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Abstract: Attempts to use computers to aid in the detection of breast malignancies date back more than 20 

years. Despite significant interest and investment, this has historically led to minimal or no significant 

improvement in performance and outcomes with traditional computer aided detection. However, recent 

advances in artificial intelligence and machine learning are now starting to deliver on the promise of improved 

performance. There are at present more than 20 FDA approved AI applications for breast imaging, but adoption 

and utilization are widely variable and overall low. Breast imaging is unique and has aspects that create both 

opportunities and challenges for AI development and implementation. Breast cancer screening programs 

worldwide rely on screening mammography to reduce the morbidity and mortality of breast cancer and many 

of the most exciting research and available AI applications focus on cancer detection for mammography. There 

are however multiple additional potential applications for AI in breast imaging including decision support, 

risk assessment, breast density quantitation, workflow and triage, quality evaluation, response to neoadjuvant 

chemotherapy assessment, and image enhancement.  In this review the current status, availability, and future 

directions of investigation of these applications are discussed, as well as the opportunities and barriers to more 

widespread utilization. 
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Introduction: 

Breast cancer is the most common cancer in women of the United States excluding skin cancers 

representing nearly 1 in 3 new female cancers each year. According to the American Cancer Society 

there will be nearly 300,000 new cases of invasive breast cancer and over 50,000 cases of ductal 

carcinoma in situ diagnosed in 2023 with over 43,000 deaths attributable to breast cancer in the United 

States alone [1]. The high incidence and burden of breast cancer represents a tremendous challenge 

and opportunity to breast cancer screening programs. The purpose of any breast cancer screening 

program is to reduce the morbidity and mortality of breast cancer by identifying early small breast 

cancers to ensure accurate diagnosis and optimal treatment. Screening mammography is the only 

breast cancer screening modality with a proven mortality benefit, leading to the widespread adoption 

of mammography-based screening programs throughout the world. 

Population based screening efforts have led to a large number of mammograms being performed 

annually, with nearly 40 million mammograms performed every year in the United State alone [2]. 

The importance of screening mammography performance to breast cancer screening programs and 

the sheer volume of mammograms involved creates an imperative need to maximize performance 

and quality. In the United States, this is closely regulated by the Food & Drug Administration (FDA) 

via the Mammography Quality Standards Act (MQSA) including recent emphasis via the Enhancing 

Quality Using the Inspection Program (EQUIP) process initiated in 2017.  These processes have 

helped ensure quality and uniformity for screening mammograms performed in the United States. 

However, even with these efforts there remain opportunities for improvement in performance 

metrics for screening mammography. As an illustration of this need, an evaluation of performance in 

the Breast Cancer Surveillance Consortium found a sensitivity of 86.9% and specificity of 88.9% for 

screening mammography with opportunities for improvement particularly noted in abnormal 

interpretation rates (false positives) in nearly half of the studied radiologists [3]. 
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Background: 

The convergence in screening mammography as a widespread population health tool with 

opportunities to improve performance to reduce breast cancer mortality has generated significant 

interest and research. Using computers in an attempt to improve performance is not new and has a 

long history in breast imaging in the form of computer aided detection (CAD). The FDA first 

approved CAD for use in mammography was established in 1998 and by 2002, this technology was 

reimbursable by the Center for Medicare and Medicaid Services. This approval led to its rapid 

adoption in breast imaging, with 74% of mammograms in 2008 performed with CAD [4].  

Initial excitement and enthusiasm for the benefits of CAD in breast imaging has given way to 

the realization that traditional CAD may have limited or no increase in diagnostic performance [4]. 

Multiple recent studies have raised concerns about the cost-effectiveness and clinical utility of CAD 

in breast imaging. An observational study of community-based mammography facilities from the 

Breast Cancer Surveillance Consortium performed by Fenton et al between 1998 and 2002 found that 

CAD use reduced overall radiologist reading accuracy as evaluated by receiver operating 

characteristic curve analysis [5]. A subsequent study published in July 2011 found that CAD use 

reduced specificity by increasing recall rates, with no increase in sensitivity or invasive tumor 

characteristics (stage, size, or lymph node status) [6]. Despite these concerns about its efficacy, CAD 

utilization for screening mammograms has become ubiquitous, with reimbursement bundled with 

screening mammography, and with utilization in 92% of all screening mammograms performed in 

the United States in 2016 [7].The failure of conventional CAD to fulfill the need for improving and 

optimizing mammography performance creates a continued opportunity for artificial intelligence 

(AI) in breast imaging. 

