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Abstract: The evolution of even and odd Schrödinger cat states of the inverted oscillator is obtained

in the center-of-mass tomographic probability description of the two-mode oscillator.The notion of

entangled probability distribution is reviewed. Evolution equations describing the time-dependence

of probability distributions identified with quantum system states are discussed. The connection

with the Schrödinger equation and the von Neumann equation is clarified.

Keywords: probability distributions; entanglement; quantizer operator; dequantizer operator;

symplectic tomography; center-of-mass tomography, even and odd cat states

1. Introduction

In conventional formulation of quantum mechanics [1] the states of the quantum systems are

identified either with vectors |ψ〉 in Hilbert space [2] or with density operators ρ̂ acting in the Hilbert

space [3]. The vectors in the Hilbert space are associated with wave functions ψ(x) of pure quantum

states and the density operators are associated with pure or mixed states described by density matrices

[4] or matrix elements of the density operators in some representation. There were constructed

different other representations of quantum states like e.g. Wigner functions W(q, p) which are

quasiprobability distributions [5,6] which have some properties of probabilistic distributions. In

classical mechanics the system states are identified with probability distribution functions and their

properties are described by conventional probability theory [7]. The probability theory is used also

to study different aspects of quantum system properties [8] as well as in connection with quantum

mechanical methods applications to other areas of science [9]. Some new aspects of quantum system

correlation properties like entanglement phenomena were discussed in [10,11]. The entanglement

phenomenon in quantum physics provides possibility to apply this notion also in classical probability

theory [12]. The conventional probability distributions determining the quantum system states were

considered in [13] and this representation is called probability representation of quantum mechanics

(see also [14–16]).

The tomograms and the entanglement phenomenon in the two mode squeezed states and

two-mode even and odd coherent states were considered in [17]. Stimulated Raman scattering

and stimulated Brillouin scattering of light were considered in the frame of symplectic tomography

scheme in [18,19]. Also the entanglement phenomenon at the processes of stimulated light scattering

of different types and its connection with the probability distribution functions determining the states

of photon and phonon modes was discussed [18–21]. In [22] the evolution of different kinds of states

in the Kerr medium including maximally entangled states were threoretically stidued in the frame of

optical tomography scheme (which is partial case of symplectic tomography scheme). The unstable of

reconstructed tomogram determining the state was considered in [23] in the connection with the Radon

transform properties. In [24] it was shown that in classical mechanics can be introduced the Hermitian
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operators and the concepts of classical mechanics can be formulated in the language analogous to

quantum mechanics language. New fundamental aspects of quantum mechanics based on groupoid

approach are investigated in [25]. In [26] the evolution of states of system containing quantum and

classical parts was studied. The cosmology features were considered in the frame of probability

representation of quantum states in [27,28]. The density matrix properties using the symplectic

representation of quantum mechanics are given in [29]. Some tomographic methods, quantization

based on associative star-product of functions, applications of these approaches to different kinds of

experiments were discussed in [30–39].

The idea to construct the probability representation of quantum states is based on the method of

mapping operators onto functions called symbols of operators. This method is the same method which

is used to construct the Wigner function [5] and other quasidistributions like the Husimi function [40],

the Glauber–Sudarshan function [41,42].

The aim of the paper is to study properties of the probability representation and to consider

the probability distributions describing the quantum states in the case of continious variables. We

will consider dynamics of the quantum oscillator states as dynamics of the probability distributions

including the superpositions of the wave functions and the superposition principle. Also some

examples of the probability distributions for continious variables (called tomographic probability

distributions) will be studied for quantum oscillator systems.

The paper is organized as follows. The notion of entangled probability distributions describing

the quantum states in probability representation of quantum mechanics is discussed in the Section

2. Specific example of entangled probability distribution for a two-mode oscillator is considered in

the Section 3. The time-dependence of states in different representations of quantum mechanics is

described in the Section 4. Probability representation of quantum states is described in the Section

5 using the method of quantizer-dequantizer operators as well as the evolution equation for the

probability distributions and other functions corresponding to quasiprobability representations of

system states. Symplectic tomography of oscillator system states is discussed in the Section 6 and

dynamics of operator symbols for the Hamiltonians which are quadratic forms of position and

momentum operators are considered in the Section 7. The center-of-mass tomography and dynamics

of the Schrödinger cat states of the ordinary and inverted two-mode oscillators including explicit

expressions for time evolution of the center-of-mass tomography are obtained in the Section 8. The

conclusions and prospectives of the probability representation pf quantum mechanics for studying

entanglement and dynamics of quantum system states are presented in the Section 9.

