
Article

Not peer-reviewed version

Quantum Bohmian Inspired Potential to

Model Non-Gaussian time series and its

Application in Financial Markets

Reza Hosseini , Samin Tajik , Zahra Koohi Lai , Tayeb Jamali , Emmanuel Haven , Reza Jafari 

*

Posted Date: 23 April 2023

doi: 10.20944/preprints202304.0752.v1

Keywords: Non-Gaussian time series; MRW; Bohmian quantum; Stock market

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3018596
https://sciprofiles.com/profile/1082617
https://sciprofiles.com/profile/262271


Article

Quantum Bohmian Inspired Potential to Model
Non-Gaussian time series and its Application in
Financial Markets

Reza Hosseini 1, Samin Tajik 2, Zahra Koohi Lai 3,, Tayeb Jamali 4, Emmanuel Haven 5

and Reza Jafari 1,5,7,*

1 Department of Physics, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; g_jafari@sbu.ac.ir
2 Physics Department, Brock University, St. Catharines, ON, Canada
3 Department of Physics, Islamic Azad University, Firoozkooh Branch, Firoozkooh, Iran
4 Porous Media Research Lab, Department of Geology, Kansas State University, Manhattan 66506 KS, USA
5 Faculty of Business Administration, Memorial University of Newfoundland, St. John’s, Canada;

ehaven@mun.ca
6 Institute of Information Technology and Data Science, Irkutsk National Research Technical University,

Lermontova St., 664074 Irkutsk, Russia
7 Center for Communications Technology, London Metropolitan University, London N7 8DB, UK

* Correspondence: gjafari@gmail.com

Abstract: We have implemented quantum modeling mainly based on Bohmian Mechanics to study

time series that contain strong coupling between their events. Compared to time series with normal

densities, such time series are associated with rare events. Hence, employing Gaussian statistics

drastically underestimates the occurrence of their rare events. The central objective of this study is

to investigate the effects of rare events in the probability densities of time series from the point of

view of quantum measurements. For this purpose, we first model the non-Gaussian behavior of time

series using the multifractal random walk (MRW) approach. Then, we examine the role of the key

parameter of MRW, λ, which controls the degree of non-Gaussianity, in quantum potentials derived

for time series. Our Bohmian quantum analysis shows that the derived potential takes some negative

values in high frequencies (its mean values), then substantially increases, and the value drops again

for rare events. Thus, rare events can generate a potential barrier in the high-frequency region of the

quantum potential, and the effect of such a barrier becomes prominent when the system transverses

it. Finally, as an example of applying quantum potential beyond the microscopic world, we compute

quantum potentials for the S&P financial market time series to verify the presence of rare events in

the non-Gaussian densities and demonstrate deviation from the Gaussian case.

Keywords: non-Gaussian time series; MRW; Bohmian quantum

1. Introduction

From ancient times, mathematical and geometrical models have been adopted to study the world

around us, and probability theories have been employed to deal with uncertainties of various events.

However, in recent decades, quite some statistical experimental data in social science, notably in

economics and psychology mostly within the area of human decision-making has been observed to

infringe the laws of classical probability. It has been proposed that the mathematical framework of

quantum theory can offer some solutions to the challenges of this kind, as the apparatus of quantum

probability theory differs significantly from the classical one. Nowadays, we witness how societies,

people, and events interact with one another on a global scale. Events happening in one corner of

the globe can create a significant impact thousands of miles away. The behavior of the social and

economic systems has transcended the classical framework. In the new decade, with the employment

of some fundamental rules and laws from quantum theory, such as the loss of determinism, quantum

superposition, and entanglement physicists aim to uncover and predict the behavior of various
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systems in the macro-world. They strongly believe that in studying some of the financial and social

systems, violating the laws of classical probability, a deeper uncertainty principle, relative to the

uncertainty represented by classical probability theory, exists [1,2]. The number of applications

from applying quantum theory to social and financial problems, ranges from cognitive science and

psychology, to economy, and quantum computing for finance [3–8]. In finance, more specifically,

quantum modeling of risks and decision-making to the analysis of the financial market [9–12], has

concerned interest rates and option pricing [13–15]. According to these studies, the classical price

dynamics can no longer be applied to all modern financial markets to study the price trajectories of

these markets, and one needs to also consider the significant role played by multiple behavioral factors.

Moreover,the fact that traders in modern financial markets tend to behave stochastically given their

free wills is needed to be taken into account.

One of the most prominent deficiencies of applying classical mechanics to uncover behaviors

of financial markets reveals itself in the non-locality-like features of the modern financial markets.

In order to study modern financial markets we need to consider the price return of a period, consisting

of several days “entangled” to each other. The quantum mechanical approach uses extended ideas

based on quantum entanglement to examine the correlation of different time series with a high number

of extreme events to study and predict their evolution in time. In this paper, we have employed the

Bohmian quantum potential method in order to study an example of these entanglements in financial

markets and analyze the impacts of extreme events on these time series.