Artificial Intelligence: 

AI is a large field that includes many diverse technologies and applications with the shared 

characteristics of using computer-based algorithms and data to solve problems or perform tasks that 

would typically require human intelligence. In the past 10-15 years there have been tremendous 

advances in the availability and accessibility of more powerful computational hardware for 

processing and storing data needed for AI applications. At the same time, and perhaps even more 

critically, there has been an exponential increase in the amount and availability of data for training 

AI algorithms. These changes have allowed for revolutionary developments in AI during the past 10 

years with particular focus on machine learning (ML). ML is a subset of AI where computers are 

trained and perform functions without being explicitly programmed by humans on how to complete 

the tasks. ML commonly uses features and input from human programmers as the basis of learning. 

Further along the continuum of ML is representation learning which does not require human feature 

engineering, but rather learns the features itself. Deep learning (DL) is a step further where the 

features are extracted in a hierarchical fashion with many simple features making up more complex 

features [8]. These changes and developments have allowed for DL applications that generate truly 

breakthrough performance enhancements in image analysis tasks [8]. 

DL utilizing convolutional neural networks has seen an explosion of possibility and practical 

use for image analysis for non-medical images in the past 10 years. This includes many non-medical 

imaging related tasks such as image classification or detection which are already deeply ingrained in 

daily workflow. These successes led to interest for applications within radiology that could apply the 

success of AI algorithms in image analysis to perform clinically meaningful tasks such as 

classification (presence or absence of disease), segmentation (quantitative analysis of organs or 

lesions for surgical planning), and detection (determining the presence or absence of a lesion or 

nodule) amongst many other diverse applications for AI in radiology [8]. 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2023                   doi:10.20944/preprints202304.0799.v1

https://doi.org/10.20944/preprints202304.0799.v1


 

 

Artificial Intelligence in Breast Imaging: 

Opportunities in Breast Imaging for AI Applications 

Breast imaging has many unique features and characteristics that create opportunities for 

meaningful AI applications (Table 1). Specifically, the long standing and unique structured lexicon 

of breast imaging as defined by the Breast Imaging Reporting & Data System (BI-RADS®) from the 

American College of Radiology facilitates the development and implementation of AI. BI-RADS® 

provides a standardized and structured system of lexicon and terminology, reporting, classification, 

communication and medical auditing for mammography, breast ultrasound and breast MRI [9]. This 

system supports the development and evaluation of AI applications in breast imaging in many ways, 

perhaps most importantly, by creating a predefined methodology and framework for the 

radiologist’s interpretation of breast imaging studies and mapping of results. When combined with 

medical outcomes, auditing and reporting there is a repository of data for breast imaging included 

in radiologist interpretations and clinical outcomes for mammography [10]. Moreover, the 

standardized approach to screening mammography where 2 specific mammographic positions are 

imaged for each breast (craniocaudal and mediolateral oblique positions), improves the 

standardization of imaging data being utilized for training and validation. 

Table 1. Summary of Opportunities and Challenges for AI in Breast Imaging. 

Breast Imaging Opportunities Breast Imaging Challenges 

Long standing uniform reporting and lexicon 
Recent widespread adoption of digital breast tomosynthesis 

(DBT) 

Mandated robust outcomes and clinical results tracking 

systems 

Variability in image appearance between vendors, increasing 

with DBT and synthetic 2D mammography 

Standardized positioning and technique File sizes are extremely large 

Large available data sets for training 

Breast imaging interpretation can rely on concurrently 

performed mixed modality (mammography, ultrasound, MRI) 

studies 

Familiarity with and acceptance of computer aided detection 

(CAD) 

Clinical information obtained from patient, referring provider 

and technologists key for accurate interpretation 

 
This standardization and established methodology for determining and tracking results has 

facilitated the creation of multiple large data sets which are a prerequisite for the development of 

high performing AI algorithms. There are currently multiple large mammography data sets, some of 

which have greater than 1 million mammograms with associated patient factors and known clinical 

outcomes [11–14]. Many of the available data sets come from various sources including different 

practice locations, practice types and multiple mammography vendors. Some data sets are also 

focused on including a racially diverse case mix, critical to ensuring high levels of performance across 

the entire population [11].  The availability of data sets is significantly more advanced for 

mammography, in particular screening mammography, when compared to other breast imaging 

modalities such as ultrasound or MRI. 

Challenges of Breast Imaging for AI Applications 

There are several unique aspects of breast imaging that make the development and 

implementation of high performing AI algorithms more challenging (Table 1).  For example, recent 

rapid adoption and widespread utilization of digital breast tomosynthesis (DBT) has created 

challenges on multiple fronts. The image data for DBT is unique and significantly different from 

standard full field digital mammography (FFDM) as many slices of images are created with each 

mammographic position versus the single FFDM image for each view. The appearance of the images 

including benign and malignant pathology differ significantly. Moreover, DBT file sizes are orders 

of magnitude greater than traditional FFDM images with files sizes for single exams approaching or 
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exceeding 1 gigabyte. This creates significant challenges for storage, transfer, and consumption of 

this large volume of data, particularly in a busy clinical application.  

