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Abstract: When the image quality is evaluated, the human visual system (HVS) infers the details in the image 

through its internal generative mechanism. In this process, the HVS integrates both local and global 

information of the image, utilizes contextual information to restore the original image information, and 

compares it with the distorted image information for image quality evaluation. Inspired by this mechanism, a 

no-reference image quality assessment method is proposed based on a multitask image restoration network. 

The multitask image restoration network generates a pseudo-reference image as the main task and produces 

structural similarity index measure map as an auxiliary task. By mutually promoting the two tasks, a higher 

quality pseudo-reference image is generated. In addition, when predicting the image quality score, both the 

quality restoration features and the difference features between the distorted and reference images are used, 

thereby fully utilizing the information from the pseudo-reference image. To enable the model to focus on both 

global and local features, a multi-scale feature fusion module is proposed. Experimental results demonstrate 

that the proposed method achieves excellent performance on both synthetically and authentically distorted 

databases. 
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1. Introduction 

As an important information carrier, image have been widely used in various fields, such as 

advertising, entertainment, medicine, education, etc. However, factors (e.g., lighting conditions 

during image acquisition and stability of the transmission path) may result in the loss of original 

image information, which can seriously affect users' visual experience and the effectiveness of image 

usage [1]. Image Quality Assessment (IQA) aims to evaluate the quality of images using certain 

methods and provide accurate evaluation results. Accurate and efficient IQA methods are of great 

significance in improving user experience and optimizing the performance and accuracy of computer 

vision-related applications. IQA methods can be categorized into three types based on the reference 

image usage: full-reference IQA (FR-IQA) [2-4], reduced-reference IQA (RR-IQA) [5, 6], and no-

reference IQA (NR-IQA) [7-10]. NR-IQA has higher practicality, especially in situations where it is 

difficult to obtain reference images in practical applications. Therefore, NR-IQA has become one of 

the research hotspots in the field of IQA and has important practical research value [11]. 

The main challenge of the NR-IQA is the lack of reference images, which makes it impossible to 

evaluate the quality based on the feature differences between reference and distorted images. 

However, to perceive distorted images, based on prior knowledge in the brain, the human visual 

system (HVS) utilizes an internal generative mechanism [12-14] to reconstruct the reference image as 

much as possible. Then, the quality of the distorted image is evaluated based on the difference 

between the reconstructed reference and the distorted images [15], with greater differences indicating 

more severe image distortion. To acquire prior knowledge of reference images, some researchers 

have proposed methods based on generative adversarial network (GAN) to generate pseudo-

reference images [16, 17]. Subsequently, image quality assessment is performed by evaluating the 

difference between the distorted image and the pseudo-reference image. However, GAN-based 
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methods typically face two challenges. First, the training process of GANs is often unstable, making 

it difficult to achieve satisfactory image restoration performance. Second, when dealing with severely 

distorted images, GANs may struggle to effectively restore image quality. 

To address the aforementioned problems, a NR-IQA method based on a multitask image 

restoration network (MT-IRN) is proposed. The proposed method includes a multitask image 

restoration sub-network and a score prediction sub-network. The multitask image restoration sub-

network is used to generate pseudo-reference images and structural similarity index measure (SSIM) 

maps between distorted images and reference images, as well as to extract quality restoration 

features. The score prediction sub-network is used to extract high-level features and multi-scale 

content features of the distorted image, and difference features between the distorted and pseudo-

reference images, and it maps these features to quality scores after concatenation. Specifically, the 

contributions of this paper are as follows: 

 First, a multitask image restoration network is proposed to generate high quality pseudo-

reference images and enhance the overall performance of the model. The multitask image 

restoration network has a main task to generate pseudo-reference images and an auxiliary task 

to generate structurally similar images, with the two tasks mutually reinforcing each other to 

generate higher quality pseudo-reference images. 

 Second, in addition to utilize the feature differences between distorted and pseudo-reference 

images, quality restoration features are also employed in the model to leverage rich semantic 

information in image restoration features, enabling the model to exploit not only differences 

between pseudo-reference and distorted images, but also the semantic information within 

quality restoration features. 

 Third, a multi-scale feature fusion module is proposed to fully fuse quality restoration features 

and multi-scale content features of distorted images, enabling the model to extract both global 

and local features simultaneously. 

The rest of this paper is organized as follows. Section 2 introduces related works for NR-IQA. 

Section 3 provides a detailed description of the proposed method. Section 4 reports the experiment 

results. Section 5 concludes this paper. 

2. Related work 

Due to lack of reference images, many traditional NR-IQA methods focus on specific types of 

distortion in distorted images and propose the corresponding evaluation algorithms. For example, 

filtering-based methods are used to estimate noise in images [18], and sharpness and blurriness 

estimation algorithms are used to evaluate the quality of blurry images [19]. These methods can 

achieve higher accuracy if the image distortion process or type is known. In addition, some NR-IQA 

methods [7-9] do not target specific distortion(s), but instead extract general quality features that can 

describe multiple types of distortion to evaluate the quality of distorted images. The focus and 

difficulty of this method lies in selecting which features to measure the level of distortion. This is 

generally manually extracted through natural scene statistics (NSS) in traditional methods, and it can 

be automatically learned in deep learning-based methods [20-23]. 