2. Entangled Probability Distributions of Random Variables

Following [12] we introduce concept of separable and entangled probability distributions using

the notion of entangled states in quantum mechanics and introduced in [13,14,43] notion of probability

representation of quantum states. In this representation for a quantum system the density operators

of separable states can be written as convex sum of tensor products of the density operators of the

subsystems. Using the probability representation of the density operators we formulate the new notion

in conventional probability theory on example of probability distribution of two random variables

which are obtained using the invertable map of the density operators onto the probability distributions.

Definition: the conditional probability distribution P(X1, X2|a1, a2) is called separable if it can be

represented as convex sum of the probability distributions P(k)(X1|a1) and P(k)(X2|a2) of the form

P(X1, X2|a1, a2) = ∑
k

PkP
(k)
1 (X1|a1)P

(k)
2 (X2|a2). (1)

Here P(X1, X2|a1, a2) ≥ 0, P1(X1|a1) ≥ 0, P2(X2|a2) ≥ 0, coefficients Pk ≥ 0, ∑k Pk = 1 and

∫

P(X1, X2|a1, a2)dX1dX2 = 1. (2)
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The probability distribution P(X1, X2|a1, a2) is called entangled probability distribution if it cannot be

presented as the convex sum of the form (1), i.e.

P(X1, X2|a1, a2) 6= ∑
k

PkP
(k)
1 (X1|a1)P

(k)
2 (X2|a2). (3)

For separable probability distribution

∫

P(X1, X2|a1, a2)dX2 = ∑
k

PkP
(k)
1 (X1|a1) (4)

and
∫

P(X1, X2|a1, a2)dX1 = ∑
k

PkP
(k)
2 (X2|a2). (5)

For entangled probability distributions we have the probability distribution Π(X1|a1) as the integral

(4)
∫

P(X1, X2|a1, a2)dX2 = Π(X1|a1), (6)

and it cannot be presented as a convex sum like in (4).

3. Examples of the Entangled Probability Distributions

The entangled probability distribution can be related to probability distributions realized by using

the superposition principle of quantum state wave functions, for example, the superposition of Fock

states like state of two–mode oscillator with the wave function. We consider the very simple model of

state ψ(x1, x2) of the form

ψ(x1, x2) =
1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)) =

x1 + x2√
π

exp

(

− x2
1

2
− x2

2

2

)

. (7)

The function (7) is the superposition of wave functions of two-mode oscillator. The functions |ψ0(x1)〉
and |ψ0(x2)〉 are ground states of the first and second oscillators, i.e.

ψ0(x1) =
e−

x2
1
2

π1/4
, ψ0(x2) =

e−
x2

2
2

π1/4
, (8)

and the function ψ1(x1) is the first excited state of the first oscillator and ψ1(x2) is the first excited state

of the second oscillator, i.e.

ψ1(x1) =

√
2x1

π1/4
e−

x2
1
2 , ψ1(x2) =

√
2x2

π1/4
e−

x2
2
2 . (9)

Using the relation between the symplectic tomogram and the wave function [44]

w(X1, X2|µ1, µ2, ν1, ν2) =

1

4π2|ν1||ν2|

∣

∣

∣

∣

∫

ψ(x1, x2) exp

(

iµ1

2ν1
x2

1 +
iµ2

2ν2
x2

2 −
iX1x1

2ν1
− iX2x2

2ν2

)

dx1dx2

∣

∣

∣

∣

2

, (10)

one can obtain the explicit form of the conditional probability distribution w(X, Y|µ1, ν1, µ2, ν2), i.e.

w(X1, X2|µ1, ν1, µ2, ν2) =

(

ν2
2 + µ2

2

)

X2
1 + 2 (ν1ν2 + µ1µ2) X1X2 +

(

ν2
1 + µ2

1

)

X2
2

π
(

ν2
1 + µ2

1

)3/2 (
ν2

2 + µ2
2

)3/2

× exp

[

− X2
1

µ2
1 + ν2

1

− X2
2

µ2
2 + ν2

2

]

. (11)
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For particular case ν1 = ν2 = 1, µ1 = µ2 = 0, one gets

w(X1, X2|µ1 = 0, ν1 = 1, µ2 = 0, ν2 = 1) =
1

π
(X1 + X2)

2 exp
(

−X2
1 − X2

2

)

. (12)

One can check, that the function w(X1, X2|µ1, ν1, µ2, ν2) (12) satisfies the condition

∫ ∫

w(X1, X2, |µ1, ν1, µ2, ν2)dX1dX2 = 1. (13)

As we know, this probability distribution function corresponding to superposition of the wave

functions (7) determines the quantum state which is entangled state. Due to this we call this

probability distribution entangled probability distribution. In quantum mechanics the wave functions

of two–mode oscillators which are obtained by means of superposition of two different wave functions

are entangled pure states. In connection with this the tomographic probability distribution is described

by the probability distribution function (11) and it cannot be represented in the form of equation (1).