There are also significant variations in the appearance of DBT images between various vendors 

with the differences being significantly greater than when comparing traditional FFDM 

mammographic images. Further compounding these challenges are the recent but variable use of 

synthetic mammographic images to replace traditional FFDM images. These synthetic images are 

generated from tomosynthesis imaging data which has the advantage of eliminating the need for 

standalone FFDM image, and thus significantly reducing the radiation dose for patients.  The 

utilization of synthetic mammography is highly variable [15]. Moreover, there are significant 

differences between the appearance of these synthetic images between vendors and between software 

upgrades of a vendor.  This variability, and the recent heterogenous adoption of these technologies, 

has created a significant limitation and challenge for AI algorithms which may not have been 

developed for a certain image type or may not perform equally well across all vendors and systems. 

An additional significant challenge for the development of high performing AI algorithms is the 

manner in which breast images are interpreted. Frequently, breast imaging studies are interpreted 

with the utilization of multiple prior comparison imaging exams, allowing radiologists to identify 

new, subtle, meaningful changes and dismiss stable benign variations. This is an additional process 

that must be either built into AI algorithms or otherwise accounted for in their application. 

Additionally, the interpretation of breast imaging is commonly a multimodality process, particularly 

outside of the screening mammography environment. Often mammography is used in conjunction 

with breast ultrasound, breast MRI, or other adjunctive imaging modalities to evaluate and workup 

breast problems. These tasks are also performed in a complex background in which the radiologist 

aggregates information in real-time about patients’ clinical and medical history, including risk scores 

amongst other factors, referring providers, and technologists, which can influence the most 

efficacious workup and diagnosis. These different disparate data sources and factors represent 

challenges for the development of high performing AI algorithms. 

Applications for Artificial Intelligence in Breast Imaging: 

Cancer Detection: 

Much of the research, development, and excitement surrounding AI applications in breast 

imaging has been on cancer detection, notably cancer detection on screening mammography (Table 

2).  Widespread adoption of breast cancer screening programs, the significant morbidity and 

mortality of breast cancer worldwide, and the efficacy of high performing screening mammography 

creates a unique and powerful opportunity for AI. This has led to a tremendous focus on AI based 

applications for mammography-based breast cancer detection. 
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Table 2. Summary of FDA approved AI applications in Breast Imaging. 

Product Name Vendor Country of Origin Modality 

Cancer Detection 

cmAssist®  CureMetrix  United States  Mammography  

Genius AI™ Detection  Hologic®, Inc.  United States  
Mammography and 

Tomosynthesis  

Lunit INSIGHT MMG  Lunit  South Korea  Mammography  

MammoScreen® 2.0  Therapixel  France  
Mammography and 

Tomosynthesis  

ProFound AI®  iCAD, Inc.  United States  
Mammography and 

Tomosynthesis  

Saige-Dx™  DeepHealth, Inc.  United States  Mammography  

Transpara®  ScreenPoint Medical B.V.  Netherlands  
Mammography and 

Tomosynthesis  

Decision Support 

Koios DS™ Breast  Koios™ Medical, Inc.  United States  Ultrasound  

QuantX™  Qlarity Imaging  United States  MRI  

Density Quantification 

cmDensity™  CureMetrix, Inc.  United States  Mammography  

IntelliMammo™ densityai™  Densitas®  Canada  Mammography  

PowerLook® Density Assessment iCAD, Inc.  United States  Mammography  

Quantra™ 2.2  Hologic®, Inc.  United States  
Mammography and 

Tomosynthesis  

Saige-Density™  DeepHealth, Inc.  United States  
Mammography and 

Tomosynthesis  

Syngo.BreastCare  Siemens®  Germany  Mammography  

Visage Breast Density  Visage Imaging, Inc.®  United States  Mammography  

Volpara TruDensity®    Volpara Imaging  New Zealand   Mammography  

WRDensity  Whiterabbit.ai  United States  Mammography  

Triage 

cmTriage®  CureMetrix, Inc.  United States  Mammography  

HealthMammo  Zebra Medical Vision  Israel  Mammography  

Saige-Q™  DeepHealth, Inc.  United States  
Mammography and 

Tomosynthesis  

Syngo.BreastCare  Siemens®  Germany  Mammography 

 
There have been many published examples of AI algorithms which demonstrate excellent 

performance in cancer detection for screening mammography. This includes a number of algorithms 

trained and evaluated on single institution or homogenous internal data sets. However, there have 

also been multiple, more recent examples of AI algorithms trained on larger, more heterogenous or 

representative data sets. This includes an AI based cancer detection system trained on United 

