
Article

Not peer-reviewed version

ROSGPT: Next-Generation Human-

Robot Interaction with ChatGPT and

ROS

Anis Koubaa

*

Posted Date: 26 April 2023

doi: 10.20944/preprints202304.0827.v3

Keywords: Human-Robot Interaction; ROS; ROS2; ChatGPT; Large Language Model; Robot Operating

System

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/716660

Article

ROSGPT: Next-Generation Human-Robot Interaction
with ChatGPT and ROS

Anis Koubaa

Prince Sultan University, Saudi Arabia, Research Centre in Real-Time and Embedded Computing Systems,

Polytechnic of Porto, Porto, Portugal; akoubaa@psu.edu.sa or aka@isep.ipp.pt

Abstract: This paper presents ROSGPT, an innovative concept that harnesses the capabilities of large

language models (LLMs) to significantly advance human-robot interaction. We develop ROSGPT as

a ROS2 package that seamlessly integrates ChatGPT with ROS2-based robotic systems. The core idea

is to leverage prompt engineering with LLMs, specifically ChatGPT, utilizing its unique properties

such as ability eliciting, chain-of-thought, and instruction tuning. The concept employs ontology

development to convert unstructured natural language commands into structured robotic instructions

specific to the application context through prompt engineering. We capitalize on LLMs’ zero-shots

and few-shots learning capabilities by eliciting structured robotic commands from unstructured human

language inputs. To demonstrate the feasibility of this concept, we implemented a proof-of-concept

that integrates ChatGPT with ROS2, showcasing the transformation of human language instructions

into spatial navigation commands for a ROS2-enabled robot. This versatile concept can be easily

adapted to various other robotic missions. ROSGPT serves as a new stride towards Artificial

General Intelligence (AGI) and paves the way for the robotics and natural language processing

communities to collaborate in creating novel, intuitive human-robot interactions. The open-source

implementation of ROSGPT on ROS 2 is available on GitHub ROSGPT implementation on ROS 2

(Humble). https://github.com/aniskoubaa/rosgpt.

Keywords: Human-Robot Interaction, ROS, ROS2, ChatGPT, Large Language Model, Robot

Operating System

1. Introduction

1.1. Background on Human-Robot Interaction

The interaction between humans and robots has been of great importance, interest, and

development since the release of robots [1]. In recent years, with the exponential advances of artificial

intelligence, the research community has strived to develop more intuitive and seamless interaction

approaches between humans and robotics systems[2,3]. The need for augmenting the human-robot

interaction experience aims to allow for a better natural mutual understanding between robots,

regardless of their working environments. By addressing the complexities of work organization,

cognitive and perceptual workload limits for robot operators, and the increasing use of robots with

diverse roles, we can envision a future where humans and robots communicate seamlessly using a

common language, ultimately fostering a harmonious coexistence between humans and machines [4].

1.2. The Role of Large Language Models in Natural Language Understanding

The above vision of seamless human-robot communication seems closer than ever with the advent

of large language models (LLMs) [5] such as ChatGPT [6,7] developed by OpenAI. ChatGPT has

brought about a remarkable turnover in the field of artificial intelligence and its horizon of applications,

including in robotics. Their impressive language processing and understanding capabilities have

opened up new possibilities for human-robot interaction. The research community has begun to

explore the benefits of large language models (LLMs) in advancing human-robot interaction. For

instance, a recent study by Fede et al. (2022) introduced the Idea Machine, which leverages LLMs

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202304.0827.v3
http://creativecommons.org/licenses/by/4.0/

2 of 30

to provide intelligent support for idea-generation tasks for robotics automation, idea expansion and

combination, and a suggestion mode. These developments have opened up new possibilities for

enhancing human-robot interaction and bringing us closer to the vision of seamless communication

between humans and robots.

Large language models are natural language processing systems trained on massive amounts of

textual data using deep learning techniques. A major reason behind the growth of LLMs is the seminal

work on self-attention [8], which led to the development of transformer models that revolutionized the

field of NLP. LLMs have the ability to understand human language inputs and generate contextual

responses in a variety of applications. These models can be fine-tuned for specific tasks, such as

language translation or text summarization, making them incredibly versatile. Examples of popular

LLMs include GPT-3 [6] and GPT-4 [9,10] by OpenAI, BERT [11], and T5 by Google [12]. The impressive

abilities of LLMs are indeed specific to them and distinguish them from smaller pre-trained language

models (PLMs). However, while LLMs have shown impressive performance on complex tasks, their

intrinsic capabilities are not yet fully understood by the research community and are still under

investigation [5].

LLMs have been proven to be highly useful in several applications due to their remarkable ability

to learn new communication patterns with either zero-shot or few-shot learning. In zero-shot learning,

the LLM can generate accurate responses for tasks it has never been trained on, while in few-shot

learning, it can effectively adapt to new tasks with only a few training examples. This adaptability is a

key advantage of LLMs, allowing them to learn quickly and improve in various contexts.

