
Article

Not peer-reviewed version

C-RISE: A Post-hoc Interpretation

Method of Black-box Models for SAR

ATR

Mingzhe Zhu , Jie Cheng 

*

 , Tao Lei , Zhenpeng Feng , Xianda Zhou , Yuanjing Liu , Zhihan Chen

Posted Date: 21 April 2023

doi: 10.20944/preprints202304.0714.v1

Keywords: Convolutional Neural Networks (CNN); Synthetic Aperture Radar Automatic Target Recognition

(SAR ATR); C-RISE; cluster; Gaussian blur

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/493480
https://sciprofiles.com/profile/2594993
https://sciprofiles.com/profile/854925
https://sciprofiles.com/profile/924751
https://sciprofiles.com/profile/2658161


Article

C-RISE: A Post-Hoc Interpretation Method of
Black-Box Models for SAR ATR

Mingzhe Zhu 1 , Jie Cheng 1,* ,Tao Lei 2 , Zhenpeng Feng 1 , Xianda Zhou 3, Yuanjing Liu 1

and Zhihan Chen 1

1 School of Electronic Engineering, Xidian University, Xi’an 710071, China; zhumz@mail.xidian.edu.cn; (M.Z.);

zpfeng_1@stu.xidian.edu.cn (Z.F.); liuyuanjing@stu.xidian.edu.cn (Y.L.);

chenzhihan@stu.xidian.edu.cn (Z.C.);
2 Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology,

Xi’an 710021, China; leitao@sust.edu.cn
3 National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace

Automatic Control Institute, Beijing 100854, China; zhouxianda999@gmail.com

* Correspondence: agentcj@stu.xidian.edu.cn

Abstract: The integration of deep learning methods, especially Convolutional Neural Networks

(CNN), and Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has been widely

deployed in the field of radar signal processing. Nevertheless, these methods are frequently regarded

as black-box models due to the limited visual interpretation of their internal feature representation

and parameter organization. In this paper, we propose an innovative approach named C-RISE,

which builds upon the RISE algorithm to provide a post-hoc interpretation technique for black-box

models used in SAR Images Target Recognition. C-RISE generates saliency maps that effectively

visualize the significance of each pixel. Our algorithm outperforms RISE by clustering masks that

capture similar fusion features into distinct groups, enabling more appropriate weight distribution

and increased focus on the target area. Furthermore, we employ Gaussian blur to process the masked

area, preserving the original image structure with optimal consistency and integrity. C-RISE has been

extensively evaluated through experiments, and the results demonstrate superior performance over

other interpretation methods based on perturbation when applied to neural networks for SAR image

target recognition. Furthermore, our approach is highly robust and transferable compared to other

interpretable algorithms, including white-box methods.

Keywords: Convolutional Neural Networks (CNN); Synthetic Aperture Radar Automatic Target

Recognition (SAR ATR); C-RISE; cluster; Gaussian blur

1. Introduction

Synthetic Aperture Radar (SAR) is a kind of active earth-observation system which can produce

high-resolution image all day, has been widely used in ground observation and military reconnaissance.

One of its primary applications is the detection and identification of various military targets [1,2].

With the enhancement of SAR data acquisition capability, Synthetic Aperture Radar Automatic

Target Recognition (SAR ATR) [3] has become a key technology and research hotspot of radar signal

processing. Traditional SAR target recognition methods [4] merely rely on artificial experience for

feature extraction and selection, which lead to a certain degree of subjectivity and bias. Additionally, it

is challenging to guarantee the effectiveness of recognition results [5]. In recent years, deep learning

methods [6], especially Convolutional Neural Networks (CNN), have been extensively used in

computer vision [7,8] and demonstrating remarkable achievements. Meanwhile, based on deep

learning, the image processing method has also been successfully extended to the field of remote

sensing images [9,10], presenting a new direction and breakthrough for SAR target recognition [11–13].

At present, CNN has become one of the most effective network architecture for image recognition

tasks. As the earliest CNN network, LeNet-5, proposed by LeCun et al. [14] in 1998 for handwritten
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digit recognition, was regarded as the first CNN structure. Over time, researchers have continuously

refined and optimized the classic CNN architecture and its features, leading to the design of more

complex and high-performing CNNs, such as Alexnet [15], GoogLeNet [16], VGGNet [17], Resnet [18],

etc. Despite the outstanding performance achieved by classic CNN structures, the neural network has

a low level of transparency and is also known as the black boxes [19] due to the lack of a clear visual

explanation for the representation of internal features and parameter organization. These limitations

significantly constrain people’s ability to understand and interpret the internal workings of neural

networks, consequently restricting their potential applications in specialized fields, such as medicine,

finance, transportation, military, and other domains [20,21]. There are currently two primary research

directions for interpretability, which are Intrinsic Explanation and Post-hoc Explanation [22]. Intrinsic

Explanation aims to enhance the interpretability of the model itself, enabling users to understand the

calculating process and rationale without requiring additional information or algorithms. In contrast,

Post-hoc Explanation mainly focuses on explaining the behavior and decision-making process of

black-box models [23]. Retraining the model can be too costly in terms of time and resources since

the model has already been trained and deployed. As such, the Post-hoc Explanation approach is

often more appropriate in such cases. Representation visualization, as an intuitive method in post-hoc

interpretation, mainly involves combining the input, middle layer parameters, and output information

of the pre-trained model to achieve an interpretation of the decision results. Gradient-based methods,

Perturbation, and Class Activation Map (CAM) are three widely adopted methods for achieving

representation visualization [22,24].

