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Abstract: In this work, we present a study of ordinary muon capture (OMC) on 13683, the daughter
nucleus of the 13°Xe double beta decay (DBD). OMC rates to low-lying nuclear states (below 1 MeV
of excitation energy) in 13°Cs are assessed by using both the interacting shell model (ISM) and
the proton-neutron quasiparticle random-phase approximation (pnQRPA). We also add the chiral
two-body (2BC) meson-exchange currents and use an exact Dirac wave function for the captured
s-orbital muon. OMC can be viewed as a complementary probe of the wave functions in 13¢Cs, the
intermediate nucleus of the 3Xe DBD. At the same time OMC can be considered as a powerful
probe of the effective values of the weak axial-type couplings in a 100-MeV momentum-exchange
region relevant for the neutrinoless DBD. The present work represents the first attempt to compare
the ISM and pnQRPA results for the OMC on a heavy nucleus by including also the exact muon wave
function and the 2BC. Sensitivity estimates of the present and future neutrinoless DBD experiments
will clearly benefit from the future OMC measurements through the OMC calculations similar to the
present one.
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1. Introduction

Neutrinoless double beta decay (NDBD) has been one of the key issues in nuclear and
particle physics since many decades [1-4]. A number of experiments are trying to measure
this hypothetical process [5] and numerous nuclear-structure calculations have tried and
are trying to address the associated nuclear matrix elements (NME) (for a comprehensive
list, see [1,4,5]). In particular, several efforts to compute these NME have been done
in the interacting shell model (ISM) (see, e.g., [6-9]) and proton-neutron quasiparticle
random-phase approximation (pnQRPA) (see, e.g., the reviews [5,10]). The theory estimates
for NDBD are pestered by sizable discrepancies between the NME—which enter the
NDBD rate in second power—obtained with different nuclear many-body methods [5].
Furthermore, there is an additional uncertainty related to the possible need of quenching
the Gamow-Teller type of spin-isospin operator o7, which dominates the NDBD NME.
Since ga multiplies this operator, the quenching of ot by a quenching factor g can be
interpreted also as quenching of g4 in terms of geAff =q gbAare, where we take ggare =1.27as
the bare value of ga, obtained from the beta decay of a free neutron (there have been many
measurements, see, e.g., [11]). A lot of work has been done within the ISM and pnQRPA
communities in order to seek for appropriate quenching in the context of low-momentum
exchange beta and two-neutrino double-beta decays [12]. However, the situation at higher
momentum exchange is less clear [13]. The need of quenching is a result of deficiencies
in the nuclear many-body methods used in the calculations and of the omission of the
two-body meson-exchange currents, as discussed exhaustively for light nuclei in [14].
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The above-mentioned work on the effective value of go concerns processes with
momentum exchanges between the involved lepton(s) and the nucleus within the range of
a few MeV !. Contrary to this, the momentum exchanges involved in the NDBD are of the
order of 100 MeV. This means that one cannot use the obtained results for the quenching
related to the meson-exchange currents directly for the NDBD, but one has to evolve those
to higher momentum exchanges, like first done in [13] implementing the chiral two-body
currents (2BC) in the Gamow-Teller type of transitions. Recently, these two-body currents
were implemented in the nuclear ordinary muon capture (OMC) formalism of Morita and
Fujii [15] in [16] for the light nucleus >*Mg.

OMC is able to probe nuclear wave functions within wide ranges of energies and spins
of nuclear excitations, relevant for the NDBD [17,18]. At the same time, OMC can be used
to probe the effective values of both g and gp, the induced pseudoscalar coupling, in a
momentum-exchange region typical for the NDBD [19]. In addition, comparison of the
muon-capture and NDBD matrix elements shows clear correlations as shown in [18,20].

As mentioned above, 2BC were implemented in [16] for the OMC on **Mg. There
ISM results were compared with those of an ab initio method, the valence-space in-medium
similarity renormalization group (VS-IMSRG). Here we want to extend the ISM study to a
heavy-nucleus case, 136B3, the final nucleus of the 136Xe NDBD. The nucleus 13¢Xe is highly
important in terms of NDBD measurements [21-24]. In the present work, we compare the
ISM- and pnQRPA-computed partial OMC rates with each other and study the effects of
the 2BC on them for final states below some 1 MeV of excitation energy in 13¢Cs. This
energy range is accessible to the present state-of-the-art OMC experiments, like the one of
the MONUMENT Collaboration [25].

