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Abstract: Air pollution is a leading cause of death worldwide, and has a profound impact on the 

planet's climate and ecosystems. A substantial portion of air pollution is attributable to Ocean Going 

Vessels (OGVs). In light of this, international regulations have been put in place to mitigate air 

pollutant emissions from OGVs. While studies have indicated that these regulations can create 

significant health, environmental, and economic benefits, there remains a research gap regarding 

their specific impact on enhancing air quality. The aim of this study is to investigate how the 

implemented regulations have affected air quality in the Southern North Sea. The study found that 

the international regulations on ship emissions have successfully led to a decline in SO2 emissions 

from OGVs in the Southern North Sea, which resulted in a reduction of ambient SO2 concentrations 

inland, leading to positive effects on public health and the environment. However, the proportion 

of shipping’s contribution to SO2 emissions is projected to increase in the future.  Moreover, the 

study revealed that the use of Exhaust Gas Cleaning Systems (EGCS) to be compliant for regulation 

present significant concerns. They were more frequently found to be non-compliant, and more 

alarmingly, they emit higher average levels of SO2. It also emerged that international regulations in 

the southern North Sea have less of an impact on the reduction of NOx emissions from OGVs than 

expected, all the more important given that NOx emissions from OGVs are expected to account for 

40% of the total domestic NOx emissions for the Belgian Region by 2030. 

Highlights 

► Remote monitoring for MARPOL Annex VI in Belgium.  

► Effect of emission regulations from ocean going vessels.  

► Impact from emissions from ocean going vessels on inland pollution.  

► Trends of SO2 and NOx emissions from ocean going vessels.  

► Emissions from ships equipped with Exhaust Gas Cleaning Systems 

Keywords: MARPOL Annex VI; emissions from ocean going vessels; remote emission monitoring,  

sulfur dioxide; nitrogen oxides; ECA; air quality measurements 

 

1. Introduction 

99% of the world’s population is exposed to air containing high levels of pollutants that exceed 

the limits of the World Health Organization (WHO) guidelines [1]. The negative health effects of air 

pollution are well documented, with an estimated 9 million annual deaths worldwide attributed to 

exposure to ambient air pollution [2]. Despite significant reductions in emissions for many air 

pollutants over the past two decades, concentrations of air pollutants in the European Union remain 

too high. In 2020, the European Environment Agency (EEA) reported that 96% of city residents were 
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exposed to harmful concentrations of particulate matter (PM) [3]. For the Belgian region of Flanders 

it was estimated that PM is responsible for 300-600 premature deaths per year [4]. Not only PM is a 

reason for concern, despite a decrease of more than 50% in NOx emissions in the EU since 1990, 

several European countries still record values exceeding the annual EU limits and all 35 EU member 

states (MS) record values exceeding WHO guidelines for NOx [3,5]. 

Ocean Going Vessels (OGVs) emit a range of air pollutants such as SOx, NOx, and PM [6–9], 

contributing to 10-15% of global anthropogenic SO2 emissions and 15-20% of NOx emission [10,11]. 

At the EU level, OGVs are estimated to be responsible for 24% of SO2 and NOx emissions [12]. These 

emissions have severe health and environmental impacts [13–17]. While land-based sources of air 

pollution have been regulated for years thus leading to a reduction in their contribution to air 

pollution [5,18], shipping has long been excluded from regulation.  As a result, in 2008, regulations 

were introduced under the Marine Pollution Convention (MARPOL) of the International Maritime 

Organization (IMO) to decrease emissions from OGVs, in particular SOx and NOx [19,20]. In addition, 

MARPOL Annex VI introduced Emission Control Areas (ECAs)  with stricter emission limits. [21–

25].  

As part of MARPOL Annex VI, Regulation 14 sets limits on SOx emissions from OGVs. In 2008, 

the North Sea and Baltic Sea were declared as Sulfur Emission Control Areas (SECAs) [20,24,25] 

(Figure S.1A). In the SECA OGVs are required to use compliant fuels or use an exhaust gas cleaning 

system (EGCS) [26–29]. Outside the SECA, sulfur limits have been tightened in 2020 by the so-called 

“Global Sulfur Cap” [30] [30] (Figure S1B) and “Carriage Ban” [31]. SOx emission regulations have 

been implemented in both EU and Belgian legislation [32–35]. The EU SOx directive led to the 

implementation of mandatory inspection numbers and the creation of Thetis EU – the port inspection 

database managed by the European Maritime Safety Agency (EMSA) for the exchange of inspection 

and monitoring results [36].  