LLMs’ remarkable on-the-fly learning capabilities are based on prompt engineering techniques

that can guide these models to accomplish highly complex natural language processing and

understanding tasks. These techniques involve providing specific prompts or instructions to the

LLM, which enables it to generate highly accurate and relevant responses to input text. This flexibility

and adaptability of LLMs have made them highly valuable for a wide range of applications, from

language translation and text summarization to chatbots and human-robot interaction.

Our main idea is to utilize prompt engineering techniques to enable natural communication

between humans and robots. We achieve this by converting human speech into natural language

text, which is then processed through the LLM to generate a context-specific robotic task through a

structured command that a robotic program can easily interpret and execute. This approach allows for

more intuitive and efficient communication between humans and robots, making conveying complex

instructions and commands more naturally and understandably easier. The main remaining challenge

is for humans to effectively design well-crafted prompts that can accurately elicit the necessary tasks

for the robot to execute. In fact, as reported in [13], crafting effective prompts can be challenging for

non-experts. Prompt-based interactions are brittle as small variations or mistakes in the prompt can

lead to incorrect or unexpected results.

By leveraging the power of LLMs, we can significantly enhance the overall human-robot

interaction experience and improve the efficiency and effectiveness of robotic systems.

1.3. Novelty of ROSGPT

Building on the capabilities of LLMs, we propose ROSGPT, a conceptual framework that leverages

the capabilities of large language models (LLMs) to improve human-robot interaction. In other words,

we utilize ChatGPT as a sophisticated translation broker between humans and robotics systems

by leveraging its zero-shot and few-shot learning capabilities. The name "ROSGPT" stems from

the integration of ChatGPT with Robot Operating System ROS. Throughout this paper, we use the

abbreviation ROS to interchangeably refer to ROS 1 and ROS 2. With ROSGPT, ChatGPT can translate

unstructured human language commands into well-formatted, context-specific robotic commands,

which can be easily interpreted by a ROS node and converted into appropriate ROS commands. This

allows robots to perform tasks as humans require in a more natural and intuitive manner.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

3 of 30

We believe this work is the first to bridge large language models and Robot Operating System

(ROS), which serves as the primary development framework for robotics applications. In [14], Microsoft

Research extended ChatGPT’s capabilities to robotics, enabling intuitive language-based control of

various robotic platforms such as robot arms, drones, and home assistant robots. They developed

design principles to guide language models toward solving robotics tasks and demonstrated ChatGPT’s

ability to control different robot form factors without any fine-tuning. The research also introduced

PromptCraft, a collaborative open-source platform for sharing prompting strategies for different

robotics categories, and an AirSim environment with ChatGPT integration. In contrast, Distinct from

the approach presented in [14], our proposed ROSGPT framework introduces several innovative

elements that significantly advance the field of natural human-robot interaction. Firstly, ROSGPT

harnesses ontology to guide ChatGPT in eliciting the tasks to be executed, providing a more structured

approach to understanding and solving robotics tasks. Secondly, ROSGPT combines the Robot

Operating System (ROS) with ChatGPT, marking the first time such integration has been achieved,

thus bridging the gap between natural language understanding and ROS. Lastly, ROSGPT allows for

the execution of pre-defined primitives in real-time upon decoding human commands, offering more

responsiveness and versatility in robotic control through human interaction.

In [15], the author presented robotGPT, reviewing ChatGPT’s principles and proposing a general

discussion on enhancing robotic intelligence using ChatGPT. While the paper highlights the importance

of addressing human self-awareness, personality, biases, and ethics in robotic systems, it lacks empirical

evidence to support the proposal. Moreover, the author did not discuss how LLMs could promote

enhanced human-robot interaction, provide any implementation specifics, or endorse evidence for

their proposal.

In contrast, this paper introduces ROSGPT, a novel conceptual framework that leverages ChatGPT

and ROS to enrich human-robot interaction by providing a more intuitive and natural experience.

In addition, we have developed an open-source proof-of-concept implementation of ROSGPT on

ROS 2, available at [16], that serves as a stepping stone for the ROS and NLP communities to further

investigate and advance this multidisciplinary research area.

2. Conceptual Architecture of ROSGPT

The ROSGPT architecture is depicted in Figure 1. The human can talk with the robot and speak a

command to the robot. A text-to-speech module converts the speech command to an unstructured

textual command, which is then transferred to the ROSGPT proxy located in the robotic system.

ROSGPT has two modules, as described in what follows.

Robot Hardware

Robot Hardware

ROSGPTProxy
Prompt Engineering ChatGPT REST API

{command: Go to the kitchen

and bring me water}

{command:

Go to the kitchen

and bring me water}

{command: go_to,  

location: kitchen,

action: bring water}

ROSParser
COMMAND INTERPRETER

ROSGPT

ROBOTIC SYSTEM ARCHITECTURETEXT-TO-SPEECH MODULE LLM CLOUD

Figure 1. ROSGPT Architecture for Human-Robot Interaction.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

4 of 30

2.1. GPTROSProxy: The Prompt Engineering Module

This module is responsible for processing unstructured text inputs using a prompt engineering

approach. The objective is to design context-specific prompts that enable the conversion of unstructured

textual commands into structured commands that can be easily interpreted programmatically and

subsequently executed as proper actions in ROS.

