

Review

Use of Sawdust Fibers For Soil Reinforcement: A Review

Carlos J. Medina-Martinez ^{1,2}, Luis Carlos Sandoval-Herazo ², Sergio A. Zamora-Castro ³, Rodrigo Vivar-Ocampo ⁴ and David Reyes-Gonzalez ^{2,*}

¹ Department of Civil Engineering, University of Sucre, Sincelejo 700001, Colombia; 202t0678@itsm.edu.mx

² Division of Postgraduate Studies and Research, Tecnologico Nacional de Mexico, Instituto Tecnologico Superior de Misantla, Km 1.8 Carretera a loma de Cojolite, Misantla, Veracruz 93821, Mexico; lcsandoval@itsm.edu.mx

³ Facultad de Ingenieria, Universidad Veracruzana, Veracruz 93164, Mexico; szamora@uv.mx

⁴ Renewable Energy Engineering, Faculty of Engineering Science and Technology, Autonomous University of Baja California, Blvd. Universitario #1000, Valle de las Palmas, Tijuana 21500, BC, Mexico; rodrigo.vivar.ocampo@uabc.edu.mx

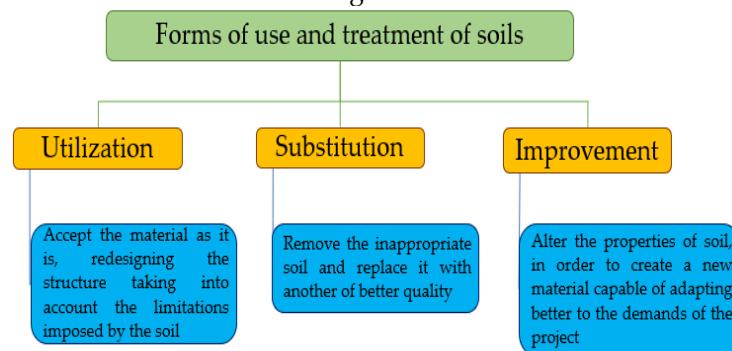
* Correspondence: dreyesg@itsm.edu.mx; Tel.: +52-1-235-114-7915

Abstract: A frequent problem in Geotechnics is the soils with inadequate physical-mechanical properties before the efforts to which they will be subjected by the constructions, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent, currently observing that the most common alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated Geotechnical and Geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, implying their high availability and low cost. Sawdust as a by-product of wood processing has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that when growing on a slope can effectively stabilize the said slope.

Keywords: soil improvement; natural fibers; engineering properties; shearing strength; bearing capacity

1. Introduction

Soil is one of the most important and most complex building materials that civil engineers commonly work [1,2], it is the result of complex geological processes of physical or chemical weathering of rocks and disintegration of organic matter [3-5]. Based on the size of particles, there are four types of soils: gravels, sands, silts, and clays [6]. Clays present the worst physical and mechanical properties due to their moisture content [7-9], during changes in weather conditions [10].


Civil engineers frequently face two different problems in their work: 1) soils with a low capacity to resist adequately the stress to which are exposed [11] and 2) clays with high plastic properties [12] due to the mineral composition of montmorillonite type, expandable illite and vermiculite [8,13].

When the mechanical characteristics of soils are lower than those required, stabilization can be an option to improve their behavior, especially to increase their strength [14]. Fortunately, the improvement of some desired properties, such as load capacity, shear strength, and soil permeability characteristics, can be performed on a variety of terrains [15].

On the other hand, expansive soils present change in volume by variations in their moisture content [10,16,17], resulting in serious damage and distortions to the structures founded on them, particularly in buildings and light pavements [18,19], so one method to control their volumetric change is to stabilize them with additives that reduce their volumetric instability [20-22].

These have the potential to absorb moisture in the wet season causing an excessive change in volume and are responsible for the numerous undesirable qualities exhibited when this material is used as a foundation material or as a subgrade in road construction [23]. This has led many builders and geotechnical engineers to avoid using them as building materials or building on them. However, the depletion of soils and suitable natural surfaces has sometimes made this inevitable [19]. Globally, expansive soils have been identified as one of the main causes of faults for many buildings built on them [19,24], i.e. in the United States of America, annually, the cost of damages due to swelling problems exceeds 100 billion dollars, while in the United Kingdom, the cost exceeds 150 million pounds [16,25].

It is why there is a need to implement various alternatives for the improvement of soil's physical and mechanical properties, mainly concerning its shearing strength, bearing capacity, and volumetric expansion [26,27]. According to Afrin [15] most of the stabilization techniques are carried out on this type of soil seeking to improve their physical-mechanical properties and their performance engineering to guarantee the structural stability of buildings [19, 28-31], figure 1 shows a scheme of the different alternatives related to the use of soil as a building material.

Figure 1. Alternatives for use of the soils with deficient characteristics.

Currently, cement and lime are the most commonly used stabilizing agents for the treatment of soils with expansive characteristics [32]. There have been several types of research that have been carried out on the stabilization of expansive soils with the use of these binding materials [9,20, 33-36] however, this type of treatment sometimes makes soils fragile, which is unfavorable in some dynamic load conditions, including traffic loads on pavement systems. Additionally, its production and use involve large amounts of energy and carbon dioxide emissions into the atmosphere [37].

On the other hand, it is possible that the high strength obtained with these techniques is not always required, as is the case of subgrades in road projects [38,39], and there is a justification for looking for cheaper additives that can be used to improve soil properties [15].

In recent decades, researchers and engineers have proposed numerous methods for the improvement of the mechanical properties of soils through mechanisms that are more environmentally friendly [40-43], i.e., the use of polypropylene [44], tire strips [45], crushed tires [46]; as well as the addition of artificial and natural fibers, such as fiberglass [7], coconut shell [47,48]; water hyacinth [49], palm fibers [50], jute [51], Kernel palm shells [5]; rice husk ash [52]. Similarly, some research has been observed on the use of electronic waste (e-waste) in activities to improve the engineering properties of soils [53,54].

All these researches are based on the concept of soil reinforcement using discrete fibers distributed randomly based on the natural phenomenon in which roots of grass and plants growing on a slope can effectively stabilize the terrain [55,56].

Innovative approaches are needed, by geotechnical and geoenvironmental engineers, towards sustainable soil stabilization and integrating the circular economy principles. In the best case, the circular economy contemplates the use of any waste produced (whether of domestic, municipal, or industrial origin) turning it into new and valuable materials that can be used in the economy as a secondary raw material [57-60].

According to Garg et al. [41], in developing countries, using natural fibers to improve the engineering properties of soils is promising, given that this type of material is easily obtained from the remains of fruits and plants used in the industry. Examples include the use of bamboo fibers [2], sisal fibers [61], coconut fibers [62], palm fibers [63], cane fibers [16], and jute fibers [64].

One of the most widespread economic activities in these developing countries is using and processing wood, which produces sawdust as waste [65,66]; according to Mwango et al. [67], many wood-producing countries annually generate more than 2 million m³ of this waste. Noting that this type of material is often disposed of in open dumps or through open-air burning, posing enormous environmental challenges related to air pollution, greenhouse gas emissions, and destruction of plant and aquatic life [68,69].

According to Sun et al. [18], there is limited research done on the stabilization of expansive soils using sawdust; and some research can be found on the use of this natural fiber in the elaboration of structural elements such as adobes [70,71], making evident the social, economic and environmental sustainability of building materials and soils improved with agricultural waste and by-products [72].

This work presents a review of the recent research on the use of natural sawdust fibers as an alternative for the improvement of soil properties, showing its potential use in construction because that waste from wood processing constitutes an abundant and low-cost material, easy to use, low density and similar mechanical properties of synthetic fibers, i.e. high strength-to-weight ratio [63]. Additionally, it tends towards an approach to an essential principle of sustainable development, since it is a low-cost technique, less polluting than those currently used, and therefore more environmentally friendly. The main motivation was to show information about the use of sawdust fibers as an alternative contemplated in the new trends in Geotechnical Engineering on the stabilization and/or reinforcement of soft soils using natural materials.

Figure 2 shows an outline of the types of products that can be obtained from wood waste, which constitute the main focus of the research papers reviewed and their possible use in improving the engineering properties of soils.

Figure 2. Classification of the different types of wood waste.

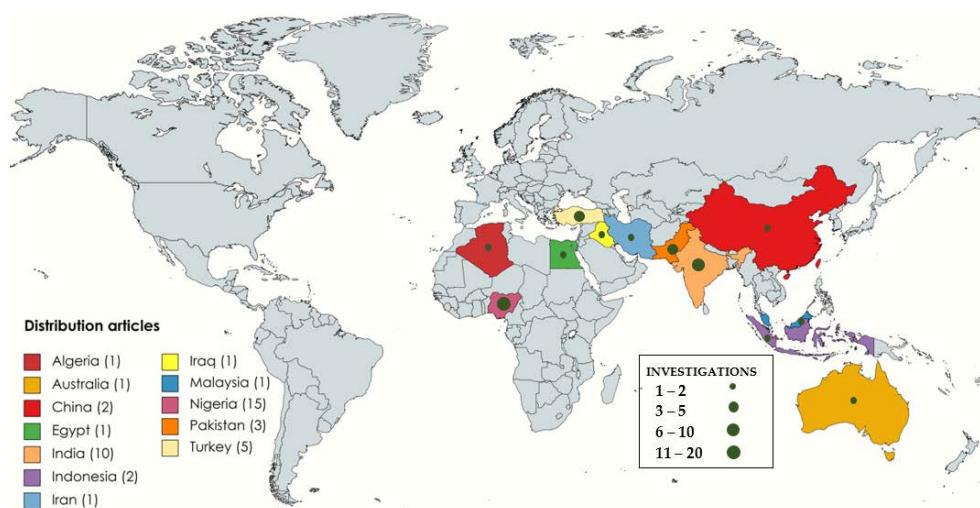
The structure of this review article consists of a section on materials and methods, which in a general way describes the criteria for the selection of articles used in this review, as well as the methodology for their search in the databases; then, a theoretical

framework is provided to contextualize readers on the subject of soils, their classification and the characteristics of expansive soils. This is followed by the description of soil stabilization as a technique to improve the properties of expansive soils with sawdust fiber and the concept of mercerization of natural fibers as the most widely used technique for the chemical treatment of fibers before their use. Subsequently, a description of the contributions of various authors in the stabilization of soils with sawdust fibers is made. Then, a review of the results contained in the reviewed articles is shown, organized by the different fibers investigated. Next, the analysis of the information obtained from the review is presented, indicating the trends that should be addressed by current and future works. Finally, the conclusions are established by the authors.

2. Materials and Methods

2.1. Article Selection Criteria

For the review process, papers published in English with the primary focus on the use of natural sawdust fibers for soil reinforcement worldwide were considered, excluding documents published in languages other than English. The review also considered papers published between 2015 and 2022. Articles to be considered should have been published in peer-reviewed journals, those that addressed the issue of improving the engineering properties of soils by the addition of sawdust in 3 possible forms were considered: chip, dust, or ash. Table 1 shows the selection criteria for the articles included in this review.


Table 1. The inclusion and exclusion criteria.

