WP3 B C 0.11 0.55
WP4 D E 0.17 0.31

The features which contributed to the wrong predictions for each class are shown in
Table 5. The effect of the value for each feature is denoted, considering whether it supports,

10 https:/ /docs.rapidminer.com/10.1/studio/operators/blending /examples /filter /filter_examples.html
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contradicts or is neutral to the prediction. The typical value for the specific feature for each
class is also provided.

Table 5. Features that contributed to the wrong predictions of Gradient Boosted Trees. Effect denotes
whether the specific value of the specific feature supports, contradicts or is neutral to the prediction.
Typical Value is the typical value for the specific feature for each class.

No. Feature(s) Value(s) Effect(s) Typical Value
WP1 buildin 1 Neutral D: 0
ng € C: 0 and some 1
typically 1 )
WP2 fire 0.66 Qeutral Cé&D:0and
product 0.54 © ¢ some
B:0&C:1
WP3 food 0-50 Support B:0 & C: 0 and
organic 0.86 some 1
local 0.56
WP4 method 0.47 Support D: Osiiola“d
type 0.46

4.2. Correct Predictions

The Gradient Boosted Trees model managed to classify correctly most of the examples.
Regarding class A, it is of particular interest that all of its examples were classified correctly,
while none of the examples of the other classes were classified wrongly to class A. Conse-
quently, it is of significance to identify and examine which features were the most dominant
leading to the correct predictions for each class, thus contributing to the identification of a
primary set of terms for the vocational domains.

In order to identify the correctly classified examples, the same RapidMiner Studio
(version 9.10) process, as in wrong predictions (Figure 4), was used. The only difference
with the previous experiment is that the condition class parameter for the Filter Examples
operator was set to correct_predictions, in order to keep only those examples, where the
class and prediction were the same, meaning that the prediction is correct.

Confidence, with values that can be from 0 to 1, was derived from feature weights
for each class; for class A ranging from 0.49 to 0.55, for class B ranging from 0.37 to 0.55,
for class C ranging from 0.48 to 0.55, for class D ranging from 0.47 to 0.55, and for class E
ranging from 0.54 to 0.55. The features which were the most dominant leading to the correct
predictions are shown in Table 6 in a descending order, along with the global weights which
were calculated for each one of them.
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Table 6. Global weights per feature (descending order). Features with higher weight were more
dominant for the correct predictions of this model than features with lower weight.

No. Feature Weight ‘ No. Feature Weight
1 farmer 0.037 56 time 0.018
2 world 0.036 57 usually 0.018
3 blacksmith 0.034 58 cocoa 0.018
4 using 0.034 59 grain 0.017
5 produce 0.033 60 material 0.017
6 human 0.032 61 chef 0.017
7 developed 0.031 62 growing 0.017
8 plant 0.03 63 process 0.017
9 yield 0.029 64 water 0.017
10 food 0.029 65 form 0.017
11 project 0.029 66 industry 0.016
12 temperature 0.029 67 fat 0.016
13 environmental 0.028 68 field 0.016
14 ingredient 0.028 69 found 0.016
15 america 0.028 70 domesticated 0.015
16 technique 0.028 71 product 0.015
17 united 0.027 72 sometimes 0.015
18 design 0.027 73 europe 0.015
19 heat 0.027 74 crop 0.015

20 system 0.027 75 source 0.015
21 quality 0.026 76 anvil 0.014
22 iron 0.026 77 variety 0.014
23 breeding 0.026 78 various 0.013
24 local 0.025 79 livestock 0.013
25 vegetable 0.025 80 tourism 0.013
26 typically 0.025 81 farm 0.013
27 increase 0.025 82 construction 0.013
28 land 0.024 83 practice 0.013
29 cost 0.024 84 building 0.013
30 agricultural 0.024 85 people 0.012
31 sustainable 0.024 86 natural 0.012
32 common 0.023 87 example 0.012
33 called 0.023 88 level 0.012
34 service 0.023 89 animal 0.012
35 period 0.023 90 organic 0.012
36 cuisine 0.022 91 soil 0.011
37 trade 0.022 92 resort 0.011
38 production 0.022 93 cooking 0.011
39 operation 0.022 94 meat 0.011
40 country 0.022 95 especially 0.01
41 farming 0.022 96 population 0.01
42 include 0.021 97 fire 0.01
43 global 0.021 98 hotel 0.01
44 effect 0.021 99 modern 0.009
45 increased 0.021 100 century 0.009
46 type 0.02 101 change 0.009
47 agriculture 0.02 102 chocolate 0.009
48 method 0.02 103 metal 0.008
49 fertilizer 0.02 104 including 0.008
50 amount 0.02 105 steel 0.008
51 baking 0.02 106 smith 0.007
52 tool 0.019 107 text 0.007
53 oven 0.019 108 management 0.006
54 worker 0.018 109 due 0.006
55 hot 0.018
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4.3. Discussion