Moorthy and Bovik [7] first proposed a blind image quality index (BIQI) for general distortion 

types. This method fits the wavelet decomposition coefficients of images with a Generalized Gaussian 

Distribution (GGD) and uses the parameters of the GGD model as features. Mittal et al. [8] proposed 

a blind/referenceless image spatial quality evaluator (BRISQUE) to utilize NSS in the spatial domain. 

This approach first computes the multi-scale mean-subtracted contrast-normalized (MSCN) 

coefficients of distorted images. Then, it fits the MSCN coefficients and their related coefficients to 

predict quality scores. Ghadiyaram et al. [9] proposed a feature maps based referenceless image 

quality evaluation engine (FRIQUEE) for authentic distortion assessment. The aim of this method is 

to capture the statistical consistency or deviations from consistency in authentically distorted images, 

without assuming the presence of any specific type of distortion in the image. 

With the development and improvement of deep learning, its application in IQA has received 

increasing attention. Deep learning has powerful fitting and generalization capabilities, enabling it 
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to learn feature representations from large amounts of training data and associate these features with 

image quality. Therefore, more and more researchers have explored the use of deep learning 

algorithms to improve the accuracy and reliability of IQA. Kang et al. [20] first proposed an IQA-

CNN method that employs convolutional neural network (CNN). The method includes one 

convolutional layer and two pooling layers, and it uses two fully connected layers to map the features 

to quality scores. Bosse et al. [21] employed deeper CNN to extract high-level features of images. The 

method involves constructing ten convolutional layers and two fully connected layers for feature 

extraction and score prediction. Results indicate that it can significantly improve the performance of 

the model using high-level image features. Su et al. [22] proposed a HyperIQA for authentically 

distorted images. This method predicts image quality scores based on the perception of image 

content. Zhang et al. [23] proposed a deep bilinear CNN (DB-CNN), which utilizes two streams to 

extract synthetic distortion features and authentic distortion features of images. Pan et al. [24] 

proposed a NR-IQA method, called blind predicting similar quality map (BPSQM), which consists of 

a fully convolutional neural network and a pooling network. The global convolutional network is 

trained using the similarity maps from traditional FR-IQA methods, enabling the network to predict 

the corresponding similarity quality map for distorted images. The pooling network is then 

employed to regress the quality map into a quality score. 

Some GAN-based methods have been proposed to address the problem of lack of reference 

image by generating pseudo-reference images. Ren et al. [16] proposed restorative adversarial nets 

for no-reference image quality assessment (RAN4IQA), which includes a restorer, a discriminator, 

and a predictor. The restorer and discriminator work together to restore the quality of distorted 

images, and then the predictor extracts features from the distorted and pseudo-reference images to 

map them to quality scores. Similarly, Lin et al. [17] proposed a Hall-IQA, which also generates 

pseudo-reference images using GAN and uses the difference image between the distorted and 

pseudo-reference images as input to a regression network for image quality score prediction. Both 

RAN4IQA and Hall-IQA have achieved good results, but GAN-based methods have a shaky training 

process and are difficult to achieve good image restoration performance, especially when faced with 

severely distorted images. Pan et al. [25] proposed a method based on visual compensation 

restoration (VCR), named as VCRNet, which uses the features in the image reconstruction process to 

avoid the performance degradation caused by the suboptimal quality of the pseudo-reference image. 

However, it does not use the differential features between the pseudo-reference and the distorted 

images. 

Although the aforementioned methods have achieved remarkable results, there are still rooms 

for further improvement. Inspired by BPSQM, this paper proposes an NR-IQA method based on a 

multitask image restoration network, in which the main task is to generate pseudo-reference image 

and the auxiliary task is to generate the SSIM map. By leveraging the mutual promotion between the 

two tasks, high quality pseudo-reference image can be generated. Furthermore, when predicting 

quality scores, not only the quality restoration features but also the difference features between the 

distorted and pseudo-reference images are utilized. This fully exploits the information from the 

pseudo-reference image. Finally, a multi-scale feature fusion module is designed to enable the model 

to simultaneously focus on both global and local features. 
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3. Proposed Method 

In this paper, an NR-IQA method is proposed based on a multitask image restoration network. 

The proposed method consists of a multitask image restoration sub-network and a score prediction 

sub-network, as shown in Figure 1. The multitask image restoration sub-network is used to generate 

pseudo-reference images and SSIM maps between the reference images and distorted images, and to 

extract quality restoration features. This enables the model to not only use the differences between 

the pseudo-reference and distorted images but also leverage rich semantic information from the 

quality restoration features. The score prediction sub-network is used to extract high-level features 

of the distorted images, multi-scale content features of the distorted images, and difference features 

between the distorted and pseudo-reference images. These features are concatenated and mapped to 

quality scores. 

Figure 1. The architecture of the proposed method. 