2. Theoretical framework

Ordinary muon capture (OMC), as differentiated explicitly from its radiative coun-
terpart, on the even-even nucleus '**Ba populates the final states in the odd-odd nucleus
136Cs according to the schematic

po+ Ba(0f,) — v+ Cs(J7), 1)

where a negative muon (1) is captured by the ground state of 13°Ba, leading to the final
states | }T in 1%Cs, where ] is the angular momentum and 7 the parity. At the same time a

muon neutrino vy is emitted.

2.1. Bound-muon s-orbital wave function

Here we compute the OMC rates by using the formalism of Morita and Fujii [15]. In
this formalism it is straightforward to implement the exact Dirac wave function of the
muon, as described in detail in [16]. The Dirac wave function can be written as

iFK(T)XKy(?)]
G (1) X (7)
where G, and F; are the radial wave functions of the bound state [15] and x, are nor-

malized spherical spinors. The index « is related to the orbital quantum number [ in the
following manner

Pl pir) = gl = { b3

®)

l=xandj=1-1 forx >0
l:—K—landj:l+% forx < 0.

After being stopped in the outer shells of an atom, the negative muon transits to the
lowest atomic orbital, the 1s; /, state, which corresponds to xk = —1 and u = +1/2. The
corresponding large and small components of the bound-muon wave function, G_; and

1 Note: in the present work we use the convention ¢ = 1 for compactness of presentation.
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F_4, of Eq. (2) can be numerically solved from the Dirac wave equations in the Coulomb
field created by the nucleus [16]. Here we assume a nucleus with a uniform spherical
charge distribution with a charge radius R, = rgAl/3, with ry = 1.2 fm and A being the
nuclear mass number. The large component of the wave function accounts for the major
part of the physics of the captured muon, while the small part accounts only for some 1%
of the wave function, see e.g. Fig. 1 in Ref. [16]. Hence, we can safely neglect the small
part. The G_; part can be compared with the Bethe-Salpeter (BS) equation [26] for a point
nucleus:

B 3 149 27\ 71 Zr/ay

In Figure 1 we display the exact Dirac s-orbital wave function (large component)
and its various degrees of approximation for 1%Ba. In the figure it can be seen that the
point-nucleus exact wave function and its BS approximation are quite close to each other,
except at very short distances r < 3 fm. Contrary to this, the exact finite-nucleus Dirac
wave function deviates considerably from the other two, especially within the nucleus (the
gray band in the figure). This is a much more drastic effect than the corresponding one for
a light nucleus, such as >*Mg (see Figure 1 of [16]).
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Figure 1. Comparison of the large component of the exact muon wave function for a finite nucleus
with a uniform spherical charge distribution (blue line) with a corresponding one for a point-like
nucleus (red line) and its Bethe-Salpeter (BS) approximation (black line). The gray band denotes the
range inside the nucleus.

2.2. Muon-capture rates

The calculation of the OMC rates is done using the Morita-Fujii formalism [15] and its
extension developed in Refs. [27,28] in order to treat small OMC rates in a more reliable
way. The OMC rate of the process (1) can be expressed as

_ _ q 2
w_ZP(2]f+1)<1 mﬂ+Am>q' ®)

where the momentum exchange (g value) can be expressed as

q_(my_W0)<1_2(m;—1|—MAZ\/I)> . (6)
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Here J; is the final-state spin-parity, M the average nucleon mass and 1, () the rest mass
of the muon (electron). The threshold energy Wy = My — M; + m, + Ex contains M; and
My as the masses of the initial and final nuclei and Ex the excitation energy of the final
nuclear state in 13°Cs. The rate function P contains the nuclear matrix elements, phase-space
factors and combinations of the weak couplings ga (axial-vector coupling), gp (induced
pseudoscalar coupling) and ¢p = 1+ pp — pu (induced weak-magnetism coupling), where
#p and p, are the anomalous magnetic moments of the proton and the neutron. In the
present work we use the Goldberger-Treiman partially conserved axial-vector-current
(PCAC) value for the ratio of the two axial-type couplings:

2Mq

gP/gA_qZ_’_m% ~ 638, (7)
where m,; = 138.04 MeV is the pion rest mass. Unless otherwise indicated, we adopt the
free-neutron value g5 = 1.27 in our calculations. Explicit expressions for the rate function
P, containing all the next-to-leading-order terms, can be found in all detail in [28] and we
do not repeat those expressions in this article. It should be noted that at low excitation
energies, as considered in the present work, Wy/m, < 1 and hence the nuclear matrix
elements in P depend only weakly on the excitation energy Ex of the nuclear state.