Regarding the wrong predictions analysis, the 4 misclassified examples were success-
fully identified (WP1-WP4), as shown in Table 4. More specifically, 2 examples of class D,
namely WP1 and WP4, were wrongly classified to classes C and E, respectively, while 1
example of class C, WP2, was misclassified to class D, and 1 example of class B, WP3, was
misclassified to class C. It is observed that for all wrong predictions, the confidence for class,
which is the real class of the examples, ranges from 0.11 to 0.17 and is significantly lower
than the confidence for prediction, which is the wrongly predicted class of the examples
and ranges from 0.31 to 0.55. This indicates that these examples quite diverge from the
other examples of their class. By examining Tables 5 and 6, this observation is explained as
described below.

For WP1, the value for the building feature is 1, while typically for examples of D (class)
is 0 and of C (prediction) mostly 0 and sometimes 1. Considering that building is the only
most dominant feature of WP1, with an assigned feature weight of 0.013, its overall impact
on the prediction being neutral is expected.

For WP2, the value for the typically feature is 1, for the fire feature is 0.66, and for the
product feature is 0.54, while typically the values of all these features for examples of both
C (class) and D (prediction) is mostly 0 and sometimes 1. Considering that typically is the
most dominant feature of WP2, with an assigned feature weight of 0.025 which is high, its
overall impact on the prediction being neutral is expected. The fire and product features
contradict the prediction, though due to their quite low feature weights of 0.01 and 0.015,
respectively, their effect on the prediction is insignificant.

For WP3, the value for the food feature is 0.50 and for the organic feature is 0.86, while
typically for examples of B (class) is O for both features and of C (prediction) is 1 for the
food feature, and mostly 0 and sometimes 1 for the organic feature. Considering that food
is the most dominant feature of WP3, with an assigned feature weight of 0.029 which is
high, its overall impact on the prediction being positive (support) is expected. The organic
feature also supports the prediction, though due to its quite low feature weight (0.012) its
effect on the prediction is insignificant.

For WP4, the value for the local feature is 0.56, for the method feature is 0.47, and for
the type feature is 0.46, while typically the values of all these features for examples of D
(class) is 0 and E (prediction) is mostly 0 and sometimes 1. Considering that local is the
most dominant feature of WP4, with an assigned feature weight of 0.025 which is high,
its overall impact on the prediction being positive (support) is expected. The method and
type features also support the prediction, with quite high feature weights of 0.02 for both,
having a significant effect on the prediction.

Overall, it becomes evident that the main factor that leads the Gradient Boosted Trees
model to misclassify the examples is their lack of dominant features supporting the real
class more than the prediction, in terms of feature weight.

Regarding the correct predictions analysis, it is observed that the confidence for the
correct predictions for all classes was considerably high, the lower being for class B in a
range from 0.37 to 0.55 and the highest for class E in a range from 0.54 to 0.55. This means
that the model could classify the examples of class E more confidently compared to the
examples of the other classes.

Additionally, the most dominant features, in terms of feature weights, leading to the
correct predictions for each class were identified successfully and sorted in a descending
order, as shown in Table 6; features with higher weight were more dominant for the correct
predictions of this model than features with lower weight. 51 features, which are about half
of the 109 features of the extracted feature set, have the highest feature weights, ranging
from 0.02 up to 0.037. This indicates that the feature extraction process, as described in
Section 3 and [19], performed quite well, producing a robust feature set with great impact
on the correct predictions. Finally, it is also observed that among these features, terms
relevant to all of the vocational domains are included, thus consisting a primary set of
terms for the vocational domains.


https://doi.org/10.20944/preprints202304.0907.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 April 2023 d0i:10.20944/preprints202304.0907.v1

13 of 23

AdaBoost Apply Model Performance

mad & o mod ] lab lab % per])—tes
the( ptes wl ? med per exal) Per
thr per

Figure 5. Setup of machine learning experiment with Random Forest and AdaBoost. The Random
Forest operator is nested in the AdaBoost operator. The depicted process is nested in a Cross Validation
operator (10-fold cross validation).