The gradient-based method [25–31] backpropagates the gradients of a specific class into the input

image to highlight image regions that contribute positively or negatively to the result. The methods

are fast computation and high resolution of the generated images but usually suffer from excessive

noise. CAM is one class of the most important methods specifically designed for CNNs [24,32–

37]. The method utilizes the form of a heatmap to visually highlight the regions most relevant to

the particular category. The CAM-based method was first proposed by Zhou et al. [33] in 2016.

They believed that with the deepening of CNN layers, the feature map of the intermediate layer

contains less and less irrelevant information, and the last convolutional layer of the CNN achieves

the highest-level semantic information. After that, numerous CAM methods have been proposed,

including Grad-CAM [34], Grad-CAM++ [35], Grad-CAM [36], Group-CAM [32], Score-CAM [24],

Ablation-CAM [37], etc. Although these methods have demonstrated good performance in image

interpretation, they may suffer from low resolution and spatial precision in some cases. Interpretability

methods based on perturbation [38–41] typically utilize the element-wise product of generated masks

and the original image to obtain the perturbed input images, which are then fed into the model

to observe the changes in the prediction result. The information generated is used to optimize the

weighted mask to obtain the final interpretation result image. Among them, RISE [41] randomly

generates a large number of masks through Monte Carlo sampling method to occlude different parts

of the input image. And the final saliency map is generated by the weighted sum of the masks and the

scores predicted by the base model on the masked images.

In this paper, we propose a post-hoc interpretation method of black-box models for SAR ATR

called Randomized Input Sampling for explanation based on Clustering (C-RISE). We demonstrate

the effectiveness of C-RISE through extensive experimental validation and comparative analysis.

Specifically, our method exhibits superior performance when dealing with SAR images that suffer

from severe noise interference, as well as cases where adjacent pixels exhibit mutual influence and

dependence. C-RISE offers several advantages over other neural network interpretable algorithms,

including white-box methods:

1. The method is a black-box interpretation method, and the calculation process does not need to

use the weight, gradient, feature map and other information of the model so that it has better

robustness and transferability. Furthermore, the approach avoids errors caused by unreasonable
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weight selection and information loss during feature map upsampling in Class Activation

Mapping (CAM) methods;
2. Compared with RISE, our algorithm can group mask images that capture similar fusion features

into different groups by clustering strategy. This allows for the concentration of more energy in

the heatmap on the target area, thereby increasing the interpretability of the model.
3. C-RISE employs Gaussian blur to process masked regions, as opposed to simply setting occluded

pixels to 0. This technique ensures the consistency and integrity of the original image structure

while covering certain areas. As a result, it reduces the deviation of network confidence caused

by the destruction of spatial structure, leading to more credible results when compared to other

perturbation-based interpretation methods.

The contents of this article are organized as follows: In Section 2, we introduce the principle of

the RISE algorithm and CAM methods. Section 3 elaborates on the details of the C-RISE algorithm.

Section 4, we verify the effectiveness and robustness of the proposed method through both qualitative

judgment and quantitative description. Finally, in Section 5, we discuss the experimental results, clarify

any confusion, and explore potential future work.

2. Related Work

In this section, we first review the existing classical methods of CAM [24,32–37] and the RISE [41]

algorithm. Since both CAM methods and RISE interpretation methods display in the form of heatmaps,

we focus our subsequent experiments [41] on comparing the effects of different CAM methods, RISE,

and C-RISE. This chapter provides theoretical support for the design and experimentation of C-RISE.

2.1. CAM Methods

Zhou et al. [33] proposed the Class Activation Map (CAM) method which utilizes the final

convolutional layer of CNN to extract the most abstract target-level semantic information. Its

corresponding feature map contained the most abstract target-level semantic information and each

channel detected different activated parts of the target. Thus, the class activation map relevant to the

recognition result of class c can be generated by the channel-wise weighted summation of the final

feature maps. The formal representation of this process can be expressed as follows:

Lc
CAM = ReLU

(

n

∑
k=1

wc
k A

L
k

)

(1)

where wc
k represents the connection weight of the kth neuron pair classified as class c in the

Softmax layer, and A
L
k represents the feature map of the kth channel in the lth convolutional layer.