On the other hand the integral

w(X1|µ1, ν1) =
∫

w(X1, X2|µ1, ν1, µ2, ν2)dX2 =

exp

(

− X2
1

µ2
1+ν2

1

)

√

π
(

µ2
1 + ν2

1

)

[

1

2
+

X2
1

µ2
1 + ν2

1

]

. (14)

One can check, that
∫

w(X1|µ1, ν1)dX1 = 1. (15)

This function w(X1|µ1, ν1) (14) is marginal conditional probability distribution of position X1 which is

the position of the first oscillator and the conditions are labeled by the real parameters µ1, ν1. Also, if

we repeat analogous calculations for the second oscillator we will get

w(X2|µ2, ν2) =
∫

w(X1, X2|µ1, ν1, µ2, ν2)dX1 =

exp

(

− X2
2

µ2
2+ν2

2

)

√

π
(

µ2
2 + ν2

2

)

[

1

2
+

X2
2

µ2
2 + ν2

2

.

]

. (16)

One can check, that
∫

w(X2|µ2, ν2)dX2 = 1. (17)

This function w(X2|µ2, ν2) is marginal conditional probability distribution of position X2 which is the

position of the second oscillator and the conditions are labeled by the real parameters µ2, ν2.

The function (11) is probability distribution function, it has the form of sum of three functions

which contain product of Gaussian function and different terms of position products of X1 and X2.

The two terms are the probability distribution functions. The third term which is obtained from the

integral (10) is not probability distribution function but being added to two terms mentioned above it

gives the function which is the probability distribution (tomographic probability distribution).

4. Evolution of States in Different Representations

Let us remind the description of quantum state dynamics in the Hilbert space H where the pure

quantum state is associated with the state vector |ψ〉 [2] and the other states including the pure states

are also described by the density operators ρ̂ [3,4] acting on the vectors in the Hilbert space H. The

dynamics of the states is described by the Schrödinger equation (h̄ = 1)

i
∂|ψ(t)〉

∂t
= Ĥ|ψ(t)〉, (18)
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where Ĥ is the system Hermitian Hamiltonian (Ĥ = Ĥ†).

For time independent Hamiltonian the state vector |ψ〉 evolves by means of the evolution operator

û(t) = exp(−iĤt) of the form

|ψ(t)〉 = û(t)|ψ(0)〉, û(0) = 1̂. (19)

For the pure state with the state vector |ψ(t)〉 the density operator is given by the formula ρ̂(t) =

|ψ(t)〉〈ψ(t)| and the Shcrödinger equation (19) provides the equation for the density operator of the

form (the von Neumann equation)

i
∂(|ψ(t)〉〈ψ(t)|)

∂t
= Ĥ|ψ(t)〉〈ψ(t)| − |ψ(t)〉〈ψ(t)|Ĥ. (20)

This equation is also valid for mixed state with the Hermitian density operator ρ̂(t) =

∑k λk|ψk(t)〉〈ψk(t)|. Here the parameters λk are probabilities describing mixed states. The equation

can be given in the following form
∂ρ̂(t)

∂t
+ i[Ĥ, ρ(t)] = 0. (21)

The solution of this equation corresponding to the solution of the equation (19) reads

ρ̂(t) = û(t)ρ̂(0)û†(t). (22)

The operators like position q̂ and momentum p̂ operators in the Heisenberg representation, namely,

q̂H(t) and p̂H(t) are given as follows

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û†(t) p̂û(t). (23)

The integrals of motion q̂0(t) and p̂0(t) which have the initial values q̂0(t = 0) = q̂ and p̂0(t = 0) = p̂

and satisfying the equation (21) are connected with the Heisenberg position and momentum operators

for time independent Hamiltonian by the relations

q̂0(−t) = q̂H(t), p̂0(−t) = p̂H(t). (24)

The stationary states of a system |ψE(t)〉 satisfying the Schrödinger equation (18) have the form

|ψE(t)〉 = û(t)|ψE(0)〉 = exp(−iEt)|ψE(0)〉, (25)

where the vector |ψE(0)〉 is the eigenvector of the Hamiltonian operator, i.e.