5. Data Balancing

Another machine learning experiment on domain identification was performed with a
Random Forest'! and AdaBoost'> model. The results of this experiment are shown in Table 7.
For more information on the operators and parameters of the RapidMiner Studio (version
9.10) experiment with Random Forest and AdaBoost, as shown in Figure 5 refer to [19] and

RapidMiner Documentation'®.

Table 7. Machine learning experiment results with Random Forest and AdaBoost. Accuracy: 62.33%.

Class Precision Recall F1 score
A 49.06% 97.60% 65.29%
B 91.52% 51.30% 65.74%
C 95.05% 41.65% 57.92%
D 91.67% 31.79% 47.20%
E 98.21% 35.54% 52.19%

Regarding the model’s accuracy of 62.33%, it is important to bear in mind that, despite
being quite lower than the accuracy of the Gradient Boosted Trees model (99.93%), it is
significantly above the randomness baseline by 42.33%, considering that the randomness
for a 5-class problem is at 20%.

Examining the model’s results (Table 7) more closely, it was noted that, despite its
precision for classes B, C, D, and E being high, ranging from 91.52% to 98.21%, the recall for
these classes was low, ranging from 31.79% to 51.30%. Also considering its low precision
(49.06%) and high recall (97.60%) for class A, this examination highlighted that a lot of
the examples were classified wrongly to class A. As a result, it becomes evident that the
Random Forest and AdaBoost model tended to classify most of the examples to class A. Due
to the fact that the examples of class A consist the majority of the examples in the data set
(35.20%, Figure 1), this tendency can be attributed to the imbalance of data.

Consequently, it is of interest to examine whether applying data balancing techniques
on the data set (oversampling and undersampling), has any impact, positive or negative,
on the performance of the Random Forest and AdaBoost model.

5.1. Data Oversampling

As a first step towards addressing data imbalance, SMOTE oversampling [17] was
applied in a successive manner on the data set, balancing the data by oversampling, re-
garding which is the minority class each time. Consequently, a RapidMiner Studio (version

11 https:/ /docs.rapidminer.com/9.10/studio/operators/modeling /predictive/ trees / parallel_random_forest.
html
https:/ /docs.rapidminer.com/latest/studio/operators/modeling /predictive /ensembles / AdaBoost.html

https:/ /docs.rapidminer.com/
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Figure 6. Setup of SMOTE Upsampling.

9.10) process, as shown in Figure 6, was designed and executed 4 times. The 4 derived
oversampled data sets were then used as input for the machine learning experiments with
Random Forest and AdaBoost.

The SMOTE Upsampling'* operator practically applies the Synthetic Minority Over-
sampling Technique, as defined in the paper by Chawla et. al. [17]. More specifically, the
algorithm considers only the examples of the minority class, and the k nearest neighbours
for each example are searched. Then a random example and a random nearest neighbour
for this example is selected, resulting in the creation of a new example, on the line between
the two examples.

Regarding the parameters for this operator, the number of neighbours was left at the
default (5), while normalize and round integers were set to true, and nominal change rate was
set to 0.5, in order to make the distance calculation solid. The equalize classes parameter was
set to true to draw the necessary amount of examples for class balance, along with auto detect
minority class set to true to automatically upsample the class with the least occurrences.

The set of machine learning experiments with successive applications of SMOTE
oversampling as described below, follows a novel methodology, proposed in this paper for
the first time. The methodology steps are the following:

1.  Detect the minority class;

2. Resample the minority class with SMOTE oversampling;

3. Run the machine learning experiment;

4. Repeat steps 1-3 until the data set is balanced (no minority class exists).

By running the experiments following this methodology, the impact of every class distri-
bution, from completely imbalanced to completely balanced, on the performance of the
machine learning model can be examined thoroughly.