Prompt engineering is a challenging process that requires specialized expertise to craft prompts

that accurately convert unstructured command data from natural human speech into structured data

that can be parsed programmatically. Structured command data is typically represented in a standard

format such as JSON, although other formats may also be used.

By implementing a well-crafted prompt engineering strategy and leveraging ChatGPT’s

powerful zero-shot and few-shot-learning capabilities for natural language processing and command

transformation, it is possible to develop advanced robotics applications that facilitate streamlined

and user-friendly interactions with humans. This approach can significantly enhance the accuracy

and efficiency of human-robot interactions, ultimately improving the overall usability and practicality

of robotic systems in a variety of domains.The combination of prompt engineering and ChatGPT’s

language processing abilities allows for translating natural language commands into the appropriate

output, making it an ideal tool for developing efficient and intuitive human-robot interactions. This

approach has significant implications for various industries, from industrial automation to healthcare,

where robotic systems can benefit from enhanced usability and practicality.

When developing prompts for human-robot interaction, it is crucial to consider the development

of appropriate ontologies for context-specific applications. This is necessary to facilitate the accurate

mapping between unstructured and structured command data, ultimately enhancing the efficiency

and effectiveness of the interaction [17].

In the context of robotic navigation, a robot would need to move or rotate. The precise

specification of movement and rotation commands requires the development of an ontology that

incorporates domain-specific concepts such as Robot Motion, and Robot Rotation. To adequately

describe these commands, the ontology must also encompass key parameters such as Distance, Linear

Velocity, Direction, Angle, Angular Velocity, and Orientation. By leveraging such an ontology, natural

language commands can be structured in a more accurate and consistent manner, leading to improved

performance and reliability of the robotic system.

By utilizing such an ontology, the natural language commands for robotic navigation can be

structured more precisely and accurately, which helps to enhance the performance and efficiency of

the robotic system.

Section III illustrates the prompt engineering problem on a specific robot navigation use case.

2.2. ROSParser: Parsing Command for Execution

The ROSParser module is a critical component of the rosGPT system, responsible for processing

the structured data elicited from the unstructured command and translating it into executable

code. From a software engineering perspective, ROSParser can be considered as a middleware that

facilitates communication between the high-level processing module and the low-level robotic control

module. The ROSParser module is designed to interface with ROS nodes responsible for controlling

low-level robotic hardware components, such as motor controllers or sensors, using pre-defined ROS

programming primitives.

The ROSParser module follows the specific ontology developed in the prompt-engineering phase

to extract the information related to the ontology items. This ontology serves as a set of rules and

guidelines for the ROSParser module to correctly interpret and execute the command. For example, in

the context of the navigation example above, the ontology items would include concepts such as Robot

Movement and Robot Rotation.

Once the ontology items and their associated parameters have been extracted, the ROSParser

module utilizes the pre-defined ROS programming primitives to execute the requested tasks. For

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

5 of 30

example, suppose the command involves the robot moving for 1 meter and rotating 60 degrees.

In that case, the ROSParser will invoke the move() method and then the rotate() method, with

the task-specific parameters to execute the command. By utilizing the ROS framework and the

pre-defined programming primitives, the ROSParser module enables seamless communication between

the high-level natural language processing module and the low-level robotic control module.

3. Proof-of-Concept

We present a comprehensive software architecture for integrating ChatGPT with ROS2, along with

the accompanying pseudo-code. Additionally, we demonstrate the application of prompt engineering

in conjunction with ontology-based approaches for the efficient conversion of human-generated natural

language commands into structured, well-defined robotic instructions executed via ROS2 primitives.

3.1. Integration of ChatGPT with ROS2

The software architecture of the ROSGPT implementation in ROS2 is illustrated in Figure 2, which

presents the ROSGPT class diagram detailing its components and their relationships. The architecture

is structured around three primary classes: ROSGPT, ROSGPTProxy, and ROSGPTNode.

