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Abstract: The integration of deep learning methods, especially Convolutional Neural Networks
(CNN), and Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has been widely
deployed in the field of radar signal processing. Nevertheless, these methods are frequently regarded
as black-box models due to the limited visual interpretation of their internal feature representation
and parameter organization. In this paper, we propose an innovative approach named C-RISE,
which builds upon the RISE algorithm to provide a post-hoc interpretation technique for black-box
models used in SAR Images Target Recognition. C-RISE generates saliency maps that effectively
visualize the significance of each pixel. Our algorithm outperforms RISE by clustering masks that
capture similar fusion features into distinct groups, enabling more appropriate weight distribution
and increased focus on the target area. Furthermore, we employ Gaussian blur to process the masked
area, preserving the original image structure with optimal consistency and integrity. C-RISE has been
extensively evaluated through experiments, and the results demonstrate superior performance over
other interpretation methods based on perturbation when applied to neural networks for SAR image
target recognition. Furthermore, our approach is highly robust and transferable compared to other
interpretable algorithms, including white-box methods.

Keywords: Convolutional Neural Networks (CNN); Synthetic Aperture Radar Automatic Target
Recognition (SAR ATR); C-RISE; cluster; Gaussian blur

1. Introduction

Synthetic Aperture Radar (SAR) is a kind of active earth-observation system which can produce
high-resolution image all day, has been widely used in ground observation and military reconnaissance.
One of its primary applications is the detection and identification of various military targets [1,2].
With the enhancement of SAR data acquisition capability, Synthetic Aperture Radar Automatic
Target Recognition (SAR ATR) [3] has become a key technology and research hotspot of radar signal
processing. Traditional SAR target recognition methods [4] merely rely on artificial experience for
feature extraction and selection, which lead to a certain degree of subjectivity and bias. Additionally, it
is challenging to guarantee the effectiveness of recognition results [5]. In recent years, deep learning
methods [6], especially Convolutional Neural Networks (CNN), have been extensively used in
computer vision [7,8] and demonstrating remarkable achievements. Meanwhile, based on deep
learning, the image processing method has also been successfully extended to the field of remote
sensing images [9,10], presenting a new direction and breakthrough for SAR target recognition [11-13].

At present, CNN has become one of the most effective network architecture for image recognition
tasks. As the earliest CNN network, LeNet-5, proposed by LeCun et al. [14] in 1998 for handwritten

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0002-7962-3344
https://orcid.org/0000-0002-6171-4651
https://orcid.org/0000-0002-2104-9298
https://orcid.org/0000-0002-0383-4794
https://doi.org/10.20944/preprints202304.0714.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2023 doi:10.20944/preprints202304.0714.v1

20f19

digit recognition, was regarded as the first CNN structure. Over time, researchers have continuously
refined and optimized the classic CNN architecture and its features, leading to the design of more
complex and high-performing CNNs, such as Alexnet [15], GoogLeNet [16], VGGNet [17], Resnet [18],
etc. Despite the outstanding performance achieved by classic CNN structures, the neural network has
a low level of transparency and is also known as the black boxes [19] due to the lack of a clear visual
explanation for the representation of internal features and parameter organization. These limitations
significantly constrain people’s ability to understand and interpret the internal workings of neural
networks, consequently restricting their potential applications in specialized fields, such as medicine,
finance, transportation, military, and other domains [20,21]. There are currently two primary research
directions for interpretability, which are Intrinsic Explanation and Post-hoc Explanation [22]. Intrinsic
Explanation aims to enhance the interpretability of the model itself, enabling users to understand the
calculating process and rationale without requiring additional information or algorithms. In contrast,
Post-hoc Explanation mainly focuses on explaining the behavior and decision-making process of
black-box models [23]. Retraining the model can be too costly in terms of time and resources since
the model has already been trained and deployed. As such, the Post-hoc Explanation approach is
often more appropriate in such cases. Representation visualization, as an intuitive method in post-hoc
interpretation, mainly involves combining the input, middle layer parameters, and output information
of the pre-trained model to achieve an interpretation of the decision results. Gradient-based methods,
Perturbation, and Class Activation Map (CAM) are three widely adopted methods for achieving
representation visualization [22,24].