Regulation 13 of MARPOL Annex VI introduces the NOx emission limits [24,37,38]. In 2021 a 

NOx Emission Control Area (NECAs) came into force in the North Sea and Baltic Sea [20,22] (Figure 

S1A). The NOx emission limits are expressed as the weighted amount of NOx emission (g) per Brake 

Horse Power (BHP) on the crankshaft (kWh). Based on the Keel Laying Date (KLD), the merchant 

fleet is divided in 4 tiers. The emission limit per tier is furthermore based on the Engine Rated Speed 

(ERS or n). Certification is done before and after installation of the engines on board, based on test 

procedures described in the NOx Technical Code [39]. These procedures are based on a weighted 

averages of 5 different test cycles with 4 to 5 engine loads and corresponding weighting factors (Table 

S1) [39,40].  

2. Methods 

2.1. Belgian coastguard aircraft and sniffer sensor 

The research was executed in the Southern North Sea, an area renowned for its high maritime 

traffic density [43,44]. The Scientific Service of the Management Unit of the Mathematical Models of 

the North Sea (MUMM) of the Royal Belgian Institute of Natural Sciences (RBINS) is one of the 17 

Belgian coastguard partners [45]. MUMM is assigned with the monitoring and enforcement of 

MARPOL regulations in the Belgian North Sea area and neighboring waters, in the so-called Bonn 

Agreement (BA) Quadripartite Zone of Joint Responsibility (BAQPZJR) [45]. The Belgian coastguard 

aircraft, owned by RBINS, was used for this study. The aircraft is a Britten Norman Islander (BN2) 

equipped with modern avionics and a remote sensing system from Optimare (Bremerhaven, 

Germany). In 2015 the aircraft was equipped with a sniffer sensor system, developed by Chalmers 

University and built by FluxSense (Gothenburg, Sweden) [46].  

2.1.1. Sniffer sensor 

The sniffer sensor consists of a set of different sensors and equipment mounted in a 19” housing 

(Figure S.2). The most important units are (i) a Thermo Trace Level Ultraviolet fluorescence sensor, 

used for the measurement of SO2 in ppb (unitless); (ii) a Bioscience Licor Nondispersive Infrared 
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NDIR sensor, used for the measurement of CO2 in ppm (unitless); (iii) an Ecotech Serinus 40 

chemiluminescence sensor for the measurement of NOx; (iv) a custom designed hydrocarbon kicker; 

(v) three powerful vacuum pumps (one for the SO2 and CO2 sensor, one for the hydrocarbon kicker 

and one for the NOx sensor; (vi) pressure and flow regulators; (vii) a log computer; (viii) a combined 

Automatic Identification System (AIS) and Global Positioning System (GPS) receiver; (ix) an 

Aeronautical Radio INC. (ARINC) module and; (x) a particle filter (1 µm) installed at the air-inlet of 

the sniffer sensor and on the other side connected to a stainless-steel sampling tube (3/8”) installed 

on the bottom of the aircraft [47]. 

2.1.2. FSC measurements 

The FSC can be calculated based on the ambient and the exhaust plume’s SO2 and CO2 [47–55]. 

To retrieve the amount of kg burned fuel, the amount of C was multiplied with the carbon fuel content 

of 87% [49,51]. FSC = 0.232 × ,, % Sulphur (1)  

When the NOx sensor was installed in 2020, this formula was modified to correct for the NO 

cross sensitivity of the SO2 sensor and was adapted by subtracting the measured SO2 with the NO 

amount in the plume, multiplied by the cross sensitivity factor (CSNO). FSC = 0.232 × , ×, % Sulphur (2)  

The general modus of the NOx sensor during surveillance operations was set to NOx. To estimate 

the NO concentration from the measured NOx concentrations a default NO/NOx In Stack Ratio (ISR) 

of 80% was used [47] [55].  FSC = 0.232 × , × × ,, % Sulphur (3)  

Nevertheless, the NO/NOx ratio is however highly variable [56,57]. Therefore by default the NOx 

mode was used, in case the initial FSC exceeded the operational threshold (Tops), the sensor was set to 

NO mode and two new measurements were made.  