In the first machine learning experiment, class D is the minority class, with its examples
representing merely the 8.8% of the data set (Figure 1). After applying SMOTE, class D
represented 27.9% of the data set with 2,083 examples (Figure 7). The results of the Random
Forest and AdaBoost with SMOTE are shown in Table 8.

Table 8. Machine learning experiment results with Random Forest and AdaBoost with SMOTE. Accu-
racy: 66.01%.

Class Precision Recall F1 score
A 94.30% 69.13% 79.77%
B 92.67% 49.20% 64.27%
C 94.47% 38.94% 55.14%
D 46.65% 99.33% 63.48%
E 98.19% 35.28% 51.90%

In the second machine learning experiment, class E is the minority class, with its
examples representing the 10.3% of the data set (Figure 7). After applying SMOTE, class E
represented 23.7% of the data set with 2,083 examples (Figure 8). The results of the Random
Forest and AdaBoost with SMOTE (2 times) are shown in Table 9.

14 https:/ /docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending /smote.

html


https://docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending/smote.html
https://docs.rapidminer.com/10.1/studio/operators/extensions/Operator%20Toolbox/blending/smote.html
https://doi.org/10.20944/preprints202304.0907.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 April 2023 d0i:10.20944/preprints202304.0907.v1

15 of 23
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Figure 7. Distribution of examples to classes after applying SMOTE (1 time).
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Figure 8. Distribution of examples to classes after applying SMOTE (2 times).

Table 9. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (2 times).
Accuracy: 65.72%.

Class Precision Recall F1 score
A 93.46% 67.93% 78.67%
B 92.20% 47 41% 62.62%
C 94.51% 37.31% 53.49%
D 60.50% 72.35% 65.89%
E 48.57% 83.68% 61.46%

In the third machine learning experiment, class C is the minority class, with its ex-
amples representing the 10.5% of the data set (Figure 8). After applying SMOTE, class C
represented 20.9% of the data set with 2,083 examples (Figure 9). The results of the Random
Forest and AdaBoost with SMOTE (3 times) are shown in Table 10.
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Figure 9. Distribution of examples to classes after applying SMOTE (3 times).

Distribution of Examples to Classes after SMOTE 4
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Figure 10. Distribution of examples to classes after applying SMOTE (4 times).

Table 10. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (3
times). Accuracy: 64.35%.

Class Precision Recall F1 score
A 95.14% 66.73% 78.44%
B 91.72% 46.48% 61.69%
C 38.44% 96.54% 54.98%
D 89.68% 58.38% 70.72%
E 95.48% 49.64% 65.32%

In the fourth machine learning experiment, class B is the minority class, with its
examples representing the 16.3% of the data set (Figure 9). After applying SMOTE, class B
represented 20% of the data set with 2,083 examples (Figure 10). The results of the Random
Forest and AdaBoost with SMOTE (4 times) are shown in Table 11.
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Figure 11. Setup of machine learning experiment with Random Forest and AdaBoost with Sample.
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The Random Forest operator is nested in the AdaBoost operator, which is nested in a Cross Validation
operator (10-fold cross validation).

Table 11. Machine learning experiment results with Random Forest and AdaBoost with SMOTE (4
times). Accuracy: 64.09%.

Class Precision Recall F1 score
A 95.52% 65.53% 65.29%
B 40.79% 85.84% 65.74%
C 58.84% 62.17% 57.92%
D 90.00% 58.33% 47.20%
E 96.20% 48.58% 52.19%

5.2. Data Undersampling

In another set of experiments, undersampling was applied on the data set, balancing
the data by undersampling the classes represented by the most examples. Consequently,
a RapidMiner Studio (version 9.10) process, as shown in Figure 11, was designed and
executed. The derived undersampled data set was then used as input for the machine
learning experiments with Random Forest and AdaBoost.

The Sample'® operator has basic principles common to the Filter Examples operator,
taking a set of examples as input and procuring a subset of it as output. However, while
Filter Examples follows previously specified conditions, Sample is centered on the number of
examples and class distribution in the resulting subset, producing samples in a random
manner.

Regarding the parameters for this operator, sample was set to absolute, in order for it
to be created consisting of an exact number of examples. The balance data parameter was
set to true, in order to define different sample sizes (by number of examples) for each class,
while the class distribution of the sample was set with sample size per class. Examples of
classes A and B were reduced to 1,183 for each one, which is the mean of the number of
all examples in the data set. The sample sizes for each class are shown in Figure 12. The
results of this experiment are shown in Table 12.