2. Bohmian Mechanics and Quantum Potential Inspired Method

In this section we show how the Schrodinger wave function which is the heart of quantum

mechanics can be used to explain the relationship between events in space-time, and accordingly

to address the obstacle of non-locality of events. The notion that the wave function of a system,

evolving according to the Schrodinger equation, is interpreted as an active information field, builds the

foundation of Bohmian mechanics, in which information, at the level of human perception, functions

according to postulates from information at the quantum level. This approach is fundamentally

based on the active information analysis of Bohmian Mechanics and its applications to cognitive

sciences [16,17]. Schrodinger formalism demonstrates how Bohmian mechanics complies with our

understanding of financial markets as an example of a correlated system [18,19]. We represent our

financial pilot-wave ψ(q), evolving according to Schrodinger’s equation in the following form:

ψ(q, t) = R(q, t)eiS(q,t)/h̄, (1)

where R(q, t) = |ψ(q, t)| is the amplitude, and S(q, t) is the phase of the defined wave function ψ(q, t).

Substituting the pilot wave into the Schrodinger equation yields:

∂R2

∂t
+

1

m

∂(R2 ∂S
∂q )

∂q
= 0, (2)

∂S

∂t
+

1

2m
(

∂S

∂q
)2 + (V − U) = 0, (3)

where the Bohmian quantum potential is:

U =
h̄2

2mR

∂2R

∂q2
. (4)

In the following section, we demonstrate how we want to analyze the dynamics of non-Gaussian

functions with the help of the Bohmian quantum potential. We first give a review on the multifractal

process and multifractal random walk to model the non-Gaussian probability density function of our

desired data.
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3. Multifractal Formalism

Multifractality has been previously applied to consider scale invariance features of various

objectives in several areas of research. Different studies have examined the concept of pairing

multifractality between time series based on the increasing number of rare events that can generate

deviation from the gaussian density [20–22]. In particular, the MRW models, popular in modeling stock

fluctuations in the financial market, have become the focus of some recent analyses [23,24]. Moreover,

the relationship between turbulence and finance has triggered the demand for employing multifractal

models which previously studied in the framework of multiplicative random cascades [25,26]. Here

we aim to employ multifractal concepts to account for scale invariant properties of financial data,

based on which the robust technique of MRW is introduced and applied [27].

The non-Gaussian probability density function (PDF) with the robust multifractality arises from

the strong log-normal deviation from the normal state which primarily is due to the occurrence of

large fluctuations in the data set. The exact multifractal properties are a consequence of the correlation

in the argument of the logarithm of the stochastic variances [28].

Consider a stochastic process, represented by X(t), which may be a function of space-time,

the increment fluctuations of the data sets at a time scale τ can be shown as:

∆Xτ(t) = X(t + τ)− X(t). (5)

The process is called scale-invariant when the absolute moment M(q), has the following

power-law behavior:

M(q, τ) = 〈|∆X(τ)|q〉 = M(q, τ) ∝ τξq , (6)

where we define ξq as the exponent of the power law, and is responsible for characterizing the scale

invariance properties of the fractal function, [29] and can be shown by:

ξq = qH − 1/2(q(q − 2)λ2). (7)

The process is then called monofractal if ξq is a linear function of q, and multifractal if ξq is a

nonlinear function of q [30]. In Equation (7), H is the Hurst scaling exponent of time series, such that

0 < H < 1. For 0 < H < 0.5 the system is known to be anti correlated, 0.5 < H < 1 leads to correlation

and for H = 0 we have an uncorrelated system. The value of λ scales the non Gasussianity, such that

for the Gaussian case we have: λ = 0, corresponding to ξq ∝ q, and indicating the fractality of the

signal. For the non Gaussian case with the λ 6= 0 signal will represent multifractality behavior. In this

section, using only a set of few variables, we apply multifractal statistics to model the increment of

fluctuations of the data [31,32].

For a log-normal cascade at the smallest scale ∆t and for each time-lag, τ, to obtain a good

candidate that satisfies the cascading relation, known as the MRW, we write:

∆τX(t) = ǫ(t)eω(t), (8)

where ǫ(t), and ω(t) are Gaussian variables with their corresponding variances being indicated

by σ2, and λ2, respectively. In this approach, regarding the stated stochastic variables, in order to

convey the analytical calculation of Quantum potential for the stated model we first need to define

the non-Gaussian probability density function (PDF) with fat tails time series. Hence, we can find the

relationship between non-Gaussian parameters, λ and multifractality which comes from the nonlinear

function general exponents ξq vs q. Based on the Castaing model, a process is called self-similar if the

increment’s probability density functions at scales τ are related by the following equation [12,33]

P(∆τX) =
∫

Gτ(Lnσ)
1

σ
Fτ

(

∆l x

σ

)

dlnσ, (9)
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where

G(Lnσ) =
1√
2πλ

exp

(

− ln2σ

2λ2

)

(10)

F(
∆τx

σ
) =

1√
2π

exp

(

− (∆τx)2

2σ2

)

. (11)

The Bohmian quantum potential depends only on the second spatial derivative of the amplitude

of the wave, taking P = R2, we write:

d2P(x)

dx2
=

1

πλ

∫

∞

0

(2x2 − σ2)

σ5
e
−

ln2 σ
σ0

2λ2 e
− x2

σ2 (dlnσ). (12)

We now compute the quantum potential (U ∝
1

P(x)
d2P(x)

dx2 ) for the above probability density

function (without considering power two of R) and plot them for a range of parameters for

further comparison.