The FSC measurement was found to have a negative bias that consisted of an absolute 

component or offset (b) and a relative component or slope (a) [50]. To determine these factors three 

special gas mixtures, containing SO2 and CO2 in different levels were used to imitate exhaust plume 

of different FSC levels (Figure 1).  FSC = FSC × 𝑎 + 𝑏 (4) 

 

Figure 1. Correction using a linear regression (in red line) of FSC measurements of three special plume 

simulation mixtures (black ♦). 
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2.1.3. NOx measurements  

The NOx emission factor (EFNOx) in g NOx/kg fuel are calculated similarly to the FSC using the 

background and plume NOx and CO2 concentrations [51,53,56,58]. EF =   . × 1000 × ,,  (5)  

EF = 3.33 × ,,  (6)  

For the calculation of the NOx emission in g NOx/kWh, the NOx emission factor (g NOx/kg fuel) 

are then multiplied by the Specific Fuel Consumption (SFC). SFC =   (7)  EF , = EF ×   (8)  

Typically, the SFC ranges from 0.16 kg/kWh to 0.24 kg/kWh [11,48,59–67]. An average SFC of 0.2 

kg/kWh is used by default. If the TOPS is exceeded, radiocommunication with the OGV is established 

to obtain the fuel consumption and power data to improve the accuracy of the EF measurement. 

2.1.4. Measurement quality, uncertainty and reporting thresholds  

Only high quality measurements were retained, based on following requirements: (i) 

unquestionable linking of the plume to the OGV; (ii) comparable response times of the SO2, NOx and 

CO2 gas sensors; (iii) sufficient plume sampling time; (iv) high Signal to Noise Ratio (SNR); and (v) 

absence of interference from other sources [50]. In addition a Sniffer Quality Management System 

(SQMS) was composed describing the Standard Operational Procedures (SOPs) for the execution of 

the flights, the maintenance of the system and the management of the data [47,50,56]. 

The uncertainty for the FSC measurements was assessed based on three levels of FSC [50]. 

Improvements were made in the SO2 measurement uncertainty from 2020 onwards, the NO cross-

sensitivity of the SO2 sensor was eliminated. Furthermore, a custom-designed Hydrocarbon kicker 

was introduced to remove the VOCs from the airflow and the measurement bias was eliminated [47]. 

The uncertainty of the NOx measurement was calculated based on three levels of NOx per tier level 

for both OGVs with an ERS < 130 rpm and for OGVs with an ERS > 500 rpm (Table S.3) [56]. 

Uncertainties were than used for establishing operation threshold levels (Tops) for reporting non-

compliant OGVs. Three colors were assigned as flags to categorize the alert level. The yellow flag 

indicates the lowest alert level with a confidence interval (CI) of 68% (σ = 1). The orange flag has a 

higher alert level with a CI of 95% (σ = 1.96). The red color flag is reserved for the most severe 

pollution alerts and are based on a 99% CI (σ = 2.576) (Table 1). If a first measurement suggested 

possible non-compliance, a second measurement was taken, except in cases where it was not feasible 

for operational reasons [47,50,51].  
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Table 1. Alert flag thresholds for FSC as from 2015-2022 and for NOx from 2020-2022. 