The gradient-based method [25-31] backpropagates the gradients of a specific class into the input
image to highlight image regions that contribute positively or negatively to the result. The methods
are fast computation and high resolution of the generated images but usually suffer from excessive
noise. CAM is one class of the most important methods specifically designed for CNNs [24,32-
37]. The method utilizes the form of a heatmap to visually highlight the regions most relevant to
the particular category. The CAM-based method was first proposed by Zhou et al. [33] in 2016.
They believed that with the deepening of CNN layers, the feature map of the intermediate layer
contains less and less irrelevant information, and the last convolutional layer of the CNN achieves
the highest-level semantic information. After that, numerous CAM methods have been proposed,
including Grad-CAM [34], Grad-CAM++ [35], Grad-CAM [36], Group-CAM [32], Score-CAM [24],
Ablation-CAM [37], etc. Although these methods have demonstrated good performance in image
interpretation, they may suffer from low resolution and spatial precision in some cases. Interpretability
methods based on perturbation [38—41] typically utilize the element-wise product of generated masks
and the original image to obtain the perturbed input images, which are then fed into the model
to observe the changes in the prediction result. The information generated is used to optimize the
weighted mask to obtain the final interpretation result image. Among them, RISE [41] randomly
generates a large number of masks through Monte Carlo sampling method to occlude different parts
of the input image. And the final saliency map is generated by the weighted sum of the masks and the
scores predicted by the base model on the masked images.

In this paper, we propose a post-hoc interpretation method of black-box models for SAR ATR
called Randomized Input Sampling for explanation based on Clustering (C-RISE). We demonstrate
the effectiveness of C-RISE through extensive experimental validation and comparative analysis.
Specifically, our method exhibits superior performance when dealing with SAR images that suffer
from severe noise interference, as well as cases where adjacent pixels exhibit mutual influence and
dependence. C-RISE offers several advantages over other neural network interpretable algorithms,
including white-box methods:

1. The method is a black-box interpretation method, and the calculation process does not need to
use the weight, gradient, feature map and other information of the model so that it has better
robustness and transferability. Furthermore, the approach avoids errors caused by unreasonable


https://doi.org/10.20944/preprints202304.0714.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2023 doi:10.20944/preprints202304.0714.v1

30f19

weight selection and information loss during feature map upsampling in Class Activation
Mapping (CAM) methods;

2. Compared with RISE, our algorithm can group mask images that capture similar fusion features
into different groups by clustering strategy. This allows for the concentration of more energy in
the heatmap on the target area, thereby increasing the interpretability of the model.

3. C-RISE employs Gaussian blur to process masked regions, as opposed to simply setting occluded
pixels to 0. This technique ensures the consistency and integrity of the original image structure
while covering certain areas. As a result, it reduces the deviation of network confidence caused
by the destruction of spatial structure, leading to more credible results when compared to other
perturbation-based interpretation methods.

The contents of this article are organized as follows: In Section 2, we introduce the principle of
the RISE algorithm and CAM methods. Section 3 elaborates on the details of the C-RISE algorithm.
Section 4, we verify the effectiveness and robustness of the proposed method through both qualitative
judgment and quantitative description. Finally, in Section 5, we discuss the experimental results, clarify
any confusion, and explore potential future work.

2. Related Work

In this section, we first review the existing classical methods of CAM [24,32-37] and the RISE [41]
algorithm. Since both CAM methods and RISE interpretation methods display in the form of heatmaps,
we focus our subsequent experiments [41] on comparing the effects of different CAM methods, RISE,
and C-RISE. This chapter provides theoretical support for the design and experimentation of C-RISE.

2.1. CAM Methods

Zhou et al. [33] proposed the Class Activation Map (CAM) method which utilizes the final
convolutional layer of CNN to extract the most abstract target-level semantic information. Its
corresponding feature map contained the most abstract target-level semantic information and each
channel detected different activated parts of the target. Thus, the class activation map relevant to the
recognition result of class ¢ can be generated by the channel-wise weighted summation of the final
feature maps. The formal representation of this process can be expressed as follows:

n
LEapm = ReLU (Z wiA,%) 1)
k=1
where wj represents the connection weight of the kth neuron pair classified as class ¢ in the
Softmax layer, and A} represents the feature map of the kth channel in the /th convolutional layer.
The disadvantage of this method is that it can only be applied to the last layer feature map and
the full connection is GAP operation. Otherwise, it requires the user to modify the network and
retrain, and such costs are sometimes substantial. To overcome the disadvantages, Selvaraju et al. [34]
proposed a method named Grad-CAM and updated the weight generation method in Equation (1)