Table 12. Machine learning experiment results with Random Forest and AdaBoost with Sample. Accu-
racy: 62.84%.

Class Precision Recall F1 score
A 94.34% 66.27% 77.85%
B 41.77% 96.53% 58.30%
C 94.94% 44.79% 60.86%
D 88.57% 41.81% 56.80%
E 96.40% 41.63% 58.14%

A hybrid approach combining data oversampling and undersampling was also tested.
In this experiment, both the SMOTE Upsampling operator and the Sample operator were

15 https:/ /docs.rapidminer.com/10.1/studio/operators/blending /examples/sampling /sample.html
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Figure 12. Distribution of examples to classes after applying Sample.
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Figure 13. Setup of machine learning experiment with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. The Random Forest operator is nested in the AdaBoost operator, which is nested
in a Cross Validation operator (10-fold cross validation).

applied on the data set, balancing the data by undersampling the classes represented
by the most examples and oversampling the classes represented by the least examples,
respectively. Consequently, a RapidMiner Studio (version 9.10) process, as shown in Figure
13, was designed and executed. The derived undersampled data set was then used as input
for the machine learning experiments with Random Forest and AdaBoost.

Regarding the parameters for Sample and SMOTE Upsampling, they were set in the
same way as in the previous experiments. After applying them, examples of classes A and
B were reduced to 1,183 for each one, which is the mean of the number of all examples in
the data set, while examples of class D were added resulting also in 1,183 for this class.
The sample sizes for each class are shown in Figure 14. The results of this experiment are
shown in Table 13.

Table 13. Machine learning experiment results with Random Forest and AdaBoost with Sample and
SMOTE Upsampling. Accuracy: 63.35%.

Class Precision Recall F1 score
A 95.29% 66.69% 78.46%
B 39.79% 95.52% 56.17%
C 93.62% 44.58% 60.39%
D 83.27% 57.23% 67.83%
E 97.52% 40.73% 57.46%

5.3. Discussion

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with SMOTE oversampling, it is observed that the accuracy and overall performance,
as shown in Tables 8, 9, 10, and 11, have improved compared to those of Random Forest
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Figure 14. Distribution of examples to classes after applying Sample and SMOTE.

and AdaBoost with imbalanced data, as shown in Table 7. More specifically, accuracy has
increased from 62.33% up to 66.01%, and F1 score increased from 65.29% up to 79.77% for
class A, maintained up to 65.74% for class B, maintained up to 57.92% for class C, increased
from 47.20% up to 70.72% for class D, and increased from 52.19% up to 65.32% for class
E. It is also noteworthy that, despite the overall performance of the model getting slightly
worse with each iteration (each added SMOTE oversampling), it is still significantly better
than the performance of the experiment with completely imbalanced data; even the lowest
accuracy (64.09%), which is that of the fourth machine learning experiment with SMOTE, is
quite higher than the accuracy (62.33%) of the experiment with completely imbalanced data.
Additionally, the values of precision, recall and F1 score seem to be distributed more evenly
among the classes with each iteration, thus mitigating any emerging bias of the model
towards one particular class. Another important observation from these experiments is
that, in a classification task where 1 of the 5 vocational domains may be considered as the
class of interest, e.g. for trying to exclusively detect articles of a specific vocational domain
from a corpus to filter relevant content, the application of SMOTE oversampling for the
class of interest would have a positive effect on the results of this classification task.

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with Sample, it is observed that the accuracy and overall performance, as shown in Table 12,
have improved slightly compared to those of Random Forest and AdaBoost with imbalanced
data, as shown in Table 7. More specifically, accuracy has increased from 62.33% to 62.84%,
and F1 score increased from 65.29% to 77.85% for class A, reduced from 65.74% to 58.30%
for class B, increased from 57.92% to 60.86% for class C, increased from 47.20% to 56.80% for
class D, and increased from 52.19% to 58.14% for class E. Comparing to the results obtained
with SMOTE oversampling (Tables 8, 9, 10, and 11), undersampling has worse performance
in terms of accuracy and class precision, recall and F1 score.