Criterion	Eligibility	Exclusion
Literature type	Research article journal	Review article journal, book, book chapter
Language	English	Non-English
Timeline	≥ 2015	<2015
Countries and region	All the world	None

2.2. Search Result

A total of 315 documents were retrieved from the databases used: Google Scholar (175), Science Direct (95), and Springer (45) on the subject under investigation, with academic peer review which guarantees the quality of the information collected. Of the total papers collected, 60 were duplicates, and 125 were excluded based on their titles and/or abstracts, as they did not meet the inclusion criteria. The final review included 43 articles on using natural sawdust fibers to improve soil engineering properties. In addition, 87 articles related to the use of natural fibers in aspects of Geotechnical Engineering and soil stabilization were included. To search for information, keywords were used at a first level such as: "soil reinforcement", "soil stabilization", "expansive soil reinforcement", and "expansive soil treatment"; in a second level with more specific phrases such as "soil reinforcement natural fibers", "soil reinforcement sawdust fibers", "soil improvement sawdust fibers".

Figure 3 shows the global distribution of the various selected papers on the subject of study after the application of the eligibility criteria. It can be seen that the main research is carried out in countries located in the continents of Asia, Africa, and Oceania. This information allows visualizing, worldwide, the distribution and importance given in recent years towards the research of a more sustainable alternative for the improvement of the engineering properties of soils, this work shows the research published during the last seven years. While it is possible to have unanalyzed research, their motivations are likely similar.

Figure 3. Distribution of articles in the world.

2.3. Information Analysis

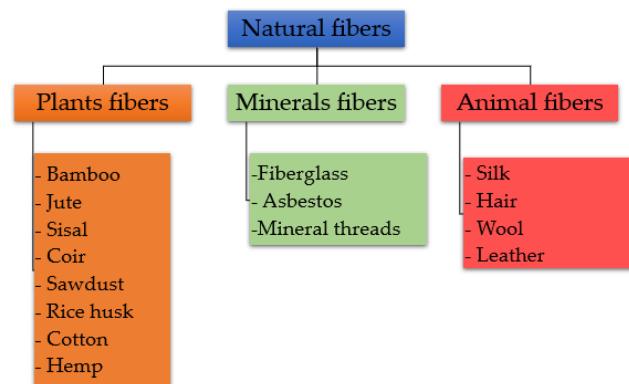
The analysis of the information was carried out based on the data extracted from the papers reviewed, considering the information on the type of sawdust fiber used and its characteristics, the laboratory tests carried out, country of origin, year of publication, the optimal dosage values and organizing them in tables.

3. Soil stabilization with fibers

The concept of reinforcing soils by adding fibers was developed in antiquity, more than 5,000 years ago, when ancient civilizations used straw and hay to reinforce mud blocks [73]. In modern history, the concept and principle of soil reinforcement were developed first by the French engineer Vidal [74], who showed that the introduction of reinforcing elements into a mass of soil caused an increase in the shearing strength of the medium [75]. Consequently, after these results, there has been an increase in the use of fibrous materials for the improvement of the engineering properties of soils, as an imitation of the past [73].

2000 types of plant fibers are available worldwide, e.g. wheat straw, coconut fiber, palm, kenaf, sugarcane bagasse, cotton, bamboo, wool, flax, maize, hemp, hay, jute, henequen, ramie, sisal, banana, and pineapple leaf [43], which could be used for soil reinforcement.

In general, fiber-reinforced soil behaves as a composite material in which the fibers, with high tensile strength, are embedded in a soil matrix [73]. Shear stresses on the ground are mobilized against tensile strength in the fibers, giving greater soil strength.


As proposed by Gowthaman et al. [75], soil reinforcement using natural fibers has gained momentum as one of the most beneficial techniques for improving the engineering properties of soils in geotechnical engineering due to its unique advantages, such as respect for the environment, the great possibility and abundance of resources, minimum energy consumption [76], cost-effectiveness and high potential over other previously used materials. In addition, when these natural stabilizing materials are used to produce building materials, the resulting materials become more sustainable [77].

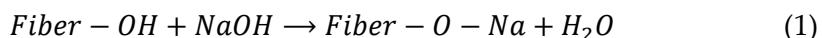
By doing a more rigorous analysis, the addition of natural fibers is more beneficial in terms of costs, energy efficiency, and health since these types of natural materials have less embodied energy and toxicity than previously used artificial materials [77].

From the point of view of their origin, natural fibers can be considered into three large groups: (1) vegetable fibers (bamboo, jute, coir, hemp, sawdust, etc.), (2) parts of animals containing proteins (silk, hair, wool, etc.) and (3) minerals. However, based on

availability and applicability for large-scale geotechnical intentions refers to plant fibers in terms of natural fibers [75].

In Figure 4 we can see a scheme of the classification of natural fibers.

Figure 4. Classification of natural fibers.


Based on the economic aspect, plant fibers used for soil reinforcement can be classified into three categories: (1) cultivated species, (2) uncultivated species, and (3) invasive species [75].

3.1. Mercerization of natural fibers

Some researchers claim that several drawbacks limit the potential of vegetable fiber to be used as an alternative to synthetic fibers [78,79], the main one is its hydrophilic nature [80] promoting a high absorption of water, which induces a low resistance to moisture and poor mechanical properties and dimensional stability of the compounds reinforced with them.

Currently, mercerization is one of the chemical treatments (alkaline treatment) of natural fibers most used in different applications to mitigate this limitation [80-85], which reduces the content of lignin, hemicellulose, waxes, and oils coating the surface of fibers [86,87], also tends to increase the surface roughness of the fibers [78,80]. Cellulose fibrils increase the surface area available for the fiber-matrix interaction and potentially improve the properties of filler compounds. Among the substances used for the treatment and coating of natural fibers to reduce their biodegradability, we can mention Boric Acid, Borax, Carbon Chloride (carbon tetrachloride), and Sodium Hydroxide (Sosa Caustic) [75].

Equation 1 represents the overall reaction mechanism of natural fiber with the alkaline agent sodium hydroxide (NaOH) [84].

In this method, the cellulosic molecular structure of natural fibers is modified by increasing the rate of fragmentation and disaggregation of the fibers. The orientation of the order of highly packed crystalline cellulose is changed by creating amorphous regions in which cellulose micromolecules are separated and spaces are filled with water molecules [88]. Several studies on alkaline treatment report that mercerization increases the amount of amorphous cellulose at the expense of crystalline cellulose in the fiber structure[80].

The alkalizing OH groups break down and move out of the fiber structure, and an O-Na cell group of the fiber is created between the molecular cellulose chains of the remaining reactive molecules. Therefore, its amount of hydrophilic OH groups decreases, the strength of the fiber to moisture increases, and a certain amount of hemicelluloses, lignin, pectin, wax, and oil are extracted. In this sense, the surfaces of the fibers become cleaner and more uniform, which improves the ability to transfer stresses between cells [88].

The original patent granted to John Mercer in 1851 describes a method for changing the properties of cotton fabric, yarn, or fibers by treating with a concentrated solution (32% w/v) of a hydroxide of an alkali metal, usually sodium hydroxide (caustic soda). After removing the alkali, by rinsing with water and neutralizing it with acid, it was observed that the effects of the treatment on the properties of the cotton fibers were permanent for the subsequent wet finish [89].

In the implementation of this method, four possible options can be observed, such as 1) a constant concentration of NaOH for a constant period, 2) the use of different concentrations of NaOH for a constant period, 3) the maintenance of a constant concentration of NaOH for different periods and 4) the use of different concentrations of NaOH for different periods [90], and the selection of one option are dependent on the type, chemical composition, and structure of natural fibers.

3.2. Sawdust

Sawdust is a lignocellulosic material, byproduct, or residue from a variety of wood-working-related processes, including sawing, routing, drilling, sanding operations, and furniture manufacturing. This type of waste can vary in shape and size depending on the wood's sawing mechanism, including small chips, staple fibers, fine particles of wood, or calcined material (ash) [67,68,91].

A high problem that is currently observed is that the disposal of the sawdust produced is often carried out by its discharge in the open air, and in many cases with open burning or its final disposal in landfills [26,36,37,68,92,93]. The sawdust arranged in the different landfills increases their load, and their burning contributes to greenhouse gas emissions into the atmosphere increasing the environmental impact produced [94].

The amount of sawdust produced from sawing depends on the efficiency of the sawmill, which can be measured by the quality and quantity of sawn plank recovered compared to the resulting wood waste. This wood residue is a combination of bark, sawdust, trimming, split wood, planer shavings, and sander powder [67]. According to Khan [61], about 10-13% of the total volume of wood logs is transformed into sawdust.

3.2.1. Soil stabilization with sawdust

Considering their great abundance and low cost, for some decades researchers have been given the task of studying their possible use as additives for soil reinforcement, as an alternative proposal for the engineering improvement of their properties in geotechnical applications.

Table 2 shows some of the recent research carried out on improving soil characteristics with the use of natural fibers.

Table 2. Summary of various natural fibers for soil reinforcement [95].

Fiber Type	Fiber information		Optimal content (%)	Methods	Ref.
	Length (mm)	Range reinforcement (%)			
Bamboo fiber	10 and 20	0.2 to 1.4	1.2	Compaction, Unconfined compression, CBR ¹	[2]
Jute fiber	10 and 30	0.25 to 1.5	1.25	CBR ¹	[53]
Coir fiber	10 and 20	0 to 3.0	0.5	Compaction	[96]
Palm fiber	5, 10, 15 and 20	0.1 to 0.6	0.4	UCS ²	[97]
Bagasse fiber		0.3 to 1.7	1.4	Direct shear	[98]

¹CBR=California Bearing Ratio; ²UCS=Unconfined Compression Strength

The experimental data available in the literature for soil reinforcement with sawdust are relatively limited. It has been observed that sawdust by itself is a non-cementitious material, but in the presence of moisture, lignin and cellulose present in sawdust serve as a surface active in the interaction soil-water-fiber system generating a gel of high strength

that can contribute to the improvement of the strength and compressibility characteristics of the treated soils [18]. So, based on opinion Karteek's [13], sawdust would give excellent results when used as a stabilizing material. Additionally, when sawdust is mixed with other materials that have binding properties such as lime, its use can produce better results [38,99].

Other options that have taken great boom is the study of modifications in the engineering properties of clay soils with the addition of sawdust in the form of ash (SDA) and ash sawdust with lime (SDAL) [99,100].

3.2.2. Sawdust-based biocomposites

In recent years there has been a sustainable approach to the use of sawdust in the elaboration of composites with applications in different fields of construction such as sawdust concrete, formwork, concrete blocks, and bricks [67,70], as well as the improvement of some engineering properties of soils [44,66] giving rise to the so-called biocomposites or sustainable composites [101] which can be a substitute for manufactured products such as steel and concrete reducing potentially the fossil fuel consumption and greenhouse gas emissions [67,88,90].

Regarding soil stabilization, the union of sawdust with the soil matrix behaves as a composite material it is well known that fibers improve the strength of the soil [44], and it is possible to increase even more their effect through chemical and physical treatments [86].

According to Gholampour, A., & Ozbakkaloglu [88] biocomposites can be classified into 2 large groups: 1) green compounds made up of bio-based resins and natural fibers and 2) partially green compounds made up of petrochemical resins and natural fibers.

4. Results

This section describes the research work carried out to study the improvement in the engineering properties of the soils with the use of sawdust fibers in the different disposable types such as sawdust chips, Sawdust fine, and sawdust calcined. Emphasizing the year of publication, the information on the materials used, the tests carried out, and their authors.