The disadvantage of this method is that it can only be applied to the last layer feature map and

the full connection is GAP operation. Otherwise, it requires the user to modify the network and

retrain, and such costs are sometimes substantial. To overcome the disadvantages, Selvaraju et al. [34]

proposed a method named Grad-CAM and updated the weight generation method in Equation (1)

as follows:

wc
k =

1

Z ∑
i

∑
j

∂yc(x)

∂A
L
k,i,j

(2)

where the sum element is the gradient of the calculated class score(yc(x)) with respect to the pixel

values at each position of A
L
k , and Z represents the normalization factor. Compared to the CAM method,

Grad-CAM is more generalized and can be used for different model structures. Both Grad-CAM++[35]

and XGrad-CAM [36] are improved algorithms based on Grad-CAM method. The basic form of

Grad-CAM++ is the same as Grad-CAM, but the difference is that the combination of higher-order

gradients is used as the channel weight in Grad-CAM, which improves the visualization effect of

multi-object images and the positioning is more accurate. XGrad-CAM achieves better visualization of

CNN decisions through a clear mathematical interpretation.
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Different from the improvement idea based on gradient, Score-CAM [24] is a gradient-free

algorithm for visualizing CNN decisions. It defines the concept of Increase of Confidence (CIC), which

measures the increment of confidence relative to a baseline image. The CIC score for a particular

feature map A
L
k is computed as:

C
(

A
L
k

)

= f
(

X ◦ A
L
k

)

− f (Xb) (3)

where X is the input image, ◦ represents the Hadamard product, and Xb is the baseline image, which

can be set to an all-0 matrix with the same size as the original image. f (·) denotes the neural network’s

output score for the target class. The algorithm then computes CIC scores for all feature maps in a

particular layer and updates the scores using the Softmax operation. These updated scores are used as

the weights for the corresponding feature maps. Finally, the different feature maps are weighted and

summed to generate a visual image.

The CAM approach has been demonstrated to be effective in visualizing the important regions of

objects in various optical image datasets. However, when applied to Synthetic Aperture Radar (SAR)

images, several challenges arise such as gradient dispersion, energy unconcentration, and inaccurate

positioning. These challenges are primarily due to the unique characteristics of SAR images

which include:

1. SAR images are often characterized by low resolution and low Signal-to-Noise Ratio (SNR), which

makes it challenging to visualize important features and information accurately. Additionally,

the imaging principle of SAR images is based on active imaging, which introduces a significant

amount of interference spots in the image, thereby making SAR images significantly different

from optical images. These interference spots can significantly impact the visualization process,

leading to inaccurate feature localization and reduced effectiveness of CAM-based visualization

methods;
2. The relatively small difference between different categories in SAR image datasets poses a

challenge to visualization techniques such as CAM, which heavily rely on distinguishing features

between different categories. Furthermore, the target area of SAR images is often highly localized,

which makes accurate positioning critical for the interpretation of visualizations. However,

different CAM methods typically use feature maps to upsample to the size of the original image,

which can introduce positioning deviations. Despite ongoing efforts to generate high-resolution

feature maps, the visualization effect of SAR images using CAM methods remains suboptimal.

2.2. RISE

Randomized Input Sampling for Explanation (RISE) [41] is a perturbation-based visualization

method in local interpretation, which is, for the prediction result of a single image, a heatmap with

prominent areas is obtained as the interpretation result by combining randomly sampled masks.

The detailed architecture of RISE is presented in Figure 1. Firstly, based on Monte Carlo sampling

method, a large number of masks with the same size as the original image are generated. After that,

the element-wise product of masks and the original image are made to obtain the corresponding

perturbed images. Then, the masked images were input into the black-box model to obtain the

prediction probability of the inferred category. Finally, the prediction probability is used as the weight

to sum the masks, so as to superimpose the areas in the original image that play an important role in

the specified category. Randomized Input Sampling for Explanation (RISE) [41] is a perturbation-based

method that generates a heatmap to highlight the important regions of an input image with respect to

the prediction of a black-box model. The detailed architecture of RISE is presented in Figure 1. RISE

generates a large number of randomized binary masks and applies them to the input image to obtain a

set of masked images. The CNN is then applied to each masked image to obtain a set of output scores.

The final explanation map is generated by aggregating the scores obtained from all the masked images.
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RISE has been shown to be effective in providing local interpretability for various image classification

models. Moreover, Score-CAM is a gradient-free method that is inspired by RISE [24].

…

…
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𝑟𝑟𝑡𝑡𝑐𝑐𝑠𝑠𝐵𝐵𝑡𝑡

𝐻𝐻𝑊𝑊

Figure 1. The flowchart of RISE method.

RISE method is a black-box interpretation method, which does not need to use the weight,

gradient, feature map and other information in the calculation process. Since the Monte Carlo sampling

method is a stochastic approximate inference method, the idea of this method is to find the expected

value of the function f (·) under the complex probability distribution p(z), as shown in Equation (4).