ROSGPT

- ip_address:str
- port_number:int

ROSGPTProxy

- chatgpt_ros2_node: ROSGPTNode
+ askGPT(text_command: str): str
+ post(): dict

ROSGPTNode

- publisher: rclpy.publisher.Publisher
+ publish_message(message: str)

Figure 2. Class Diagram of ROSGPT Implementation in ROS2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

6 of 30

Algorithm 2 Pseudocode of ROSGPT

1: procedure INITIALIZE(chatgpt_ros2_node)
2: sel f .chatgpt_ros2_node← chatgpt_ros2_node
3: end procedure
4: procedure ASKGPT(prompt)
5: prompt← GPT-3 prompt with example inputs and outputs
6: messages← create message structure for GPT-3 model
7: response←
8: OPENAI.CHATCOMPLETION.CREATE(messages)
9:

10: if response is valid then
11: chatgpt_response← extract JSON response from response
12: else
13: chatgpt_response← None
14: end if
15: return chatgpt_response
16: end procedure
17:
18: procedure POST

19: text_command← input from POST request
20: json_command =
21: TRANSFORM_TEXT_TO_PROMPT(text_command, prompt)
22: chatgpt_response← ASKGPT(prompt)
23: if chatgpt_response is not None then
24: PROCESS_COMMAND(ROS2Node, prompt, chatgpt response)
25: return {′response′ : chatgpt_response}
26: else
27: return {′error′ :′ Error Message′}
28: end if
29: end procedure

Furthermore, the pseudo-code of ROSGPT is illustrated in Algorithm, 1.

• The ROSGPT class serves as the entry point for the application. A server holds essential

configuration information, such as the IP address and port number, for establishing

communication with other components and clients’ applications. In our implementation, we

considered a REST server to facilitate seamless communication and integration with various

client applications through a standardized set of HTTP methods and conventions. This approach

enables different client types to interact with the ROSGPT system, providing greater flexibility

and adaptability in different use cases.
• The ROSGPTProxy class is an intermediary between the ChatGPT large language model and

the ROS ecosystem through ROSGPTNode. It is responsible for processing natural language

text commands received from the user through a POST request. The POST handler method is

responsible for processing incoming text_command requests from the user. Upon receiving a

request, it transforms the natural language command into a well-structured and tailored prompt.

This prompt is designed with a combination of carefully chosen keywords and context, which

allows ChatGPT to comprehend the desired robotic action more accurately. We illustrate the

ontology-based prompt engineering process in the next subsection. The POST handler method

sends the designed prompt to ChatGPT through its OpenAI ChatCompletion request API by

invoking the askGPT(text_command: str) to finally receive the structured command to be

parsed by the Process_Command method.

In the following subsection, we will demonstrate the ontology-based prompt engineering process

in detail. The POST handler method forwards refined prompt to ChatGPT using the OpenAI

ChatCompletion request API. By calling the askGPT(text_command: str) function, we obtain

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

7 of 30

the AI-generated structured command as a response. Subsequently, this command is parsed and

processed by the Process_Command method, ensuring the seamless and accurate execution of the

desired robotic action.
• The ROSGPTNode class serves as a ROS2 node that facilitates interaction between the ChatGPT

model and the conversion of structured commands generated by ROSGPTProxy into executable

ROS2 primitives. This class has a publisher that ensures the communication of structured

messages (i.e., JSON) to other ROS2 nodes, which are responsible for processing human

commands and executing appropriate actions accordingly. To achieve this, the ROSParser

module, introduced earlier, is integrated into the ROS2 node responsible for command execution.

3.2. Case Study: Spatial Navigation with a ROS2-Enabled Robot

In this case study, we explore the application of ROSGPT to a spatial navigation task in ROS2,

demonstrating its effectiveness in facilitating human-robot interactions within a ROS2-enabled robotic

system. This example use case serves to illustrate the concepts, which can be scaled up to more complex

and advanced robotic applications.

3.2.1. Use Case Description

This use case presents a scenario in which a mobile robot is deployed for indoor navigation,

with the added capability of responding to natural language commands from a human operator. The

navigation functions considered include movement along a straight line, rotation, and goal-directed

navigation using the ROS2 navigation stack. It should be noted that these functions are not exhaustive

and can be further expanded depending on the application requirements.

The operator’s instructions include specific navigation commands such as location-based

movement, speed adjustment, and stopping. The ROSGPT framework interprets these natural

language commands and converts them into structured ROS2 messages, enabling the robot to carry

out the intended actions.

Let us consider a few examples of how a human would interaction with the robot in such

scenarion.

• User prompt 1: "Move 1 meter forward for two seconds." This prompt should be interpreted by

ROSGPT as a linear motion with a distance of 1 meter and a speed of 0.5 meter per second in the

forward direction.
• User prompt 2: "Rotate clockwise by 45 degrees." This prompt should be interpreted by ROSGPT as

a rotational motion of 45 degrees in the clockwise direction.
• User prompt 3: "Turn right and move forward for 3 meters." This prompt should be interpreted by

ROSGPT as a rotational motion of 90 degrees to the right followed by a linear motion of 3 meters

in the forward direction.
• User prompt 4: "Go to the kitchen and stop." This prompt should be interpreted by ROSGPT as

a goal-directed navigation task to reach the kitchen location, followed by stopping the robot’s

motion once it has reached the destination. Afterward, it is necessary to map the location of the

kitchen to its corresponding coordinate on the map to execute the ROS 2 go to goal primitive of

the navigation stack.

These examples provide ChatGPT with enough information to learn how to generate structured

commands using its few-shot capabilities. ChatGPT can also generate structured commands for

previously unseen and diverse commands, potentially outside the scope of the mentioned use cases.