3.1 Multitask Image Restoration Sub-network 

The quality of pseudo-reference images is crucial for the performance of the model. The 

proposed method utilizes a multitask image restoration network to generate higher-quality pseudo-

reference images, thereby improving the overall performance of the model. Inspired by the BPSQM, 

the multitask image restoration sub-network takes the generation of pseudo-reference images as the 

main task and the generation of SSIM map as an auxiliary task, generating higher-quality-pseudo 

reference images through the mutual promotion of the two tasks. The SSIM map provides rich 

structural information for the reference image, and therefore, generating the auxiliary task that allows 

the image restoration sub-network to learn the structural information of the reference image, and 

thus improving the structural similarity between the pseudo-reference and reference images. 

The proposed method employs a U-Net architecture [26-28] to construct the image restoration 

sub-network. U-Net is an encoder-decoder structure widely used in the fields of image segmentation 

and restoration. Its skip connection structure concatenates low-level features with high-level features, 

allowing the decoder to retain more detailed information during the upsampling process. The 

structure of the multitask image restoration sub-network is illustrated in Figure 2. The multitask 

learning mode adopts a hard sharing mode [29, 30], in which the two tasks share the parameters of 
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the feature extraction layer, and then different convolutional layers are set for each task to achieve 

their respective goals. 

Figure 2. The architecture of the multitask image restoration sub-network. 

The multitask image restoration sub-network takes the distorted image as an input, and it 

outputs the pseudo-reference image, the SSIM map, and the quality restoration features ��, ��, and 

��. The encoder consists of six convolutional modules, E1-E6. E1 is a single-layer convolutional layer 

composed of 3×3 convolution kernels with a stride of 1. To avoid gradient vanishing [31] when 

deepening the model and to reuse low-level features, E2-E6 use residual convolutional blocks for 

downsampling. The specific structures of two types of the residual blocks are shown in Figure 3. E2 

uses the residual block 1 structure, which contains two 3×3 convolutional layers with a stride of 1, 

and this structure does not change the size of the input feature map. E3-E6 use the residual block 2 

structure, which contains one 3×3 convolutional layer with a stride of 2 and one 3×3 convolutional 

layer with a stride of 1. The output feature map size is half of the input feature map size. Since the 

sizes of the input and output feature maps are inconsistent, a 1×1 convolution with a stride of 2 is 

performed on the input feature map during the residual connection to match their sizes. 

 

Figure 3. The structures of the residual blocks. 

The decoder consists of six deconvolutional layers, D1-D6, which perform upsampling on the 

high-level features of distorted images to generate the pseudo-reference image and SSIM map. 

Through multi-level skip connections, the decoder effectively preserves the detailed information in 

the input image while avoiding the loss of feature details caused by pooling layers, thus improving 

the image restoration performance. D1-D6 are all composed of 3x3 deconvolutional layers, where the 

stride of D1-D4 is 2, and the stride of D5 and D6 is 1. The specific structural parameters of the image 

restoration sub-network are summarized in Table 1. 
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Table 1. The structural parameters of the image restoration sub-network, where W×H×C denotes the 

width, height and channels of the feature map, respectively. 

 Module Layer Input Size Output Size 

Encoder 

E1 Conv3×3，s1 W×H×3 W×H×16 

E2 
Conv3×3，s1 

W×H×16 W×H×16 
Conv3×3，s1 

E3 
Conv3×3，s2 

W×H×16 W/2×H/2×32 
Conv3×3，s1 

E4 
Conv3×3，s2 

W/2×H/2×32 W/4×H/4×64 
Conv3×3，s1 

E5 
Conv3×3，s2 

W/4×H/4×64 W/8×H/8×128 
Conv3×3，s1 

E6 
Conv3×3，s2 

W/8×H/8×128 W/16×H/16×256 
Conv3×3，s1 

Decoder 

D1 Deconv3×3，s2 W/16×H/16×256 W/8×H/8×128 

D2 Deconv3×3，s2 W/8×H/8×256 W/4×H/4×64 

D3 Deconv3×3，s2 W/4×H/4×128 W/2×H/2×32 

D4 Deconv3×3，s2 W/2×H/2×64 W×H×16 

D5 Deconv3×3，s1 W×H×16 W×H×3 

D6 Deconv3×3，s1 W×H×16 W×H×1 

3.2 Score Prediction Sub-network 

Figure 4. The architecture of the score prediction sub-network. 

A score prediction sub-network is used to extract features from distorted and pseudo-reference 

images and to predict image quality scores, as shown in Figure 4. The score prediction sub-network 

takes distorted image, pseudo-reference image, and quality restoration features ��, ��, �� as inputs, 

and a pre-trained ResNet-50 [32] on ImageNet [33] is used as a feature extractor to extract the content 

features of the image. First, the outputs of Conv2_10, Conv3_12, and Conv4_18 in ResNet-50 are used 

as multi-scale features of the distorted image, and are respectively fully fused with the quality 

restoration features ��, ��, �� extracted by the image restoration sub-network through the multi-

scale features fusion block. Then, the high-level features of the distorted image, namely the output of 

Conv5_9 in ResNet-50, are subtracted from the high-level features of the pseudo-reference image. 

