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Abstract: Fast convergence routing is an important issue for LEO constellation network, due to its

dynamical topology changing and time varying transmission requests. Most of existing research

focus on the OSPF routing algorithm, which cannot handle the frequently links state changing of

network. In this paper, we propose a Fast-Convergence Reinforcement Learning Satellite Routing

Algorithm (FRL-SR) for LEO satellite networks, in which the satellite gets the network links status

fast and adjusts its routing strategy. In FRL-SR, each satellite node is regarded as an agent. The agent

selects the port for packet forwarding according to its own routing policy. When the satellite network

state changes, agent would send ’hello’ packets to the neighbor node to update the neighbor node’s

routing policy. Compared with traditional reinforcement learning, FRL-SR can perceive network

information faster, and then converge faster. Also, FRL-SR can mask the dynamics of satellite network

topology and adaptively adjust the forwarding strategy according to the link state. Various simulation

is constructed, the results show that the proposed FRL-SR algorithm out performance the Dijkstra

algorithm in performance of average delay, packet arriving ratio, network load balance.

Keywords: LEO satellite networks; satellite routing; multi-agent reinforcement learning; distributed

routing

1. Introduction

Terrestrial communications already meet most of the daily communication needs. But for

users in remote areas and at sea, their communication needs cannot be met. Unlike the terrestrial

communication mechanism, Satellite communication has greater coverage and better communication

quality [1]. It meets the communication needs of users in remote areas and at sea, and can also be used

as an adjunct to terrestrial communication to serve urban users. Therefore, satellite communications

research has attracted much attention.

Based on the distance of the orbital plane from the Earth’s surface, satellite systems can be

classified as geostationary Earth orbit (GEO), medium Earth orbit (MEO), and low Earth orbit (LEO)

satellite systems. Unlike GEO and MEO, LEO satellites are usually located in the orbital plane at an

altitude of 500 to 2000 km [2]. Because of low latency, low path loss and low launch costs, LEO satellite

networks are a major research direction for industry. In present, there are many large LEO satellite

constellations in operation, such as starlink and oneweb. The link state of the LEO satellite network is

volatile because of the complex space environment and frequent satellite laser failures. In addition,

satellites have a high speed of movement, which leads to frequent changes in satellite topology. These

two features are the main differences between satellite networks and terrestrial networks. Therefore,

Traditional routing algorithms are not suitable for direct use for satellite network. A new routing

algorithms need to be designed to solve the LEO satellite routing problem.

Typically, routing problem of the LEO satellite is mainly divided into two parts: how to get the

network topology and how to generate the route paths based on the network topology [3]. Mauger

[4] first proposed the concept of virtual node, when the satellite moves to the location of the virtual

node, its logical address becomes the logical address of this virtual node. The routing method is to

give priority to the high latitude path. The authors in [5] proposed the dynamic virtual topology
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routing (DV-DVTR), which divide the system period into time slices. For each time slot , the network

topology is considered to be fixed [6], then packets are forwarded according to the shortest path

first algorithm. Although DV-DVTR is easy to implement, the division of time intervals is a very

difficult task. Smaller time intervals require more storage space, and larger time intervals affect the

performance of the algorithm. The authors in [7] proposed the Temporal Netgrid Model (TNM) to

portray the time-varying topology of LEO satellite networks, in which dijkstra algorithm is used to

generate forwarding policies. The authors in [8] proposed a distributed routing method, in which

the surface was divided into several spaces with corresponding logical areas. In [9], each node sends

congestion information to neighbor nodes, including queue length and available resources. Therefore,

satellite nodes can route packages based on congestion information to achieve load balancing.

The above approaches mainly considers how to shield network dynamics and then run traditional

routing algorithms for static network topology. These methods take up a certain amount of storage

space and do not yield accurate satellite network topology. In recent years, a lot of research has started

to use machine learning methods to solve routing problems. The difference between machine learning

methods and traditional methods is that the former is data-driven, while the latter is model-driven. If

the model does not describe the problem accurately, the performance of the model driven method will

be poor. Recently, machine learning have applied in network areas, such as regulating congestion at

the transport layer [10], optimizing video stream transmission [11], allocating resources [12] and so on.