as follows: 39 (x)
y x

ZZ @)
aAkl i

where the sum element is the gradient of the calculated class score(y°(x)) with respect to the pixel
values at each position of AL, and Z represents the normalization factor. Compared to the CAM method,
Grad-CAM is more generalized and can be used for different model structures. Both Grad-CAM++[35]
and XGrad-CAM [36] are improved algorithms based on Grad-CAM method. The basic form of
Grad-CAM++ is the same as Grad-CAM, but the difference is that the combination of higher-order
gradients is used as the channel weight in Grad-CAM, which improves the visualization effect of
multi-object images and the positioning is more accurate. XGrad-CAM achieves better visualization of
CNN decisions through a clear mathematical interpretation.
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Different from the improvement idea based on gradient, Score-CAM [24] is a gradient-free
algorithm for visualizing CNN decisions. It defines the concept of Increase of Confidence (CIC), which
measures the increment of confidence relative to a baseline image. The CIC score for a particular
feature map AL is computed as:

c(af) = f(xoaf) - (%)) @)

where X is the input image, o represents the Hadamard product, and Xj, is the baseline image, which
can be set to an all-0 matrix with the same size as the original image. f(-) denotes the neural network’s
output score for the target class. The algorithm then computes CIC scores for all feature maps in a
particular layer and updates the scores using the Softmax operation. These updated scores are used as
the weights for the corresponding feature maps. Finally, the different feature maps are weighted and
summed to generate a visual image.

The CAM approach has been demonstrated to be effective in visualizing the important regions of
objects in various optical image datasets. However, when applied to Synthetic Aperture Radar (SAR)
images, several challenges arise such as gradient dispersion, energy unconcentration, and inaccurate
positioning. These challenges are primarily due to the unique characteristics of SAR images
which include:

1. SAR images are often characterized by low resolution and low Signal-to-Noise Ratio (SNR), which
makes it challenging to visualize important features and information accurately. Additionally,
the imaging principle of SAR images is based on active imaging, which introduces a significant
amount of interference spots in the image, thereby making SAR images significantly different
from optical images. These interference spots can significantly impact the visualization process,
leading to inaccurate feature localization and reduced effectiveness of CAM-based visualization
methods;

2. The relatively small difference between different categories in SAR image datasets poses a
challenge to visualization techniques such as CAM, which heavily rely on distinguishing features
between different categories. Furthermore, the target area of SAR images is often highly localized,
which makes accurate positioning critical for the interpretation of visualizations. However,
different CAM methods typically use feature maps to upsample to the size of the original image,
which can introduce positioning deviations. Despite ongoing efforts to generate high-resolution
feature maps, the visualization effect of SAR images using CAM methods remains suboptimal.

2.2. RISE

Randomized Input Sampling for Explanation (RISE) [41] is a perturbation-based visualization
method in local interpretation, which is, for the prediction result of a single image, a heatmap with
prominent areas is obtained as the interpretation result by combining randomly sampled masks.
The detailed architecture of RISE is presented in Figure 1. Firstly, based on Monte Carlo sampling
method, a large number of masks with the same size as the original image are generated. After that,
the element-wise product of masks and the original image are made to obtain the corresponding
perturbed images. Then, the masked images were input into the black-box model to obtain the
prediction probability of the inferred category. Finally, the prediction probability is used as the weight
to sum the masks, so as to superimpose the areas in the original image that play an important role in
the specified category. Randomized Input Sampling for Explanation (RISE) [41] is a perturbation-based
method that generates a heatmap to highlight the important regions of an input image with respect to
the prediction of a black-box model. The detailed architecture of RISE is presented in Figure 1. RISE
generates a large number of randomized binary masks and applies them to the input image to obtain a
set of masked images. The CNN is then applied to each masked image to obtain a set of output scores.
The final explanation map is generated by aggregating the scores obtained from all the masked images.


https://doi.org/10.20944/preprints202304.0714.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2023 doi:10.20944/preprints202304.0714.v1

50f19

RISE has been shown to be effective in providing local interpretability for various image classification
models. Moreover, Score-CAM is a gradient-free method that is inspired by RISE [24].

Zukiua)
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Figure 1. The flowchart of RISE method.

RISE method is a black-box interpretation method, which does not need to use the weight,
gradient, feature map and other information in the calculation process. Since the Monte Carlo sampling
method is a stochastic approximate inference method, the idea of this method is to find the expected
value of the function f(-) under the complex probability distribution p(z), as shown in Equation (4).

1 N

Llf@) = [pe | DfE)dz= 5 ) f(2) @

i=1

E

In the RISE algorithm, the predicted probability of the black-box model for the category to which
the perturbed image belongs can be viewed as the importance of the region retained by the mask. Then
the importance of the prominent region of the final generated image can be viewed as the expectation
obtained from all masks, as shown in Equation (5).