Kingdom (UK) and United States (US) data comparing AI performance vs radiologist performance 

in a reader study finding an absolute reduction of 5.7% and 1.2% in false positives and 9.4% and 2.7% 

in false negatives (US and UK data sets) [16]. The AI algorithm performed significantly better than 

all human readers in the reader study [16]. Another seminal AI algorithm was developed as the result 

of an international crowdsourcing challenge which found that individual AI algorithms approached 

but did not exceed radiologist performance [17]. Rather, the best performance was achieved when an 

ensemble of the best AI algorithms was combined with a radiologist [17]. An additional published AI 

Model trained on greater than 1 million images achieved an excellent AUC for cancer detection of 

0.895 when evaluated on a large data set. Further evaluation and comparison of this model's 

performance with a group of radiologists in a reader study found that the AI’s AUC exceeded that of 

all individual readers, however, importantly found that the performance of a radiologist-AI hybrid 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2023                   doi:10.20944/preprints202304.0799.v1

https://doi.org/10.20944/preprints202304.0799.v1


 

 

model was the highest performing in the reader study, exceeding both individual and AI alone 

performance [18].  

Such investigations have generated tremendous excitement for using AI applications for breast 

cancer detection with multiple commercially available products already available for use on the 

market, in addition to other investigational or open-source AI algorithms. However, there is currently 

a significant gap in the understanding of how these AI applications will perform in the real world 

when used in clinical practice by radiologists. A recent review article found no prospective studies 

testing accuracy of AI in screening practice [19]. The review also noted significant issues with 

methodology and quality in published investigations, finding the majority of AI applications were 

less accurate than a single radiologist and all included algorithms were less accurate than the 

consensus of two or more radiologists. The authors also noted the pattern that small, more limited 

studies which found AI to be more accurate than radiologists demonstrated issues with bias and 

generalizability, and that their results were not yet replicated in larger studies [19]. 

External attempts to evaluate the performance of AI algorithms have resulted in variable 

observed performance. For example, a high performing AI model demonstrated significantly inferior 

performance when used at an external site in its native form [20]. This same AI model was then tested 

after training without transfer learning and after retraining with transfer learning (using a pretrained 

algorithm and then applying it to a new but related problem with some modification).  Local 

retraining of that model with transfer learning allowed for improvement in performance that 

approached initial reported levels [20]. The results suggest limitations and concerns for 

generalizability of performance in AI applications. Perhaps more importantly these results illustrate 

the possibilities for optimizing AI performance locally at sites using a generally available model. A 

study looking to externally evaluate and compare three different commercially available algorithms 

with human readers (single and double) found that performance for the single best AI algorithm was 

sufficiently high that it could be evaluated as an independent reader for screening mammography 

[21]. Moreover, combining the first radiologist reader with the best AI algorithm found more cancers 

than using first and second radiologist readers. A systematic review of independent external 

validation of AI algorithms for cancer detection in mammography found only 13 data sets that met 

inclusion criteria with all being either retrospective reader or simulation studies. The review found 

mixed results with only some AI algorithms alone exceeding radiologist performance whereas in all 

reviewed instances radiologists combined with AI outperformed radiologists alone [22]. An 

additional serious concern is that developed and available AI algorithms may not perform equally 

well in all subpopulations or patient groups. A study evaluating a well-known, previously externally 

validated, high performing AI algorithm on an independent, external, diverse population found that 

certain patient groups had much lower performance compared to other groups and previously 

published performances. These issues raise concerns about unintended secondary consequences for 

inadequate inclusion of all patient groups in testing and validation data sets [23]. 

DBT represents an additional challenge when interpreting the available literature and evaluating 

AI performance for clinical use. Many of the large available data sets for training and previously 

published AI algorithms were created and validated entirely or predominantly using FFDM data 

sets. As DBT has gained widespread adoption and a high level of utilization, this creates more 

uncertainty when attempting to generalize expected performance from commercially available or 

investigational AI algorithms into clinical practice. A recent large study evaluating a well-known 

commercially available AI algorithm performance on FFDM versus DBT found significantly 

diminished levels of performance for the AI algorithm with the DBT data [24]. The AI algorithm met 

or surpassed radiologist performance for FFDM but generated a markedly higher and undesirable 

false positive rate with DBT images illustrating both the challenges of this data and the difficulty in 

generalizing performance across settings [24]. 