The user is responsible for deciding whether to handle these new commands, and a predefined

ontology can be used to define the context and scope of human-robot interaction, which helps the

efficiency of the interaction.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

8 of 30

3.2.2. Ontology-Based Prompt Engineering

In this section, we describe the implementation of the ontology-based prompt engineering

approach for the ROS2 navigation use case. This approach enables the conversion of unstructured

human textual commands into structured JSON-formatted commands that can be easily interpreted

programmatically to execute context-specific tasks.

Ontology Design

Action

Go_to_GoalMove Rotate

Params

Location

Linear Velocity

Distance

Is Forward

Angular Velocity

Angle

Is Clockwise

Figure 3. Ontology for the Navigation Use Case.

Considering the navigation use case above, it is possible to come up with the ontology that

captures the essential concepts, relationships, and attributes associated with spatial navigation tasks

as depicted in Figure 3. The ontology states that the use case have three actions: move, go_to_goal,

and rotate, where action has one or more parameters that could be inferred from the speech prompt.

This ontology includes concepts such as locations, movements, and speeds. This ontology can be seen

as the limited scope of the possible robotics system actions that are expected to be inferred from the

human command. As such this can be translated into the following ROS 2 primitives:

• move(linear_velocity, distance, is_ f orward)
• rotate(angular_velocity, angle, is_clockwise)
• go_to_goal(location)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

9 of 30

JSON-Serialized Structured Commands Design

We now have a clear understanding of how to design a structured command format that aligns

with the aforementioned ontology and ROS 2 primitives. As a result, we propose a JSON serialized

command format that can be used for prompt engineering with ChatGPT.

{

"action": "go_to_goal",

"params": {

"location": {

"type": "str",

"value": "Kitchen"

}

}

}

{

"action": "move",

"params": {

"linear_speed": 0.5,

"distance": distance,

"is_forward": True

"unit": "meter"

}

}

{

"action": "rotate",

"params": {

"angular_velocity": 0.35,

"angle": 40,

"is_clockwise": is_clockwise

"unit": "degrees"

}

}

Figure 4. JSON structures for the ROS2 navigation use case.

The proposed JSON serialized structured command format is designed to satisfy the previously

presented ontology and derived ROS 2 primitives for the navigation use case. It provides a clear

and structured way to represent human-generated textual commands that can be easily interpreted

programmatically to execute context-specific tasks.The next stage involves training ChatGPT to

accurately map unstructured human commands onto JSON-serialized commands, which can then be

parsed and executed to perform the desired tasks.

3.2.3. Few-Shot Prompt Training and Engineering

Prompt Design

As previously discussed, ChatGPT has few-shot learning capabilities, which means it can learn

new patterns from a small number of examples. In the case of converting human unstructured

commands to JSON-serialized commands, ChatGPT can be trained on a set of sample prompts that

map human command format to JSON-serialized format. These examples can be used to teach

ChatGPT how to identify and extract the relevant information from the unstructured commands

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

10 of 30

and how to transform it into the appropriate JSON structure. With this training, ChatGPT can then

generate structured commands for completely new and unseen commands, increasing its flexibility

and usefulness in human-robot interaction scenarios.

Here comes the importance of prompt engineering and design. It addresses the question on how

to write the best prompts that will optimally guide ChatGPT to infer the proper structure command.

There is no single way on how to do it. Usually, this is an interative process that require common sense

and expertise in the context of application.

Figure 5 illustrates a sample of few-shot training prompts. There are multiple ways to frame these

prompts, and the more prompts are added, the more accurate the expected results will be.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

11 of 30

Natural language command:
"Move forward for 1 meter at a speed of 0.5 meters per second."

JSON-serialized command:

{

"action": "move",

"params": {

"linear_speed": 0.5,

"distance": 1,

"is_forward": true,

"unit": "meter"

}

}

Natural language command:
"Rotate 60 degree in clockwise direction at 10 degrees per second."

JSON-serialized command:

{

"action": "rotate",

"params": {

"angular_velocity": 10,

"angle": 60,

"is_clockwise": true,

"unit": "degrees"

}

}

Natural language command:
"Hey robot, I want you to go to the living room."

JSON-serialized command:

{

"action": "go_to_goal",

"params": {

"location": {

"type": "str",

"value": "living room"

}

}

}

Figure 5. Example of training few-shot prompts.

Using this ontology-based approach, the prompts generated for ChatGPT are designed to guide

the model in providing the correct robotic action in a structured format, enhancing the overall

performance and interpretability of the system.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

12 of 30

Prompt Validation

To ensure ChatGPT generates the expected results, it is crucial to conduct extensive testing after

designing the prompts. Initial tests can be performed on ChatGPT before integrating it into the

application. Figure 6 shows ChatGPT’s response to a human command prompt without prior training.

The response is completely different from the expected output in the context of ROS 2 navigation.