2.3. Chiral two-body currents
We take the effect of the 2BC into account by making the replacements

ga — (1464(q%))ga ®)
and
2 4 2
gp — (1 1 qzmnéf(f))gp, ©)

where the 2BC contributions 6, (g?) and ) (g?) are approximated by the normal-ordered
one-body part of the chiral two-body currents, as done in [29]. The normal ordering is
done with respect to a Fermi-gas reference state with density p. In the present work we
take the involved integrals in d,(¢%) and 6% (%) to be those of [30] with the density range
p=0.09—-011 fm 3. We use the same values of the involved constants as in [29], as done
also in [31]. For the low-energy constants (LEC) ¢y, c3, c4, ¢ and cp involved in the currents,
we use the values listed in Table V of [29]. The constant cp was in [29] adjusted so that the
axial-vector correction &, (g?) corresponds to the typical 20 — 30% axial-vector quenching
(or g5 = 0.89 — 1.02 in terms of an effective coupling) at g = 0 MeV: the pair (p = 0.09
fm=3, cp = —6.08) giving the most quenching and (o = 0.11 fm~3, cp = 0.3) the least. We
use the ranges of da(q%) and da” (%) produced by these parameter choices for quantifying
the uncertainties of our computed OMC rates. The corresponding 2BC are displayed in
Figure 2 where the relevant momentum-exchange region is indicated by a vertical band.
For the excitation-energy region discussed in the present work the momentum exchanges
are contained within the interval gopc = 101.5 — 102.6 MeV and the 2BC contributions
within the intervals &,(g?) = —(0.210 — 0.211) and 4} (4%) = 0.178 — 0.180.

The corrections coming from the inclusion of the 2BC at the relevant momentum-

exchange region correspond to a range geAff(qOMC) = 0.88 — 1.00 of quenched values of the

weak axial coupling and a range of g&f(gomc) = 5.04 — 5.43 of quenched values of the

induced pseudoscalar coupling.

2.4. Many-body methods

In the present work, we use the interacting shell model (ISM) [32] and the proton-
neutron quasiparticle random-phase approximation (pnQRPA) [33] to compute the ground-
state wave function of 13°Ba and the ground and excited states of 3*Cs. There are several
earlier ISM calculations of DBD characteristics of the 130Xe-13¢Cs-130Ba triplet of nuclei
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Figure 2. Two-body currents used in the present work as functions of momentum exchange. The
dashed lines denote the currents obtained by p = 0.09 fm > and cp = —6.08 and the dotted those
obtained with p = 0.11 fm 2 and ¢p = 0.30. The typical momentum-exchange region of the
transitions considered in the present work is denoted by a vertical gray band.

[6-9]. In these calculations the jj55pn model space with the single-particle orbitals 2s; /7,
1d3 /5, 1d5 /5, 0g7/2 and 0hyq /, was adopted for both protons and neutrons. Here we adopt
the same model space and use the sn100pn [34] interaction whose Hamiltonian consists
of neutron-neutron (nn), proton-neutron (pn) and proton-proton (pp) interactions, with
the latter containing the Coulomb interaction. The single-particle energies are -9.68, -8.72,
-7.34,-7.24, and -6.88 MeV for the proton and -9.74, -8.97, -7.62, -7.31, and -7.38 MeV for the
neutron 0872, 1ds /5, 2512, 1d3 /> and Ohyq /5 orbitals, respectively [34]. In [8] a quenching
factor g = 0.45 was used for the spin-isospin operator ¢7, and in [6,7,9] g = 0.74. The

latter quenching corresponds to a value g§f = 0.93 of the effective value of the axial-vector

coupling. We adopt this value of geAff in this work, as benchmarked by the three mentioned

ISM calculations and preferred by the quenching through the 2BC, the associated g5t
interval discussed at the end of Section 2.3. In the actual ISM computations we use the
NuShellX@MSU code with its interaction libraries [35].