   Color flag σ U CI Sulfur limit T Tops 

  

2015-2019 

Yellow 1 30% 68% 0.10% 0.145% 0.15% 

  Orange 1.96 35% 95% 0.11% 0.174% 0.20% 

  Red 2.576 43% 99% 0.15% 0.275% 0.40% 

  

2020-2022 

Yellow 1 25% 68% 0.10% 0.13% 0.13% 

  Orange 1.96 38% 95% 0.11% 0.18% 0.20% 

  Red 2.576 48% 99% 0.15% 0.29% 0.30% 

  
2020-2022 

(with n = 

2) 

Yellow 1 18% 68% 0.10% 0.12% 0.12% 

  Orange 1.96 27% 95% 0.11% 0.15% 0.15% 

  Red 2.576 34% 99% 0.15% 0.23% 0.25% 

Tier LTier Color flag NTE σ U T Tops-20 Tops-22 

Tier I* 17 

Yellow 15% 1 19.8% 21.2 25 25 

Orange 20% 1.96 44.5% 31.8 35 35 

Red 50% 2.576 58.5% 53.2 60 55 

Tier II 14.4 

Yellow 15% 1 19.8% 17.9 20 20 

Orange 20% 1.96 44.5% 26.9 30 30 

Red 50% 2.576 58.5% 45.0 50 45 

Tier III 3.4 

Yellow 50% 1 19.8% 5.4 7 6 

Orange 60% 1.96 44.5% 7.5 9 8 

Red 65% 2.576 58.5% 8.9 12 9 

2.2. Thetis-EU 

The EU Sulphur Directive led to the creation of Thetis-EU, an online database utilized for 

exchanging inspection results. The European Maritime Safety Agency (EMSA) manages and hosts 

the database. Thetis-EU is accessible to inspectors across all EU MS, including Norway and Iceland. 

However, due to Brexit, the UK no longer has access to the database [35,68]. 

2.2.1. Keel laying date 

Information on the keel laying date (KLD) is crucial for determining the tier level in assessing 

NOx compliance. This KLD data was acquired based on merging two database sources: 1) the Global 

Integrated Shipping Information System (GISIS) of the International Maritime Organization (IMO) 

and; 2) Thetis-EU of the European Maritime Safety Agency (EMSA). The GISIS database was used to 

gather information on OGVs larger than 75 meters with built year and IMO number, while EMSA 

provided the accurate KLD and MMSI information [56]. 

2.2.2. EGCS data 

Thetis-EU also includes information on EGCS, which was obtained from EMSA after a formal 

request from the Belgian National Competent Authority (NCA). The data is however based on the 

port inspections executed by the EU MS and is therefore non-exhaustive: there were several instances 

where OGVs have been observed to be equipped with EGCS that were not documented in the EMSA 

data [47,69]. 
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2.3. Inland air quality measurement data 

2.3.1. Inland coastal data and non-coastal data 

Air quality data from 41 inland measurement stations managed by the Flemish Environmental 

Agency (VMM) was collected to assess the impact of OGVS emissions on inland air quality [70]. The 

stations were classified into two categories: 1) coastal or port stations and 2) non-coastal or non-port 

stations. Data was collected for the period of 2008-2022. The difference between the two categories 

stands in proportion to the air pollution contribution from the maritime transport sector. However, 

it should be noted that this difference also includes a significant contribution from industry and 

energy sources, as these facilities are largely located in port areas, this may particularly impact SO2. 

2.3.2. Trend analysis by emission source 

To conduct a trend analysis by emission source, data from VMM was used [70]. This data consists 

of emissions data categorized by source for the period spanning from 2000 to 2020. Moreover, a short-

term linear regression trend was created for each SO2 and NOx source based on the data from recent 

years with omitting 2020 as this was impacted by the COVID global pandemic. For most sources, the 

period used for the linear regression was either 2010-2019 or 2015-2019. Regarding shipping, the 

forward trends for SO2 and NOx were established by combining: 1) the trend of the difference between 

coastal and non-coastal stations between 2016 and 2022 (slope = a, intercept = b) with 2) and the 

projected increase in shipping (2.1% annually) [71]. For the SO2 trend, an additional correction factor 

for the FSC non-compliance (c) was added, this was based on the correlation between the increase in 

SO2 emissions from shipping and FSC non-compliance. This factor ranged between 1.06 and 1.08 for 

2021 and 2022. 𝑁𝑂 = (𝑎 × (2020 + 𝑖) + 𝑏) × 1.021 (9)  𝑆𝑂 = (𝑎 × (2020 + 𝑖) + 𝑏) × 1.021 × 𝑐 (10)with 𝑖 = year > 2020  

2.4. Statistical analysis 

The normality of the emission measurement data was evaluated using a Kolmogorov-Smirnov 

test, which showed that the data did not follow a normal distribution (P < 0.05). Consequently, non-

parametric tests were utilized. A two-tailed Kolmogorov-Smirnov test was used to compare the 

distributions of measurements obtained between different groups (temporal periods, Tier levels, 

EGCS, …), statistical significance was determined at P < 0.05. To assess the difference in compliance 

rates between the two distributions, a two-sided chi-square test was used, with statistical significance 

defined as P < 0.05 [72,73]. When discussing Type I errors, they refer to false positives, while Type II 

errors refer to false negatives. 