S1,,(A) = Em[f(ToM) [ M(A) = 1] Q)

where A denotes the pixel with a value of 1 in the mask, and S; (1) represents the expected score
obtained by inputting the pictures under different masks M into the model f(:). S;¢(A) can be
intuitively interpreted as the greater the prediction probability after the pixel-wise multiplication of
the mask and the image, the more important the region retained by this mask.

Then, we can expand the expression according to the definition of expectation as follows:

Spp(A Zflom [M=m| M) =1]

) (6)
= ) =] ;f(lo m)P[M = m, M(A) = 1]

where
B o, iftmA) =0
P[M =m,M(A) = 1] —{ PIM =m], ifm(A)=1 @)
= m(A)P[M = m]

By substituting Equation (7) into Equation (6), we can get:

Spp(A) = P[M(i):l] ;f(l om)-m(A)- P[M = m] ®)
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Since the mask m has a 0-1 distribution, we can obtain Equation (9):
P[M(A) =1] = E[M(A)] ©)
8L = i Y f(Tom) - m(A) - PM = m] (10)
’ E[M(A)] 5

It can be seen from Equation (11) that the heatmap can be obtained by the sum of masks obtained
from random sampling by weighting, while the weight is the predicted probability of the perturbed
image. When masks are sampled by uniform sampling, P[M = m] can be expressed as:

1

PM=m] = N (11)
So Equation (10) can be updated to:
1 N
Sir(M) = gy S (o M) Mi(A) (12)

1

Considering that pixle-wise masks can cause huge changes in the prediction of the model, and the
computational cost of sampling a pixle-level mask is exponential, during mask generation, small masks
are generated first and then upsampled back to the image size in order to ensure smoothness.

3. Our Method

As a post-hoc interpretation algorithm based on perturbation, RISE algorithm has a more intuitive
and understandable presentation than the visual interpretation method based on back propagation.
At the same time, RISE also overcomes the limitations of general CAM methods by avoiding the
generation of unreasonable weights and the problem of small feature maps during the up-sampling
process. However, the effectiveness of RISE and other optical image-based interpretive methods in
SAR ATR scenarios is limited. This is because the active imaging mechanism of SAR images results
in multiplicative noise, which causes problems such as noise, energy dispersion, and inaccurate
positioning when applying optical image-based interpretive methods to SAR image recognition [3,4].
To address this issue, we propose an algorithm based on RISE, called Randomized Input Sampling for
Explanation based on Clustering (C-RISE), which is a post-hoc interpretation method for black-box
models in SAR ATR. Our algorithm considers the structural consistency and integrity of SAR images
and highlights the regions that contribute to category discrimination in SAR images. Figure 2 illustrates
the workflow of our proposed approach.

doi:10.20944/preprints202304.0714.v1
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Figure 2. The flowchart of C-RISE.

3.1. Mask Generation

As shown in Section 2.2, pixle-level occlusion may have a huge impact on the model, and the
computational complexity of sampling is high. Therefore, in order to ensure the smoothness and the
consistency of the target space structure when generating masks, small masks are generated first and
then upsampled back to the image size. The basic process is shown in Figure 3. Formally, the process
of generating masks can be described as follows:

1. N binary masks {gridy, grids,..., grid N} are randomly generated based on Monte Carlo
sampling, where grid; € R%*°,i = 1,2,...,N. s is smaller than image size H and W. In grid;,
each element independently to 1 with probability p and to 0 with the remaining probability;

2. Upsample grid; to grid, € REFDHX(s+D)W;

3. A rectangular area was randomly selected from grid; as M;, where M; € RF*W i =1,2,...,N.

Ifl Upsample
Random W o W)

“
]
X

(s + 1) xW

(s +1) xH gridy

Figure 3. The flowchart of generating masks.

After obtaining N masks, we introduce Gaussian blur to the occluded part of the original image,
which is in order to make the image after the mask processing can retain the maximum consistency
of the original image, and smoothly occlusion of the region. Gaussian blur is an image blurring filter
that computes the transformation of each pixel in an image with a normal distribution. The normal
distribution equation in 2-dimensional space can be written as:

G(X) = 2;767(142%2)/(202) (13)
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where (1, v) denotes the pixel position and ¢ means the standard deviation of the normal distribution.
It is worth noting that in 2-dimensional space, the contours of the surface generated by Equation (13)
are normally distributed concentric circles from the center. The value of each pixel is a weighted
average of the neighboring pixel values. The value of the original pixel has the largest Gaussian
distribution value, so it has the largest weight, and the neighboring pixels get smaller and smaller as
they get farther from the original pixel. The Gaussian blur preserves the edge effect more than other
equalization blur filters, which is equivalent to a low-pass filter.
Based on Gaussian blur, We can use Equation (14) to obtain the image after mask processing:

X =XoM;+G(X)o(1W —M,;), i=12,.,N (14)

where X € RF*W denotes the original image, 17*W ¢ RHE*W

isHxW.

means an all-1 matrix and its shape

3.2. Clustering

The masked image { X{, X}, ..., X}, } are input to the black-box model f(-) to obtain the output
vector {aj, ay,..., ay}. Moreover, we use a; € R*m i =1,2,...,N as the feature vectors to cluster
M; by k-means. m is the number of categories. The process is shown in Equations (15)—(17).

a;=f(X), i=12...,N (15)
(c1;¢05...;¢1) = k—means ([(My,a1), My, a2),..., Mn, an)]) (16)
¢ = {M;} i=1,2,.kj=12,.,N; (17)

where ¢; denotes the ith cluster, M; denotes the jth mask in ith cluster, k and Nj represent the number
of clusters and the number of elements in the ith cluster, respectively.
If the original image is identified as class ! after the black-box model, we can obtain:

o =allll, i=12.kj=12.,N;l<m (18)

where a;- denotes the feature vector from M; and oc;- can be seen as the contribution of the jth mask in

the ith cluster to the model. After that, we use oc;- to estimate the weight of a specific mask and calculate
the weighted sum in each cluster CM; as follows:

N; .
CM; =Y ai-M, i=12.,k (19)
j=1

After that, we calculated the CIC value of CM; through Equation (3) and used it as the
classificatory information that CM; was concerned about. Finally, the final result HC~RISF is generated
by weighted summation of the feature maps of different clusters. The process is formulated as
Equations (20) and (21). The pseudo-code is presented in Algorithm 1.

o = [f (XoCM) — (X)), i=12..k (20)
k

HERISE = ¥~ ol . CM; (21)
i=1
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Algorithm 1: C-RISE
Input: SAR image X, black-box model f(-),randomly mask grid;
Output: HCRISE
# masked image and feature vector generation;
fori=1:Ndo
# mask generation;
M; < crop(Upsampling(grid;)) ;
# G(-) means Gaussian blur;
X!+ XoM;+ G(X) o (1H*W — M) ;
a; < f(Xz/) ;
end
# clustering;
fori=1:Ndo
‘ (c1;€2;...5¢k) =k —means ([(My,a1), My, az),...,(Mn,an)]) ;
end

# calculate the subheatmap and CIC score in each group ;
fori=1:kdo
CM; = L, ol - M
aj = C(CM;) = [f (XoCMy) — £ (Xp)]; 5
end
# generate final heatmap ;
HC—RISE _ Z?:l lX; .CM;;

4. Experiment

4.1. Experimental Settings

This study employs SAR images of ten vehicle target types under standard operating conditions
(SOC) from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset [42] as the
experimental data. The dataset comprises 5172 SAR images with dimensions of 1 x 100 x 100, with 2536
images used for training and 2636 for testing. The ten target categories include 251, BRDM2, BTR60,
D7, SN_132, SN_9563, SN_C71, T62, ZIL131, and ZSU_23_4. Figure 4 displays ten representative
SAR images for each category.

Figure 4. 10 typical SAR images for each category in MSTAR. The first row depicting random images
from 251, BRDM?2, BTR60, D7, and SN_132, and the second row showing randomly selected images
from SN_9563, SN_C71, T62, Z1L131 and ZSU_23_4.

During the experiment, the Alexnet model [5] was utilized as a classifier, and its structure is
depicted in Figure 5. It is worth mentioning that, as the C-RISE algorithm is primarily tailored for
black-box models, alternative efficient models may be employed in place of Alexnet. After conducting
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multiple iterations of training, the neural network achieved a recognition rate of 97.6%, which
indicates the effectiveness of using various methods to generate saliency maps. However, since
this paper primarily focuses on interpreting and analyzing the network structure using different
visualization methods, the training techniques and processes are not extensively discussed. During the
implementation of the C-RISE algorithm, several parameters were set, including k = 4, N = 2000,
s = 8, p = 0.5. It should be emphasized that the experimental results were sensitive to the number
of clusters, and selecting k = 4 or 8 yielded relatively optimal results. Hence, for the purpose of this
paper, k was specified as 4.