4.1. Sawdust shavings

Sawdust shaving is the waste obtained when the wood is shaped or planed using carpentry tools or machines like planers and milling machines varying the size and shape of the final waste.

Regarding research on your use in soil reinforcement, 2 articles were found, shown in Table 3.

Table 3. Data of investigations with sawdust shavings fiber.

Country	Year	Materials information		Optimal content (%)	Parameters	Ref.
		Soil	Fiber			
Algeria	2021	Bou-Saâda region	Sawdust treated with NaOH solution; Percentage: 0.5 to 2.5	Variable	Mechanical tests, SEM, XRD	[102]
India	2018	Black cotton soil, Borkheda, Kota	Wood sawdust; Percentage: 2.5 to 12.5	5	Compaction, unconfined compression	[103]

Concerning the investigations on the incidence of the addition of certain percentages of sawdust shavings on soil properties, we find that of Mouissa et al. [102] who studied the effects of the incorporation of variable percentages of sawdust (0.5, 1, 1.5, 2, and 2.5%) treated chemically with solutions of NaOH and KMnO₄ on the thermal and mechanical properties of clay soil. Additionally, Jangid et al. [103] analyzed the possibility of improving the engineering properties of black cotton soil using sludge from Kota stone (15%) and certain percentages of sawdust (2.5, 5.0, 7.5, 10.0, and 12.5%).

4.2. Sawdust powder

The sawdust powder is a waste byproduct of sawing, sanding, planning, and routing operations. It consists mainly of small particles of wood. Regarding research on its use in soil reinforcement, 19 articles were found, which are shown in Table 4.

Table 4. Data of investigations with sawdust powder fiber

Country	Year	Materials information		Optimal content (%)	Parameters	Ref.
		Soil	Fiber			
Australia	2020	Sand, the average particle size of 1.2 mm	Sawdust powder; Percentage: 3 to 10	Variable	Compaction, direct shear	[104]
Nigeria	2021	Ogbomosho	Passing through N° 40 sieve opening; Percentage: 2.5 to 15	Variable	Plasticity, compaction, CBR, unconfined compression, permeability	[65]
Nigeria	2017	Covenant University, Ota	Passing through N° 40 sieve opening; Percentage: 2 to 8	Proportional	Compaction, unconfined compression, permeability	[19]
Egypt	2022	Kafr Elsheikh	Sawdust passing through N° 40 sieve opening; Percentage: 10, 15 and 20	15 sawdust; 5% cement	Vane shear test, direct shear test, compressibility	[39]
India	2021	Black cotton, Fatehpur Rajasthan	Sawdust and marble dust powder; Percentage: 2 to 10 sawdust; 5 to 15 Marble powder	Variable	Compaction, compression	unconfined [105]
India	2018	Kakinada	Sawdust and lime	15 sawdust 4 lime	Compaction, CBR	[106]
India	2016	Palakkad	Sawdust and coir pith; Percentage: 2 to 12	Variable	Compaction, compression, swelling pressure	[107]
Turkey	2020	CH, Erzurum	Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5	Proportional	Compaction, compression	unconfined [1]
Turkey	2020	CH, Erzurum	Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5	Inversely proportional	Swelling Pressure	[108]
Turkey	2020	CH, Erzurum	Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5	Inversely proportional	Coefficient of compressibility	volume [109]
Turkey	2020	Istanbul	Passing through N° 20 sieve opening; Percentage: 1 to 5	3 immediate tests; 2 long-term tests	Triaxial tests UU, permeability, triaxial tests UU	[110]
Turkey	2016	Istanbul	Passing through N° 20 sieve opening; Percentage: 1 to 5	3	Compaction, compression	unconfined [111]
Pakistan	2019	Punjab	Ground sawdust, $D_{50}=0.25\text{mm}$; Percentage: 1 to 7	5	Unconfined compression, triaxial tests UU	[112]
China	2021	Zhejiang,	Particle between 0.037 and 0.16 mm; Percentage: 1 to 7	Variable	Compressive and flexural strength	[113]
China	2018	CH, Nanjing	Particles smaller than 1 mm; Percentage: 2.5 to 12.5	7.5	Direct shear, compression, swelling Pressure	[18]
Indonesia	2020	Semarang-Purwodadi road	Keruing sawdust passing through N° 20 sieve opening; Percentage: 3 to 7	Variable	Compaction, compression, plasticity, CBR	unconfined [12]
Indonesia	2019	Central Java Province	Sawdust-lime; Sawdust Passing through N° 40 sieve opening; Percentage: 3 to 5	Variable	Compaction, compression, swell index, plasticity	[38]
Malaysia	2019	Sungai Besar	Sawdust, Rice Husk Ash Percentage: 2 to 5	4	Compaction, compression	unconfined [24]
Iran	2021	Sand, Qom	Sawdust between sieves N° 16 and 30; Percentage: 4 to 12	Variable	Compaction, compression	unconfined [114]

In recent years, several research have been carried out to witness the effect of sawdust powder on the mechanical properties of a variety of soil from different locations. In India the soil studied is black cotton, applying percentages of sawdust powder between 2 and 10% and marble dust between 2 and 10%, resulting in a maximum dry density (MDD) decreased with sawdust and increased with marble dust while the UCS value increased with the addition of marble powder, additionally, the CBR value is greatly improved with the addition of sawdust [105] Other research in India focused on the application of a combined sawdust powder with complementary stabilizers, a combination of sawdust and lime to improve mechanical properties of a marine clay soil from Kakinada region showed a decrease in the plasticity index and an increase in the value of the CBR and the optimal moisture content (OMC) for the value of fiber and binder used were observed [106], additionally the combination of sawdust powder with coir pith to apply in Palakkad soil increases OMC and decreases MDD, expansion pressure, and UCS [107]. In Turkey, research carried out on the application of pine sawdust powder passing the No. 4 sieve in Erzurum region soil showed a decrease in the MDD and an increase in the OMC and strength of unconfined compression with the increase in the percentage of sawdust added [1,108,109]; additionally, research carried out adding 1 to 5% of sawdust powder passing No. 20 sieve in Istanbul fine soil showed the strength to unconfined compression increased with the increase in the percentage of sawdust added, showing optima of 3% and 2% respectively, permeability also increased with the increase in the percentage of sawdust added, while the PI, MDD, and OMC decreased. Research conducted in Nigeria is focused to improve the properties of lateritic residual soil with sawdust powder with a size smaller than sieve No. 40 adding percentages between 2.5 and 15%, it was observed that plasticity and MDD decreased while OMC, CBR, and unconfined compressive strength increase due to the addition of sawdust [65], other research focused in the influence of sawdust powder on the geotechnical properties of tropical clay and bentonite from Covenant University observing that the specific gravities, the Atterberg limits, the plasticity, the maximum dry unit weight, and the strength to unconfined compression decreased with an increasing percentage of sawdust in the soil, unlike the optimal moisture content and permeability that increased with the increase of the added sawdust [19]. In China, a research using bamboo sawdust (BS) as a substitute for a new bio-based cementitious material, cement was replaced by BS treated with alkali in various percentages from 1 to 7% by mass in the mortar mixture, concluding that recycled BS can be a sustainable component to produce a lightweight and structural bio-based cementitious material, according to the minimum strength required in the Chinese specifications for the masonry mortar [113]; other research analyzed the effect of the addition of various percentages of sawdust from 2.5 to 12.5% on the improvement of the expansive properties of clay soil (Illita) taken from the campus of the Nanjing Institute of Technology, observing a decrease in expansion potential and an increase in cohesion and internal friction angle as the percentage of sawdust added increased, additionally, it was observed that the expansion potential decreases with the increase in vertical effort for all specimens and under the same vertical effort, the potential for expansion decreases with the increase in the amount of sawdust [18]. Research conducted in Indonesia examined the geotechnical properties of the expansive soil stabilized with the addition of percentages between 3 and 7% of Keruing sawdust, showing that improved soil geotechnical properties by reducing plasticity index, but increasing unconfined compressive strength, and CBR, being an economical additive for expansive terrains [12]; other research analyzed the variation in the values of the shear strength of an expansive soil at the subgrade level during different curing periods when they are stabilized with different percentages of sawdust from 3 to 7% and lime, resulting in a significant reduction in the free expansion rate, plasticity index, and maximum dry density for a mixture of 3% sawdust and 3% lime; as well as an increase in optimal moisture content was observed, it was observed that the values of the strength to unconfined compression of soils treated with lime and sawdust are higher than soils treated only with sawdust [38]. In Australia, the effect of the addition of sawdust powder on the cohesion of yellow

sand was analyzed, varying percentages from 3 to 10% observing a decrease in MDD and angle of friction while OMC and cohesion value increased concerning the increase of sawdust added [104]. Other research carried out in Egypt, studied the effects of adding sawdust on the compressibility and shear strength characteristics of an organic clay from the city of Kafr Elsheikh where 5% cement was mixed with variable percentages of sawdust from 10 to 20%, it showed that the best results in the shear strength tests were obtained for a combination of 5% cement with 15% sawdust, while the combination of cement and sawdust gives better consolidation, the results are 5% cement with 10% sawdust [39]. Another study conducted in Pakistan analyzed the effect of the addition of variable percentages of the mixture of rice husk (0 to 21%) and sawdust (0 to 7%) applied to clay soil, mitigating their erosive potential and improving their parameters of shearing strength for the use on earthen embankments, observing that 5% sawdust and 15% rice husk are established as the optimal content for effective stabilization, and soil erosion control studied [112]. In Malaysia, the research analyzed the variation in the engineering properties of a peat-like soil with the addition of some percentages of sawdust varying from 2 to 5% and rice husk ash (RHA) with lime as an additive, as a result, it was observed a decrease in the value of the Atterberg limits, OMC, UCS, and MDD with the increase in the percentage of sawdust and rice husk ash added [24]. Other research developed in Iran, was focused on advancing a study of the improvement of the geotechnical properties of sandy soil with the addition of several percentages of zeolite and sawdust, resulting in the increase in OMC and a decrease in MDD with the use of sawdust, on the other hand, the increase in the percentage of sawdust (more than 4%) has reduced the strength to free compression of the soil [114].

4.3. Sawdust ash

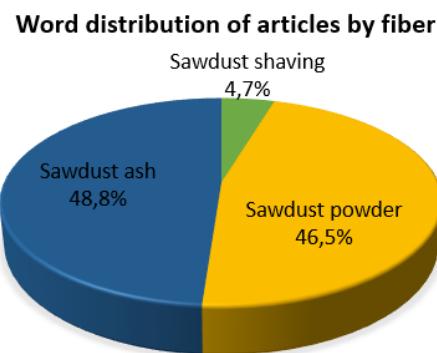
Sawdust ash (SDA) is the material resulting from the burning process of wood industry waste. Concerning research on its use in soil reinforcement, 22 articles will be found, which are shown in Table 5.

Table 5. Data of investigations with sawdust ash.