The pnQRPA is known to be a theory which correctly accounts for the gross features of
spin-isospin strength functions, e.g. in (p,n) and (n,p) reactions [4]. The problem with the
pnQRPA is the fine structure of, e.g., the low-lying states in odd-odd nuclei. In the present
study, we want to test the capabilities of pnQRPA in producing the low-energy excitation
spectrum in 136Cs by comparison of its results with those of the ISM. We use the same large
no-core single-particle bases for protons and neutrons as in [36]. These bases are based on
Coulomb-corrected Woods-Saxon potential [37] and slightly modified in the vicinity of the
respective Fermi surfaces. All the basic features of the pnQRPA are covered in detail in
[33] so that we do not want to go into these details in this article. It suffices to know that
the pnQRPA is based on the BCS theory of superconductivity and the pairing strengths
for the protons and neutrons are obtained from the matching with the observed proton
and neutron separation energies in the reference even-even nucleus [33], in this case **Ba.
Furthermore, we use the method of Ref. [38] to divide the renormalization of the effective
two-body Bonn-A G-matrix interaction [39] into particle-hole and particle-particle parts by
using the effective adjustable strength parameters gy, and gpp, known as the particle-hole
and particle-particle strength parameters, respectively. The particle-hole parameter, gyp,
is typically adjusted to the centroid energy of the Gamow-Teller giant resonance (GTGR)
in the adjacent odd-odd nucleus of the even-even reference nucleus. Here we resort to
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the same recipe and adjust it to the known GTGR energy in '3¢Cs [36] to obtain the value
gph = 1.18.

In Ref. [36], a refined method concerning the g, parameter was adopted: following
the original idea put forth in [40], a scheme called partial isospin restoration (PIR) was
adopted. In the present work we follow the PIR by multiplying the isoscalar (T = 0) and
isovector (I = 1) parts of the particle-particle matrix elements of the G-matrix by the
strength parameters gPT,;O and gPT,p:l, respectively. The isovector strength is adjusted such
that the Fermi part of the two-neutrino double-beta-decay (TNDBD) NME, corresponding
to the transition 13Xe — 13Ba, vanishes, leading to a partial isospin restoration of the
T = 1 proton-neutron, proton-proton and neutron-neutron pairing channels. The isoscalar
strength is subsequently varied to reproduce the measured half-life of the mentioned
TNDBD transition [41].

3. Results and discussion

First, we perform benchmark calculations in both the ISM and pnQRPA omitting
the 2BC contributions and using the free-nucleon value g = 1.27 and the corresponding
pseudoscalar coupling gp = 8.64 following from the Goldberger-Treiman relation (7). In
the pnQRPA calculations, we adjust the particle-particle parameters via the PIR scheme.
We use the shorthand notations sm-1BC and qrpa-1BC for these methods in the following.
Then, we perform more realistic calculations taking into account the missing 2BC and the
deficiencies of the many-body methods. We perform four different evaluations of the OMC
rates, naming them as:

sm-2BC: We perform an ISM calculation using the sn100pn interaction [34] by quenching
the free axial-vector couplings gao = 1.27 and gp = 8.64 by the 2BC according to
Egs. (8) and (9).

sm-phen: We perform an ISM calculation like above but this time we use the phenomeno-
logically obtained quenched value geAff = 0.93 [9] and the value g%ff = 6.32 obtained
through the Goldberger-Treiman relation (7).

qrpa-2BC: We use the pnQRPA method as described in Section 2.4 and quench g and gp
by the 2BC using Egs. (8) and (9). We use the PIR scheme and adjust the isoscalar
strength to a value ggpzl = 0.86 in order to achieve the partial isospin restoration

and then we adjust the isoscalar strength to the values gI:T,p:O = 0.65 ( gFT,;O =0.67) in
(2v)

order to reproduce the TNDBD half-life #,", = (2.18 +0.05) - 102! yr [41] using the
effective coupling g5 = 0.89 (¢ = 1.02) corresponding to the free-nucleon value
ga = 1.27 quenched by the zero-momentum-transfer correction d,(0) through Eq. (8)
with parameters p = 0.09 fm > and cp = —6.08 (p = 0.11 fm > and cp = 0.30).

qrpa-phen: Again, we use the pnQRPA method like above but use as the particle-particle
strength the value ggp: 0 = ggp: 1 = 0.7 obtained from the extensive survey of the
B-decay and TNDBD half-lives within the mass range A = 100 — 136 in [42]. We
adopt the effective coupling ggff = 0.83 resulting from the so-called linear g4 model
of the same work. This value is somewhat below the range of values g5 = 0.89 — 1.02
corresponding to the axial-vector correction d,(0) at zero-momentum transfer. The

corresponding effective pseudoscalar coupling is gfff = 5.64 as obtained through the

Goldberger-Treiman relation (7). The value gf{f = 0.83 can be considered to account
for both the missing two-body currents at § = 0 MeV and the deficiencies of the
many-body approach in the spirit of [14]. However, it does not take into account the

momentum dependence of the two-body currents.