1024,
Conv(3x3x384) fe(1024)

Conv(11x11x96) Conv(5x5x256) /;, -
fe(1e) [ Class
Lﬂgi//» Ay Ay A B
J ] “— (] ZIL131

100x100x 1 Conv(5%5%96) 7
Conv(3x3x384) Conv(3x3x256) Fc(1024)

Figure 5. The structure of Alexnet.

4.2. Class Discriminative Visualization

Since the class activation map generated by CAM method and the saliency map generated by
C-RISE algorithm are presented in the form of heatmap, we focus on comparing the experimental effects
of different CAM methods, RISE algorithm and C-RISE algorithm in the following experimental part,
referring to the comparison method in [41]. In this section, we randomly selected ten graphs that were
correctly classified in different networks from the testset, and used Grad-CAM [34], Grad-CAM++ [35],
XGrad-CAM [36], Score-CAM [24], RISE [41] and C-RISE to visually analyze the model recognition
process, and the comparison is shown in Figure 6.

SAR image Grad-CAM Grad-CAM++ Xgrad-CAM ~ Score-CAM RISE C-RISE
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Figure 6. Comparison of Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE, C-RISE. The first
column is the SAR images of ten classes. The rest of columns are corresponding heatmaps generated
by each method respectively.
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We can verify the fairness and localization ability of the C-RISE algorithm from a qualitative and
quantitative perspective. It can be intuitively seen from Figure 1 that compared with CAM methods
and RISE, the highlighted areas of the heatmap generated by our method are more closely concentrated
near the target and the degree of energy dispersion is smaller. The heatmap is an image composed of
different color intensities, and the intensity of a pixel’s color corresponds to its importance. Analyzing
from a quantitative point of view, we measure the quality of the saliency map by the localization ability.
From an energy-based perspective, we are concerned with how much energy of the salient map falls in
the bounding box of the target object. Therefore, we adopted a similar measure to [24], the specific
process is shown in Figure 7. Firstly, we annotated the bounding boxes of the objects of all images
in testset, and then binarized the images according to the rule that the inner region of the bounding
box is set to 1, and the outer region is 0. The processed image is then multiplied by the heatmap and
summed to obtain the energy within the target bounding box. We use the ratio of the internal energy
of the bounding box to the total energy of the heatmap proportion to measure the localization and
recognition capabilities of different methods. The mathematical expression is shown in Equation (22).

x;

C-RISE —

Figure 7. The flowchat of calculating proportion.

Y E(i j)ebbox
Y E(i jyevvox T L Eij)gbbox

Proportion = (22)
where E(; y denotes the energy value of the pixel at position (i, j) in the heatmap.

It is worth mentioning that the information contained in each image in the MSTAR dataset is a
single target. And in different pictures, the position occupied by the target is usually a large area of the
image, which facilitates us to label each subset. Figure 8 shows the binarization results of ten groups
of data randomly selected. We calculate proportion of images in each category of the testset separately,
and the results are shown in Table 1.

Figure 8. The first and third rows represent randomly selected images with bounding boxes from 10
categories in the test set and the results of binarization of each images are shown as the second and
fourth rows.
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Table 1. The proportion of images in each category. The best records are marked in bold.

Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

2581 0.5764 0.4252 0.5785 0.5524  0.3483 0.5876
BRDM_2  0.5881 0.5138 0.5970 0.6230  0.3621 0.5930
BTR_60 0.4355 0.3744 0.4553 0.3892  0.1024 0.4731

D7 0.3782 0.6225 0.3920 0.5425  0.6406 0.4394
SN_132 0.3820 0.5579 0.4168 04915  0.4797 0.4723
SN_9563 0.4895 0.4024 0.4851 0.4421  0.2964 0.4817
SN_C71 0.4121 0.2868 0.4409 0.3823  0.0856 0.4494

T62 0.4975 0.3894 0.5158 0.4886  0.3374 0.5233
ZIL131 0.5420 0.3984 0.5559 0.5265  0.4254 0.5498
ZSU_23 4 0.4018 0.5315 0.4298 0.4616  0.5209 0.4474
average 0.4758 0.4555 0.4918 0.4976  0.3726 0.5060

4.3. Conservation and Occlusion Test

In this section, we use the occlusion and conservation test [36,42] to analyze the localization
capability of different methods quantitatively. The Conservation and Occlusion tests represent
experiments in which only part of the area is preserved or abandoned, respectively. The experiments
measures the effectiveness of the energy-concentrated regions in heatmaps by inputting the
mask/reverse mask processed images into the black-box model and observing the change in scores,
and the masks/reverse masks the resulting map obtained by binarization of the heatmap at different
thresholds. The way masks generated is shown as Equations (23) and (24).