Country	Year	Materials information		Optimal content (%)	Parameters	Ref.
		Soil	Fiber			
Nigeria	2021	Oke Baale, Osogbo, Osun	Mahogany sawdust ash passir through N° 200 sieve openin Percentage: 2 to 6	Variable	Plasticity, CBR	[115]
Nigeria	2019	Adamawa State Pol- ytechnic,	Sawdust ash; Percentage: 4 to 20	16	Compaction, CBR, SEM, XRD	[100]
Nigeria	2019	Ile-Ife, Osun state	Sawdust ash and egg shell ash; Percentage: 2 to 16	2 to 4	Compaction	[116]
Nigeria	2019	Adamawa State Pol- ytechnic, Yola	Sawdust ash and lime	4 lime and 16 sawdust ash	Durability index, unconfined compressive	[117]
Nigeria	2019	Federal University Technology Minna	Sawdust ash passing through N° 200 sieve opening; Percentage: 2 to 10	4	Plasticity, compaction, unconfined compression	[118]
Nigeria	2019	Obafemi Awolowo University, Ile-Ife, Osun state	Sawdust ash Passing through N° 70 sieve opening; Percentage: 2 to 10	Variable	Compaction, unconfined compression, CBR	[119]
Nigeria	2019	Ado-Ekiti and Ado-Iworoko road	Sawdust ash passing through N° 30 sieve opening; Percentage: 2 to 10	Variable	Compaction, unconfined compression, CBR	[120]
Nigeria	2017	Zaria	Sawdust ash and sisal; Percentage: 2 to 8	0.75 sisal and 6 sawdust ash	Compaction, unconfined compression	[66]
Nigeria	2017	Enugu	Sawdust ash passing through N° 200 sieve opening; Percentage: 1 to 15	Variable	Plasticity, compaction, permeability	[121]

Nigeria	2017	Federal University of Technology, Akure	Sawdust ash passing through N° 70 sieve opening and lime; Percentage: 2 to 10	6	Compaction, unconfined compression	[122]
Nigeria	2016	black cotton, Numan	Sawdust ash passing through N° 200 sieve opening and lime; Percentage: 2 to 10	Variable	Plasticity, compaction, Compressibility	[123]
Nigeria	2015	Obafemi Awolowo University, Ile Ife	Sawdust ash passing through N° 40 sieve opening; Percentage: 2 to 20	12	Compaction, unconfined compression	[124]
Nigeria	2015	Emure/Ise, Orun	Palm Kernel Shell and sawdust ash; Percentage: 2 to 8	Variable	Compaction, plasticity	[125]
India	2019	Sitarganj	Sawdust Ash passing through N° 30 sieve opening; Percentage: 2 to 25	Variable	Compaction, plasticity	[126]
India	2019	Black cotton soil	Sawdust ash and lime; Percentage: 1 to 5	2	Compaction, unconfined compression, CBR	[127]
India	2019	Thiruvananthapuram, Kerala	Sawdust Ash; Percentage: 4 to 10	8	Compaction, unconfined compression	[14]
India	2016	Rajouri	Sawdust Ash; Percentage: 4 to 12	4	Compaction, unconfined compression, CBR	[93]
India	2016	Kopparthy village, Kadapa	Sawdust Ash; Percentage: 2 to 10	Variable	Compaction, permeability	[128]
India	2015	Soraba Taluk, Karnataka	Sawdust Ash and fly ash; Percentage: 10, 20 and 30	Variable	Compaction, unconfined compression, CBR, free swell index test	[129]
Pakistan	2020	CH, Istanbul	Sawdust-lime and sawdust ash-lime; Percentage: 1 to 5	Variable	Compaction, unconfined compression, plasticity	[99]
Pakistan	2016	Tarnab	Sawdust Ash; Percentage: 2 to 12	Variable	Permeability, direct shear, plasticity, compaction	[61]
Iraq	2018	Al-Maymunah, Maysan	Sawdust ash passing through N° 200 sieve opening; Percentage: 2 to 10	4 to 6	Compaction, unconfined compression, CBR	[130]

The sawdust ash is one of the widest alternatives used to improve the mechanical properties of soils, due to the high content of silica-based components in its structure; research in different regions has evidenced the addition of sawdust ash to improve soil properties. The last ten years, most research have been carried out in Nigeria using sawdust ash analyzing the effect on mechanical properties on black cotton soil obtained at Adamawa State Polytechnic, showing that OMC decreased with the increase in the percentages of sawdust; complementary research carried out were focused to analyze sawdust effect at different particle size; Ogundipe et al. [120] used sawdust ash passing No. 30 sieve evaluating the effects of different compaction stresses on the strength of two lateritic soil samples (Ado-Ekiti and Ado-Iworoko road), it was observed that the MDD and plasticity index of natural and stabilized soils increases with increasing compaction efforts, while the optimal moisture content is reduced; in the research work conducted by Ilori & Udo [124], sawdust ash passing No. 40 sieve was applied in lateritic soil in the city of Ile Ife, it was observed that 12% of SDA by weight of the soil investigated results in an optimal result of the geotechnical properties of the soil that allows the modified soil to be used efficiently and effectively; additionally, research using sawdust ash passing No. 70 sieve [119,122] applied in lateritic soil, an increase in the OMC and a decrease in the MDD and plasticity index were observed with the addition of the SDA mixture, additionally, the UCS values were increased to a peak SDA value at a percentage of 6%; finest sawdust ash passing No. 200 sieve [115,118,121,123] applied to lateritic soil and black cotton soil have evidenced that the addition of sawdust ash caused a decrease in the plasticity index


(PI) and MDD, while OMC and CBR increased for maximum values obtained with a 4% addition of sawdust ash; additionally complementary materials have been combined with sawdust ash to improve soil properties, like eggshell ash [116], lime [117] natural fibers of sisal [66] and Kernel palm shell ash [125], observing considerable improvement of mechanical properties of soils, increasing MDD and decreasing OMC in the case of eggshell ash, while lime increase the durability index and natural fibers decreased the MDD while the OMC and UCS increased. Other region with abundant research on the use of sawdust ash is India, where studies carried out varying percentages of sawdust ash addition, ranging from 2% and up to 25%, showed that CBR and OMC increased while MDD decreased for a clay soil from Rajouri region [93] and the expansive soil from Sitarganj region [126], but the increase of percentage addition of sawdust ash applied to Black cotton soil from Kadapa region increase the MDD value and the permeability coefficient decrease [128]; other research shows that, the addition of sawdust and coconut fiber on a kaolinitic clay from Kerala region shows that the OMC and strength of the clay increased, while a decrease in its MDD was observed; additionally, it was analyzed the effect of adding some percentages of the mixture of sawdust ash and Lime (SDAL) in an expansive black cotton soil [127], to improve compressive strength and swelling characteristics and increase its suitability use in construction, it was observed that MDD and UCS have a peak of 2% SDAL content and then decrease while the OMC decreases with an SDAL content of 1%, increases to a content of 2%, and then decreases with an increase in SDAL and CBR value increases up to 2% of SDAL and thereafter decreases; complementary research carried out adding sawdust ash and fly ash on a lateritic soil from Soraba Taluk region [129], showed that the expansion rate and plasticity index decreased and CBR increased with the percentage of addition, while the MDD increased for an addition of 10% and then decreased similar behavior to OMC that increased to an addition of 20% and then decreased. Research carried out on Tarnab soil, in Pakistan, with the addition of sawdust ash [61] and expansive clay soil of the city of Istanbul adding SDAL [99], in Turkey although research is carried out in Pakistan, showed that the liquid limit and the plastic limit decreased as the content SDAL increased; in contrast, this caused an increase in shearing strength additionally, it was observed that the permeability coefficient of the samples stabilized with SDAL in Istanbul soil was relatively higher than that of the non-stabilized samples [99] while in Tarnab soil permeability was reduced with the increase of sawdust ash. Another research focused on studying the stabilization of the clay soil from the Al-Maymunah region, Iraq, with the addition of different percentages of sawdust ash [130], showed a reduction in specific gravity and MDD, as well as a reduction in compression coefficients (Cc and Cr) with an increase in SDA content additionally, an increase in OMC and shearing strength was observed with the increase in the SDA content.

5. Discussion

Next, we will analyze the information obtained from the 43 scientific articles reviewed on the use of sawdust in soil engineering improvement. This analysis was carried out concerning the type of wood waste used, the year and country of origin of the publications, the characteristics of the fiber such as the form of distribution of the fibers, the percentage added fibers according to the weight of dry soil, the surface treatment alternatives for the fibers, the binder types added to the soil/fiber mixture, and the response variables corresponding to the characteristics of the soil such as its behavior before compaction, the parameters of resistance to cutting and its bearing capacity.

5.1. Types of waste from sawdust fibers

Figure 5 shows the distribution of the articles studied, based on the type of waste used from the waste of the wood industry. There is a general trend toward the use of sawdust in the form of waste calcined (22 articles) and dust (19 articles) in the total sample analyzed (43 articles).

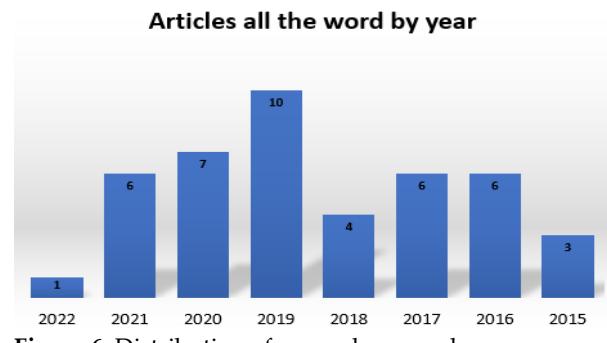


Figure 5. Distribution of articles by type of sawdust fiber.

This is mainly due to the high specific surface area of the material in the aforementioned states, which contributes notoriously to its better interaction with the matrix of the treated soil. In turn, the preference of many researchers for the use of sawdust ash is based mainly on its high silica content and the cementitious properties caused by pozzolanic reactions between it and the water of soils [9], which significantly impact the results obtained from improving the engineering properties of treated soils. However, its use has several drawbacks that reduce its sustainability, requiring its prior calcination, with the consequent consumption of energy, the emission of greenhouse gases, and the dispersion of flying particles in the environment.

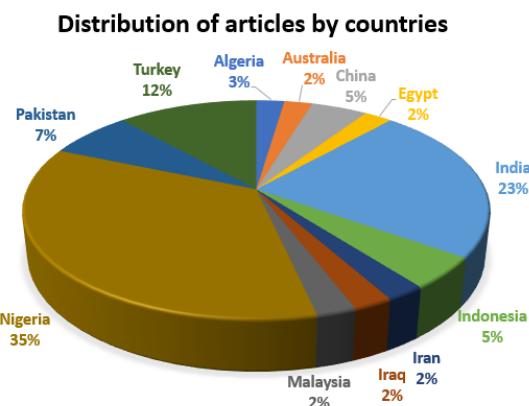

5.2. Year and country of publication

Figure 6 presents the distribution of the articles of research reviews distributed to their year of publication. It shows that, although the current production is not very high there is a nascent interest in geotechnical research with a sustainable approach, by giving added value to waste biomaterials and reincorporating them into the production chain, proposing their use in the reinforcement of clay soils, considering the large production of this type of waste, its inadequate final disposal and the environmental pollution produced.

Figure 6. Distribution of research papers by year.

Additionally, Figure 7 shows the distribution by country of the analyzed articles. This information allows us to visualize the global trend and the importance given by these countries to research focused on the use of natural, environmentally friendly materials in the reinforcement and stabilization of soft soils, it is observed that the research carried out with sawdust powder, 79% (15 out of 19) were conducted on the Asian continent, while 59% of the research conducted with Sawdust Ash (13 out of 22) were conducted on the African continent.