After dimension reduction by a 1x1 convolution, the difference feature between the distorted and 

pseudo-reference images is obtained. Finally, the high-level feature, multi-scale feature, and 
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difference feature are globally average-pooled, concatenated, and mapped to quality scores by fully 

connected layers. 

A multi-scale features fusion module is used to effectively fuse the multi-scale content features 

and the quality restoration features, as shown in Figure 5. Considering that these two features come 

from different network structures, there may have different feature scales. Therefore, multi-scale 

convolutions are applied to each feature separately to extract features at various scales, as shown in 

Equation 1. The multi-scale convolution uses two concatenated 3×3 convolutions to achieve a 

receptive field size of 5×5 while reducing the number of parameters. 

��(��) = �����×�(��)⨂�����×�������×�(��)�⨂�����×�(��), (1)

where ��(⋅) denotes the multi-scale convolution operation, �� represents the input feature map, 

�����×�(⋅) represents the 3×3 convolution layer with stride 1 and padding 1, �����×�(⋅) represents 

the 1×1 convolution layer with stride 1, and ⨂ indicates the concatenation operation. 

Figure 5. The structure of the multi-scale features fusion module. 

Subsequently, the spatial attention module is utilized to extract prominent spatial features from 

two different features. Spatial attention module [34] improves model’s performance by retaining 

critical information while ignoring unimportant regions. Specifically, we first perform max-pooling 

and average-pooling operations on the multi-scale convolutional feature maps to generate two 2D 

feature maps. We concatenate these two feature maps and learn spatial weights through a 5×5 

convolution operation, followed by element-wise multiplication with the input feature map to obtain 

the final spatial attention feature map. Finally, the two spatial attention feature maps are 

concatenated, as shown in Equation 2: 

⎩
⎪
⎨

⎪
⎧
��� = ��(��)

��� = ��(��)

��� = �����×���������(���)⨂�������(���)�

��� = �����×���������(���)⨂�������(���)�

�� = (��⨀���)⨂(��⨀���)

, (2)

where �� denotes the quality restoration feature maps, and �� denotes the content feature maps. 

�����×�(⋅) represents the 5×5 convolution layer, �������(⋅) and �������(⋅) represent the max 

pooling and average pooling operation, respectively. ⨂ indicates the concatenation operation, and 

⨀ indicates the multiple operation. 

To further fuse the spatial attention feature maps, a channel attention module [35] is utilized to 

learn the importance of the concatenated feature maps across different channels to better capture the 
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relationships between different channels. The concatenated feature maps are processed using global 

average pooling to obtain a one-dimensional vector, and then a fully connected layer is applied to 

learn the weights of each channel, generating a weight vector. The weight vector is multiplied with 

the concatenated feature maps to obtain a fully fused output feature, as shown in Equation 3: 

�

��� = ���(��)

� = ��(���)
�� = ��⨀�

, (3)

where ���(⋅) denotes the global average pooling, ��(⋅) denotes the fully connected layer, and ⨀ 

denotes the multiple operation. 

3.3 Network Trainning 

The training of the model consists of two parts: pre-training of the image restoration sub-

network and overall model training. First, we pre-train the multi-task image restoration sub-network 

with an auxiliary task of generating SSIM map, using the Waterloo Exploration Database [36]. We 

randomly crop 224x224 sized image patches from the distorted images to expand the training data, 

set the learning rate to 0.001 and batch size to 64, and train for 100 epochs using the Adam [37] 

optimizer. The loss function is the �� loss between the generated SSIM map and the ground truth 

SSIM map, as shown in Equation 4: 

�� =
1

�
� ������

(�)
− ������

(�)
�
��

�

���
, (4)

where � denotes the number of training image patches, �����
(�)

 denotes the SSIM map between the 

��� image patch and its corresponding reference image patch, ������
(�)

 denotes the predicted SSIM map 

of the ��� image patch by the model, and �� denotes the ��-norm. 

After the training of the auxiliary task, the image restoration sub-network has well learned the 

structural information in the reference images. Based on this, the main task of generating pseudo-

reference images can be trained. Training is conducted by randomly cropping 224x224 sized image 

patches from distorted images in the Waterloo Exploration Database. The learning rate is set to 0.0001, 

the batch size is set to 64, and the Adam optimizer is used to optimize the network for 50 epochs. The 

loss function is the ��  loss between the pseudo-reference and the reference images, as shown in 

Equation 5: 

�� =
�

�
∑ ���

(�) − ���
(�)�

��

�
��� , (5)

where � denotes the number of training image patches, ��
(�) denotes the ��� reference image patch, 

���
(�) denotes the ��� pseudo-reference image patch generated by the network, and �� denotes the ��-

norm. 

After training the image restoration sub-network, the entire model needs to be trained on the 

target database. During the first 10 epochs of training, the parameters of the image restoration sub-

network are frozen, and only the score prediction sub-network is trained. Then, the entire network is 

finely trained for another 40 epochs. To perform data augmentation, following the strategy from [17] 

and [38] the images are randomly horizontally flipped during training, and 5 randomly sampled 

224×224 image patches are extracted from each image to increase the number of training samples. 