Ĥ|ψE(0)〉 = E|ψE(0)〉. (26)

The eigenvalue parameter E describes the energy level of the system. The superposition principle of

quantum states means that the vector |ψ(t)〉 of the form

|ψ(t)〉 = ∑
k

Ck|ψEk
(t)〉, (27)

where Ck are complex numbers, is the solution of the Shrödinger equation (18). Also it means that the

density operator ρ̂(t) of the form

ρ̂(t) = ∑
k

∑
k′

CkC∗
k′ |ψEk

(t)〉〈ψEk′ (t)| (28)
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is the solution of the von Neumann equation (21). Also it means that due to equations (25) and (26) we

have

ρ̂(t) = ∑
k

∑
k′

CkC∗
k′ exp (i(Ek − Ek′)t) |ψEk

(t)〉〈ψEk′ (t)|, (29)

or

ρ̂(t) = ∑
k

|Ck|2|ψEk
(0)〉〈ψEk

(0)|+ ∑
k

∑
k′ 6=k

CkC∗
k′ exp (i(Ek − Ek′)t) |ψEk

(0)〉〈ψEk′ (0)|. (30)

The dynamics of the state density operator is determined for all the states which can be represented as

superpositions of energy level states by the formula (30) since the vectors |ψEk
(t)〉 form the complete

system of vectors in the Hilbert space H.

5. Probability and Other Representations of System States

Now we consider different representations of quantum states using the formalism of

quantizer-dequantizer operators D̂(~x) and Û(~x) [45], where ~x is a set of parameters (x1, x2, . . . , xn)

such that the density operators ρ̂ can be mapped onto the set of functions fρ(~x) which are named

symbols of operators of the form

fρ(~x) = Trρ̂Û(~x). (31)

The operator Û(~x) is a dequantizer operator. The density operator can be reconstructed from the

symbol of density operator with the help of inverse transform

ρ̂ =
∫

fρ(~x)D̂(~x)d~x. (32)

The operator D̂(~x) is a quantizer operator. All the state representations like Wigner function [5], Husimi

function [40], Glauber–Sudarshan function [41,42] and corresponding symbols of other operators are

formulated using corresponding quantizer–dequantizer operators. Thus, the quantum mechanics can

be formulated using the formalism of operators acting in the Hilbert space onto its symbols which

contain the same information about quantum states. One can transform the quantum mechanics

formalism and obtain equations (differential or integral) for the density operator symbols. Important

novelty is that the possibility of describing quantum states by conventional probability distributions

exists [43,46].

All the known quasidistribution functions are obtained using different pairs of a quantizer

operator D̂(~x) and a dequantizer operator Û(~x), where ~x = x1, x2, . . . xn. These operators give the

possibility to map the operators Â acting in the Hilbert space where position q̂ and momentum p̂ act,

due to following generic map of operators Â → fA(~x) given by the formula for the function fA(~x)

called symbol of the operator Â

fA(~x) = Tr
(

ÂÛ(~x)
)

. (33)

The inverse transform fA(~x) → Â is given by the formula

Â =
∫

fA(~x)D̂(~x)d~x, (34)

where quantizer operators D̂(~x) provide the possibility to reconstruct the operator Â if its symbol

fA(~x) is known. The map given by Eqs. (33), (34) provides the possibility to introduce the star–product

of functions fA(~x) and fB(~x) which are symbols of operators Â and B̂. The symbol of operator ÂB̂ is

given by the formula

fAB(~x) = Tr
(

ÂB̂Û(~x)
)

. (35)

Using the relations (33), (34), (35) the star–product of the functions fA(~x) and fB(~x)

( fA ⋆ fB) (~x) = fAB(~x) (36)
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is presented in the integral form

( fA ⋆ fB) (~x) =
∫

fA(~x1) fB(~x2)K(~x1,~x2,~x)d~x1d~x2, (37)

with the kernel which is easy to express in terms of quantizer–dequantizer

K(~x1,~x2,~x) = Tr
(

D̂(~x1)D̂(~x2)Û(~x)
)

. (38)

Since the product of operators is associative, i.e.
(

(ÂB̂)Ĉ
)

=
(

Â(B̂Ĉ)
)

the star–product of symbols of

the operators is also associative.

One can use the formalism of quantizer–dequantizer operators to write the evolution equation

for symbols of density operators. For example, the von Neumann equation for the oscillator density

operator ρ̂(t) is written in the form (we use m = ω = h̄ = 1)

∂ρ̂

∂t
+ i
(

Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)
)

= 0. (39)

Here ρ̂(t) has the symbol fρ(~x, t) and the Hamiltonian operator Ĥ(t) has the symbol fH(~x, t), where

we consider the symbols for arbitrary quasidistributions corresponding to quantizer–dequantizer

operators. Then Eq. (39) takes the form

∂ fρ(~x, t)

∂t
+ i
(

fH ⋆ fρ − fρ ⋆ fH

)

(~x, t) = 0. (40)

The equation for evolution of density operator symbol for given Hamiltonian Ĥ(t) has the general

form of integral equation

∂ fρ(~x, t)

∂t
+ i

∫

(

fH(~x1, t) fρ(~x2, t)− fρ(~x1, t) fH(~x2, t)
)

K(~x1,~x2,~x)d~x1d~x2 = 0. (41)