Figure 7. Distribution of articles by country in the world

Additionally, it is observed that more than a third of these (35%) corresponds to material produced in the Federal Republic of Nigeria (Africa), with second place for the Republic of India (Asia) with 23%, so that than half of the works analyzed (58%) correspond to research carried out in the most populous country in Africa and second most populous country in Asia (trending to first place). Countries with high agricultural production and waste generation, whose poor disposal generates great environmental problems in their territories, so see the need to study sustainable alternatives for this type of industrial waste in the reinforcement and improvement of the engineering properties of soils.

5.3. Types of soils treated

The soils used by most researchers to analyze the incidence of the addition of variable percentages of sawdust fibers correspond to clay soils that have high plasticity and expansiveness, among which black cotton, marine clays, peat, lateritic soils, and in some cases materials corresponding to clay sands or silty sands of medium plasticity were used. This is mainly due to clays being the soils with the worst engineering characteristics and great abundance on the planet.

5.4. Fiber orientation

One of the variables that affect the behavior of fiber-reinforced soil is the orientation of these within the soil matrix [79,86]. This arrangement can be made using oriented fiber distribution (OFD) and random fiber distribution (RDF). But it is only through the second method that the homogeneity of the obtained mixture can be guaranteed. Of the research analyzed, 95% used sawdust powder and sawdust ash, and although neither explicitly reported the type of distribution of their fibers, it is understood that for these materials a random distribution of the fibers in the soil was used. Additionally, of the 2 investigations that used sawdust shaving only Mouissa et al. [102], reported the random distribution of the fibers at random.

5.5. Fiber length and size

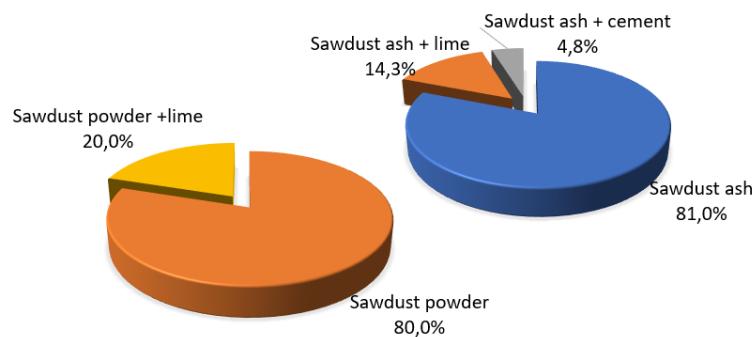
In the investigations analyzed, the size of the fibers added to the soils is variable. Concerning the studies that used sawdust ash, although it has particle sizes similar to cement (less than 75m), it is observed that in some investigations the material was used as it was after calcination [9,31,96,97,117,125,128,129], while in others the material was selected and screened. through sieves of openings between 600mm and 75 μ m (sieve No. 30 and sieve No. 200). Regarding the investigations that used powder sawdust [1,8,36,48,72,95,108-110], it was observed that these were screened with sieves of openings between 4.75mm and 0.42mm (Sieve No. 4 and Sieve No. 40). As far as the investigations using sawdust shaving [102,103] are concerned, none of them report the size of the fibers used.

5.6. Added percentage of fibers

Considering the variety of wood species that could be used in the different investigations, which depend fundamentally on the availability in each country and that affects the physical and chemical characteristics of the fibers, the variation in the type of sawdust fiber used leads to the percentages of addition of these to the soils were variable. Being common the substitution ranges about the weight of the dry soil from 0 to 10%.

5.7. Component mixing method

Although the texts of the articles analyzed do not report the mixing method, it is considered that a manual mixing of the soil with the different fibers facilitates achieving the homogeneity of the mixtures at the level of laboratory tests, this is because, in the laboratory, the volume of soil and fiber used is small.


5.8. Fiber surface treatment

About the 2 investigations in which the use of sawdust in the form of shavings was chosen, it was observed that for one of them, a previous surface treatment of the same was used to improve their properties and the interaction with the treated soil [102], choosing sodium hydroxide (NaOH) and potassium permanganate (KMnO₄), as an activating agent. In this sense, mercerization, or alkaline treatment, is the method used for the surface modification of the fibers and improving their adhesion with the soil matrix, compared to other available methods.

5.9. Additives to the soil/fiber mixture

Another aspect of great importance studied corresponds to the use of a binder additive, figure 8 shows that a significant percentage (approximately 20%) of the investigations carried out with sawdust fibers in the state of ash or dust used as an additive a binder such as lime or cement. This is based on the search to improve the results in the engineering improvement of soils. It should be noted that 80% of the research in the African continent where the addition of binders to soil and fiber mixtures was chosen corresponds to the country of Nigeria [117,119,122,123]. While 67% of the investigations in the Asian continent with the use of binders to the mixtures of soil and fiber correspond to the country of India [106,127].

Distribution of articles Sawdust powder and Sawdust Ash

Figure 8. Distribution of articles of sawdust powder and sawdust ash.

5.10. Results of improvement of soil properties

According to Vettorelo & Clariá [79], some variables affect the behavior of soils with the addition of sawdust fibers, some of them attributable to fiber and others to the soil, namely: 1) Characteristics of the fiber (type of fiber, length, shape, aspect ratio (length – diameter), roughness). 2) Soil characteristics (particle size, shape, and roughness; moisture content; among others).

In general, properties analyzed in most research carried out were optimal moisture content plasticity properties that reduced their value during the fiber was added, while properties like maximum dry density and unconfined compression strength increased their value.

Based on this, it is possible to observe a wide variability of the optimal percentages of the added fibers reported, which produce the maximum improvement in the engineering properties of the treated soils, this can be attributed mainly to the chemical composition of the fiber used, particle size, shape, and aspect ratio. Additionally, there is a deterioration of soil properties for percentages of addition above optimal values.

6. Conclusions

Although the technique of reinforcing soils with natural fibers dates back to time immemorial, in recent decades the interest in his study for applications in Geotechnical engineering has grown, seeking to contribute to solving major environmental problems produced by the large volume generated in some agro-industrial processes and their inadequate final disposal, from a sustainable approach to the circular economy, seeking reuse, giving added value to this type of waste that can have high availability in certain areas of the planet and its mechanical characteristics comparable with commonly used materials.

It is important to note that in Latin America, research work on the use of sawdust fibers as soil reinforcement is scarce, predominating mainly in Asia and Africa. This opens an area of interest to work on the use of this type of highly available waste in the developing countries of America, for its identification and use as alternative materials for the reinforcement of expansive clay soils, and thus also minimize the amount of industrial waste that is deposited in the environment and causes environmental pollution.

The main objective of the literature review is to better understand the scope and results obtained in some of the research developed for the analysis of variations in the engineering properties of soils when reinforcing them with the addition of sawdust fibers as an alternative in the field of sustainable geotechnics.

The study of the existing literature reveals that there is currently limited research carried out regarding the reinforcement of soils with expansive characteristics using sawdust fibers compared to other materials.

Sawdust, in the form of powder and chips, can be used to manufacture construction compounds with a high modulus of elasticity, water absorption, and strength characteristics that can meet international specifications in the field of civil and geotechnical engineering.

Sawdust powder by itself has little cementing value, but in the presence of moisture from the medium, it can react chemically and form certain cementitious compounds, to which the improvement of the strength and compressibility properties of soils can be attributed. In addition, it is estimated that, due to the rough texture of its surface, this type of fiber can produce high friction that affects the improvement of the resistance of the soil.

The creation of a value chain from this type of waste would contribute significantly to the creation of new jobs and additional income for the personnel who work with them, in the same way, it would generate a decrease in the environmental impact produced by its inadequate disposition and disposal and finally would lead to a reduction in the costs of construction projects. It is important to note that the materials that can be used as fibers are very low cost, making this type of reinforcement highly competitive against the alternatives widely used today.

Soil reinforcement with the use of natural fibers can be done through the use of conventional construction equipment. Compaction of fiber-reinforced soil can be carried out with traditional compaction methods without the risk of damaging induced improvements in the soil.

This type of technique to improve the engineering properties of soils is not affected by climatic conditions, unlike other methods of reinforcement and/or stabilization, such as the addition of cement or lime.

It is important to consider the possibility of using a primary binder (cement) in combination with a secondary binder (sawdust ash) in the stabilization of clay soil for use as an effective road construction material.

New cementitious materials based on alkali-activated binders have recently become a promising sustainable alternative to conventional bonding materials. Alkali-activated bonding materials are a binder of the future for the following reasons: no high temperature is needed, there is no CO₂ emission from reactions, and primary materials can be obtained from waste.

The cellulose content present within sawdust cells is primarily responsible for providing strength to the fiber. Lignin works by minimizing biodegradation caused by microorganisms. Hemicellulose is primarily responsible for moisture absorption and biodegradation. Therefore, exploring the use of sawdust fiber will not only help improve soil reinforcement but can also help mitigate the environmental impact produced by the poor final disposal of this waste.

In summary, the various advantages of sawdust fibers are low density, low cost, low energy consumption, comparable mechanical properties, and also better elasticity than polymeric compounds reinforced with natural fibers, so the opportunity to conduct similar studies in other parts of the world is opened, where sawdust fibers are easily available as a waste material of the wood industry, that allows expanding the knowledge about this new technique to improve the engineering properties of the soils.

6.1 Other Research Priorities

According to the literature review carried out, the authors consider that the objectives for future research on the use of waste lignocellulosic materials in the improvement of the engineering properties of soils should include the following aspects, but are not limited to them:

- Encourage the use of materials of natural origin more respectful of the environment, which contribute to the reduction of greenhouse gas emissions produced, in many cases, by the techniques currently used in soil reinforcement.
- Analysis of the different sources of supply and procurement of sawdust fibers as one of the residues of the wood industry. Based on the underestimation of the actual volume of sawdust produced by an appreciable number of sawmills not officially registered.
- Study of the biodegradability of sawdust as a drawback for its use and analysis of the efficiency of the different chemical treatment alternatives before its addition to soils.
- The validation and standardization of the experimental results obtained for the mechanical properties of sawdust fibers after alkaline treatment are necessary to optimize the pretreatment processes and the methodology of application of the fiber in the soil reinforcement.
- More detailed analysis of the effects of curing time on the parameters of mechanical strength of soils reinforced with sawdust fibers previously subjected to alkaline treatments.
- More thorough analysis of factors that may affect the strength of sawdust-reinforced soils, for example, fiber length, the ratio of fiber percentage to soil mass, coefficient of friction between fiber and soil,
- More detailed study of variables such as age, type of wood species, soil moisture, the climate in the chemical composition (cellulose, lignin, and hemicellulose content), and mechanical properties of sawdust fibers, and their impact on the engineering improvement of soils.

Author Contributions: C.J.M.-M., L.C.S.-H., S.A.Z.-C., R.V.-O., D.R.-G. wrote, coordinated, reviewed, and contributed to the scientific aspects of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Request the corresponding author of this article.