The quality scores of the image patches are the same as those of the corresponding distorted images. 

During testing, 5 randomly sampled 224×224 image patches are also extracted from each testing 

image, and their quality scores are predicted. The mean of these scores is used as the quality score of 

the testing image. 

The �� loss is used to train the entire model, as shown in Equation 7: 

� =
1

�
���� − ���‖��

�

���

, (6)
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where �  denotes the number of the image patches, ��  denotes the score of ���  image patch 

predicted by the model, and ��� denotes the ground truth score of ��� image patch. 

The Adam optimizer is used to optimize the parameters of the entire model with a weight decay 

rate of 5 × 10-4. The model is trained for 50 epochs with a batch size of 48 and an initial learning rate 

of 5 × 10-5. The learning rate is multiplied by 0.9 every 10 epochs during training. The proposed 

method is implemented with Pytorch and the experiments are conducted on NVIDIA 3080Ti GPU. 

4. Experiments 

4.1 Databases and Experimental Protocols 

To evaluate the performance of the proposed method, experiments are conducted on both 

synthetically distorted databases and authentically distorted databases, and the state-of-the-art 

methods are compared. The synthetically distorted databases include LIVE [39], CSIQ [40], TID2013 

[41] and KADID-10k [42], while the authentically distorted databases include LIVEC [43] and KonIQ-

10k [44]. The details of the databases are summarized in Table 2. 

Table 2. Details of the IQA databases. 

Database Ref. imgs Dist. imgs Dist. types Score’s type 

LIVE [39] 29 779 5 DMOS 

CSIQ [40] 30 866 6 DMOS 

TID2013 [41] 25 3000 24 MOS 

KADID-10k [42] 81 10125 25 DMOS 

LIVEC [43] / 1162 / MOS 

KonIQ-10k [44] / 10073 / MOS 

For synthetically distorted databases, 80% images are used as a training set and the remaining 

20% as a testing set, divided by the reference images, to avoid image content overlap between the 

training and testing sets. For authentically distorted databases, the training and testing sets are 

directly divided into 80% and 20% proportions. For each dataset, the random partitioning process is 

repeated 10 times according to the aforementioned rules, and the median of the results from the 10 

experiments is taken as the final result. Spearman's rank correlation coefficient (SROCC) and 

Pearson's linear correlation coefficient (PLCC) are used to evaluate the performance of the proposed 

method. The SROCC measures the monotonicity between the predicted scores and the ground truth 

scores, while the PLCC measures the linear correlation between them. Both SROCC and PLCC have 

a range of [-1, 1], with a larger absolute value indicating better performance of the model.  

4.2 Performance on Individual Database 

The experiments on individual database utilize four synthetically distorted databases, including 

LIVE, CSIQ, TID2013, and KADID, as well as two authentically distorted databases, LIVEC and 

KonIQ. The results are summarized in Tables 3 and 4. The methods compared with the proposed 

method include three traditional methods (PSNR, SSIM [2], and BRISQUE [13]), seven deep learning-

based methods (IQA-CNN [20], BIECON [45], MEON [46], DIQaM-NR [21], HyperIQA [22], DB-

CNN [23], and TS-CNN [47]), two GAN-based methods (RAN4IQA [16] and Hall-IQA [17]), and a 

visual compensation restoration-based method, namely VCRNet [25]. 
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Table 3. The SROCC and PLCC results on synthetically distorted databases. The top two results are 

shown in bold font. 

Method 
LIVE CSIQ TID2013 KADID 

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC 

PSNR 0.866 0.856 0.806 0.800 0.636 0.706 0.674 0.681 

SSIM [2] 0.913 0.931 0.876 0.861 0.637 0.691 0.783 0.780 

BRISQUE 

[13] 
0.940 0.942 0.746 0.829 0.604 0.694 0.519 0.554 

IQA-CNN 

[20] 
0.956 0.953 0.876 0.905 0.701 0.752 0.651 0.607 

BIECON [45] 0.961 0.962 0.825 0.838 0.717 0.762 0.685 0.691 

MEON [46] 0.943 0.954 0.839 0.850 0.828 0.811 0.813 0.822 

DIQaM-NR 

[21] 
0.960 0.972 0.901 0.908 0.835 0.855 0.840 0.843 

HyperIQA 

[22] 
0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845 

DB-CNN [23] 0.968 0.971 0.946 0.959 0.816 0.865 0.801 0.806 

TS-CNN [47] 0.969 0.978 0.892 0.905 0.779 0.784 0.745 0.744 

RAN4IQA 

[16] 
0.961 0.962 0.914 0.938 0.820 0.859 / / 

Hall-IQA [17] 0.976 0.978 0.892 0.906 0.879 0.880 / / 

VCRNet [25] 0.973 0.974 0.943 0.955 0.846 0.846 0.850 0.857 

MT-IRN 0.969 0.970 0.928 0.943 0.852 0.877 0.877 0.878 

Table 4. The SROCC and PLCC results on authentically distorted databases. The top two results are 

shown in bold font. 