A summary of the values of all the involved couplings and parameters is made in Table 1.
We only consider OMC rates to states with angular momenta | < 5 since OMC rates to
states of higher angular momenta are negligible.

We start by comparing the calculated ISM and pnQRPA excitation spectra of 1*°Cs
with the experimental one, the results being shown in Figure 3. The pnQRPA calculations
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Figure 3. Excitation-energy spectrum of '3Cs. A comparison between the experimental spectrum
and those computed by using the ISM and pnQRPA is shown. The experimental spectrum is taken
from the ENSDF database [43]. Only states with angular momenta | < 5 are considered.

are done according to the scheme qrpa-2BC and qrpa-phen. Here it is worth noting that
there are three sets of the pnQRPA-computed energies based on the three different values
of the (ggpzo, ggp:l) pairs used in the pnQRPA calculations. Here we plot just one set of
energies in the qrpa-2BC scheme since the two sets of energy are almost identical. From
Figure 3 it can be seen that the density of both the ISM- and pnQRPA-computed states
is quite the same, higher than the density of the measured ones. It is in fact remarkable
that both theories predict so similar low-energy spectra with pnQRPA able to reproduce
the density of the ISM states. The density of the experimental spectrum is smaller than
predicted by the computations, probably due to difficulties in observing some of the states.

The results of the OMC calculations are presented in Tables 2 (ISM results) and 3
(pnQRPA results). In Table 2, the first column displays the spin-parity of the final state
and the second column its excitation energy in MeV (in order of increasing energy). The
third to fifth columns give the ISM-computed OMC rates in units of 10° 1/s. The third
column (1BC) corresponds to an ISM calculation without the 2BC contribution and the
fourth column corresponds to the same calculation with the 2BC contribution included (the
sm-2BC calculational scheme). The fifth column lists the OMC rates obtained by using the
phenomenological sm-phen calculational scheme. Table 3 has a similar structure but now
there are two sets of qrpa-2BC energies (column 2) corresponding to the two sets of LEC
used in our calculations, and the set of qrpa-phen energies in column 3. Columns 4 — 6 list
the OMC rates obtained by using the schemes qrpa-1BC, qrpa-2BC and qrpa-phen.
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Table 1. Values of the weak axial couplings, the Fermi-gas density p, the LEC cp and pnQRPA
parameters used in our calculations.

sm-1BC and sm-2BC sm-phen Cilg)é_ qrpa-2BC gil}:! ?1_

gbp? - - 0.69 0.65 0.67 0.7

gbp ! - - 0.86 0.86 0.86 0.7

$ph - - 1.18 1.18 1.18 1.18

g 1.27 0.93 1.27 1.27 1.27 0.83

gp/8a 6.8 6.8 6.8 6.8 6.8 6.8
o 0.09 0.11 - - 0.09 0.11 -
p -6.08 0.30 - - -6.08 0.30 -

Table 2. ISM-computed energies (second column) and OMC rates (third to fifth columns) to the
final states (f) of spin | and parity 7t (first column) with angular momenta | < 5. The bottom line
summarizes the total OMC rates below some 1 MeV as summed over the OMC rates listed in colums
three to five. The lower (upper) limits in column four correspond to the Fermi-gas density p = 0.09
fm 3 and the low-energy constant cp = —6.08 (o = 0.11 fm—3 and ¢p = 0.3), the rest of the LEC
being equal in the two sets.

OMC Rate (103 1/5)