Acknowledgments: C.J.M.-M. thanks, CONACYT for assigning the scholarship to study a doctorate in engineering sciences at the Instituto Tecnológico Superior de Misantha (ITSM) whose support facilitated the publication of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yarbaşı, N., & Kalkan, E. Stabilization of Clayey Soils by Using the Organic Waste-Material. *International Journal of Science and Engineering Applications*. **2020**, 9(11), 129-132. <https://doi:10.7753/ijsea0911.1002>.
2. Brahmachary, T. K., & Rokonuzzaman, M. Investigation of random inclusion of bamboo fiber on ordinary soil and its effect CBR value. *International Journal of Geo-Engineering* **2018**, 9(1). <https://doi.org/10.1186/s40703-018-0079-x>
3. Duque Escobar, G.; Escobar Potes, C.E. Geomecánica. In *Ingeniería Civil*; Universidad Nacional de Colombia: Bogotá, Colombia, **2016**.
4. Khan, A. N., Ansari, Y., Mahvi, S., Junaid, M., Iqbal, K. Different Soil Stabilization Techniques. *International Journal of Advanced Science and Technology*. **2020**, 29(9). <https://www.researchgate.net/publication/350630921>
5. Ale, T. O. Effect of drying temperature on the engineering properties of stabilised and natural soils for road construction. *Engineering Heritage Journal*. **2020**, 6(1). doi: <http://doi.org/10.26480/gwk.01.2022.01.05>
6. Das, B. M., & Sivakugan, N. Fundamentals of geotechnical engineering. Cengage Learning, **2016**
7. Garg, R., Biswas, T., Alam, M. D., Kumar, A., Siddharth, A., & Singh, D. R. Stabilization of expansive soil by using industrial waste. In *Journal of Physics: Conference Series*. **2021**, (Vol. 2070, No. 1, p. 012238). IOP Publishing. doi:10.1088/1742-6596/2070/1/012238
8. Amakye, S. Y., & Abbey, S. J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: a review. *Cleaner Engineering and Technology* **2021**, 4, 100159. <https://doi.org/10.1016/j.clet.2021.100159>
9. Dayioglu, M., Cetin, B., & Nam, S. Stabilization of expansive Belle Fourche shale clay with different chemical additives. *Applied Clay Science* **2017**, 146, 56-69. <https://doi.org/10.1016/j.clay.2017.05.033>
10. Al-Kalili, A., Ali, A. S., & Al-Taie, A. J. A Review on Expansive Soils Stabilized with Different Pozzolanic Materials. *Journal of Engineering* **2022**, 28(1), 1-18. <https://doi.org/10.31026/j.eng.2022.01.01>
11. Wani, I. Y., Khurshid, M. T., & Sharma, E. N. Analysis of geotechnical properties of an expansive soil mixed with polypropylene, saw dust ash and egg shell powder. *International Journal of Engineering Applied Sciences and Technology*. **2019**, 4(7), 376-381.
12. Niyomukiza, J. B., Wardani, S. P. R., & Setiadji, B. H. The influence of Keruing sawdust on the geotechnical properties of expansive Soils. In *IOP Conference Series: Earth and Environmental Science*. **2020**, (Vol. 448, No. 1, p. 012040). IOP Publishing. <https://doi.org/10.1088/1755-1315/448/1/012040>
13. Asuri, S., Keshavamurthy, P. Expansive Soil Characterisation: an Appraisal. INAEL1, *Indian National Academy of Engineering* **2016**, 29–33. <https://doi.org/10.1007/s41403-016-0001-9>
14. Mahima, D., & Sini, T. Effect of Sawdust Ash and Coir Fibre on the Strength Characteristics of Kaolinite Clay. *International Journal of Engineering Research & Technology (IJERT)*. **2019**, Vol. 8 (06)
15. Afrin, H. A review on different types soil stabilization techniques. *International Journal of Transportation Engineering and Technology*. **2017**, 3(2), 19-24. doi: 10.11648/j.ijtet.20170302.12
16. Dang, L., Hasan, H., Fatahi, Z., Jones, R., Khabbaz, H. Enhancing the Engineering Properties of Expansive Soil Using Bagasse Ash and Hydrated Lime. *International Journal of GEOMATE* **2016**, 11(3):2447–2454. doi: 10.21660/2016.25.5160.
17. Charis, G., Danha, G., & Muzenda, E. A review of timber waste utilization: Challenges and opportunities in Zimbabwe. *Procedia Manufacturing* **2019**, 35, 419-429. <https://doi.org/10.1016/j.promfg.2019.07.005>
18. Sun, S., Liu, B., & Wang, T. Improvement of expansive soil properties using sawdust. *The Journal of Solid Waste Technology and Management*. **2018**, 44(1), 78-85. doi: 10.5276/JSWTM.2018.78.
19. Akinwumi, I. I., Ojuri, O. O., Ogbije, S. A., & Booth, C. A. Engineering properties of tropical clay and bentonite modified with sawdust. *Acta Geotechnica Slovenica* **2017**, 14(2), 47-56.
20. Puppala, A. J., & Pedarla, A. Innovative ground improvement techniques for expansive soils. *Innovative Infrastructure Solutions*. **2017**, 2(1), 1-15. <https://doi.org/10.1007/s41062-017-0079-2>

21. James, J. Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation. *Journal of Rock Mechanics and Geotechnical Engineering*. **2020**, 12, 395-402. <https://doi.org/10.1016/j.jrmge.2019.10.005>
22. Gomes Correia, A.; Winter, M.G.; Puppala, A.J. A review of sustainable approaches in transport infrastructure geotechnics. *Transp. Geotech.* **2016**, 7, 21–28. <https://doi.org/10.1016/j.trgeo.2016.03.003>
23. Ikeagwuani, C. C., Agunwamba, J. C., Nwankwo, C. M., & Eneh, M. Additives optimization for expansive soil subgrade modification based on Taguchi grey relational analysis. *International Journal of Pavement Research and Technology* **2021**, 14(2), 138-152. doi: <https://doi.org/10.1007/s42947-020-1119-4>
24. Hamzah, N., Yusof, N. A. M., & Rahimi, M. I. H. M. Assessment of compressive strength of peat soil with sawdust and Rice Husk Ash (RHA) with hydrated lime as additive. In *MATEC Web of Conferences* **2019**, Vol. 258, p. 01014. EDP Sciences. doi: 10.1051/matecconf/201925801014.
25. Khademi, F., & Budiman, J. Expansive soil: causes and treatments. *i-Manager's Journal on Civil Engineering* **2016**, 6(3), pp., 1-13, <http://dx.doi.org/10.26634/jce.6.3.8083>
26. Ikeagwuani, C. C., & Nwonu, D. C. Emerging trends in expansive soil stabilisation: A review. *Journal of Rock Mechanics and Geotechnical Engineering*. **2019**, 11(2), 423-440. doi: 10.1016/j.jrmge.2018.08.013.
27. Oluremi, J. R., Elsaigh, W. A., Ikotun, B. D., Osuolale, O. M., Adedokun, S. I., Oyelakin, S. E., & Ayodele, O. P. Strength enhancement in high silica wood ash stabilized lateritic soil using sodium tetraoxosulphate VI (Na₂SO₄) as activator. *International Journal of Pavement Research and Technology* **2021**, 14(4), 410-420. <https://doi.org/10.1007/s42947-020-0087-2>
28. Patel, S. K., & Singh, B. Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. *Geotechnical and Geological Engineering* **2017**, 35(4), 1767-1781. doi: 10.1007/s10706-017-0207-y
29. Firoozi, A. A., Guney Olgun, C., Firoozi, A. A., & Baghini, M. S. Fundamentals of soil stabilization. *International Journal of Geo-Engineering* **2017**, 8(1), 1-16. <https://doi.org/10.1186/s40703-017-0064-9>
30. Selvakumar, S., & Soundara, B. Swelling behaviour of expansive soils with recycled geofoam granules column inclusion. *Geotextiles and Geomembranes* **2019**, 47(1), 1-hma11. <https://doi.org/10.1016/j.geotexmem.2018.08.007>
31. Bordoloi, S., Yamsani, S. K., Garg, A., Sreedep, S., & Borah, S. Study on the efficacy of harmful weed species Eichornia crassipes for soil reinforcement. *Ecological Engineering* **2015**, 85, 218-222. <https://doi.org/10.1016/j.ecoleng.2015.09.082>
32. Owamah, H. I., Atikpo, E., Oluwatuyi, O., & Oluwatomisin, A. M. Geotechnical properties of clayey soil stabilized with cement-sawdust ash for highway construction. *Journal of Applied Sciences and Environmental Management* **2017**, 21(7), 1378-1381. <https://doi.org/10.4314/jasem.v21i7.29>
33. Chittoori, B., & Neupane, S. Evaluating the application of microbial induced calcite precipitation technique to stabilize expansive soils. In *Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference* **2018** (pp. 10-19). Springer, Cham. doi: 10.1007/978-3-319-95783-8_2
34. Kang, X., Kang, G. C., Chang, K. T., & Ge, L. Chemically stabilized soft clays for road-base construction. *Journal of Materials in Civil Engineering* **2015**, 27(7), <https://www.researchgate.net/publication/267211309>.
35. Mahedi, M., Cetin, B., & White, D. J. Performance evaluation of cement and slag stabilized expansive soils. *Transportation Research Record* **2018**, 2672(52), 164-173. <https://www.researchgate.net/publication/320172459>
36. Miao, S., Shen, Z., Wang, X., Luo, F., Huang, X., & Wei, C. Stabilization of highly expansive black cotton soils by means of geopolymerization. *Journal of Materials in Civil Engineering* **2017**, 29(10). doi: 10.1061/(ASCE)MT.1943-5533.0002023
37. Adedokun, S. I., & Oluremi, J. R. A review of the stabilization of lateritic soils with some agricultural waste products. *International Journal of Engineering* **2019**, 17(2)
38. Niyomukiza, J. B., Wardani, S. P. R., & Setiadji, B. H. The Effect of Curing Time on the Engineering Properties of Sawdust and Lime Stabilized Expansive Soils. In *2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019)* (**2020**, February). (pp. 157-161). Atlantis Press. doi: 10.2991/aer.k.200220.033
39. Agaiby, S., Hassan, A. W., Dakhli, A. H., & Elhakim, A. Sawdust Effect on Compressibility and Shear Strength Characteristics of Highly Organic Clay. *ERJ. Engineering Research Journal* **2022**, 45(3), 379-387. <https://dx.doi.org/10.21608/erjm.2022.127027.1151>
40. Afolayan, O. D., Olofinade, O. M., & Akinwumi, I. I. Use of some agricultural wastes to modify the engineering properties of subgrade soils: A review. In *Journal of Physics: Conference Series*. **2019**, Vol. 1378, No. 2, p. 022050. IOP Publishing. doi:10.1088/1742-6596/1378/2/022050.