Method 
LIVEC KonIQ 

SROCC PLCC SROCC PLCC 

BRISQUE [13] 0.607 0.585 0.673 0.692 

IQA-CNN [20] 0.516 0.536 0.655 0.671 

BIECON [45] 0.595 0.613 0.618 0.651 

MEON [46] 0.693 0.688 0.754 0.760 

DIQaM-NR [21] 0.606 0.601 0.722 0.736 

HyperIQA [22] 0.859 0.882 0.906 0.917 

DB-CNN [23] 0.851 0.869 0.875 0.884 

TS-CNN [47] 0.655 0.667 0.722 0.729 

RAN4IQA [16] 0.586 0.612 0.752 0.763 

VCRNet [25] 0.856 0.865 0.894 0.909 

MT-IRN 0.865 0.872 0.899 0.912 

From the experimental results in Tables 3 and 4, it can be observed that the proposed method 

outperforms the traditional methods on all six databases. This is mainly due to the powerful learning 

ability of deep learning, which enables the model to extract richer features. Compared with deep 

learning-based methods, our method performs better than most methods on the synthetically 

distorted databases, except DB-CNN on the CSIQ dataset. On the authentically distorted databases, 

our method performs slightly lower than Hyper-IQA, but it still achieves a better performance than 

the GAN-based RAN4IQA. Particularly, on the LIVEC, our method's SROCC is approximately 45.9% 

higher than that of RAN4IQA. This is mainly because RAN4IQA is pre-trained on the synthetically 

distorted databases, while our method's score prediction sub-network uses ResNet-50, which is pre-

trained on ImageNet and has a stronger ability to extract features from authentic distortions. 

Compared with the visual compensation restoration-based VCRNet, our method lags behind the 

LIVE and CSIQ, but it still maintains a leading performance on the other four databases. This is 
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because our method not only uses quality restoration features but also utilizes the difference features 

between the distorted and the pseudo-reference images. Additionally, the quality of the pseudo-

reference image is improved by a multi-task restoration network, which further enhances the model's 

performance. 

4.3 Performance on Individual Distortion Types 

To compare the performance of the proposed method with the state-of-the-art methods on 

specific types of distortions, experiments are conducted on LIVE, CSIQ and TID2013. The SROCC 

results of the experiments are summarized in Tables 5. 

Table 5. The SROCC results of the individual distortion type on the LIVE, CSIQ and TID2013. The 

top two results are shown in bold font. “Count” refers to the number of times a method achieves top 

two results. 

 
Dist. type 

IQA-CNN 

[20] 

DIQA 

[48] 

HyperIQA 

[22] 

RAN4IQA 

[16] 

Hall-IQA 

[17] 

VCRNet 

[25] 
MT-IRN 

LIVE 

JP2K 0.936 0.961 0.949 0.958 0.969 0.975 0.977 

JPEG 0.965 0.976 0.961 0.923 0.975 0.979 0.980 

WN 0.974 0.986 0.982 0.973 0.992 0.988 0.985 

GB 0.952 0.962 0.926 0.964 0.973 0.978 0.973 

FF 0.906 0.912 0.934 0.893 0.953 0.962 0.965 

CSIQ 

JP2K 0.930 0.927 0.960 0.927 0.924 0.962 0.963 

JPEG 0.915 0.931 0.934 0.904 0.933 0.956 0.958 

WN 0.919 0.835 0.927 0.923 0.942 0.939 0.934 

GB 0.918 0.870 0.915 0.889 0.901 0.950 0.942 

PN 0.900 0.893 0.931 0.844 0.842 0.899 0.946 

CC 0.786 0.718 0.874 0.860 0.861 0.919 0.906 

TID2013

AGN 0.784 0.916 0.942 0.866 0.923 0.844 0.892 

ANC 0.758 0.755 0.916 0.753 0.880 0.785 0.768 

SCN 0.762 0.878 0.947 0.842 0.945 0.787 0.961 

MN 0.776 0.734 0.801 0.462 0.673 0.795 0.781 

HFN 0.816 0.939 0.955 0.908 0.955 0.942 0.894 

IN 0.807 0.844 0.855 0.855 0.810 0.876 0.892 

QN 0.616 0.858 0.726 0.849 0.831 0.847 0.875 

GB 0.921 0.920 0.969 0.833 0.832 0.906 0.899 

DEN 0.872 0.788 0.941 0.839 0.957 0.937 0.880 

JPEG 0.874 0.892 0.898 0.939 0.914 0.934 0.897 

JP2K 0.910 0.812 0.947 0.912 0.624 0.906 0.918 

JGTE 0.686 0.862 0.934 0.566 0.460 0.762 0.852 

J2TE 0.678 0.813 0.892 0.778 0.782 0.865 0.892 

NPN 0.286 0.160 0.808 0.234 0.664 0.457 0.596 

BW 0.219 0.408 0.361 0.339 0.122 0.601 0.728 

MS 0.565 0.300 0.374 0.135 0.182 0.509 0.542 

CC 0.182 0.447 0.753 0.578 0.376 0.595 0.786 

CCS 0.081 0.151 0.857 0.484 0.156 0.855 0.719 

MGN 0.644 0.904 0.899 0.787 0.850 0.845 0.900 

CN 0.534 0.656 0.960 0.819 0.614 0.804 0.840 

LCNI 0.810 0.830 0.897 0.895 0.852 0.816 0.913 

ICQD 0.272 0.937 0.901 0.822 0.911 0.945 0.867 

CHA 0.892 0.757 0.870 0.762 0.381 0.932 0.828 

SSR 0.910 0.909 0.910 0.917 0.616 0.948 0.922 

 Count 2 3 17 1 8 18 22 
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From Table 5, it can be seen that the proposed method achieves the best performance on the 