Here the symbol of the Hamiltonian fH(~x1, t) = Tr
(

Ĥ(t)Û(~x1)
)

and the symbol of density operator

fρ(~x2, t) = Tr
(

ρ̂(t)Û(~x2)
)

. Using (31), (38) and (41) one has

∂ fρ(~x, t)

∂t
+ i

∫

[

Tr
(

Ĥ(t)Û(~x1)
)

Tr
(

ρ̂(t)Û(~x2)
)

− Tr
(

ρ̂(t)Û(~x1)
)

Tr
(

Ĥ(t)Û(~x2)
)]

×Tr
(

D̂(~x1)D̂(~x2)Û(~x)
)

d~x1d~x2 = 0. (42)

The equation (42) can be written in the form of kinetic equation for a probability distribution function

∂ fρ(~x, t)

∂t
+ i

∫

fρ(~x2, t)K(~x,~x2, t)d~x2 = 0, (43)

where

K(~x,~x2, t) =
∫

(K(~x1,~x2, x, t)− K(~x2,~x1, x, t)) fH(~x1, t)d~x1, (44)

and the symbol of density operator fρ(~x, t) is a probability distribution. For symplectic tomogram the

inverse quantum Radon transform reads [47]

ρ̂ =
1

2π

∫

w(X|µ, ν) exp
(

i(X1̂ − µq̂ − ν p̂)
)

dXdµdν. (45)

It means that the quantizer operator for the symplectic tomography method has the form

D̂(X|µ, ν) =
1

2π
exp

(

i(X1̂ − µq̂ − ν p̂)
)

. (46)
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Thus, we have ~x = X, µ, ν and the dequantizer reads

Û(X|µ, ν) = δ
(

i(X1̂ − µq̂ − ν p̂)
)

. (47)

The kernel describing the star–product of the operators in symplectic tomography is expressed as

follows

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2
Tr
[

exp
(

i(X11̂ − µ1q̂ − ν1 p̂)
)

× exp
(

i(X21̂ − µ2q̂ − ν2 p̂)
)

δ
(

i(X1̂ − µq̂ − ν p̂)
)]

. (48)

In an explicit form it reads

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2
δ (µ(ν1 + ν2)− ν(µ1 + µ2))

× exp

(

i

2
(ν1µ2 − ν2µ1 + 2X1 + 2X2 − 2

ν1 + ν2

ν
X)

)

. (49)

In the case of a harmonic oscillator in the tomographic probability representation the symbol of density

operator ρ̂(t) is given by the probability distribution function, (~x = X, µ, ν),

wρ(X|µ, ν, t) = fρ(~x, t) = Trρ̂(t)δ
(

X1̂ − µq̂ − ν p̂
)

, (50)

The Hamiltonian Ĥ can be mapped onto its symbol

fĤ(X, µ, ν) = Tr
(

Ĥδ(X1̂ − µq̂ − ν p̂)
)

. (51)

The symplectic tomogram (50) is symbol of the density operator ρ̂ and it is the probability distribution

of position X [13] depending on extra parameters determining the reference frame in the phase-space

where the position X is measured. For symplectic tomography the integral linear equation (43) has the

form
∂wρ(X|µ, ν, t)

∂t
+ i

∫

wρ(X2|µ2, ν2, t)K(X, µ, ν, X2, µ2, ν2, t)dX2dµ2dν2 = 0. (52)

Here

K(X, µ, ν, X2, µ2, ν2, t) =
∫

[K(X1, µ1, ν1, X2, µ2, ν2, t)− K(X2, µ2, ν2, X1, µ1, ν1, t)] fH(X1, µ1, ν1, t)dX1dµ1dν1.
(53)

The product of operators Â · B̂ is mapped onto star-product of their symbols

(ÂB̂) ↔ (A ⋆ B)(X, µ, ν) = Tr
(

ÂB̂δ(X1̂ − µq̂ − ν p̂)
)

(54)

with the kernel of the star product defined by means of the expression

(A ⋆ B)(X, µ, ν) =
∫

A(X1, µ1ν1)B(X2, µ2, ν2)K(X1, µ1ν1, X2, µ2, ν2, X, µ, ν)dX1dX2dµ1dµ2dν1dν2.
(55)

This formula is application of general formula (38) for the kernel of star-product of symbols. This

formula can be used to study the entaglement phenomena of states which are superpositions of

two-mode oscillator states.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2023                   doi:10.20944/preprints202304.0795.v1

https://doi.org/10.20944/preprints202304.0795.v1


9 of 15

6. Symplectic Tomography of Oscillators

One can calculate the tomographic probability distribution w(X|µ, ν) called the symplectic

tomogram of the state with density operator ρ̂|ψ〉 = |ψ〉〈ψ| using the formula analogous (10) expressed

in terms of wave function ψ(y) of the pure state in position representation which reads [44]

w|ψ〉(X|µ, ν) =
1

2π|ν|

∣

∣

∣

∣

∫

ψ(y) exp

(

iµ

2ν
y2 − iXy

ν

)

dy

∣

∣

∣

∣

2

. (56)