Regarding the machine learning experiments’ results with Random Forest and AdaBoost
with Sample and SMOTE oversampling (hybrid approach), it is observed that the accuracy
and overall performance, as shown in Table 13, have marginally improved compared to
those of Random Forest and AdaBoost only with Sample (Table 12). More specifically, accuracy
has increased from 62.84% to 63.35%, and F1 score increased from 77.85% to 78.46% for
class A, reduced from 58.30% to 56.17% for class B, reduced from 60.86% to 60.39% for class
C, increased from 56.80% to 67.83% for class D, and reduced from 58.14% to 57.46% for
class E. In any case, the performance of this experiment is better than that of the experiment
with completely imbalanced data. Overall, these experiments indicate that when applying
both data undersampling and oversampling in a hybrid approach, the results are better
than only applying undersampling, but worse than only applying oversampling for this
data set.
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The findings derived from the machine learning experiments of this paper are in
accordance with those of the relevant literature [12,17], in terms that data oversampling
obtains better results than data undersampling in imbalanced data sets, while hybrid
approaches perform reasonably well.

6. Conclusions

Displaced communities, like migrants and refugees, face multiple challenges in seek-
ing and finding employment in high-skill vocations in their host country, deriving from
discrimination. Unemployment and overworking phenomena usually affect more the dis-
placed communities than the natives. A deciding factor for their prospects of employment
is the knowledge of not the language of their host country in general, but specifically of
the sublanguage of the vocational domain they are interested in working. Consequently,
more and more highly-skilled migrants and refugees worldwide are finding employment
in low-skill vocations, despite their professional qualifications and educational background,
with the language barrier being one of the most important factors. Both high-skill and
low-skill vocations in agriculture, cooking, crafting, construction, and hospitality, among
others, consist the most common vocational domains in which migrants and refugees seek
and find employment, according to the findings of the recent research.

In the last decade, due to the expansion of the user base of wikis and social networks
user-generated content has increased exponentially, providing a valuable source of data for
various tasks and applications in data mining, Natural Language Processing and machine
learning. However, minority class examples are the most difficult to obtain from real data,
especially from user-generated content from wikis and social networks, creating a class
imbalance problem that affects various aspects of real-world applications that are based on
classification. Especially for multi-class problems, like the one addressed in this paper, it is
more challenging to solve.

This paper extends the contribution of the authors’ previous research [19] on automatic
vocational domain identification by further processing and analyzing the results of the
machine learning experiments with the domain-specific textual data set, considering 2
research directions: a. predictions analysis and b. data balancing.

Regarding the predictions analysis direction, important conclusions were drawn from
identifying successfully and examining the 4 misclassified examples (WP1-WP4) for each
class (wrong predictions) by the Gradient Boosted Trees model, which managed to classify
correctly most of the examples, as well as which distinct features contributed to their
misclassification. An important finding is that the misclassified examples quite diverge
from the other examples of their class, since for all wrong predictions, the confidence for
class, which is the real class of the examples, is significantly lower (from 0.11 to 0.17) than
the confidence for prediction (from 0.31 to 0.55), which is the wrongly predicted class of the
examples. More specifically, the feature values of WP1-WP4 are the main factor for their
misclassification, by being either neutral or supporting more the wrong over the correct
prediction. Even when they contradict the wrong prediction, like the features of WP2 and
WP3, they do not have a significant effect due to their feature weights being quite low.
In conclusion, the main factor that leads the Gradient Boosted Trees model to misclassify
the examples is their lack of dominant features supporting the real class more than the
prediction, in terms of feature weight.

In the same line of thought, the examination of the correctly classified examples
(correct predictions) resulted in several findings. The confidence for the correct predictions
for all classes was considerably high, the lower being for class B (from 0.37 to 0.55) and the
highest for class E (from 0.54 to 0.55), meaning that the model could classify the examples
of class E more confidently compared to the examples of the other classes. Additionally,
the most dominant features, in terms of feature weights, leading to the correct predictions
for each class were identified successfully and sorted in a descending order; features with
higher weight were more dominant for the correct predictions of this model than features
with lower weight. Another important finding concerning the most dominant features is
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the fact that about half of the features of the extracted feature set have the highest feature
weights (from 0.02 up to 0.037), therefore indicating that the feature extraction process, as
described in Section 3 and [19], performed quite well, producing a robust feature set with
great impact on the correct predictions. It is important to note that among these features,
terms relevant to all of the vocational domains are included, thus consisting a primary set
of terms for the vocational domains.