]}r E(MeV) sm-1BC sm-2BC sm-phen
57 0.000 0.0647 0.0661 (0.0836) 0.0433
37 0.023 4.02 2.75 (3.36) 2.60
4f 0.039 1.50 1.36 (1.40) 1.37
2 0.083 10.6 5.62 (6.99) 6.18
35 0.181 12.0 6.24 (8.08) 6.66
2 0.225 20.1 12.8 (15.00) 13.7
37 0.244 494 2.48 (3.23) 2.71
45 0.323 5.83 3.50 (4.17) 3.78
47 0.498 6.00 4.34 (4.83) 454
3f 0.517 31.2 16.8 (21.5) 17.9
5. 0.522 0.645 0.371 (0.451) 0.404
37 0.545 16.1 8.85 (11.0) 9.73
17 0.545 9.01 4.67 (6.03) 5.03
47 0.547 24.0 13.0 (16.7) 13.7
25 0.615 18.2 12.5 (14.2) 13.2
5, 0.671 0.251 0.190 (0.208) 0.198
17 0.752 0.285 0.123 (0.163) 0.146
4 0.760 222 1.31 (1.65) 1.32
2f 0.803 2.49 1.74 (1.95) 1.83
4f 0.885 0.143 0.0865 (0.103) 0.0933
27 1.016 78.6 41.5 (53.3) 44.4

Sum (103 1/s) 248 140 (174) 150
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Table 3. pnQRPA-computed energies for the qrpa-2BC scheme (second column) and the qrpa-phen
scheme (third column), and OMC rates (fourth to sixth columns) to the final states (f) of spin | and
parity 7t (first column) with angular momenta | < 5. The bottom line summarizes the total OMC
rates below 1 MeV as summed over the OMC rates listed in colums four to six. The two energies in
column 2 and the lower (upper) limits in column five correspond to the Fermi-gas density p = 0.09
fm=3 and the low-energy constant cp = —6.08 (p = 0.11 fm=3 and ¢p = 0.3), the rest of the LEC
being equal in the two sets.

OMC Rate (10® 1/s)

E(MeV) E(MeV)

]}T qrpa-2BC qrpa-phen qrpa-1BC qrpa-2BC qrpa-phen
5/ 0.000 0.000 0.902 0.491(0.601) 0.483
37 0.110(0.107) 0.102 3.04 1.74(2.19) 1.51
2f 0.124(0.122) 0.120 133 102(111) 93.3
4f 0.139(0.144) 0.154 10.0 8.81(9.34) 8.96
1 0.227(0.213) 0.193 443 243(303) 207
45 0.180(0.179) 0.203 124 8.76(9.61) 8.25
3y 0.249(0.254) 0.264 11.6 7.93(10.8) 3.49
37 0.268(0.273) 0.281 156 85.6(108) 77.5
3F 0.330(0.332) 0.338 12.2 9.50(11.9) 5.34
25 0.340(0.346) 0.367 88.3 49.0(60.2) 50.1
37 0.461(0.459) 0.458 48.0 28.9(34.4) 25.8
47 0.471(0.477) 0.494 4.19 3.24(3.60) 3.18
57 0.505(0.509) 0.515 1.20 0.825(0.933) 0.775
4, 0.553(0.555) 0.558 1.60 1.04(1.19) 0.596
25 0.533(0.538) 0.561 87.1 60.0(68.3) 57.7
5, 0.621(0.624) 0.637 0.017 0.0135(0.0149) 0.0178
4; 0.681(0.686) 0.695 43.1 24.1(30.6) 20.5
27 0.750(0.725) 0.704 27.3 26.6(26.0) 14.2
3, 0.896(0.901) 0.926 20.5 12.7(15.1) 12.9
Sum (10° 1/s) 1103 674(807) 592

The first observation from columns three and four of Tables 2 and 3 is that the two-body
currents, included either via the 2BC corrections J,(4%) and 6% (4) or phenomenologically
via effective couplings, affect the OMC rates considerably, on average by some (30-40)%,
but even up to almost 50% in some cases. Comparison of the ISM-computed and pnQRPA-
computed OMC rates with each other indicates that in both models the most important
contributions come from the 11, 2,2~ and 37 states. Quantitatively, the correspondence
of the OMC rates between the four schemes is quite reasonable for the 27, 4" and 4~ states,
the 4, and 4, states seemingly switched in energy between the ISM and pnQRPA models.
The total rates to these states are 41.5 (53.3), 9.29 (10.5), 14.3 (18.4) for the sm-2BC scheme,
44.4, 9.78, 15.0 for the sm-phen scheme, 26.6 (26.0), 20.8 (22.6), 31.8 for the qrpa-2BC
scheme and 14.2, 20.39, 21.2 for the qrpa-phen scheme in units of 10% 1/s, respectively. A
quantitative comparison for the 17 and 2 state would give the total OMC rates of 4.79
(6.19), 32.7 (38.1) for the sm-2BC scheme, 5.18, 34.9 for the sm-phen scheme, 243 (303), 211
(240) for the qrpa-2BC scheme and 207, 201.1 for the qrpa-phen scheme in units of 103 1/s,
respectively, indicating that the pnQRPA states are able to catch more collectivity of these
states, in particular for the 11+ state which is quite collective in the pnQRPA.