Ez|x[ f (z)] =
∫

p(z | x) f (z)dz ∼=
1

N

N

∑
i=1

f (zi) (4)

In the RISE algorithm, the predicted probability of the black-box model for the category to which

the perturbed image belongs can be viewed as the importance of the region retained by the mask. Then

the importance of the prominent region of the final generated image can be viewed as the expectation

obtained from all masks, as shown in Equation (5).

SI, f (λ) = EM[ f (I ◦M) | M(λ) = 1] (5)

where λ denotes the pixel with a value of 1 in the mask, and SI, f (λ) represents the expected score

obtained by inputting the pictures under different masks M into the model f (·). SI, f (λ) can be

intuitively interpreted as the greater the prediction probability after the pixel-wise multiplication of

the mask and the image, the more important the region retained by this mask.

Then, we can expand the expression according to the definition of expectation as follows:

SI, f (λ) = ∑
m

f (I ◦m)P[M = m | M(λ) = 1]

=
1

P[M(λ) = 1] ∑
m

f (I ◦m)P[M = m, M(λ) = 1]
(6)

where

P[M = m, M(λ) = 1] =

{

0, if m(λ) = 0

P[M = m], if m(λ) = 1

= m(λ)P[M = m]

(7)

By substituting Equation (7) into Equation (6), we can get:

SI, f (λ) =
1

P[M(λ) = 1] ∑
m

f (I ◦m) ·m(λ) · P[M = m] (8)
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Since the mask m has a 0-1 distribution, we can obtain Equation (9):

P[M(λ) = 1] = E[M(λ)] (9)

∴ SI, f (λ) =
1

E[M(λ)] ∑
m

f (I ◦m) ·m(λ) · P[M = m] (10)

It can be seen from Equation (11) that the heatmap can be obtained by the sum of masks obtained

from random sampling by weighting, while the weight is the predicted probability of the perturbed

image. When masks are sampled by uniform sampling, P[M = m] can be expressed as:

P[M = m] =
1

N
(11)

So Equation (10) can be updated to:

SI, f (λ) ≈
1

E[M] · N

N

∑
i=1

f (I ◦Mi) ·Mi(λ) (12)

Considering that pixle-wise masks can cause huge changes in the prediction of the model, and the

computational cost of sampling a pixle-level mask is exponential, during mask generation, small masks

are generated first and then upsampled back to the image size in order to ensure smoothness.

3. Our Method

As a post-hoc interpretation algorithm based on perturbation, RISE algorithm has a more intuitive

and understandable presentation than the visual interpretation method based on back propagation.

At the same time, RISE also overcomes the limitations of general CAM methods by avoiding the

generation of unreasonable weights and the problem of small feature maps during the up-sampling

process. However, the effectiveness of RISE and other optical image-based interpretive methods in

SAR ATR scenarios is limited. This is because the active imaging mechanism of SAR images results

in multiplicative noise, which causes problems such as noise, energy dispersion, and inaccurate

positioning when applying optical image-based interpretive methods to SAR image recognition [3,4].

To address this issue, we propose an algorithm based on RISE, called Randomized Input Sampling for

Explanation based on Clustering (C-RISE), which is a post-hoc interpretation method for black-box

models in SAR ATR. Our algorithm considers the structural consistency and integrity of SAR images

and highlights the regions that contribute to category discrimination in SAR images. Figure 2 illustrates

the workflow of our proposed approach.
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Figure 2. The flowchart of C-RISE.

3.1. Mask Generation

As shown in Section 2.2, pixle-level occlusion may have a huge impact on the model, and the

computational complexity of sampling is high. Therefore, in order to ensure the smoothness and the

consistency of the target space structure when generating masks, small masks are generated first and

then upsampled back to the image size. The basic process is shown in Figure 3. Formally, the process

of generating masks can be described as follows:

1. N binary masks { grid1, grid2, . . ., grid N} are randomly generated based on Monte Carlo

sampling, where gridi ∈ R
s×s, i = 1, 2, . . . , N. s is smaller than image size H and W. In gridi,

each element independently to 1 with probability p and to 0 with the remaining probability;
2. Upsample gridi to grid′i ∈ R

(s+1)H×(s+1)W ;
3. A rectangular area was randomly selected from grid′i as Mi, where Mi ∈ R

H×W , i = 1, 2, . . . , N.

Figure 3. The flowchart of generating masks.

After obtaining N masks, we introduce Gaussian blur to the occluded part of the original image,

which is in order to make the image after the mask processing can retain the maximum consistency

of the original image, and smoothly occlusion of the region. Gaussian blur is an image blurring filter

that computes the transformation of each pixel in an image with a normal distribution. The normal

distribution equation in 2-dimensional space can be written as:

G(X) =
1

2πσ2
e−(u2+v2)/(2σ2) (13)
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where (u, v) denotes the pixel position and σ means the standard deviation of the normal distribution.