3. Results and Discussion 

From 2015 onwards, the Royal Belgian Institute of Natural Sciences (RBINS) has been 

conducting airborne surveillance operations for the monitoring of Regulation 14 of MARPOL Annex 

VI concerning sulphur emissions from OGVs[47,50,74]. The RBINS expanded its monitoring efforts 

in 2020 to include Regulation 13 of MARPOL [47,56]. The collected dataset contains 6954 FSC 

measurements and 2353 NOx measurements and therefore comprises the largest set of airborne OGV 

emission measurements to date. 

3.1.1. Belgian airborne monitoring dataset 

During the monitoring period from July 2015 to November 2022, the RBINS conducted 414 

flights and 645 operational flight hours, making approximately 10446 low passes in the exhaust 

plumes of 7536 OGVs, measuring 6954 OGVs’ FSC and 2353 OGVs' NOx emission [47,50,56,74] 
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The predominant type of measured OGVs were container OGVs (31%), followed by tanker 

OGVs (29%), general cargo and bulk carrier OGVs (20%) and passenger and Roll On Roll Off (RORO) 

OGVs (15%;). Regarding NOx monitoring, the majority of monitored OGVs were Tier I OGVs (52.6%); 

followed by Tier II OGVs (37.5%); Tier 0 OGVs (9.6%) and Tier III OGVs (0.3%). 

The standard operating procedures (SOPs) specified a minimum ship length of 100 m, although 

smaller OGVs were occasionally included. The average length of the monitored OGVs was 214 m 

(Figure S.4) and only OGVs that were on-route were measured, with an average speed of 12.7 knots 

(Figure S.5). The majority of the monitored OGVs had a port of destination in Belgium (30%), 

Netherlands (24%), the UK (10%), and Germany (7%), with the main ports of Antwerp (22%), 

Rotterdam (17%), and Zeebrugge (5%) (Figure S.6). The most frequently observed flag states were 

Liberia (11%), Panama (13%), and Marshal Island (10%) (Figure S.7), which corresponds to the global 

fleet distribution [75]. 

For the data collected between 2015 and 2019, no correction for the NO cross sensitivity was to 

be made. Therefore the data between 2015 and 2019 was corrected to allow for a long-term analysis 

together with to the measurement results from 2020. For this purpose, the FSC values without NO 

correction (FSC) and the FSC values with NO correction (FSC) for the period 2020-2022 were used to 

conduct a linear regression (Figure 2). The regression values (a = 0.93; b = 0.02. and r = 0.98) were 

consequently used to correct the 2015-2019 FSC measurement data (Figure 2). 

 

Figure 2. Linear regression between the FSC including the NO cross sensitivity and the FSC without 

NO cross sensitivity. 

3.1.2. Average FSC and compliance trends 

The improved measurement quality and reduced measurement uncertainty in 2020 allowed for 

more accurate measurements of the FSC [47]. To enable long-term trend analysis, the measurements 

for the 2015-2019 period were first corrected for their systematic bias. Based on the corrected FSC 

data, it was found that throughout the monitoring period 2015-2022, the average FSC of the measured 