JP2K, JPEG, GB, and FF distortions in the LIVE database. In terms of the WN distortion, the 

performance of the proposed method is not as good as that of Hall-IQA and VCRNet, but it still 

outperforms RAN4IQA and other deep learning-based algorithms. Overall, the proposed method 

exhibits outstanding performance on all five types of distortions in the LIVE dataset, and its 

performance is stable across various types of distortions without any obvious weaknesses. For the 

CSIQ database, the proposed method achieves the best performance on the JP2K, JPEG, GB, and PN 

distortion types. For the CC distortion, most methods have difficulties in achieving an SROCC of 

0.900, whereas our proposed method achieves an SROCC of 0.906, second only to VCRNet. Although 

our method does not achieve the top two performances on the WN distortions, it still remains highly 

competitive, with a difference of only 0.014 compared to the best method. As for TID2013, most 

methods have difficulty achieving satisfactory results and cannot reach an SROCC of 0.500 for the 

complex distortion types such as NPN, BW, MS, CC, and CCS, while our proposed method still 

achieves relatively good results, with SROCCs of 0.596, 0.728, 0.542, 0.786, and 0.719, respectively. 

Overall, the proposed method achieves the top two performances on 22 out of 35 distortion 

types, outperforming other methods. This demonstrates good performance for specific distortion 

types, even when facing relatively complex distortions. This is mainly due to the multitask restoration 

network used in our method, which improves the quality of the generated pseudo-reference images 

through the mutual promotion of the two tasks. In addition, our method not only uses differential 

features but also uses quality restoration features, enabling the score prediction sub-network to make 

more comprehensive and accurate predictions of image quality scores. 

4.4 Performance Across Different Databases 

Table 6 presents the SROCC results of cross database test on the LIVE, CSIQ, TID2013, and 

LIVEC, to test the generalization performance of the proposed method and compare it with the state-

of-the-art methods.  

Table 6. The SROCC results of cross database test. The top two results are shown in bold font. 

Training LIVE CSIQ 

Testing CSIQ TID2013 LIVEC LIVE TID2013 LIVEC 

DIIVINE [49] 0.582 0.373 0.300 0.815 0.419 0.366 

CORNIA [50] 0.620 0.382 0.431 0.843 0.331 0.393 

HOSA [51] 0.598 0.470 0.455 0.770 0.341 0.309 

DB-CNN [23] 0.758 0.524 0.567 0.877 0.540 0.452 

RAN4IQA [16] 0.632 0.462 0.157 0.806 0.471 0.116 

Hall-IQA [17] 0.668 0.486 0.126 0.833 0.491 0.107 

VCRNet [25] 0.768 0.502 0.615 0.886 0.542 0.463 

MT-IRN 0.783 0.565 0.600 0.892 0.573 0.467 

Training TID2013 LIVEC 

Testing LIVE CSIQ LIVEC LIVE CSIQ TID2013 

DIIVINE [49] 0.714 0.585 0.230 0.362 0.417 0.337 

CORNIA [50] 0.829 0.662 0.267 0.578 0.456 0.403 

HOSA [51] 0.844 0.609 0.253 0.537 0.336 0.399 

DB-CNN [23] 0.891 0.807 0.457 0.746 0.697 0.424 

RAN4IQA [16] 0.795 0.673 0.101 0.297 0.286 0.153 

Hall-IQA [17] 0.786 0.683 0.116 - - - 

VCRNet [25] 0.822 0.721 0.307 0.746 0.566 0.416 

MT-IRN 0.897 0.739 0.375 0.758 0.546 0.419 

Overall, in 12 tests, the proposed method achieves top two performance in 11 of them, 

outperforming the other methods. When cross database test is conducted on the synthetically 

distorted databases of LIVE, CSIQ, and TID2013, most methods achieve good performance as the 
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distortion types are relatively similar among the databases. However, the TID2013 contains more 

complex distortion types, and the performance of the model will decline when it is tested on this 

dataset. Nevertheless, the proposed method still achieves the highest SROCC, demonstrating its good 

generalization performance. When cross database test between synthetically and authentically 

distorted databases is conducted, many methods struggle to achieve good performance. However, 

the proposed method achieves top two performance in all the tests, surpassing other deep learning-

based and GAN-based methods. 

4.5 Ablation Experiments 

To evaluate the impact of each module on the performance of the proposed method, ablation 

experiments are conducted on the LIVE, CSIQ, and LIVEC databases, and the results are summarized 

in Table 7. 