It is worth noting that in 2-dimensional space, the contours of the surface generated by Equation (13)

are normally distributed concentric circles from the center. The value of each pixel is a weighted

average of the neighboring pixel values. The value of the original pixel has the largest Gaussian

distribution value, so it has the largest weight, and the neighboring pixels get smaller and smaller as

they get farther from the original pixel. The Gaussian blur preserves the edge effect more than other

equalization blur filters, which is equivalent to a low-pass filter.

Based on Gaussian blur, We can use Equation (14) to obtain the image after mask processing:

X′i = X ◦Mi + G(X) ◦ (1H×W −Mi), i = 1, 2, .., N (14)

where X ∈ R
H×W denotes the original image, 1H×W ∈ R

H×W means an all-1 matrix and its shape

is H ×W.

3.2. Clustering

The masked image {X′1, X′2, . . ., X′N} are input to the black-box model f (·) to obtain the output

vector {a1, a2, . . ., aN}. Moreover, we use ai ∈ R
1×m, i = 1, 2, . . . , N as the feature vectors to cluster

Mi by k-means. m is the number of categories. The process is shown in Equations (15)–(17).

ai = f
(

X′i
)

, i = 1, 2, . . . , N (15)

(c1; c2; . . . ; ck) = k−means ([(M1, a1) , (M2, a2) , . . . , (MN , aN)]) (16)

ci =
{

Mi
j

}

, i = 1, 2, .., k; j = 1, 2, ..., Ni (17)

where ci denotes the ith cluster, Mi
j denotes the jth mask in ith cluster, k and Ni represent the number

of clusters and the number of elements in the ith cluster, respectively.

If the original image is identified as class l after the black-box model, we can obtain:

α
i
j = a

i
j[l], i = 1, 2, .., k; j = 1, 2, ..., Ni; l ≤ m (18)

where a
i
j denotes the feature vector from Mi

j and αi
j can be seen as the contribution of the jth mask in

the ith cluster to the model. After that, we use αi
j to estimate the weight of a specific mask and calculate

the weighted sum in each cluster CMi as follows:

CMi =
Ni

∑
j=1

α
i
j ·M

i
j, i = 1, 2, .., k (19)

After that, we calculated the CIC value of CMi through Equation (3) and used it as the

classificatory information that CMi was concerned about. Finally, the final result HC−RISE is generated

by weighted summation of the feature maps of different clusters. The process is formulated as

Equations (20) and (21). The pseudo-code is presented in Algorithm 1.

α
′
i = [ f (X ◦ CMi)− f (Xb)]l , i = 1, 2, ..., k (20)

HC−RISE =
k

∑
i=1

α
′
i · CMi (21)
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Algorithm 1: C-RISE

Input: SAR image X, black-box model f (·),randomly mask gridi

Output: HC−RISE

# masked image and feature vector generation;

for i = 1 : N do

# mask generation;

Mi ← crop(Upsampling(gridi)) ;

# G(·) means Gaussian blur;

X′i ← X ◦Mi + G(X) ◦ (1H×W −Mi) ;

ai ← f (X′i) ;

end

# clustering;

for i = 1 : N do

(c1; c2; . . . ; ck) = k−means ([(M1, a1) , (M2, a2) , . . . , (MN , aN)]) ;

end

# calculate the subheatmap and CIC score in each group ;

for i = 1 : k do

CMi = ∑
Ni
j=1 αi

j ·M
i
j ;

α′i = C (CMi) = [ f (X ◦ CMi)− f (Xb)]l ;

end

# generate final heatmap ;

HC−RISE = ∑
k
i=1 α′i · CMi ;

4. Experiment

4.1. Experimental Settings

This study employs SAR images of ten vehicle target types under standard operating conditions

(SOC) from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset [42] as the

experimental data. The dataset comprises 5172 SAR images with dimensions of 1× 100× 100, with 2536

images used for training and 2636 for testing. The ten target categories include 2S1, BRDM2, BTR60,

D7, SN_132, SN_9563, SN_C71, T62, ZIL131, and ZSU_23_4. Figure 4 displays ten representative

SAR images for each category.

Figure 4. 10 typical SAR images for each category in MSTAR. The first row depicting random images

from 2S1, BRDM2, BTR60, D7, and SN_132, and the second row showing randomly selected images

from SN_9563, SN_C71, T62, ZIL131 and ZSU_23_4.