The function is nonnegative and satisfies the normalization condition

∫

w|ψ〉(X|µ, ν)dX = 1. (57)

The physical meaning of the real parameters µ and ν is that they due to using δ(X1̂ − µq̂ − ν p̂)

determining the dequantizer Û(x) as delta function describe the axes of reference frames in phase

space of position q̂ and momentum p̂ where the position X1̂ = µq̂ + ν p̂ is measured. Thus the

tomogram w(X|µ, ν) is the conditional probability distribution determining the density operator for

the state. If µ = 1, ν = 0 it is the density matrix diagonal elements ρ(qq) and for µ = 0, ν = 1

tomogram is diagonal matrix element ρ(pp). It means that if one knows probability distributions of

position and momentum in all the reference frames in the phase space the state (state density operator)

is known.

In the case of two-mode oscillator the relation between the symplectic tomogram and wave

function of the state are done by equation (10) . Using (10) one can obtain the symplectic tomogram of

the ground state of two-mode oscillator in the explicit form

w0(X1, X2|µ1, µ2, ν1, ν2) =
1

π
√

µ2
1 + ν2

1

√

µ2
2 + ν2

2

exp

(

− X2
1

µ2
1 + ν2

1

− (X2
2

µ2
2 + ν2

2

)

, (58)

and the tomogram of coherent state of two-mode oscillator in the Gaussian form

wα(X1, X2|µ1, µ2, ν1, ν2) =
1

π
√

µ2
1 + ν2

1

√

µ2
2 + ν2

2

exp

(

− (X1 − X̄1)
2

µ2
1 + ν2

1

− (X2 − X̄2)
2

µ2
2 + ν2

2

)

, (59)

where X̄1 =
√

2µ1Reα +
√

2ν1Imα, X̄2 =
√

2µ2Reα +
√

2ν2Imα, α is complex number.

7. Dynamics of oPerator Symbols for Hamiltonians Quadratic in Position and Momentum

Let us discuss the probability to find the tomographic probability distribution evolution for

the systems with Hamiltonians which are quadratic forms in position and momentum operators.

Such systems have integrals of motion which are linear in position and momentum operators.

Also the position and momentum operators q̂H(t) and p̂H(t) are linear forms of the position q̂ and

momentum p̂ operators with time-dependent coefficient [48]. Due to this we can explicitly obtain

the time-dependence of the tomographic probability distributions describing the quantum states and

corresponding to solution of the Schrödinger equation for wave function and the von Neumann

equation for the density operators. The idea to get the solution of these equations was formulated

in [43,46]. It is based on the following observation. Since the system state tomogram is given by

the symbol of the density operator ρ̂(t), i.e. (50), where the density operator evolution for the von

Neumann equation is described by the evolution operator û(t), i.e. ρ̂(t) = û(t)ρ̂(0)û†(t) the symbol

of the density operator can be rewritten in the form Tr
(

ρ̂(0)δ(X − µû†(t)q̂û(t)− νû†(t) p̂û(t)
)

. Here

û†(t)q̂û(t) = q̂H(t) and û†(t) p̂û(t) = p̂H(t) are the Heisenberg position and momentum operators.

Such property takes place also for multi-mode systems with the Hamiltonians which are any quadratic
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forms in position and momentum operators, for example, for two-dimensional oscillators both ordinary

ones like

Ĥ(1) =
p̂2

1

2
+

p̂2
2

2
+

q̂2
2

2
+

q̂2
1

2
(60)

and for two-dimensional oscillator both inverted ones like

Ĥ(2) =
p̂2

1

2
+

p̂2
2

2
− q̂2

2

2
− q̂2

1

2
. (61)

The Hamiltonian Ĥ2 corresponds to the motion of the inverted oscillator. For such Hamiltonians one

has time-dependent Heisenberg operators of position and momentum of the form: for the ordinary

oscillator with the Hamiltonian (60)

q̂H(1) ;1(t) = cos t · q̂1 + sin t · p̂1, q̂H(1) ;2(t) = cos t · q̂2 + sin t · p̂2, (62)

p̂H(1) ;1(t) = − sin t · q̂1 + cos t · p̂1, p̂H(1) ;2(t) = − sin t · q̂2 + cos t · p̂2; (63)

for the inverted oscillator with the Hamiltonian (61)

q̂H(2) ;1(t) = cosh t · q̂1 + sinh t · p̂1, q̂H(2) ;2(t) = cosh t · q̂2 + sinh t · p̂2, (64)

p̂H(2) ;1(t) = sinh t · q̂1 + cosh t · p̂1, p̂H(2) ;2(t) = sinh t · q̂2 + cosh t · p̂2. (65)

Developed formalism provides the possibility to obtain the description of time evolution for all the

multi-mode systems with time-dependent quadratic Hamiltonians. For such systems the Heisenberg

position and momentum operators are linear forms with time dependent coefficients of usual positions

and momenta.