However, by providing ChatGPT with a few-shot training prompts, it can learn to generate the JSON

patterns that we expect from unstructured human commands. The accuracy of ChatGPT’s performance

improves as we add more prompts.

Figure 6. Response of ChatGPT to human command without any training.

To evaluate the effectiveness of prompt engineering and design, we conducted a series of

experiments on ChatGPT. Using only three carefully crafted sample prompts, we trained ChatGPT to

produce the desired context-specific output. Detailed excerpts from ChatGPT’s prompt training

and validation are provided in the Appendices section to demonstrate the effectiveness of our

ontology-based approach.

• Case 1: Without using ontology keywords in the prompts: Figure 7 shows a few-shot training

example where the keyword "ontology" is not used (refer to [Appendix 1: ROSGPT:ChatGPT]).
• Case 2: With ontology keywords used in the prompts: Figure 8 shows a few-shot training

example where the keyword "ontology" is used (refer to [Appendix 2: ROSGPT:ChatGPT

Ontology]).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

13 of 30

Figure 7. Example of Few-Shot Learning (without ontology).

Figure 8. Example of Few-Shot Learning with Ontology.

Observation 1: Elicitation and Adaptability Capabilities. Our analysis of the Appendices

outputs confirms that ChatGPT exhibits strong elicitation ability, as it was able to accurately learn the

required output patterns from a small sample of only three prompt examples. This finding highlights

the remarkable capacity of the model to generalize from limited training data and adapt to new and

diverse natural language commands. In particular, we observed that ChatGPT consistently generated

correct JSON commands in response to various novel and distinct human commands, indicating its

robustness and versatility as a language model.

Consider the following two examples of unseen prompts that demonstrate ChatGPT’s technical

strength and adaptability in generating JSON-serialized commands for human-robot interaction:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

14 of 30

1. Prompt: Move 2.4 meters for 2 seconds Response:

{

"action": "move",

"params": {

"linear_speed": 1.2,

"distance": 2.4,

"is_forward": true,

"unit": "meter",

"duration": 2

}

}

In this example, ChatGPT infers the linear speed as 1.2 m/s, which is not explicitly mentioned in

the prompt. This demonstrates the model’s ability to make appropriate calculations to generate

accurate JSON structures based on the given information, making human-robot interaction more

flexible.
2. Prompt: Move backward 15 meters at 20 km per hour

Response:

{

"action": "move",

"params": {

"linear_speed": -5.56,

"distance": 15,

"is_forward": false,

"unit": "meter"

}

}

In this example, ChatGPT converts the speed from km/h to m/s and adjusts the linear speed to

a negative value to account for the backward movement. This demonstrates the model’s unique

understanding of concepts and ability to adapt to different types of human prompts, even when

the input is in different units.

These examples illustrate the technical strength and flexibility of ChatGPT in processing and

responding to human prompts, making human-robot interaction more efficient and user-friendly.

Observation 2: Ontology-Enhanced Contextual Accuracy In this scenario, we examined the

output produced by ChatGPT in response to a human command without incorporating the ontology

keyword in the few-shot learning sample. This test aimed to assess how well the language model

could generate structured robotic commands without the guidance provided by an ontology.

In Figure 9, the results showed that ChatGPT generated the action "take_picture," even though

this specific action was not defined within the learning sample. This outcome highlights the potential

limitations of the model in interpreting and generating contextually accurate commands when not

guided by a structured framework like ontology. Without the ontology keyword, ChatGPT generates

actions based on its understanding, which may not always align with the desired actions defined in

the learning sample. Consequently, this may result in outputs not adhering to the specific constraints

and requirements defined in the learning sample.

On the other hand, Figure 9 depicts the output generated by ChatGPT in response to a human

command that utilizes the ontology keyword within the few-shot learning sample. In this scenario, the

model refrains from generating the action "take_picture" since it is not defined as a valid action in the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

15 of 30

learning sample. Incorporating ontology effectively constrains the model’s output, ensuring that it

aligns with the desired patterns and adheres to the context-specific requirements.

This experimental study illustrates the important role of ontology in guiding large language

models such as ChatGPT to generate contextually relevant and accurate structured robotic commands.

By incorporating ontology and other structured frameworks in the training and fine-tuning processes,

we can significantly enhance the model’s ability to generate outputs that are both consistent with the

application context and compliant with the predefined constraints and requirements.

Figure 9. Output resulting from a human command without utilizing the ontology keyword in the

few-shot learning sample. Notice that ChatGPT generates the action "take_picture," which is not

defined as an action within the learning sample.

Figure 10. Output in response to a human command that employs the ontology keyword within the

few-shot learning sample. Note that ChatGPT refrains from generating the action "take_picture" since

it is not defined as an action in the learning sample. The use of ontology aids in restricting the output

to adhere to desired patterns.

Observation 3: Unpredictable Hallucinations Limitation Our experiments have revealed a

limitation of ChatGPT when using ontology-based prompting. The model can sometimes become

confused by the ontology unexpectedly, leading to errors or omissions in its responses. This

phenomenon is known as "hallucination" in the literature on language modeling.