During the experiment, the Alexnet model [5] was utilized as a classifier, and its structure is

depicted in Figure 5. It is worth mentioning that, as the C-RISE algorithm is primarily tailored for

black-box models, alternative efficient models may be employed in place of Alexnet. After conducting

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2023                   doi:10.20944/preprints202304.0714.v1

https://doi.org/10.20944/preprints202304.0714.v1


10 of 19

multiple iterations of training, the neural network achieved a recognition rate of 97.6%, which

indicates the effectiveness of using various methods to generate saliency maps. However, since

this paper primarily focuses on interpreting and analyzing the network structure using different

visualization methods, the training techniques and processes are not extensively discussed. During the

implementation of the C-RISE algorithm, several parameters were set, including k = 4, N = 2000,

s = 8, p = 0.5. It should be emphasized that the experimental results were sensitive to the number

of clusters, and selecting k = 4 or 8 yielded relatively optimal results. Hence, for the purpose of this

paper, k was specified as 4.

Conv(11×11×96)

100×100×1

Conv(5×5×256)

Conv(3×3×384)

Conv(3×3×384)

Conv(3×3×256) fc(1024)

fc(1024)

Conv(5×5×96)

fc(10) Class

2S1

BMP2

ZIL131

…

Figure 5. The structure of Alexnet.

4.2. Class Discriminative Visualization

Since the class activation map generated by CAM method and the saliency map generated by

C-RISE algorithm are presented in the form of heatmap, we focus on comparing the experimental effects

of different CAM methods, RISE algorithm and C-RISE algorithm in the following experimental part,

referring to the comparison method in [41]. In this section, we randomly selected ten graphs that were

correctly classified in different networks from the testset, and used Grad-CAM [34], Grad-CAM++ [35],

XGrad-CAM [36], Score-CAM [24], RISE [41] and C-RISE to visually analyze the model recognition

process, and the comparison is shown in Figure 6.

SAR image Grad-CAM   Grad-CAM++ Xgrad-CAM    Score-CAM        RISE             C-RISE

Figure 6. Comparison of Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE, C-RISE. The first

column is the SAR images of ten classes. The rest of columns are corresponding heatmaps generated

by each method respectively.
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We can verify the fairness and localization ability of the C-RISE algorithm from a qualitative and

quantitative perspective. It can be intuitively seen from Figure 1 that compared with CAM methods

and RISE, the highlighted areas of the heatmap generated by our method are more closely concentrated

near the target and the degree of energy dispersion is smaller. The heatmap is an image composed of

different color intensities, and the intensity of a pixel’s color corresponds to its importance. Analyzing

from a quantitative point of view, we measure the quality of the saliency map by the localization ability.

From an energy-based perspective, we are concerned with how much energy of the salient map falls in

the bounding box of the target object. Therefore, we adopted a similar measure to [24], the specific

process is shown in Figure 7. Firstly, we annotated the bounding boxes of the objects of all images

in testset, and then binarized the images according to the rule that the inner region of the bounding

box is set to 1, and the outer region is 0. The processed image is then multiplied by the heatmap and

summed to obtain the energy within the target bounding box. We use the ratio of the internal energy

of the bounding box to the total energy of the heatmap proportion to measure the localization and

recognition capabilities of different methods. The mathematical expression is shown in Equation (22).

C-RISE

binarize

Figure 7. The flowchat of calculating proportion.

Proportion =
∑ E(i,j)∈bbox

∑ E(i,j)∈bbox + ∑ E(i,j)/∈bbox
(22)

where E(i,j) denotes the energy value of the pixel at position (i, j) in the heatmap.

It is worth mentioning that the information contained in each image in the MSTAR dataset is a

single target. And in different pictures, the position occupied by the target is usually a large area of the

image, which facilitates us to label each subset. Figure 8 shows the binarization results of ten groups

of data randomly selected. We calculate proportion of images in each category of the testset separately,

and the results are shown in Table 1.

Figure 8. The first and third rows represent randomly selected images with bounding boxes from 10

categories in the test set and the results of binarization of each images are shown as the second and

fourth rows.
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Table 1. The proportion of images in each category. The best records are marked in bold.

Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

2S1 0.5764 0.4252 0.5785 0.5524 0.3483 0.5876
BRDM_2 0.5881 0.5138 0.5970 0.6230 0.3621 0.5930
BTR_60 0.4355 0.3744 0.4553 0.3892 0.1024 0.4731

D7 0.3782 0.6225 0.3920 0.5425 0.6406 0.4394
SN_132 0.3820 0.5579 0.4168 0.4915 0.4797 0.4723
SN_9563 0.4895 0.4024 0.4851 0.4421 0.2964 0.4817
SN_C71 0.4121 0.2868 0.4409 0.3823 0.0856 0.4494

T62 0.4975 0.3894 0.5158 0.4886 0.3374 0.5233
ZIL131 0.5420 0.3984 0.5559 0.5265 0.4254 0.5498

ZSU_23_4 0.4018 0.5315 0.4298 0.4616 0.5209 0.4474
average 0.4758 0.4555 0.4918 0.4976 0.3726 0.5060

4.3. Conservation and Occlusion Test

In this section, we use the occlusion and conservation test [36,42] to analyze the localization

capability of different methods quantitatively. The Conservation and Occlusion tests represent

experiments in which only part of the area is preserved or abandoned, respectively. The experiments

measures the effectiveness of the energy-concentrated regions in heatmaps by inputting the

mask/reverse mask processed images into the black-box model and observing the change in scores,

and the masks/reverse masks the resulting map obtained by binarization of the heatmap at different

thresholds. The way masks generated is shown as Equations (23) and (24).