The high level of interest and focus on developing improved AI algorithms for screening 

mammography has led to the RSNA Screening Mammography Breast Cancer Detection Competition 

of 2023 [25]. This competition will utilize data from the ADMANI data set and should further increase 

the attention and resources dedicated to breast cancer detection with AI applications [14]. 
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The development and evaluation of AI tools for cancer detection in breast imaging has 

overwhelmingly been focused on mammography. This is intuitive given the immense number of 

mammography exams that are performed worldwide and the relatively standardized nature of 

mammography. There have however been additional investigations regarding AI to increase cancer 

detection with breast ultrasound, breast MRI, and contrast enhanced mammography.  A recent 

retrospective reader study evaluating hybrid AI and radiologists' performance in the interpretation 

of screening and diagnostic breast ultrasound found preserved sensitivity for breast cancer detection 

with the hybrid AI workflow but, with the advantage of reducing false positives by 37.3%, and 

decreasing benign biopsies by 27.8% for screening ultrasound [26]. Screening breast ultrasound can 

be performed using a handheld technique or an automated technique. There are several benefits of 

automated breast ultrasound technology for screening however, the studies typically contain 

significantly greater than 1000 images which presents a significant challenge for radiologists’ 

efficiency and failing to detect a meaningful finding. A commercially available AI powered 

application is available for use as CAD in automated breast ultrasound studies which may be able to 

help address these challenges for automated breast ultrasound screening [27]. AI applications for 

cancer detection with breast MRI are also in development including a recent study reporting non-

inferiority between breast radiologists and an AI system for identifying malignancy in breast MRI 

[28]. Contrast enhanced mammography is another important supplemental screening modality 

whose use is evolving rapidly. A DL model developed to evaluate contrast enhanced mammography 

images demonstrated excellent performance and radiologist use of the AI model led to significantly 

improved performance metrics for radiologists in the study [29]. 

Decision Support: 

Improving the efficacy of breast imaging interpretations is not restricted to cancer detection on 

screening exams. There is also a need to improve radiologist’s diagnostic performance when a lesion 

or area of interest is identified. Many opportunities for improvement are available in the realm of 

decision support, including limiting benign biopsy recommendations and minimizing false negative 

interpretations. Applications of decision support have been studied in several different scenarios 

across various breast imaging modalities. A study evaluating an AI based clinical decision support 

application for DBT found that radiologists using the decision support were able to increase 

sensitivity while preserving specificity, thus reducing the likelihood of false negative interpretations 

without increasing benign biopsy recommendations [30]. A separate investigation evaluating AI 

decision support for mammography evaluated radiologist performance categorizing masses finding 

improved AUC when using AI decision support with both increased sensitivity and specificity [31]. 

The authors also found that more junior radiologists made more interpretive adjustments for masses 

that were suspicious when using AI decision support, suggesting experience or confidence may be 

an important potential variable for the impact of decision support. Another study evaluating an AI 

based algorithm used images and clinical factors for predicting malignancy of suspicious 

microcalcifications seen on mammography, a common diagnostic problem encountered in breast 

imaging, demonstrating non-inferior diagnostic performance compared to a senior breast radiologist 

and outperforming junior radiologists [32]. 

Decision support opportunities in breast imaging extend beyond mammography. A common 

diagnostic problem encountered is appropriately stratifying breast masses identified on ultrasound 

as either benign, needing short term follow up or requiring biopsy for tissue diagnosis. A multicenter 

retrospective review of a commercially available AI breast ultrasound decision support application 

found that radiologist reader performance increased significantly when using the AI decision support 

with an AUC increasing from 0.83 without decision support to 0.87 with decision support [33]. 

Interestingly, the same study found that using decision support can reduce intrareader variability, 

providing an opportunity to standardize interpretive performance [33]. In a recent retrospective 

study evaluating decision support for breast MRI, radiologist readers from academic and private 

practice centers compared radiologists reading with conventional MRI CAD software versus AI 

based MRI CAD software. The study found the AUC significantly improved with AI algorithm for 
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all readers with an average improvement from 0.71 to 0.76 [34]. These findings suggest a role for 

improving diagnostic performance within the context of complex breast MRI interpretations. 

Breast Density: 

Breast density reflects the mammographic amount of fibroglandular tissue in the breast, 

designated into four categories by BI-RADS: a) almost entirely fatty, b) scattered areas of 

fibroglandular density, c) heterogeneously dense, which may obscure small masses, and d) extremely 

dense which lowers the sensitivity of mammography.  Approximately 40% of women in the United 

States have dense breasts, designated as category c and d [35]. Breast density is an independent risk 

factor for breast cancer, with at least a moderate association with breast cancer risk [36]. Due to this 

elevated risk, and decreased sensitivity of mammography, women with dense breasts may benefit 

from supplemental screening with modalities such as breast ultrasound, contrast-enhanced 

mammography, molecular breast imaging, or breast MRI. In most states across the United States, 

women are required by law to be notified of their breast density. Recently, the FDA issued a national 

requirement for breast density notification, which will go into effect in September 2024 [37].  