In one of our experiments, we observed a clear example of hallucination, as shown in Figure 11.

When prompted to "go to the bathroom," ChatGPT mistakenly followed the ontology statement that

the target location could only be "Kitchen," which happened to be an example value in the training

sample. As a result, the model either generated no response or provided an incorrect response due to

the deviation from the ontology.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

16 of 30

This limitation results from the fact that ChatGPT, like all language models, is trained on a finite

dataset and is, therefore, prone to biases and inaccuracies in its understanding of language. In this

case, the model’s training on the ontology led it to expect only specific values for the target location,

which caused it to fail when faced with an unexpected value.

However, it is worth noting that ChatGPT was able to behave correctly when presented with

the same ontology and human prompt, as shown in Figure 12. This suggests that the model can

understand and follow ontologies properly specified and is not subject to biases or anomalies.

This observation underscores the importance of carefully considering the potential for unexpected

behavior in ChatGPT when developing human-robot interaction models that rely on these language

models.

Our findings highlight the need for careful design and validation of ontologies when using them

to prompt language models like ChatGPT. The limitations of training data and potential biases in

ontologies can significantly impact the performance of these models. They must be taken into account

in their use and interpretation.

Figure 11. Example of ChatGPT hallucination with a misunderstanding of the ontology-based prompt.

Figure 12. Count-example of ChatGPT correct behavior with the same ontology-based prompt.

3.3. ROSGPT Implementation on ROS2

In [16], we provide an open-source implementation of ROSGPT. We developed a system that

seamlessly integrates ROSGPT with ROS 2, providing a proof-of-concept for human-robot interaction

through natural language. The package consists of the ROS 2 python code of the ROSGPT REST server

and its corresponding ROS 2 nodes, a web application that utilizes Web Speech API to convert human

speech into textual commands. The web API communicates with ROSGPT through its REST API

to submit the textual command. ROSGPT uses the ChatGPT API to translate the human text to a

JSON-serialized command, which the robot uses to move or navigate accordingly. We strive to make

the ROSGPT implementation a an open platform for further development in human-robot interaction,

utilizing ROS and the potential of LLMs and NLP techniques. This implementation paves the way for

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

17 of 30

novel human-robot interactions in various domains by enabling robotic systems to better understand

and respond to human language.

The repository is publicly available on GitHub and welcomes the community to contribute and

extend the project.

4. Conclusions

In this work, we presented ROSGPT, a novel concept that leverages the capabilities of large

language models (LLMs) to advance human-robot interaction using the Robot Operating System (ROS).

Specifically, we integrated ChatGPT with ROS2-based robotic systems, developing ROSGPT as a ROS2

package to seamlessly combine the two. We implemented an ontology-based approach to prompt

engineering, allowing ChatGPT to generate expected JSON structured commands from unstructured

human textual commands, and showcased the concept’s feasibility through a proof-of-concept

implementation in robot navigation.

Our work emphasizes two main observations: first, ChatGPT’s impressive eliciting ability to

handle previously unseen commands, and second, the critical role of ontology in guiding the mapping

process and confining it to the expected output. However, we acknowledge the limitation of using

ChatGPT for human interaction, as its reliability and safety must be carefully examined to avoid

potential hallucinations or harmful unintended outputs. This result opens up new opportunities for

further research in various directions.

Overall, this work presents a significant stride towards Artificial General Intelligence (AGI) and

paves the way for the robotics and natural language processing communities to collaborate in creating

innovative, intuitive human-robot interactions. Future research could focus on extending ROSGPT

to other robotic missions, exploring the scalability and adaptability of the concept. Also, we plan to

explore the potential of other open-source LLMs beyond ChatGPT. Additionally, further investigation

could be conducted on the performance of LLMs in different languages and how this may impact their

effectiveness in human-robot interaction applications.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

24 of 30

Appendices

The appendices included below offer a detailed examination of various prompt models and their

corresponding outcomes when applied to ChatGPT.

Appendix 1: ROSGPT WITHOUT ONTOLOGY

In this appendix, we examine the performance and behavior of the ROSGPT system without

incorporating ontology-based prompting. The objective is to evaluate the ability of the ChatGPT model

to generate accurate and relevant responses in the context of human-robot interaction without the

guidance of a predefined ontology. This evaluation helps us understand the baseline performance of the

model and highlights potential improvements that can be achieved by incorporating ontology-based

prompting.

The analysis comprises various test scenarios and prompts, simulating diverse human-robot

interaction situations. Each prompt is presented to the ROSGPT system, and the resulting responses

are thoroughly assessed to determine the accuracy, relevance, and comprehensibility of the generated

JSON commands.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

29 of 30

Appendix 2: ROSGPT USING ONTOLOGY

In Appendix 2, we provide a detailed exploration of the ROSGPT system when integrated with

an ontology-based approach. The primary focus of this appendix is to illustrate how incorporating

ontologies can significantly enhance the comprehension and precision of the ChatGPT model when

generating structured commands for robotic systems.