Mthreshold(i, j) =

{

1, if HC−RISE(i, j) ≥ threshold

0, otherwise
(23)

M̄threshold = 1H×W −Mthreshold (24)

where threshold ∈ [0, 1], HC−RISE denotes the pixel value of the heatmap from C-RISE. Mthreshold and

M̄threshold mean the masks/reverse masks, respectively.

Based on Equation (23) and (24), we could use the element-wise product to get the processed

images I/ Ī after masked/reverse masked and the results after masked/reverse masked are shown in

Figure 9.

I = Mthreshold ◦ X (25)

Ī = M̄threshold ◦ X (26)

Figure 9. The first column represents a randomly selected image from 2S1, the second column

represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent

images after masked/reverse masked, respectively. The threshold selected in the three lines were 0.25,

0.50 and 0.75, respectively.
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However, directly replacing some pixels with black may produce high-frequency sharp edges [43],

and these artificial traces may also lead to changes in the prediction probability, which cannot guarantee

the fairness and objectivity of the model recognition process. In order to solve the above problems, we

improved the original experiment and proposed two new measures, namely, introducing multiplicative

noise and Gaussian blur to the occluded region. The follow two experiments show the effectiveness

and rationality of our algorithm.

4.3.1. Based on Multiplicative Noise

In the experiments, we firstly add multiplicative noise to the occluded region and updated

Equations (23) and (24) to Equations (27) and (28). The reason for adding multiplicative noise is based

on the physical scattering mechanism of SAR coherent imaging. We believe that the intensity of each

resolved element of SAR image is modulated by the Radar Cross Section (RCS) [3] of the ground object

in the element and a multiplicative noise whose intensity follows the exponential distribution of unit

mean (mean = 1). So we can consider the SAR image as the product of the RCS of the ground object in

the scene and the noise of the unit mean exponential intensity distribution. Therefore, in the process of

signal processing, we generally consider the noise of SAR image as multiplicative noise [3,6]. Figure 10

shows the above processing of the same image.

I = Mthreshold ◦ X + M̄threshold ◦ Noise(X) (27)

Ī = M̄threshold ◦ X + Mthreshold ◦ Noise(X) (28)

where Noise(X) denotes add high-variance Gaussian multiplicative noise to the input image X.

Figure 10. The first column represents a randomly selected image from 2S1, the second column

represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent

images after masked/reverse masked based on multiplicative noise, respectively. The threshold selected

in the three lines were 0.25, 0.50 and 0.75, respectively.

Then we define con f idence_drop(a, b) to represent the divergence in the confidence that the

processed image b and the original image a are classified into the same category. The mathematical

expression of con f idence_drop(a, b) is shown in Equation (29).

con f idence_drop(a, b) =
Sc(a)− Sc(b)

Sc(a)
(29)
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where Sc (x) is used to represent the score of the input image x being classified as class c. Based

on this, we use con f idence_dropcon(X, I) and con f idence_dropocc(X, Ī) to represent the scores in the

conservation and occlusion test, respectively. The process is shown as Equations (30) and (31).

con f idence_dropcon(X, I) =
Sc(X)− Sc(I)

Sc(X)
(30)

con f idence_dropocc(X, Ī) =
Sc(X)− Sc( Ī)

Sc(X)
(31)

It is worth noting that the smaller con f idence_dropcon(X, I), the greater the difference between

the values of Sc(X) and Sc(I), and the generated heatmap can be considered to be located in the salient

feature part of the target. Similarly, the larger the con f idence_dropocc, the lager the difference between

the values of Sc(X) and Sc( Ī), and the main features after image processing can be considered to

be preserved.

The con f idence_dropcon(X, I) and con f idence_dropocc of various methods under different

thresholds including Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE and C-RISE, are

shown in Tables 2 and 3.

Table 2. con f idence_dropcon(X, I) of Different Methods in Conservation and Occlusion Test Based on

Multiplicative Noise.The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.6975 0.6731 0.6949 0.7017 0.7364 0.6672
0.50 0.6750 0.7063 0.6760 0.6776 0.8257 0.6658
0.75 0.7620 0.7691 0.7644 0.7615 0.7646 0.6626

Table 3. con f idence_dropocc of Different Methods in Conservation and Occlusion Test Based on

Multiplicative Noise. The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.7008 0.6434 0.6973 0.6427 0.4372 0.4934
0.50 0.3524 0.3287 0.4791 0.4804 0.1867 0.5361
0.75 0.1306 0.0475 0.1026 0.1359 0.1537 0.2637

4.3.2. Based on Gaussian Blur

From Tables 2 and 3, we can see that compared with other methods, C-RISE achieved relatively

optimal performance under different thresholds. Similarly, we can also use high-variance Gaussian

blur to process the masked area, and the processed results are shown in Figure 11. Experimental

indicators are shown in Tables 4 and 5 respectively. The mathematical expressions are updated from

Equations (23) and (24) to Equations (32) and (33).