The accuracy of breast density reporting can be subject to interpersonal and intrapersonal 

variability amongst radiologists, highlighting the value of computer-based assessment in the 

standardization of breast density reporting.  Early iterations required manual input to outline and 

define breast tissue density [38]. Numerous fully automated DL algorithms are now available which 

use convolutional neural networks to define breast density, demonstrating high levels of accuracy in 

stratifying dense and non-dense breasts. For example, an externally validated algorithm 

demonstrated 89% accuracy in stratifying non-dense and dense breasts, with a 90% agreement 

between the algorithm and three independent readers [39].  Other models have also demonstrated 

high levels of agreement in clinical use in binary categorization of dense and non-dense breasts, with 

94% agreement amongst radiologists with the DL algorithm when evaluating greater than 10,000 

mammography examinations [40]. Diagnostic accuracy can be maintained in algorithms assessing 

breast density in synthetic mammograms,  demonstrating an accuracy of 89.6% when differentiating 

dense and non-dense breasts [41]. However, the possibility for altered performance of automated 

breast density assessments exists when moving from FFDM images to synthetic mammography 

including complex potential interactions with ethnicity and body mass index that require awareness 

and attention [42]. Numerous FDA approved algorithms for quantification of breast density are 

currently available for use including some widely used in clinical practice (Table 2).  A study 

comparing mammographic density assessment in these models demonstrated the percentage density 

measured by some specific commercially available algorithms also had a strong association with 

breast cancer risk, suggesting there may be utility in automated density assessment in cancer risk 

stratification [43].  

Cancer Risk Assessment:  

Identifying women at increased risk of breast cancer is as an important assessment when 

determining the need for additional screening and preventative intervention. Current risk assessment 

models estimate the average risk of breast cancer for women with similar risk factors, as opposed to 

individual breast cancer risk. These models include the Gail Model (BCRAT), Tyrer-Cuzick model 

(IBIS), Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm model 

(BOADICEA), BRCAPRO, and Breast Cancer Surveillance Consortium model (BCSC). Each of these 

models account for different factors such as age, age of menarche, obstetric history, first degree and 

multi-generational relatives with breast cancer, genetic information, number of previous biopsies, 

race and ethnicity, and body mass index amongst other factors. The models calculate 5-year, 10-year, 

or lifetime risk of breast cancer and are used to identify women who may benefit from supplemental 

high-risk screening for breast cancer, chemoprevention, or lifestyle modifications. As the different 

models rely on unique combinations of risk factors, including some factors while excluding others, 

there are several limitations to a sole model being used to independently predict cancer risk. For 

example, the Gail model can underestimate the risk of breast cancer in women with familial history 
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of breast cancer, personal history of atypia, and in non-American and non-European populations 

[44].  In a study evaluating the 10-year performance of the Gail, Tyrer-Cuzick, BOADICEA, 

BRCAPRO models, the authors identified that the integration of multigenerational family history, 

such as in the Tyrer-Cuzick and BOADICEA models, better demonstrates the ability to predict breast 

cancer risk [45].  This analysis also suggested that a hybrid model incorporating various factors from 

each of these models may help improve accuracy in breast cancer detection risk. A separate cohort 

analysis comparing these five risk assessment models in 35,000 women over 6 years demonstrated 

similar, moderate predicative accuracy and good overall calibration amongst the models (AUC 0.61-

0.64) [46]. 

New developments in AI image-based risk models demonstrate promising results in cancer risk 

assessment, in some instances out-performing traditional cancer risk assessment models.  A case-

cohort study of an AI image-based mammography risk model assessed short-term and long-term 

performance of its model compared to Tyrer-Cuzick version 8 over a period of 10 years [47]. The 

image based AI model outperformed Tyrer-Cuzick in both short-term and long-term assessment 

when evaluating approximately 8,600 women with age-adjusted AUC AI model performances 

ranging from 0.74 to 0.65 for breast cancers developed in 1 to 10 years, significantly exceeding the 

Tyrer-Cuzick age-adjusted AUCs of 0.62 to 0.60 in this time period [47]. 

Mirai, a DL mammography-based risk model, incorporates digital mammographic features 

along with clinical factor inputs to provide breast cancer risk prediction within 5 years, and was 

recently validated across a broad, diverse international data set [48]. Approximately 128,000 

screening mammograms and pathologically confirmed breast cancers across 7 international sites in 5 

countries including the United States, Israel, Sweden, Taiwan, and Brazil were evaluated [48].  Of 

the 62,185 unique patients, 3,815 patients were diagnosed with breast cancer within 5 years of the 

index screening mammogram, with Mirai obtaining concordance indices of >/=0.75 and AUC 

performance of 0.75 for White women (0.71-0.78, 95% CI) and 0.78 for Black women (0.75-0.82, 95% 

CI), outperforming traditional cancer risk models. Such a model demonstrates the promise of an AI 

cancer risk assessment tool to significantly improve the accuracy of breast cancer risk assessments. 

Moreover, making personalized AI image-based assessments is an opportunity for improved 

performance for all ethnicities and groups, including those where previous risk assessment models 

did not perform as well. 