Regarding the data balancing direction, oversampling and undersampling techniques,
both separately and in combination as a hybrid approach, were applied on the data set,
in order to observe their impact (positive or negative) on the performance of the Random
Forest and AdaBoost model. A novel methodology is proposed in this paper for the first
time, consisting of successive applications of SMOTE oversampling on imbalanced data,
balancing the data considering which is the minority class each time, in 4 steps. By running
the experiments following this methodology, the impact of every class distribution, from
completely imbalanced to completely balanced, on the performance of the machine learning
model can be examined thoroughly. The process of the class balancing direction enabled
the comparison of the performance of this model with balanced data to the performance of
the same model with imbalanced data from the previous research [19].

More specifically, the machine learning experiments’ results with Random Forest and
AdaBoost with SMOTE oversampling have obtained significantly improved overall perfor-
mance and accuracy (up to 66.01%) compared to those of Random Forest and AdaBoost with
imbalanced data, while maintaining or surpassing the achieved F1 score per class. A major
finding is that, despite the overall performance of the model getting slightly worse with
each iteration (each added SMOTE oversampling), it is still significantly better than the
performance of the experiment with completely imbalanced data; even the lowest accuracy
(64.09%), which is that of the fourth machine learning experiment with SMOTE, is quite
higher than the accuracy (62.33%) of the experiment with completely imbalanced data.
Moreover, the values of precision, recall and F1 score seem to be distributed more evenly
among the classes with each iteration, thus mitigating any emerging bias of the model
towards one particular class. Another important finding is that, in a classification task
where 1 of the 5 vocational domains may be considered as the class of interest, e.g. for
trying to exclusively detect articles of a specific vocational domain from a corpus to filter
relevant content, the application of SMOTE oversampling for the class of interest would
have a positive effect on the results of this classification task.

The machine learning experiments’ results with Random Forest and AdaBoost with
Sample showed slightly improved overall performance and accuracy (62.84%) compared to
those of Random Forest and AdaBoost with imbalanced data, while surpassing the achieved
F1 score per class, except from class B. Comparing to the results obtained with SMOTE
oversampling, undersampling has worse performance in terms of accuracy and class
precision, recall and F1 score. The machine learning experiments’ results with Random
Forest and AdaBoost with Sample and SMOTE oversampling (hybrid approach) showed
marginally improved overall performance and accuracy (63.35%) compared to those of
Random Forest and AdaBoost only with Sample, while surpassing the achieved F1 score for
classes A and D. However, the performance of this experiment is better than that of the
experiment with completely imbalanced data. In conclusion, these experiments indicate
that when applying both data undersampling and oversampling in a hybrid approach,
the results are better than only applying undersampling, but worse than only applying
oversampling for this data set. The findings derived from the machine learning experiments
of this paper are in accordance with those of the relevant literature [12,17], in terms that
data oversampling obtains better results than data undersampling in imbalanced data sets,
while hybrid approaches perform reasonably well.

Potential directions for future work include the automatic extraction of domain-specific
terminology, to be used as a component of an educational tool for sublanguage learning
regarding specific vocational domains in host countries, aimed to help displaced communi-
ties, like migrants and refugees, overcome the language barrier. This terminology extraction
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task could use the terms (features) that were identified in this paper as the most dominant
for vocational domain identification. Moreover, a more vocational domain-specific data set
could be created to perform a more specialized domain identification task in vocational
subdomains, especially considering the set of terms identified in this paper. Experiments
with a data set consisting of either more Wikipedia articles or textual data from other wikis
and social networks as data sources could be performed. Using a different feature set, e.g.
with n-grams and term collocations, could also be attempted. Finally, another potential
direction for future work could be the application of the novel methodology of successive
SMOTE oversampling proposed in this paper in combination with undersampling tech-
niques and/or on other imbalanced data sets, in order to test its performance in different
class imbalance problems.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC Area Under the Receiver Operating Characteristic curve
BiLSTM  Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network

CRF Conditional Random Field

MLP Multi-Layered Perceptron

NLP Natural Language Processing

ROC Receiver Operating Characteristic curve

SVM Support Vector Machine
TF-IDF  Term Frequency - Inverse Document Frequency

WP Wrong Prediction
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