4. Results for Computing Quantum Potential and Real Data Fit

Based on our previous arguments, employing Bohmian mechanics and studying the strong

financial effects on the market trajectories, we aim to describe the dynamics of the financial pilot wave.

With the use of probability density function defined as Equation (9) for non-Gaussian functions with a

range of λ’s, we examine the effects of extreme events, and compute their corresponding quantum

potentials to analyze and fit real market data subsequently. In our calculation we consider h̄ as a price

scaling parameter and will assume h̄ = 1. In up panel of Figure 1 we compare the contribution of rare

events on the quantum potential for Gaussian density (λ = 0) and non-Gaussian density functions

with several λ′s. The up panel of Figure 1 shows some density functions for σ = 1 and a range of λs,

and the bottom panel displays the corresponding calculated quantum potentials.

Figure 1. (Panel up) The density function for the cascade model with three different non-Gaussian

parameter values λ ∈ [0.1, 0.5, 0.9] and σ = 1. We also compare it with Gaussian density function with

σ = 1. (Panel bottom) The figure shows the corresponding derived Quantum potential.

As it can be noted from the graph, increasing the λ leads to a remarkable distortion promoting the

occurrence of the extreme events. Moreover, this figure shows how this increase in the value of λ will

induce a potential barrier, which when transcended will provoke the system to proceed to its critical

state. Our quantum potential analysis shows there exist two main contributions to this potential. Firstly,

one can discuss the vicinity of mid-value where the system holds a low quantum potential, revealing

the system’s tendency to survive in this region. Upon increasing the non-Gaussianity parameter we

remarked that the quantum potential which would increase and act as a potential well is now shrinking.
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This reveals its contribution to the occurrence of the influential events in the system. However, with the

further increase in the non-Gaussian parameter, we observed that the quantum potential for these big

events compared to the mean is reduced. The presence of these two phases uncovers the aim of the

system to stay in the region where extreme events take place.

As was expected, the behavior of a quantum barrier, revealing the limitation that the price range

faces, explains how increasing the non-Gaussian parameter λ, in spite of the rise in the depth of the

well, does not induce the infinity in the well. From this behavior we concluded that any market

whose energy is large enough to surpass this barrier will enter its critical phase. Next, following the

multifractal random walk formalism we construct a toy model with λ = 0.3 and σ = 1, as shown

in Figure 2, and calculate the corresponding quantum potential for our model. As can be remarked

from the graph, for this λ the energy of the model exceeds the potential barrier, and consequently,

the system undergoes its critical condition. To analyze the real market and compare it to our toy model

we also have illustrated the behavior of the Nikkei index from 1990 to 2020 in the same figure and

examined it. The market PDF, with σ = 0.802 shows how it sustains its critical stage with the average

λ of 0.399. As we noted earlier, the analysis of quantum potential of the Nikkei index unveils that

compared to Gaussian density functions, the density functions of these markets contain plenty of

sudden fluctuation in this era. The main difference between our model and the real data manifests

itself in the value for the return. As denoted from the Figure 2 unlike the behavior of our constructed

toy model, the real market return function tends to behave in-homogeneously. This deviation comes

from the fact that in our model λ is set to a uniform value. Nonetheless, real markets with the same

average value of λ sustain a relatively non-stationary character. Considering the inconsistencies, λ in

these series would have some time dependency, and therefore we require to consider an average value

for our analysis.

Figure 2. The left panel shows the PDF of return price of Nikkei index data from 1990 to 2021 and PDF

of MRW fit, and the right panel presents the corresponding quantum potential for Nikkei.

5. Conclusions

Various research studies have been utilizing models and techniques to apply the laws of a

quantum system to the macro world’s social systems and financial markets. Moreover, one of the

most distinctive features of financial markets data lies in their non-Gaussian performance and the

occurrence probability of extreme events. Upon the question of whether this behavior stems from an

underlying structural pattern, we employed an innovative method to analyze these functions in the

framework of quantum theory. Thus, by implementing quantum Bohmian mechanics and deriving the

corresponding quantum potentials for the non-Gaussian density function of the data, we can identify

the distinction between the behavior of extreme events in the financial markets explained by Gaussian

and non-Gaussian functions. Besides, we confirmed how these extreme events in the non-Gaussian
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cases introduce themselves via a potential barrier in a process, aiming to linger in its mean values.

However, we cannot oversee the fact that the occurrence of extreme events has a significant role in

these processes. Consequently, in this work, we verified the application of using the quantum potential

for non-Gaussian functions to clarify the behavior of financial markets. Nevertheless, we firmly believe

that there is a wide range of underlying applications to this approach for a variety of natural processes.

The following abbreviations are used in this manuscript:
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