8. Center-of-Mass Tomography

Let us introduce a dequantizer operator for two-mode oscillator Û(X1, X2, µ1, ν1, µ1, ν2). Then the

symplectic tomogram reads

w(X1, X2|µ1, ν1, µ2, ν2) = Tr
(

ρ̂δ(X11̂ − µ1q̂1 − ν1 p̂1)δ(X21̂ − µ2q̂2 − ν2 p̂2)
)

. (66)

The dequantizer operator Û(~x) in the case of the symplectic tomogram is δ(X11̂− µ1q̂1 − ν1 p̂1)δ(X21̂−
µ2q̂2 − ν2 p̂2). The density operator can be reconstructed from the symplectic tomogram with the help of

the quantizer operator D̂(X1, X2, µ1, µ2, ν1, ν2) =
1

4π2 exp(iX11̂− µ1q̂1 − ν1 p̂1) exp(iX21̂− µ2q̂2 − ν2 p̂2).

Then the symplectic tomogram of the first mode of oscillator is related to (66) as

w(X1|µ1, ν1) =
∫

w(X1, X2|µ1, ν1, µ2, ν2)dX2. (67)

There is another type of tomography, named the center-of-mass tomography. It was introduced

in [49] and developed in [50,51]. In the center-of-mass tomography the state is determined by the

center-of-mass tomogram. The center-of-mass tomogram is a symbol of the density operator

wcm(X|µ1, ν1, µ2, ν2) = Tr
(

ρ̂δ(X1̂ − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)
)

. (68)

The random variable X we named center-of-mass coordinate which is measured in phase space in

rotated and scaled reference frames which are determined by parameters µ1, ν1, µ2, ν2. The dequantizer

operator in the center-of-mass tomography is

Û(X, µ1, ν1, µ2, ν2) = δ(X1̂ − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2). (69)
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The density operator can be reconstructed from the center-of-mass tomogram with the help of the

quantizer operator D̂(X, µ1, ν1, µ1, ν2), i.e.

ρ̂ =
1

4π2

∫

wcm(X|µ1, ν1, µ2.ν2) exp
(

i
(

X1̂ − µ1q̂ − ν1 p̂1 − µ2q̂2 − ν2 p̂2

))

dXdµ1dν1dµ2dν2. (70)

The center-of-mass tomogram of odd and even coherent states is of the form

wcm,α(X|µ1, ν1, µ2, ν2) =

1√
π
√

σN2
±(α)

[

exp
(

−(X −
√

2Reα1µ1 −
√

2Reα2µ2 −
√

2Imα1ν1 −
√

2Imα2ν2)
2/σ

)

± exp
(

−2|α1| − 2|α2| − (X − i
√

2Imα1µ1 − i
√

2Imα2µ2 + i
√

2Reα1ν1 + i
√

2Reα2ν2)
2/σ

)

± exp
(

−2|α1| − 2|α2| − (X + i
√

2Imα1µ1 + i
√

2Imα2µ2 − i
√

2Reα1ν1 − i
√

2Reα2ν2)
2/σ

)

+ exp
(

−(X +
√

2Reα1µ1 +
√

2Reα2µ2 +
√

2Imα1ν1 +
√

2Imα2ν2)
2/σ

)]

, (71)

where σ = µ2
1 + µ2

2 + ν2
1 + ν2

2 and N2
±(α) = 2

(

1 ± exp(−2|α1|2 − 2|α2|2)
)

. These tomograms (71)

are the images of the nonclassical even and odd coherent states in the probability representation of

quantum mechanics.

Following the method described in Section 7 we obtain the time-dependent center-of-mass

tomogram of Schrödinger cat states. It means that in formula (71) we have to replace µ1, ν1, µ2, ν2 by

time dependent Heisenberg parameters in the case of evolution with the Hamiltonian of ordinary

oscillator (60) of the form

µH(1) ;1 = µ1 cos t − ν1 sin t, µH(1) ;2 = µ2 cos t − ν2 sin t,

νH(1) ;1 = µ1 sin t + ν1 cos t, νH(1) ;2 = µ2 sin t + ν2 cos t. (72)

So, one has for the initial center-of-mass tomogram of odd and even state given by (71) after the

evolution with the Hamiltonian (60) the explicit expression

wcm,α(X, µ1, ν1, µ2, ν2, t) =

1√
π
√

σN2
±(α)