41. Garg, A., Bordoloi, S., Mondal, S., Ni, J. J., & Sreedeep, S. Investigation of mechanical factor of soil reinforced with four types of fibers: An integrated experimental and extreme learning machine approach. *Journal of natural fibers*. **2018**, <https://doi.org/10.1080/15440478.2018.1521763>
42. Dauda D. & Dominic M. Effectiveness of agricultural wastes in soil stabilization. *Sustainability, Agri, Food and Environmental Research* **2022**, 10(X)
43. Amin, M.N.; Ahmad, W.; Khan, K.; Ahmad, A. A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials. *Materials* **2022**, 15, 4362. <https://doi.org/10.3390/ma15124362>
44. Darvizi, A., Vosoughifar, H., Saeidijam, S., Torabi, M., & Rahmani, A. An experimental and prediction study on the compaction and swell-expansion behavior of bentonite clay containing various percentages of two different synthetic fibers. *Innovative Infrastructure Solutions*. **2020**, 5(1), 1-15. <http://dx.doi.org/10.1007/s41062-020-0280-6>
45. Irani, N., & Ghasemi, M. Effect of scrap tyre on strength properties of untreated and lime-treated clayey sand. *European Journal of Environmental and Civil Engineering*. **2019**, 25(9), 1609-1626. <https://doi.org/10.1080/19648189.2019.1585964>
46. Saberian, M., Mehrinejad Khotbehsara, M., Jahandari, S., Vali, R., & Li, J. Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat. *International Journal of Geotechnical Engineering*. **2018**, 12(4), 347-356. <https://doi.org/10.1080/19386362.2016.1277829>
47. Danso, H., Martinson, D. B., Ali, M., & Williams, J. B. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. *Construction and Building Materials*. **2015**, 101, 797-809. doi.org/10.1016/j.conbuildmat.2015.10.069
48. Jayasree, P. K., Balan, K., Peter, L., & Nisha, K. K. Volume change behavior of expansive soil stabilized with coir waste. *Journal of materials in Civil Engineering*. **2015**, 27(6), 04014195. [https://doi.org/10.1061/\(ASCE\)MT.1943-5533.0001153](https://doi.org/10.1061/(ASCE)MT.1943-5533.0001153)
49. Vardhan, H., Bordoloi, S., Garg, A., Garg, A., & Sreedeep, S. Compressive strength analysis of soil reinforced with fiber extracted from water hyacinth. *Engineering Computations*. **2017**, Vol. 34 No. 2, pp. 330-342. <https://doi.org/10.1108/EC-09-2015-0267>
50. Irani, N., & Ghasemi, M. Effects of the inclusion of industrial and agricultural wastes on the compaction and compression properties of untreated and lime-treated clayey sand. *SN Applied Sciences* **2020**, 2(10), 1-15. doi.org/10.1007/s42452-020-03369-8
51. Wei, L., Chai, S. X., Zhang, H. Y., & Shi, Q. Mechanical properties of soil reinforced with both lime and four kinds of fiber. *Construction and Building Materials* **2018**, 172, 300-308. <https://doi.org/10.1016/j.conbuildmat.2018.03.248>
52. Bastasaa, J. D., Roxasa, A. J. B., Sagayapa, K. D., Salurioa, R. R. L., Sampayana, J. O., Taniñasa, H. L., & Amatosa Jr, T. A. Swell Classification Analysis for Re-engineering Expansive Soil using Agricultural Waste Materials. *International Journal of Applied Engineering Research* **2019**, 14(10), 2399-2404. <https://www.researchgate.net/publication/333770206>
53. Kumar, J. K., & Kumar, V. P. Experimental analysis of soil stabilization using e-waste. *Materials Today: Proceedings* **2020**, 22, 456-459. <https://doi.org/10.1016/j.matpr.2019.07.716>
54. Chaugule, M., Deore, S., Gawade, K., Tijare, A., & Banne, S. Improvement of black cotton soil properties using e-waste. *IOSR Journal of Mechanical and Civil Engineering* **2017**, 14(03), 76-81. doi: 10.9790/1684-1403017681
55. Veylon, G., Ghested, M., Stokes, A., & Bernard, A. Quantification of mechanical and hydric components of soil reinforcement by plant roots. *Canadian Geotechnical Journal* **2015**, 52(11), 1839-1849. dx.doi.org/10.1139/cgj-2014-0090
56. Wang, F., Han, J., Khatri, D. K., Parsons, R. L., Brennan, J. J., & Guo, J. Field installation effect on steel-reinforced high-density polyethylene pipes. *Journal of Pipeline Systems Engineering and Practice* **2016**, 7(1), 04015013. doi: 10.1061/(ASCE)PS.1949-1204.0000211
57. European Commission. Environment, Green Growth, Raw Materials. Available online: https://ec.europa.eu/environment/green-growth/raw-materials/index_en.htm (accessed on 25 August 2022).
58. Murray, A., Skene, K. & Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. *J Bus Ethics* **2017**, 140, 369-380. <https://doi.org/10.1007/s10551-015-2693-2>
59. Pehme, K. M., & Kriipsalu, M. Full-scale project: From landfill to recreational area. *Detritus* **2018**, 1(1), 174-179. <https://doi.org/10.26403/detritus/2018.17>
60. Urbinati, A., Chiaroni, D., & Chiesa, V. Towards a new taxonomy of circular economy business models. *Journal of Cleaner Production* **2017**, 168, 487-498. <https://doi.org/10.1016/j.jclepro.2017.09.047>
61. Khan, S., & Khan, H. Improvement of mechanical properties by waste sawdust ash addition into soil. *Jordan Journal of Civil Engineering* **2016**, 10(1).

62. Upadhyay, P., & Singh, Y. Soil Stabilization Using Natural Fiber Coir. *International Research Journal of Engineering and Technology* **2017**, 4(12), 1808-1812.

63. Qu, J. & Zhao, D. Stabilising the cohesive soil with palm fibre sheath strip. *Road Materials and Pavement Design* **2016**, 17:1, 87-103, doi: 10.1080/14680629.2015.1064010

64. Wang, Y., Guo, P., Dai, F., Li, X., Zhao, Y., & Liu, Y. Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique. *International Journal of Geomechanics* **2018**, 18(12). doi: 10.1061/(ASCE)GM.1943-5622.0001313

65. Owoyemi, O. O. Effect of Sawdust on the Geotechnical Properties of a Lateritic Soil. *Journal of Mining and Geology* **2021**, 57(1), 127-139. <https://www.researchgate.net/publication/351094727>

66. Sani, J. E., Afolayan, J. O., Chukwujama, I. A., & Yohanna, P. Effects of wood saw dust ash admixed with treated sisal fibre on the geotechnical properties of lateritic soil. *Leonardo Electronic Journal of Practices and Technologies* **2017**, 31(2017), 59-76.

67. Mwango, A., & Kambole, C. Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review. *Journal of Building Construction and Planning Research* **2019**, 7(3), 59-88. doi: 10.4236/jbcpr.2019.73005

68. Assiamah, S., Agyeman, S., Adinkrah-Appiah, K., & Danso, H. Utilization of sawdust ash as cement replacement for landcrete interlocking blocks production and mortarless construction. *Case Studies in Construction Materials* **2022**, 16, e00945. doi.org/10.1016/j.cscm.2022.e00945

69. Niyomukiza, J. B., Wardani, S. P. R., & Setiadji, B. H. Recent advances in the stabilization of expansive soils using waste materials: A review. *In IOP Conference Series: Earth and Environmental Science* **2021**, (Vol. 623, No. 1, p. 012099). IOP Publishing. doi:10.1088/1755-1315/623/1/012099

70. De Castrillo, M. C., Ioannou, I., & Philokyprou, M. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. *Construction and Building Materials* **2021**, 294, 123516. <https://doi.org/10.1016/j.conbuildmat.2021.123516>

71. Khtou, O., Aalil, I., Aboussaleh, M., & Wardi, F. Z. E. Mechanical Analysis of Fiber Reinforced Adobe. *Civil Engineering and Architecture* **2021**, 9(7), 2160-2168. doi: 10.13189/cea.2021.090705

72. Jannat, N., Latif Al-Mufti, R., Hussien, A., Abdullah, B., & Cotgrave, A. Influence of Sawdust Particle Sizes on the Physico-Mechanical Properties of Unfired Clay Blocks. *Designs* **2021**, 5(3), 57. <https://doi.org/10.3390/designs5030057>

73. Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. *Construction and Building Materials* **2012**, 30, 100-116. <https://doi.org/10.1016/j.conbuildmat.2011.11.045>

74. Vidal, H. The principle of reinforced earth. *Highway Research Record* **1969**, 282, 1-16. <http://onlinepubs.trb.org/Onlinepubs/hrr/1969/282/282-001.pdf>

75. Gowthaman, S., Nakashima, K., & Kawasaki, S. A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: Past findings, present trends and future directions. *Materials* **2018**, 11(4). doi: 10.3390/ma11040553

76. Kielė, A., Vaičiukynienė, D., Tamošaitis, G., Pupeikis, D., & Bistrickaitė, R. Wood shavings and alkali-activated slag bio-composite. *European journal of wood and wood products* **2020**, 78(3), 513-522. <https://doi.org/10.1007/s00107-020-01516-x>

77. Sharma, V., Vinayak, H. K., & Marwaha, B. M. Enhancing compressive strength of soil using natural fibers. *Construction and Building Materials* **2015**, 93, 943-949. <https://doi.org/10.1016/j.conbuildmat.2015.05.065>

78. Hashim, M. Y., Amin, A. M., Marwaha, O. M. F., Othman, M. H., Yunus, M. R. M., & Huat, N. C. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. *In Journal of Physics: Conference Series* **2017** (Vol. 914, No. 1, p. 012030). IOP Publishing. doi :10.1088/1742-6596/914/1/012030

79. Vettorelo, P. V., & Clariá, J. J. Suelos Reforzados con Fibras: Estado del Arte y Aplicaciones. *Revista Facultad de Ciencias Exactas, Físicas y Naturales* **2014**, 1(1):27-34.

80. Hassan, M. M., & Wagner, M. H. Surface modification of natural fibers for reinforced polymer composites: a critical review. *Reviews of Adhesion and Adhesives* **2016**, 4(1), 1-46. doi: 10.7569/RAA.2016.097302

81. Deshmukh, G., & Singh, I. A Review on Effect of Pretreatment of Fibers on Physical and Mechanical Properties of Natural Fiber Reinforced Polymer Composites. *International Journal of Engineering Research in Current Trends (IJERCT)* **2020**, 2 (3)

82. Matykiewicz, D., Barczewski, M., Mysiukiewicz, O., & Skórczewska, K. Comparison of various chemical treatments efficiency in relation to the properties of flax, hemp fibers and cotton trichomes. *Journal of Natural Fibers* **2021**, 18(5), 735-751. <https://doi.org/10.1080/15440478.2019.1645792>

83. Adams, R. H., Cerecedo-López, R. A., Alejandro-Álvarez, L. A., Domínguez-Rodríguez, V. I., & Nieber, J. L. Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. *International Journal of Environmental Science and Technology* **2016**, 13(9), 2249-2260. doi 10.1007/s13762-016-1058-4

84. Koohestani, B., Darban, A. K., Mokhtari, P., Yilmaz, E. & Darezereshki, E. Comparison of different natural fiber treatments: a literature review. *International Journal of Environmental Science and Technology* **2019**, 16(1), 629-642. <https://doi.org/10.1007/s13762-018-1890-9>

85. Jaramillo-Quiceno, N., Ch, E. M. C., Restrepo-Osorio, A., & Santa, J. F. Improvement of mechanical properties of pineapple leaf fibers by mercerization process. *Fibers and Polymers* **2018**, 19(12), 2604-2611. doi: 10.1007/s12221-018-8522-3.

86. Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. Natural fibers as a sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. *Frontiers in Materials* **2019**, 6, 226. doi: 10.3389/fmats.2019.00226

87. Cruz, J., & Fangueiro, R. Surface modification of natural fibers: a review. *Procedia Engineering* **2016**, 155, 285-288. doi: 10.1016/j.proeng.2016.08.030

88. Gholampour, A., & Ozbaikkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. *Journal of Materials Science* **2019**, 55(3), 829-892. <https://doi.org/10.1007/s10853-019-03990-y>

89. Rippon, J. A., & Evans, D. J. Improving the properties of natural fibres by chemical treatments. In *Handbook of natural fibres* **2020**, (pp. 245-321). Woodhead Publishing.. <https://doi.org/10.1016/B978-0-12-818782-1.00008-0>

90. Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., & Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing, and characterization. *Carbohydrate polymers* **2019**, 207, 108-121. <https://doi.org/10.1016/j.carbpol.2018.11.083>

91. Mallakpour, S., Sirous, F., & Hussain, C. M. Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies. *Advances in Colloid and Interface Science* **2021**, 295, 102492. <https://doi.org/10.1016/j.cis.2021.102492>

92. Fregoso-Madueño, J. N., Goche-Télles, J. R., Rutiaga-Quiñones, J. G., González-Laredo, R. F., Bocanegra-Salazar, M., & Chávez-Simental, J. A. Alternative uses of sawmill industry waste. *Revista Chapingo. Serie Ciencias Forestales y del Ambiente* **2017**, XXIII(2),243-260. ISSN: 2007-3828. Available in: <https://www.redalyc.org/articulo.oa?id=62950747001>

93. Butt, WA, Gupta, K. y Jha, JN. Strength Behavior of Clayey Soil Stabilized with Saw Dust Ash. *International Journal of Geo-Engineering* **2016**, 7 (1), 1-9. doi: 10.1186/s40703-016-0032-9.

94. Okedere, O. B., Fakinle, B. S., Sonibare, J. A., Elehinafe, F. B., & Adesina, O. A. Particulate matter pollution from open burning of sawdust in Southwestern Nigeria. *Cogent Environmental Science* **2017**, 3(1), 1367112. <https://doi.org/10.1080/23311843.2017.1367112>

95. Medina-Martinez, C.J.; Sandoval-Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Natural Fibers: An Alternative for the Reinforcement of Expansive Soils. *Sustainability* **2022**, 14, 9275. <https://doi.org/10.3390/su14159275>

96. Jairaj, C., Raghunandan, M. Compaction Characteristics and Strength of BC Soil Reinforced with Untreated and Treated Coir Fibers. *Innovative Infrastructure Solutions* **2018**. doi: 10.1007/s41062-017-0123-2.

97. Qu, J., & Zhu, H. Function of Palm Fiber in Stabilization of Alluvial Clayey Soil in Yangtze River Estuary. *Journal of Renewable Materials* **2021**, 9(4), 767. doi: 10.32604/jrm.2021.013816

98. Oderah, V. and Kalumba, D. Laboratory Investigation of Sugarcane Bagasse as Soil Reinforcement Material. In *Geochine* **2016** (2016July):61–68. doi: 10.1061/9780784480069.008.

99. Khan, A., Jasim, OH, and Umar, D. Effect of Sawdust-Lime and Sawdust Ash-Lime on the Geotechnical the Geotechnical Properties of an Expansive. **2020** (August):0-8. <https://www.researchgate.net/publication/343600730>

100. Ikeagwuani, C. C., Obeta, I. N., & Agunwamba, J. C. Stabilization of black cotton soil subgrade using sawdust ash and lime. *Soils and Foundations* **2019**, 59(1), 162-175. doi: 10.1016/j.sandf.2018.10.004

101. Singh, P., & Singh, B. (2019). Assessment of mechanical properties of biocomposite material by using sawdust and rice husk. *Incas Bulletin*, 11(3), 147-156. DOI: 10.13111/2066-8201.2019.11.3.13

102. Mouissa, F., Benyahia, A., Djehiche, M., Belmokre, K., Deghfel, N., Redjem, A., & Rahmouni, Z. E. A. The effect of chemical treatment on the mechanical and thermal properties of composite materials based on clay reinforced with sawdust. *Matériaux & Techniques* 2021, 109(1), 101. doi.org/10.1051/mattech/2021013

103. Jangid, A. K., Khatti, J., & Bindlish, A. Stabilization of black cotton soil by 15% Kota stone slurry with wooden saw dust. *International Journal of Advance Research in Science and Engineering* 2018, 7(2), 108-114.

104. Keramatikerman, M., Chegenizadeh, A., & Nikraz, H. Effect of sawdust on Cohesion of Sand-Sawdust mixture. *International Journal of Engineering Applied Sciences and Technology (IJEAST)* 2020, 4(11):14-16

105. Sharma, S., Verma, K., & Sharma, J. K. Experimental Study of Stabilization of Expansive Soil Mixed with Sawdust and Marble Dust. In *Proceedings of the Indian Geotechnical Conference 2019* (pp. 535-547) 2021. Springer, Singapore. doi: 10.1007/978-981-33-6444-8_48

106. Karteek, G. S. An Investigation on the Influence of Lime on Marine Clay Treated with Sawdust for Flexible Pavement Subgrade. *International Journal On Recent & Innovative Trend In Technology* 2018, 4(2)

107. Johnson, S., & Gopinath, B. A Study on the Swell Behaviour of Expansive Clays Reinforced with Saw Dust, Coir Pith & Marble Dust. *International Journal of Engineering Research and Technology (IJERT)* 2016, 5(9), 565-570.

108. Yarbaşı, N., & Kalkan, E. Investigation of Wet-Dry Cycle Effect on Swelling Behavior of Stabilized Expansive Soils. *International Journal of Science and Engineering Applications* 2020, 9(12), 153-157.

109. Kalkan, E., & Yarbaşı, N. The Effects of Pine Tree Sawdust on the Volume Compressibility of Expansive Soils. *International Journal of Science and Engineering Applications* 2020, 10(04):029-033. doi: 10.7753/ijsea1004.1001.

110. Jasim, O. H., & Çetin, D. Effect of the Time on the Undrained Shear Strength and Permeability of Clay-Wooden Sawdust Mixtures Used to Improve Landfills Liner. In *Key Engineering Materials* 2020, (Vol. 857, pp. 311-318). Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/KEM.857.311.

111. Jasim, O. H., & Çetin, D. Effect of sawdust usage on the shear strength behavior of clayey silt soil. *Sigma Journal Engineering and Natural Sciences* 2016, 34(1), 31-41. <https://www.researchgate.net/publication/299285436>

112. Farooq, M. U., Mujtaba, H., Farooq, K., Sivakugan, N., & Das, B. M. Evaluation of stability and erosion characteristics of soil embankment slope reinforced with different natural additives. *Iranian Journal of Science and Technology, Transactions of Civil Engineering* 2020, 1-10. 44(0123456789):515-24. doi: 10.1007/s40996-019-00340-5.

113. Tong, Y., Seibou, A. O., Li, M., Kaci, A., & Ye, J. Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials. *Crystals* 2021, 11(12), 1593. doi.org/10.3390/cryst11121593

114. Yousefi, R., Amooei, A. A., Amel Sakhi, M., & Karimi, A. Experimental Study on Influence of Using Urease Enzyme on Stabilized Sandy Soil's Engineering Property by Zeolite and Sawdust. *International Journal of Maritime Technology* 2021, 15, 17-27.

115. Oriaje, A. T., Adeyemo, K. A., & Ojo, O. Y. Stabilization of Lateritic Soil with Mahogany (Hardwood) Sawdust Ash. *Journal of Engineering and Environmental Sciences* 2021, doi: 10.36108/ujees/1202.30.0120

116. Ayodele, A. L., Oketope, O. M., & Olatunde, O. S. Effect of sawdust ash and eggshell ash on selected engineering properties of lateralized bricks for low cost housing. *Nigerian Journal of Technology* 2019, 38(2), 278-282. <http://dx.doi.org/10.4314/njt.v38i2.1>

117. Obeta, I. N., Ikeagwuani, C. C., Attama, C. M., & Okafor, J. Stability and durability of sawdust ash-lime stabilised black cotton soil. *Nigerian Journal of Technology* 2019, 38(1), 75-80. <http://dx.doi.org/10.4314/njt.v38i1.10>

118. Kolo, S. S., Jimoh, Y. A., Yusuf, I., Adeleke, O. O., Balarebe, F., & Shehu, M. Sawdust ash stabilization of weak lateritic soil. *3rd International Engineering Conference (IEC 2019)*, 2019

119. Fapohunda, C. A., Amu, O. O., & Babarinde, O. F. Evaluation of Geotechnical and Structural Performance of Cement-Stabilized Soil with Saw Dust Ash (SDA). *Arid zone journal of engineering, technology and environment* 2019, 15(3), 628-637. <https://www.azojete.com.ng/index.php/azojete/article/view/43>

120. Ogundipe, O. M., Adekanmi, J. S., Akinkurolere, O. O., & Ale, P. O. Effect of compactive efforts on strength of laterites stabilized with sawdust ash. *Civil Engineering Journal* 2019, 5(11), 2502-2514. <http://dx.doi.org/10.28991/cej-2019-03091428>

121. Etim, E., Ikeagwuani, C. C., Ambrose, E. E., & Attah, I. C. Influence of sawdust disposal on the geotechnical properties of soil. *EJGE* 2017, 22(Bund12), 4769-4780. <https://www.researchgate.net/publication/319468685>

122. Nnochiri, E. S., Emeka, H. O., & Tanimola, M. Geotechnical characteristics of lateritic soil stabilized with sawdust ash-lime mixtures. *Civil Engineering Journal* 2017, (1). <http://dx.doi.org/10.14311/CEJ.2017.01.0007>

123. Ikeagwuani, C. C. Compressibility characteristics of black cotton soil admixed with sawdust ash and lime. *Nigerian Journal of Technology* 2016, 35(4), 718-725. <http://dx.doi.org/10.4314/njt.v35i4.5>

124. Ilori, A. O., & Udo, E. A. Investigation of geotechnical properties of a lateritic soil with saw dust ash. *IOSR Journal of Mechanical and Civil Engineering* 2015, 12(1), 11-14. doi: 10.9790/1684-12121114

125. Adetoro, A. E., & Oladapo, S. A. Effects of Sawdust and Palm Kernel Shell Ashes on Geotechnical Properties of Emure/Ise-orun Local Government Areas Soil, Nigeria. *Scientific Research Journal (SCIRJ)* 2015, 3(VII), 35-38.
126. Rai, H. Effect on Maximum Dry Density and Optimum Moisture Content of Expansive Soil on Addition of Sawdust Ash. *International Journal of Applied Engineering Research* 2019, 14(9).
127. Kale, R. Y., Chaudhari, K., Bhadange, K., Chune, V., Kadu, G., & Tidke, A. Effect of saw dust ash and lime on expansive soil (black cotton soil). *International Research Journal of Engineering and Technology (IRJET)* 2019, 6(4)
128. Venkatesh, A., & Reddy, G. S. Effect Of Waste Saw Dust Ash On Compaction And Permeability Properties Of Black Cotton Soil. *International Journal of Civil Engineering Research* 2016, 7(1), 27-32.
129. Naranagowda, M. J., Nithin, N. S., Maruthi, K. S., & Mosin Khan, D. S. Effect of saw dust ash and fly ash on stability of expansive soil. *International Journal of Research in Engineering and technology* 2015, 4(7), 83-86.
130. Karim, H., Al-Recaby, M., & Nsaif, M. Stabilization of soft clayey soils with sawdust ashes. In *MATEC Web of Conferences* 2018. (Vol. 162, p. 01006). EDP Sciences. <https://doi.org/10.1051/matecconf/201816201006>