1, if HC~RISE(j, i) > threshold

2
0, otherwise (23)

Mthreshold(i/j) = {

v HxW
Mthreshold =1 - Mthreshold (24)

where threshold € [0,1], H*~RISE denotes the pixel value of the heatmap from C-RISE. My esp014 and
Mipreshors mean the masks/reverse masks, respectively.

Based on Equation (23) and (24), we could use the element-wise product to get the processed
images I/ after masked/reverse masked and the results after masked/reverse masked are shown in
Figure 9.

I'= Mipreshota © X (25)

I= Mthreshold o X (26)

Figure 9. The first column represents a randomly selected image from 251, the second column
represents H C—RISE the third column represents M spo14, and the fourth and fifth columns represent
images after masked/reverse masked, respectively. The threshold selected in the three lines were 0.25,
0.50 and 0.75, respectively.
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However, directly replacing some pixels with black may produce high-frequency sharp edges [43],
and these artificial traces may also lead to changes in the prediction probability, which cannot guarantee
the fairness and objectivity of the model recognition process. In order to solve the above problems, we
improved the original experiment and proposed two new measures, namely, introducing multiplicative
noise and Gaussian blur to the occluded region. The follow two experiments show the effectiveness
and rationality of our algorithm.

4.3.1. Based on Multiplicative Noise

In the experiments, we firstly add multiplicative noise to the occluded region and updated
Equations (23) and (24) to Equations (27) and (28). The reason for adding multiplicative noise is based
on the physical scattering mechanism of SAR coherent imaging. We believe that the intensity of each
resolved element of SAR image is modulated by the Radar Cross Section (RCS) [3] of the ground object
in the element and a multiplicative noise whose intensity follows the exponential distribution of unit
mean (mean = 1). So we can consider the SAR image as the product of the RCS of the ground object in
the scene and the noise of the unit mean exponential intensity distribution. Therefore, in the process of
signal processing, we generally consider the noise of SAR image as multiplicative noise [3,6]. Figure 10
shows the above processing of the same image.

I= Mthreshold o X+ Mthreshold © NOiSB(X) (27)

I= Mthreshold o X+ Mthreshold © NOiSE(X) (28)

where Noise(X) denotes add high-variance Gaussian multiplicative noise to the input image X.

Figure 10. The first column represents a randomly selected image from 251, the second column
represents H C—RISE the third column represents M, spo14, and the fourth and fifth columns represent
images after masked /reverse masked based on multiplicative noise, respectively. The threshold selected
in the three lines were 0.25, 0.50 and 0.75, respectively.

Then we define confidence_drop(a,b) to represent the divergence in the confidence that the
processed image b and the original image a are classified into the same category. The mathematical
expression of con fidence_drop(a,b) is shown in Equation (29).

5¢(a) — 5°(b)

S°(a) (29)

con fidence_drop(a,b) =
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where 5S¢ (x) is used to represent the score of the input image x being classified as class c. Based
on this, we use con fidence_drop®" (X, I) and con fidence_drop®* (X, I) to represent the scores in the
conservation and occlusion test, respectively. The process is shown as Equations (30) and (31).

5°(X) — S°(I)

(%) (30)

confidence_drop®™" (X, I) =
S(X) —S°(I)

confidence_drop®™(X,I) = 5¢(X)

(31)

It is worth noting that the smaller confidence_drop®" (X, I), the greater the difference between
the values of 5°(X) and S°(I), and the generated heatmap can be considered to be located in the salient
feature part of the target. Similarly, the larger the con fidence_drop®®, the lager the difference between
the values of S°(X) and S°(I), and the main features after image processing can be considered to
be preserved.

The confidence_drop®"(X,I) and confidence_drop’® of various methods under different
thresholds including Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE and C-RISE, are
shown in Tables 2 and 3.

Table 2. con fidence_drop®™" (X, I) of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise.The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.6975 0.6731 0.6949 0.7017  0.7364 0.6672
0.50 0.6750 0.7063 0.6760 0.6776  0.8257 0.6658
0.75 0.7620 0.7691 0.7644 0.7615  0.7646 0.6626

Table 3. confidence_drop®“ of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise. The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.7008 0.6434 0.6973 0.6427  0.4372 0.4934
0.50 0.3524 0.3287 0.4791 0.4804 0.1867 0.5361
0.75 0.1306 0.0475 0.1026 0.1359  0.1537 0.2637

4.3.2. Based on Gaussian Blur

From Tables 2 and 3, we can see that compared with other methods, C-RISE achieved relatively
optimal performance under different thresholds. Similarly, we can also use high-variance Gaussian
blur to process the masked area, and the processed results are shown in Figure 11. Experimental
indicators are shown in Tables 4 and 5 respectively. The mathematical expressions are updated from
Equations (23) and (24) to Equations (32) and (33).