[

exp
(

−(X −
√

2Reα1(µ1 cos t − ν1 sin t)−
√

2Reα2(µ2 cos t − ν2 sin t)

−
√

2Imα1(µ1 sin t + ν1 cos t)−
√

2Imα2(µ2 sin t + ν2 cos t))2/σ
)

± exp
(

−2|α1| − 2|α2| − (X − i
√

2Imα1(µ1 cos t − ν1 sin t)

−i
√

2Imα2(µ2 cos t − ν2 sin t) + i
√

2Reα1(µ1 sin t + ν1 cos t)

+i
√

2Reα2(µ2 sin t + ν2 cos t))2/σ
)

± exp
(

−2|α1| − 2|α2| − (X + i
√

2Imα1(µ1 cos t − ν1 sin t)

+i
√

2Imα2(µ2 cos t − ν2 sin t)− i
√

2Reα1(µ1 sin t + ν1 cos t)

−i
√

2Reα2(µ2 sin t + ν2 cos t))2/σ
)

+ exp
(

−(X +
√

2Reα1(µ1 cos t − ν1 sin t) +
√

2Reα2(µ2 cos t − ν2 sin t)

+
√

2Imα1(µ1 sin t + ν1 cos t) +
√

2Imα2(µ2 sin t + ν2 cos t))2/σ
)]

, (73)

where σ = µ2
1 + µ2

2 + ν2
1 + ν2

2 .
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For inverted oscillator with Hamiltonian (61) the initial center-of-mass tomogram given by (71)

takes the form of conditional probability distribution of one random variable X

wcm,α(X, µ1, ν1, µ2, ν2, t) =

1√
π
√

σN2
±(α)

[

exp
(

−(X −
√

2Reα1(µ1 cosh t + ν1 sinh t)−
√

2Reα2(µ2 cosh t + ν2 sinh t)

−
√

2Imα1(µ1 sinh t + ν1 cosh t)−
√

2Imα2(µ2 sinh t + ν2 cosh t))2/σ
)

± exp
(

−2|α1| − 2|α2| − (X − i
√

2Imα1(µ1 cosh t + ν1 sinh t)

−i
√

2Imα2(µ2 cosh t + ν2 sinh t) + i
√

2Reα1(µ1 sinh t + ν1 cosh t)

+i
√

2Reα2(µ2 sinh t + ν2 cosh t))2/σ
)

± exp
(

−2|α1| − 2|α2| − (X + i
√

2Imα1(µ1 cosh t + ν1 sinh t)

+i
√

2Imα2(µ2 cosh t + ν2 sinh t)− i
√

2Reα1(µ1 sinh t + ν1 cosh t)

−i
√

2Reα2(µ2 sinh t + ν2 cosh t))2/σ
)

+ exp
(

−(X +
√

2Reα1(µ1 cosh t + ν1 sinh t) +
√

2Reα2(µ2 cosh t + ν2 sinh t)

+
√

2Imα1(µ1 sinh t + ν1 cosh t) +
√

2Imα2(µ2 sinh t + ν2 cosh t))2/σ
)]

, (74)

where σ = cosh 2t(µ2
1 + µ2

2 + ν2
1 + ν2

2) + 2 sinh 2t(µ1ν1 + µ2ν2).

9. Conclusion

To conclude we summarize the main results of our paper. We developed the probability

representation of quantum states in which the system states are described by standard probability

distribution functions. These functions determine the density operators of the states. For this we

considered two different schemes of such construction, namely, symplectic tomography probability

distributions [13] and center-of-mass tomographic probability distributions [49]. In our work we

considered time evolution of the tomographic probability distributions on example of the Schrödinger

cat states of the two-mode oscillator. The main result was to find the time evolution and the explicit

expressions of center-of-mass tomographic probability distributions for even and odd coherent states

of two-mode oscillator as ordinary one (73) and inverted one (74). The result is that the obtained

probability distributions describe the entangled states of two-mode oscillator and its evolution. On an

example of such a state we constructed the entangled probability distributions and their dynamics.

The entangled probability distributions are the new kinds of standard probability distributions [12].

The possibility to construct such new probability distributions can be studied considering multi-mode

oscillators with time dependent parameters. The entangled probability descriptions are new kinds

of distributions introduced using the quantum mechanics. There are other new aspects of classical

probability theory which can be found and formulated in view of existence of quantum formalism

of the Hilbert spaces and operator acting in the Hilbert spaces like Bell inequalities which can be

considered as consequences of the entangled probability distributions as well as several entropic

inequalities which are obvious in quantum mechanics but these are not well clarified and even were

not discussed in classical probability theory. We will consider these problems and entropic properties

of such probability distributions in future publications.
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