In order to relate the pnQRPA results to previous measurements one can take a look
at the computations done in Ref. [28]. There the rates of the OMC on several double-beta
daughter nuclei, in particular on 13°Ba, were computed by using large no-core single-
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particle spaces and the effective Bonn-A potential, quite like in the present work. In those
calculations the effective values geAff = 0.80 and gle,ff = 7.0 were adopted which are values
close to those of our qrpa-phen scheme and not far from our qrpa-2BC calculational
scheme. This makes the three computations very well comparable, in particular for the
OMC on 13Ba, but also for 7°Se where experimental data exists. In Table V of [28] the
pnQRPA-computed OMC rates to final states in 7°As, below some 1 MeV of excitation
like in the present work, were compared with the corresponding experimental ones, and a
surprisingly good correspondence was found. There the total rate for the OMC to the 0T,
1*,17,2%,27,3%,37,4% and 4~ final states in 7°As was 665 x 10° 1/s in experiment and
675 x 10% 1/s in the pnQRPA. These total OMC rates are in line with the total OMC rates
of (674 — 807) x 10® 1/s and 592 x 10 1/s of our qrpa-2BC and qrpa-phen calculational
schemes, respectively. In particular, both in the experiment and in the pnQRPA calculation
of [28] the 1T rate was the larges one with the values 218 x 10% 1/s for the experiment
and 237 x 103 1/s for the pnQRPA, well comparable with our (243 — 303) x 102 1/s and
207 x 103 1/s in the qrpa-2BC and qrpa-phen calculational schemes. In [28] also the OMC
to 27 states was strong, some 10 times stronger than in the present calculations, since the
role of 27 states in pf-shell nuclei is quite pronounced [4].

The measured total rate in 13°Ba, including all the possible final states, features 11100 x
103 1/s [44]. This means that the OMC rate to states below 1 MeV accounts for some 1.5 %
of the total rate for the sm-2BC scheme, 1.4 % of the total rate for the sm-phen scheme, 6 —7
% of the total rate for the qrpa-2BC scheme and 5.3 % of the total rate for the qrpa-phen
scheme, thus being below 10 % but still non-negligible. This highlights the importance of
comparison with the potential future experimental data and the emerging implications for
the virtual NDBD transitions below some 1 MeV of excitation in the intermediate nucleus
of a double-beta triplet of nuclei.

In the end, it would be highly interesting to compare the presently computed OMC
rates to individual final states and the total OMC rate below 1 MeV with the future experi-
mental results by the MONUMENT Collaboration [45]. This will open up the possibility to
probe the nuclear wave functions within the considered 1 MeV excitation-energy interval
in 136Cs. At the same time, we can gain information on the value of both g5 and gp, the
weak axial coupling and the induced pseudoscalar coupling, in a momentum-exchange
range relevant for the NDBD [19]. This gained information helps improve the precision of
the nuclear matrix elements of the NDBD and thus reflects to the sensibility estimates of
the presently running and future NDBD experiments.

4. Conclusions

In the present work we compute the rates of the ordinary muon capture on **Ba to
low-lying nuclear states (below some 1 MeV of excitation energy) in 13°Cs, 13*Ba being
the daughter nucleus of the '3¢Xe double-beta decay. The capture rates are computed by
using the interacting shell model (ISM) and the proton-neutron quasiparticle random-phase
approximation (pnQRPA). Also the chiral two-body meson-exchange currents and the exact
s-orbital Dirac wave function of the captured muon are used in the numerical computations.
The computed energy spectra and the capture rates below 1 MeV of excitation in 13¢Cs
are surprisingly similar for both the ISM and the pnQRPA, the experimental low-energy
spectrum being less dense. The chiral two-body currents reduce the capture rates by
some (30-40)% on average and the summed capture rates below 1 MeV of excitation in
136Cs account for some (1-7)% of the total measured capture rate, thus being potentially a
sizable portion of the total capture rate. Comparison of the capture rates with the future
experimental data opens up possibilities for accessing the wave functions of the low-energy
states in 13°Cs and the effective values of the weak axial-type couplings, relevant for the
neutrinoless double beta decay of 13°Xe, and beyond.
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