Workflow Applications: 

AI based triage tools can be used to prioritize patients and improve overall workflow for 

radiologists interpreting breast imaging studies. This has been most well-studied with screening 

mammography. Using AI based triage algorithms, a retrospective simulation study in which AI-

based screening (normal – no radiologist, moderate risk – radiologist review, and suspicious – 

recalled) was compared to radiologist screening found non-inferior sensitivity and higher specificity 

(with 25.1% reduction in false positives) [[49]. The findings of this study were achieved while 

simultaneously achieving a workload reduction of 62.6%, with triaged normal studies read only by 

the AI system. Similarly, another retrospective simulation study showed that using AI to triage 

mammograms into no radiologist assessment and enhanced assessment categories could potentially 

reduce workload by more than 50% and preemptively detect a substantial proportion of cancers 

otherwise diagnosed later [50]. These findings suggest a novel potential way of integrating AI based 

cancer detection into clinical workflows to preserve or improve clinical performance while reducing 

workloads. The implications for this type of workflow may differ between screening programs with 

a single versus a double reader paradigm. 

Another study evaluating an AI system used in the detection of lesions on DBT found that when 

the algorithm was concurrently incorporated into the interpretation of the mammograms, it reduced 

reading times by approximately half while still improving accuracy with a statistically significant 

0.057 average improvement in AUC [51]. As reading times with DBT are significantly longer than 

with FFDM this provides an opportunity for increased efficiency which is particularly important 

given the current shortage of trained radiologists who can interpret mammograms. An alternative 
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approach for improving interpretive efficiency for DBT is the replacement of traditional 1 mm thin 

tomosynthesis slices with 6 mm thick overlapping slices that has been implemented by a mainstream 

mammography modality manufacturer [50]. These thick slices are created in part by using AI 

algorithms to make salient suspicious findings more conspicuous [50]. This should allow for 

increased efficiency in interpretation of DBT by reducing the number of slices for review. By using 

these triage tools, radiology practices could prioritize examinations to be read immediately, 

categorize cases by complexity, and replace the second reader at sites offering double reading to 

enhance radiologist’s workflow [53].  As of today, there are multiple commercially available 

algorithms that can assist in triage of mammographic interpretation (Table 2).  

Quality Assessment: 

The importance of maintaining high quality positioning and technique has long been a focus for 

mammography. MQSA includes significant focus on ensuring standardization and quality for 

mammography in the United States. Poor positioning is often identified as a leading cause of clinical 

imaging deficiencies and misdiagnosis [54]. This has led to the recently implemented FDA EQUIP 

initiative that began in 2017 to emphasize and focus on ensuring and improving quality for the 

effective performance of mammography. The need for uniform high quality mammographic 

technique and positioning creates an opportunity for AI algorithms to evaluate mammography 

exams and provide feedback and opportunities for improvement for performing technologists and 

interpreting physicians. A recent study found an AI algorithm could assess breast positioning on 

mammography to evaluate for common issues that can lead to inadequate positioning such as nipple 

in profile, breast rotation, visualization of the pectoral muscle, inframammary fold, and the pectoral 

nipple line with the algorithm being highly accurate in identifying these deficiencies [55]  Additional 

research studying the application of AI to breast positioning assessment has looked to replicate 

additional quality assessment tasks performed by radiologists when interpreting mammograms in 

hopes of standardizing the detection of these issues, finding some success as well [56]. In fact, there is 

currently a commercially available application that utilizes AI to help evaluate, track and improve 

quality in mammographic positioning [57]. 

Neoadjuvant Chemotherapy Response: 

AI may also be used to assess treatment response to neoadjuvant chemotherapy for breast 

cancer. Neoadjuvant chemotherapy (chemotherapy given prior to surgery) can reduce tumor size, 

allowing for less invasive surgical procedures. It also enables in vivo evaluation of treatment 

response, allowing therapeutic treatment plans to be modified based on each patient’s individual 

response [58]. Despite its relatively low sensitivity (63-88%) and specificity (54-91%), MRI is currently 

the most accurate imaging method for determining tumor response to neoadjuvant therapy [59]. 

Recent research has demonstrated that AI has the potential to improve treatment response prediction.  

A meta-analysis by Liang et al. found that ML and MRI are highly accurate (AUC = 0.87, 95% CI = 

0.84 to 0.91) in predicting response to neoadjuvant therapy [60]. 