I = Mthreshold ◦ X + M̄threshold ◦ G(X) (32)

Ī = M̄threshold ◦ X + Mthreshold ◦ G(X) (33)

where G(X) denotes introduce high-variance Gaussian blur to the input image X.
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Figure 11. The first column represents a randomly selected image from 2S1, the second column

represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent

images after masked/reverse masked based on Gaussian blur, respectively. The threshold selected in

the three lines were 0.25, 0.50 and 0.75, respectively.

Table 4. con f idence_dropcon(X, I) of Different Methods in Conservation and Occlusion Test Based on

Gaussian blur.The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.0665 0.1038 0.0768 0.0205 0.0137 0.0064
0.50 0.0285 0.2391 0.1764 0.0944 0.0924 0.1692
0.75 0.3147 0.3721 0.3249 0.2893 0.2466 0.1631

Table 5. con f idence_dropocc of Different Methods in Conservation and Occlusion Test Based on

Multiplicative Noise. The best records are marked in bold.

threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.2805 0.2250 0.2682 0.3283 0.3898 0.3985
0.50 0.1634 0.0968 0.1519 0.2217 0.2513 0.2870
0.75 0.0350 0.0119 0.0305 0.0556 0.0906 0.1663

4.4. Insertion and Deletion Test

In this experiment, we compared different methods by insertion-deletion test [41]. The experiment

is a metric used to evaluate visual interpretation methods and measures the ability of visual

interpretation to capture important pixels. During the deletion experiment, the k most important pixels

in the heatmap are successively removed, and then we calculate the degree of change in the prediction

probability. The insertion curve is the opposite. The curves are shown in Figure 12, with smaller

AUC of deletion curves and higher AUC of insertion curves indicative of a better explanation. We

randomly select an image from the test set for demonstration and plot its deletion and insertion curves

of different algorithms. The results are shown in Figure 13. We calculate AUC of both curves and the

over_all score [32] (AUC(insertion)− AUC(deletion)) of all images from the test set as a quantitative

indicator. The average results over 2636 images is reported in Table 6. We found that C-RISE achieves

splendid results, indicating that the pixel importance revealed by the visualization method is in high

agreement with the model and has great robustness.
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Original Image C-RISE+Original Image Deletion Curse Insertion Curse

Figure 12. The heatmap generated by C-RISE (second column) for two representative images (first

column) with deletion (third column) and insertion (fourth column) curves.

Deletion Curve Insertion CurveInput Image

Figure 13. Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE and C-RISE generated saliency

maps for a seleted image randomly(firstly column) in terms of deletion (second column) and insertion

curves (third column).

Table 6. Comparative evaluation in terms of deletion (lower AUC is better) and insertion (higher AUC

is better) AUC .The over_all score (higher AUC is better) shows that C-RISE outperform other related

methods significantly. The best records are marked in bold.

AUC Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

Insertion 0.2768 0.3011 0.4145 0.5512 0.4659 0.6875
Deletion 0.1317 0.1676 0.1255 0.0246 0.0420 0.1317
over_all 0.1451 0.1335 0.2890 0.5266 0.4239 0.5558

5. Conclusions

This paper introduces C-RISE, a novel post-hoc interpretation method for black-box models in

SAR ATR, which builds on the RISE algorithm. We compare the interpretation effects of different

methods and C-RISE algorithm using both qualitative analysis and quantitative calculation. C-RISE

offers several advantages, including its ability to group mask images that capture similar fusion features

using a clustering strategy, which allows for concentration of more energy in the heatmap on the target

area. Additionally, Gaussian blur is used to process the masked area, ensuring the consistency and

integrity of the original image structure and taking into account both global and local characteristics.

Compared with other neural network interpretable algorithms and even white box methods, C-RISE’s

black-box model-oriented characteristics make it more robust and transferable. Furthermore, C-RISE

avoids the error that can be caused by the unreasonable weight generation method in general CAM

methods and the small feature map in the CNN model during the up-sampling process to the original

image size. In our future work, we aim to explore the potential of C-RISE in identifying improper

behaviors exhibited by black-box models and leveraging it to guide parameter adjustments. This will

involve a systematic investigation of the capabilities of our proposed approach in identifying and

diagnosing the sources of model inaccuracies and devising strategies to improve the performance of
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the black-box models. Such research endeavors will contribute to enhancing the interpretability and

robustness of black-box models in various practical applications.
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