The ontology serves as a formal representation of knowledge in a specific domain, allowing for a

more consistent and unambiguous understanding of the relationships between entities and concepts.

By leveraging this structured knowledge, the ROSGPT system can more effectively process natural

language commands and translate them into accurate and executable actions for robots.

References

1. Ajaykumar, G.; Steele, M.; Huang, C.M. A Survey on End-User Robot Programming. ACM Comput. Surv.

2021, 54. doi:10.1145/3466819.

2. Ma, T.; Zhang, Z.; Rong, H.; Al-Nabhan, N. SPK-CG: Siamese Network-Based Posterior Knowledge Selection

Model for Knowledge Driven Conversation Generation. ACM Trans. Asian Low-Resour. Lang. Inf. Process.

2023, 22. doi:10.1145/3569579.

3. Kim, M.K.; Lee, J.H.; Lee, S.M. Editorial: The Art of Human-Robot Interaction: Creative Approaches to

Industrial Robotics. Frontiers in Robotics and AI 2022, 9, 1–3.

4. Moniz, A.B.; Krings, B.J. Robots Working with Humans or Humans Working with Robots? Searching for

Social Dimensions in New Human-Robot Interaction in Industry. Societies 2016, 6. doi:10.3390/soc6030023.

5. Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang,

C.; Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu, Z.; Liu, P.; Nie, J.Y.; Wen, J.R. A Survey of Large

Language Models, 2023, [arXiv:cs.CL/2303.18223].

6. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry,

G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler,

D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.;

McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D. Language Models are Few-Shot Learners. CoRR 2020,

abs/2005.14165, [2005.14165].

7. Koubaa, A.; Boulila, W.; Ghouti, L.; Alzahem, A.; Latif, S. Exploring ChatGPT Capabilities and Limitations:

A Critical Review of the NLP Game Changer. Preprints.org 2023, 2023.

8. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I.

Attention is All you Need. Advances in Neural Information Processing Systems; Guyon, I.; Luxburg, U.V.;

Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds. Curran Associates, Inc., 2017, Vol. 30.

9. OpenAI. GPT-4 Technical Report, 2023. https://cdn.openai.com/papers/gpt-4.pdf.

10. Koubaa, A. GPT-4 vs. GPT-3.5: A Concise Showdown. Preprints.org 2023, 2023030422.

doi:10.20944/preprints202303.0422.v1.

11. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding, 2018, [arXiv:cs.CL/1810.04805].

12. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2019, [arXiv:cs.CL/1910.10683].

13. Zamfirescu-Pereira, J.D. and Wong, Richmond Y. and Hartmann, Bjoern and Yang, Qian. Why Johnny

Can’t Prompt: How Non-AI Experts Try (and Fail) to Design LLM Prompts. Proceedings of the 2023 CHI

Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York,

NY, USA, 2023; CHI ’23. doi:10.1145/3544548.3581388.

14. Vemprala, S.; Bonatti, R.; Bucker, A.; Kapoor, A. ChatGPT for Robotics: Design Principles and Model

Abilities. Technical Report MSR-TR-2023-8, Microsoft, 2023.

15. He, H. RobotGPT: From ChatGPT to Robot Intelligence 2023.

16. Koubaa, A. ROSGPT Implementation on ROS2 (Humble).

17. Oguz, O.S.; Rampeltshammer, W.; Paillan, S.; Wollherr, D. An Ontology for Human-Human Interactions and

Learning Interaction Behavior Policies. J. Hum.-Robot Interact. 2019, 8. doi:10.1145/3326539.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.1145/3466819
https://doi.org/10.1145/3569579
https://doi.org/10.3390/soc6030023
http://xxx.lanl.gov/abs/2303.18223
http://xxx.lanl.gov/abs/2005.14165
https://cdn.openai.com/papers/gpt-4.pdf
https://doi.org/10.20944/preprints202303.0422.v1
http://xxx.lanl.gov/abs/1810.04805
http://xxx.lanl.gov/abs/1910.10683
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3326539
https://doi.org/10.20944/preprints202304.0827.v3

30 of 30

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2023 doi:10.20944/preprints202304.0827.v3

https://doi.org/10.20944/preprints202304.0827.v3

	Introduction
	Background on Human-Robot Interaction
	The Role of Large Language Models in Natural Language Understanding
	Novelty of ROSGPT

	Conceptual Architecture of ROSGPT
	GPTROSProxy: The Prompt Engineering Module
	ROSParser: Parsing Command for Execution

	Proof-of-Concept
	Integration of ChatGPT with ROS2
	Case Study: Spatial Navigation with a ROS2-Enabled Robot
	Use Case Description
	Ontology-Based Prompt Engineering
	Few-Shot Prompt Training and Engineering

	ROSGPT Implementation on ROS2

	Conclusions
	References