AI applied to imaging may predict tumor response to treatment prior to the initiation of 

neoadjuvant chemotherapy. A proof-of-concept study by Skarping et al. demonstrated the 

effectiveness of a DL based model using baseline digital mammograms to predict patient’s response 

to neoadjuvant therapy, with an AUC of .71 [61]. Their model predicted tumor response by 

deciphering breast parenchymal patterns and tumor appearances as reflected by different grey-level 

pixel presentations in digital mammography. This type of platform may help aid in clinical decision 

making prior to administering chemotherapy, significantly reducing patient morbidity. Likewise, a 

study evaluating ultrasound images of primary breast cancer in clinically node negative patients was 

able to predict the likelihood of having lymph node metastases at surgery with a high level of 

accuracy [62]. These findings demonstrate the evolving possibilities for AI based applications to 

positively predict patient outcomes and may provide opportunities to individually tailor and 

improve patient care. 
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Image Enhancement: 

There have been several recent novel investigations and developments using AI algorithms to 

enhance the appearance of images in breast imaging. One creative example is the use of an AI based 

process that first involved collapsing or merging suspicious regions of interest from DBT into 

‘maximum suspicion projections’ that emphasizes the suspicious findings making them more 

conspicuous [63]. These novel synthesized images are then used as an input for an AI cancer detection 

model to detect breast cancers reducing the burden for image and data preparation. Along the same 

lines of this approach, a major mammography modality vendor now has a commercially available AI 

based application that emphasizes features that are likely to be important for accurate imaging review 

such as bright foci which may represent calcifications, lines that can represent distortion, or rounded 

objects that may be masses [52]. This information is derived from 1 mm slices from the DBT images 

but is then combined into overlapping thick 6 mm slabs that can significantly decrease the number 

of slices that need reviewed while still preserving the visibility of salient findings [52]. 

Additional investigations have evaluated using AI applications to reduce the amount of 

intravenous contrast dose needed for breast MRI [64]. This is especially important given the current 

recommendations for serial annual supplemental screening breast MRIs for patients at high risk for 

breast cancer and recent focus on the possibility of gadolinium retention. A recent study 

demonstrated an AI algorithm that was developed using a data set of breast MRI images with and 

without contrast. This AI model was then given inputs consisting only of non-contrast images from 

breast MRI studies and was able to generate simulated contrast enhanced breast MRI images [65]. 

These simulated images were felt to be quantitatively similar and demonstrated high level of tumor 

overlap with the true contrast enhanced breast MRI images, with 95% of images found to be of 

diagnostic quality by the study radiologists. These developments demonstrate the power of AI 

applications to create clinical value and novel potential workflows using minimal or limited data sets.  

Discussion and Future Directions: 

There are at least 20 available FDA AI based applications available today for breast imaging 

(Table 2). Beyond currently commercially available applications, there are many more in 

development with potential applications for breast imaging at various degrees of maturity and 

availability (Figure 1).  
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Figure 1. Overview of maturity and availability of different AI applications for breast imaging. 

However, there are significant barriers to implementation of AI applications in breast imaging 

including inconsistent performance, significant cost, and IT requirements, along with the lack of 

radiologist, patient and referring provider familiarity and trust [66]. Additionally, there are 

meaningful concerns for the generalizability of AI algorithms in breast imaging with a recent 

publication showing significant performance degradation of an AI algorithm that was trained using 

images from a specific manufacturer when tested using an updated system/software from that same 

manufacturer [67]. This required site specific modification of the algorithm to improve performance. 

These issues demonstrate a more general concern for the ability of AI applications to generate 

consistent and uniform results between sites and clinical scenarios. This reinforces the need for 

careful evaluation of applications for each site and close monitoring of performance. Further 

complicating adoption is the lack of reimbursement for AI applications in breast imaging, which may 

drive focus and adoption towards applications that can provide convincing workflow or efficiency 

gains to counterbalance the costs of adoption and implementation. 

During the first few months of 2023 there has been tremendous excitement and focus on a 

handful of AI natural language processing models, specifically large language models, that seem 

poised to generate evolutionary and disruptive change throughout many different fields and 

industries. ChatGPT, a conversation large language model, is perhaps the most well-known and 

discussed of these models that is extremely successful at automatically summarizing large inputs of 

information and answering questions in a conversational manner. Potential applications within 

breast imaging may include imaging appropriateness and clinical decision support, preauthorization 

needs, generating reports, summarizing information from the electronic medical record, and creating 

interactive computer aiding detection applications [68].  Given the high degree of contact of breast 

imaging with patients and general population applications like ChatGPT, large language models may 

provide value in shaping and guiding patient interaction and education for breast imaging topics in 

the future.  

It will be essential to build and shape the trust and perceptions of patients and referring 

providers towards AI in breast imaging. Patient attitudes and perceptions regarding AI in radiology 
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are complex and include distrust and accountability, concerns about procedural knowledge, a 

preference for preserving personal interaction, efficiency, and remaining informed about use [69]. 

More generally, approximately 50% of women of screening age (over 50) in England report positive 

feelings about the use of AI in reading mammograms, with the remainder being neutral or reporting 

negative feelings [70]. This data suggests that there will be significant future work towards educating 

patients on how AI can be implemented in breast imaging and keeping patients aware of the benefits 

and limitations of its use. 
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