I = Mthreshold o X+ Mthreshold © G(X) (32)

I= Mthreshold o X+ Mthreshold © G(X) (33)

where G(X) denotes introduce high-variance Gaussian blur to the input image X.
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Figure 11. The first column represents a randomly selected image from 251, the second column
represents HC~RISE  the third column represents Myy,es014, and the fourth and fifth columns represent
images after masked/reverse masked based on Gaussian blur, respectively. The threshold selected in
the three lines were 0.25, 0.50 and 0.75, respectively.

Table 4. con fidence_drop®™" (X, I) of Different Methods in Conservation and Occlusion Test Based on
Gaussian blur.The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.0665 0.1038 0.0768 0.0205  0.0137 0.0064
0.50 0.0285 0.2391 0.1764 0.0944  0.0924 0.1692
0.75 0.3147 0.3721 0.3249 0.2893  0.2466 0.1631

Table 5. confidence_drop®c of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise. The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.2805 0.2250 0.2682 0.3283  0.3898 0.3985
0.50 0.1634 0.0968 0.1519 0.2217  0.2513 0.2870
0.75 0.0350 0.0119 0.0305 0.0556  0.0906 0.1663

4.4. Insertion and Deletion Test

In this experiment, we compared different methods by insertion-deletion test [41]. The experiment
is a metric used to evaluate visual interpretation methods and measures the ability of visual
interpretation to capture important pixels. During the deletion experiment, the k most important pixels
in the heatmap are successively removed, and then we calculate the degree of change in the prediction
probability. The insertion curve is the opposite. The curves are shown in Figure 12, with smaller
AUC of deletion curves and higher AUC of insertion curves indicative of a better explanation. We
randomly select an image from the test set for demonstration and plot its deletion and insertion curves
of different algorithms. The results are shown in Figure 13. We calculate AUC of both curves and the
over_all score [32] (AUC (insertion) — AUC (deletion)) of all images from the test set as a quantitative
indicator. The average results over 2636 images is reported in Table 6. We found that C-RISE achieves
splendid results, indicating that the pixel importance revealed by the visualization method is in high
agreement with the model and has great robustness.
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Figure 12. The heatmap generated by C-RISE (second column) for two representative images (first
column) with deletion (third column) and insertion (fourth column) curves.
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Figure 13. Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE and C-RISE generated saliency
maps for a seleted image randomly(firstly column) in terms of deletion (second column) and insertion
curves (third column).

Table 6. Comparative evaluation in terms of deletion (lower AUC is better) and insertion (higher AUC
is better) AUC .The over_all score (higher AUC is better) shows that C-RISE outperform other related
methods significantly. The best records are marked in bold.

AUC Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

Insertion  0.2768 0.3011 0.4145 0.5512  0.4659 0.6875
Deletion  0.1317 0.1676 0.1255 0.0246  0.0420 0.1317
over_all  0.1451 0.1335 0.2890 0.5266  0.4239 0.5558

5. Conclusions

This paper introduces C-RISE, a novel post-hoc interpretation method for black-box models in
SAR ATR, which builds on the RISE algorithm. We compare the interpretation effects of different
methods and C-RISE algorithm using both qualitative analysis and quantitative calculation. C-RISE
offers several advantages, including its ability to group mask images that capture similar fusion features
using a clustering strategy, which allows for concentration of more energy in the heatmap on the target
area. Additionally, Gaussian blur is used to process the masked area, ensuring the consistency and
integrity of the original image structure and taking into account both global and local characteristics.
Compared with other neural network interpretable algorithms and even white box methods, C-RISE’s
black-box model-oriented characteristics make it more robust and transferable. Furthermore, C-RISE
avoids the error that can be caused by the unreasonable weight generation method in general CAM
methods and the small feature map in the CNN model during the up-sampling process to the original
image size. In our future work, we aim to explore the potential of C-RISE in identifying improper
behaviors exhibited by black-box models and leveraging it to guide parameter adjustments. This will
involve a systematic investigation of the capabilities of our proposed approach in identifying and
diagnosing the sources of model inaccuracies and devising strategies to improve the performance of


https://doi.org/10.20944/preprints202304.0714.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2023 doi:10.20944/preprints202304.0714.v1

17 of 19

the black-box models. Such research endeavors will contribute to enhancing the interpretability and
robustness of black-box models in various practical applications.
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