OGVs remained relatively consistent (Figure 3A). However when examining temporal trends, it was 

discovered that the average FSC significantly decreased from 0.083% to 0.068% after the 

implementation of the Global Cap in 2020 (P < 0.01). The improved accuracy in 2020 reduced the OGV 

compliance threshold  from 0.15% FSC to 0.13% FSC. Therefore, the FSC measurements from 2015 

to 2019 were re-categorized according to the 2020 thresholds. While these thresholds are not suitable 

for individual OGV compliance re-assessments for 2015-2019, they can be used for long-term 

compliance analysis. The overall compliance rate spanning from 2015 to 2022 was 92.8%, increasing 

from 83.3% in 2015 to over 95.1% in 2019 (Figure 3B). After the introduction of the Global Cap in 2020, 

compliance rates continued to rise, reaching a maximum of 98.0% in 2021, but then decreased to 95.1% 

in 2022. Comparing the non-compliance rates of 2018-2019 (6.1%) with 2020-2022 (3.1%) showed a 
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significant decrease (P < 0.001), indicating the effectiveness of the Global Cap. Non-compliance rates 

per flag state (OGV’s nationality) were proportionate to the number of observations per flag state, 

although in contrary to what was expected it was found that flag states like BE, UK, and HK had 

higher non-compliance rates than the “flags of convenience”, i.e. flags of convenience are countries 

with favorable regulations and lower taxes, allowing OGV owners to avoid stricter regulations and 

labor standards in their home countries (Figure S.7). 

During the monitoring period from 2015 to 2022, there was a significant increase in the number 

of OGVs equipped with Exhaust Gas Cleaning Systems (EGCS). At the start of the monitoring in 2015, 

less than 1% of OGVs had an EGCS. However, as a result of the implementation of the Global Cap, 

by the end of 2022, approximately 30% of the global fleet was equipped with an EGCS [76]. The effect 

of this trend was examined by comparing the average FSC and non-compliance rates for EGCS and 

non-EGCS OGVs. It was found that EGCS OGVs had significantly higher FSC levels (0.097% FSC) 

compared to non-EGCS OGVs (0.076% FSC) (P < 0.001). Also the non-compliance rate was found to 

be significantly higher for EGCS OGVS (9.4%) compared to non-EGCS OGVs (6.9%) (P = 0.0302). 

Furthermore, the analysis revealed both a very high relative contribution and very high absolute 

emission values for non-compliant EGCS OGVs. In the period 2015-2019, 11 out of 102 red flags were 

related to EGCS OGVs (11%), whereas from 2020 onward, out of the 20 observed red flags, 16 were 

related to EGCS OGVs (80%). This indicates that EGCS OGVs not only result in higher amounts of 

non-compliance, but of equal concern was that they were found to emit substantially higher levels of 

SO2 once identified as non-compliant. This trend can be attributed to certain international regulations, 

with MARPOL Annex VI Regulation 13 that allowed the use of EGCS systems in the first place. The 

introduction of the Global Cap, resulted subsequently in more EGCS OGVs operating outside ECAs. 

While the average FSC and non-compliance decreased with the introduction of the Global Cap, it also 

lead to a wider use of EGCS OGVs and which, based on this analyses, resulted in higher SO2 

emissions and non-compliance rates. It should be noted that this adverse effect on air quality is in 

addition to other environmental concerns arising from the discharge of washwater from EGCS 

[28,77–79]. 
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Figure 3. Evolution of the average corrected FSC concentration from 2015-2022 with median, 10, 25, 

75 and 90% percentiles and average FSC per year (♦), with average FSC for the period before and after 

2020 (red line) (A). Non-compliance evolution based on the corrected FSC data for 2015-2019 (B). 

Average, median, 25 and 75 percentile boxplots for monitored FSC for EGCS OGVs and non EGCS 

OGVs. The overall average is provided in black (♦) The average non-compliant FSC is provided in 

red (♦) the average compliant FSC is provided in green (♦).(C). Compliance rate of EGCS OGVs 

compared to OGVs without EGCS (D). 

3.1.3. Real world NOx emissions and compliance trends 

The airborne monitoring of NOx emissions from OGVs began a year before the implementation 

of the NECA in 2021, this allowed to assess the impact of the new regulations on real-world NOx 

emissions and compliance to regulation 13 of MARPOL Annex VI. It was found that neither the 

average NOx emission level nor the non-compliance rate were reduced after the NECA was 

introduced. In fact, there was an observed significant increase in the average NOx emissions from 

OGVs from 12.6 to 13.5 g NOx/kWh (P < 0.001) (Figure 6A). Also the non-compliance rated increased 

from 3.7% to 3.9%, although this difference was not found to be significant (P = 0.8).  