First, the score prediction sub-network with only distorted image as input is used as the baseline, 

and its performance is the worst, with SROCC of 0.950, 0.894, and 0.820 on the three databases, 

respectively. Then, the single-task image quality restoration sub-network is added, and the image 

restoration features are directly concatenated with the multi-scale content features of the distorted 

images. At this point, the model is able to utilize some information from pseudo-reference images, 

resulting in an improvement in performance, with SROCC increased by 0.008, 0.013, and 0.013, 

respectively. Next, the multi-task image quality restoration sub-network is used, but only the image 

restoration features are used. The quality of the pseudo-reference images is improved, resulting in 

an improvement in model performance, with SROCC increased by 0.003, 0.013, and 0.009, 

respectively. Then, the image difference feature is introduced, allowing the model to more fully 

utilize the information from the pseudo-reference images, resulting in further improvements in 

SROCCs of 0.004, 0.006, and 0.005, respectively. Finally, the multi-scale feature fusion module is 

introduced, allowing for the full fusion of image multi-scale content features and restoration features, 

and the model's performance reaches its best, with SROCCs improved by 0.004, 0.008, and 0.005, 

respectively. 

In summary, the multitask image restoration sub-network, image restoration features, image 

difference feature, and multi-scale feature fusion module proposed in this paper can effectively 

improve the model's performance, as evidenced by the results of the above experiments. 

Table 7. The SROCC results of the ablation experiments. 

Baseline √ √ √ √ √ 

Single-task Restoration Sub-network  √    

Multitask Restoration Sub-network   √ √ √ 

Image Restoration Feature  √ √ √ √ 

Difference Feature    √ √ 

Multi-scale Feature Fusion Module     √ 

LIVE 0.950 0.958 0.961 0.965 0.969 
CSIQ 0.894 0.907 0.914 0.920 0.928 

LIVEC 0.820 0.833 0.842 0.847 0.852 

4.6 Performance of Image Restoration 

To evaluate the performance of the image restoration subnetwork, image restoration 

experiments are conducted on the LIVE, CSIQ, and TID2013 datasets. Average PSNR and average 

SSIM of the distorted and pseudo-reference images are used to assess the restoration performance. 

The performance of single-task and multitask image restoration networks are tested separately, and 

the experimental results are summarized in Table 8. 

From Table 8, it can be observed that the average PSNR and average SSIM of the multitask 

generated reference images are higher than those of the single-task generated reference images and 

distorted images on all three datasets. This suggests that the multitask image restoration network 
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exhibits superior quality restoration performance, and the introduction of multi-tasking effectively 

enhances the quality of generated reference images. 

Table 8. Average PSNR and SSIM of pseudo-reference images and distorted images. 

 
LIVE CSIQ TID2013 

PSNR SSIM PSNR SSIM PSNR SSIM 

Distorted Images 27.499 0.715 27.433 0.770 26.864 0.773 

Single-task Pseudo-reference Images 28.707 0.732 29.238 0.788 27.992 0.816 

Multitask Pseudo-reference Images 29.085 0.751 29.607 0.800 29.009 0.827 

Figure 6. Comparison of pseudo-reference image quality. (a) are reference images, (b) are distorted 

images, (c) are single-task generated pseudo-reference images, and (d) are multitask generated 

pseudo-reference images. 

Figure 6 shows a comparison between single-task generated pseudo-reference images and 

multitask generated pseudo-reference images. From Figure 6, it can be visually observed that the 

multitask generated pseudo-reference images exhibit significant advantages in terms of visual 

perceptual quality. Compared with the single-task generated pseudo-reference images and distorted 

images, the image quality of multitask generated pseudo-reference images is closer to the reference 

image. This suggests that in the framework of multitask learning, the generation of reference images 
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can better restore the visual quality and perceptual details of images, thereby improving the quality 

and usability of pseudo-reference images. 

5. Conclusions 

In this paper, inspired by the internal generative mechanism of HVS, an NR-IQA method is 

proposed based on a multitask image restoration network. The method consists of a multitask image 

restoration sub-network and a score prediction sub-network. First, a multitask image restoration sub-

network is employed to restore the distorted image to generate a higher quality pseudo-reference 

image and extract quality restoration features. Second, a score prediction sub-network is used to 

extract the high-level features of the distorted image and difference features between the distorted 

image and the pseudo-reference image, and then fuse the multi-scale features of the distorted image 

with the quality restoration features in the image restoration sub-network. Finally, the high-level 

features of the distorted image, the fused multi-scale features, and the difference features between 

the distorted and the pseudo-reference images are utilized for quality score prediction. Experimental 

results on commonly used datasets demonstrate that the proposed method has achieved performance 

comparable to the state-of-the-art methods. 

The proposed method has achieved excellent performance, but there are still rooms for further 

improvement. For instance, training the image restoration subnetwork with a more diverse set of 

distortion types could enhance the model's generalization ability. Additionally, currently, the pre-

training of the image restoration subnetwork only employs synthetically distorted images, and how 

to pre-train using both synthetically and authentically distorted images is a research direction. 
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