The previously discovered trend that Tier II OGVs had a higher average NOx emission and non-

compliance rate compared to Tier I [56] was re-confirmed by including the data from 2022 (Figure 

6B&C). This is a result of the validation method for engine certification in the NOx Technical Code 

which defines two engine cycles for main engines based on four different engine states for the 

calculation of the weighted average (Table S.1). This means that an engine is considered compliant as 

long as the weighted average is below the limit, even if emissions at certain engine states exceed the 

limit. Tier II engines were found to have higher NOx emissions in the lower engine states due to fuel 

optimization, while Tier I engines have more constant emission levels with engine load[56]. As lower 

engine states are often used in coastal shipping lanes with heavy traffic density, this results in Tier II 

OGVs emitting more NOx in areas most prone to significant environmental and health impacts. 

Furthermore, currently for main engine states below 25% there are no emission limits in place and 
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23% of the observed non-compliant OGVs had an engine load below 25% and therefore were not 

regulated (Figure 4).  

 

Figure 4. Distribution of the engine load of the observed non-compliant OGVs for NOx. 

Tier III engines have a not-to-exceed (NTE) limit for all engine states, set at 150% of the emission 

limit, making it easier to assess compliance as it doesn’t require an assessment of the weighted 

average. However, only 7 Tier III OGVs (0.3%) have been monitored so far. This is concerning as 

many OGVs that were built after 2021, when the Tier III limits came into force, but also those that are 

planned still have a KLD before 2021, which means that they may still follow the Tier II limits. It was 

discovered that only 21% of the merchant OGVs larger than 5000GT, built in 2021 and 2022 had a 

KLD in or after 2021 and were certified as Tier III. 

 

Figure 5. Difference between Built Year and Keel Laying Date over time. 

It cannot be overstated that this delay will have a substantial impact on the environment and 

public health [13,56]. Another remarkable discovery was that 43% of the limited number of observed 

Tier III OGVs were found to be non-compliant, this is in line with the observations made during the 

EU-funded Horizon 2020 project "Shipping Contributions to Inland Pollution Push for the 

Enforcement of Regulations" (SCIPPER) [80]. The analysis provided clear evidence of the inefficacy 

and even counterproductive nature of the international maritime NOx emission regulations in 

reducing actual emissions from OGVs in the ECA. 

To evaluate how an EGCS affects NOx emissions, an analysis was conducted on the average NOx 

emission levels and compliance rate to NOx emission standards between EGCS OGVs and non-EGCS 

OGVs. The findings revealed that EGCS-equipped OGVs had an average NOx emission level of 14.4 

g NOx/kWh, which was significantly higher than the 13.1 g NOx/kWh for non-EGCS OGVs (P < 0.001). 

Furthermore, the non-compliance rate for EGCS OGVs was significantly higher at 6%, compared to 

2% for non-EGCS OGVs (P < 0.001) (Figure 6D). These results were consistent across all monitoring 
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years and for both Tier I and Tier II (Figure S.8). These results confirm previous research that 

indicated the (minor) effect of EGCS on NOx emission levels [77]. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2023                   doi:10.20944/preprints202304.0675.v1

https://doi.org/10.20944/preprints202304.0675.v1


 12 

 

Figure 6. Boxplot with median, 10, 25, 75, 90% percentiles, and average NOx emissions per year (A) 

and per tier level (B). NOx non-compliance per tier and per year (Tier III is not represented due to the 

absence of Tier III data in 2020 and 2021). 

3.1.4. Impact emissions from OGVs on Belgian inland air quality  

By analyzing the annual average SO2 and NOx concentrations conducted in air quality 

monitoring stations located in coastal or port areas compared to those not situated in such areas the 

relative importance of air pollution from OGVs was elaborated. It was of no surprise that both SO2 

and NOx concentrations were substantially higher in coastal/port areas, although declining 

concentrations were generally observed for both SO2 and NOx at all stations (Figure 7).  

The difference in SO2 concentration between coastal/port and non-coastal/port stations was 

found to slightly decrease between 2008 and 2016, but later started to re-increase slightly, (Figure 7, 

left). Clear reductions were observed in 2010, 2013, 2015, and 2016, which can be attributed to the 

implementation of international SO2 emission limits for OGVs. However, the reduction in 2013 can 

be neglected as it was linked to a short-term increase in pollution for non-coastal stations due to 

inland pollution sources [70].  

Regarding the difference in NOx concentration between coastal/port and non-coastal/port 

stations, a very stable trend was observed over the last decade (Figure 7, right). This indicates that 

emissions from OGVs have not decreased over time and were not substantially impacted by the 

introduction of the NECA in 2021. Consequently, emissions from OGVs are increasingly contributing 

to the total inland NOx pollution. 

 

Figure 7. Evolution of measured SO2 (left) and NOx (right) concentrations for inland coastal and non-

coastal air quality measurements stations in Flanders (data obtained from VMM) [70]. 

The SO2 analysis categorized by emission source clearly indicate the impact of the introduction 

of the SECA and subsequent reductions in maximum allowed FSC in 2010 and 2015 (Figure 8A). 

However, the future trend analysis also suggests that the contribution of SO2 emissions from OGVs 

to the total SO2 emissions in the Flemish region is expected to increase to approximately 7% by 2030.  
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Regarding NOx emission sources, the impact of international shipping regulations was found to 

be less profound. The contribution of NOx emissions from OGVs to inland NOx in the Flemish region 

shows an upward trend. The establishment of the NECA in 2021 has had no significant impact on 

this trend, it is even projected that by 2025 the NOx emission contribution from OGVs will surpass 

any other source and contribute to 40% of all NOx emissions for the Flemish region by 2030 (Figure 

8B). These results largely corroborate the findings of previous large-scale studies that modelled the 

shipping contribution to inland pollution [30,31,81–85] 

 

 

Figure 8. Evolution of SO2 (A) and NOx (B) emissions from different sources for the region of Flanders 

with future trend unitll 2030 and contribution of shipping (data from 2000-2020 obtained from 

VMM)[70]. 

A 

B 
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4. Conclusions 

This study showed that the implementation of Regulation 14 of MARPOL Annex VI and the 

assignment of the North Sea Emission Control Area, have had a significant impact on the reduction 

of SO2 emissions from OGVs. In addition, the introduction of the Global Sulphur Cap has further 

reduced SO2 emissions, significantly reducing the contribution of shipping  to  domestic SO2 

pollution in Belgium, from over 10% in the early 2000s to 3% in 2015. The implementation of the 

Global Sulphur Cap also coincided with an improvement in compliance levels, which can also be 

partly attributed to the increased implementation of remote monitoring by North Sea coastal states. 

The effective implementation of clear regulations, monitoring and enforcement practices at various 

policy levels (IMO, EU, Belgium) has proven to be successful in addressing SO2 emissions from 

OGVs. 

However, it was observed that SO2 emissions from OGVs are expected to rise to 7% by 2030. 

Unfortunately,  the Global Sulphur Cap has led to increased use of EGCS, as  average SO2 emissions 

from EGCS equipped OGVs have been found to be considerably higher than those OGVs without 

EGCS. Moreover, non-compliance is significantly more common in  EGCS-equipped OGVs and 

even FSC values appear to be particularly high when non-compliance is found in EGCS equipped 

OGVs. 

On the other hand, the study found that Regulation 13 of MARPOL Annex VI had no beneficial 

effect on the average reduction of NOx emissions from OGVs. On the contrary, due to the way 

regulations are structured, the study demonstrated that real-world average NOx emissions from 

OGVs are increasing. This trend, in combination with the expected growth in maritime transport, will 

make OGVs the largest contributor to NOx emissions by 2025. By 2030,  OGVs are estimated to be 

responsible for 40% of total domestic NOx emissions in Belgium. Finally, this study showed that 

EGCS not only increased SO2 emissions, but also resulted in higher average NOx emissions and 

increased non-compliance with NOx regulations. 
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OGVs per flag state compared to the overall number of observed non-com.; Figure S.8. Difference in 
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Table S.1. Test cycles and weighting factors according to the NOx Technical code.; Table S.2. SO2 and 
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