The most suitable machine learning method for solving routing problems is the reinforcement

learning technique. In [13], they used the Q-routing method to decide how to forward packages in LEO

satellite network. In [14], the deep reinforcement learning is used to solve the routing problem, they

use the neural network replaces Q-tables to store Q value. The authors in [15] proposed a dynamic

distributed routing scheme based on reinforcement learning, they considered each satellite node as an

agent, and agents train and execute routing operations respectively.

Even many researches have applied reinforcement learning to routing problems [16], few of them

can improve the convergence speed of the algorithm to face the dynamically changing link state. In

this paper, we proposed a distributed reinforcement learning method named FRL-SR, which not only

learns routing and forwarding policies by distributed reinforcement learning, but also accelerates

the convergence speed of the algorithm and senses the satellite network state faster. Our main

contributions can be summarized as follows:

• We proposed a distributed reinforcement learning method named FRL-SR, it has lower

end-to-end latency and lower signaling overhead than traditional algorithms.
• We propose a learning mechanism that allows the algorithm to converge faster in the face of

changes in the network link state..
• We compare the impact of different reward functions on the performance of reinforcement

learning algorithms. The experimental results show that the design of reward functions is crucial

for reinforcement learning algorithm.

The remainder of this paper is organized as follows. In section 2, we describes the system model

and Q-routing algorithm. In the section 3, we give the details of our FRL-SR method. We discuss the

experimental results in the section 4. Finally, The section 5 concludes our work.

2. System Model

In this section, we first give a model of the LEO satellite constellation and its characteristics, on

the basis of which our research scenario is depicted. After that, we describe the traditional Q learning

algorithm and its application in routing problem. The definition of the routing problem is given in the

last sub-section.

2.1. LEO Satellite Constellation

Currently, LEO satellite constellations can be divided into two types based on the number

of satellite orbital planes: single-layer and multi-layer constellations. The Iridium system is a
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representative of single-layer constellation, while starlink is a multi-layer constellation with satellite

orbital planes mainly distributed between 300 and 600 km. To facilitate the analysis, this paper uses

the Iridium system as the satellite environment.

As shown in Figure 1, the Iridium constellation consists of multiple satellite orbits that are evenly

distributed and intersect at the pole position. The area at the ends of the constellation is known as

the polar region, where satellites are prohibited from communicating [17]. The direction of motion

of the satellite changes as it passes the pole, and the relative positions between the satellites change,

which leads to periodic changes in the topology of the satellite. There are two satellite-to-satellite

links within the satellite network. The link with an orbiting satellite is an intra-satellite link, and the

link between adjacent orbiting satellites is an inter-satellite link [18]. So each satellite has up to four

neighbor nodes to communicate with, leaving little decision space for the satellite when considering

packet forwarding.

Figure 1. LEO satellite constellation.

2.2. Q-routing Algorithm

Reinforcement learning is one of the fields of machine learning [19]. Inspired by behavioral

psychology, it focuses on what actions an agent should take to maximize cumulative rewards when

faced with a given environment. Reinforcement learning is composed of agent, environment, state,

action and reward, among which environment is composed of some states. The agent takes an action

based on the current state of the environment, after which the environment changes to the next state

based on the action taken, and provides the agent with a reward value to judge the action. In the long

run, the agent learns how to make the optimal action in a certain state [20].

Q learning is a traditional reinforcement learning algorithm, it provides how the intelligence

chooses actions in a given state by maintaining a Q table. Each Q value in the Q table represents the

total benefit of taking a certain action in a certain state. The update of Q value is mainly realized

through Bellman Equation:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
d∈A

Q(s
′
, a

′
)] (1)
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where s represents the current state of the agent, a is the action performed by action, α is the learning

rate, r is the reward value by performing action a under state s, γ represents the discount factor, A is

the action space in state s
′
, α and γ both are in the interval [0,1]. Therefore, max Q(s

′
, a

′
) represents the

max Q value of state s
′
.

Q routing is the application of the Q learning algorithm to the routing problem. In Q routing

algorithm, each communication node is treated as an agent, which can independently learn the

forwarding policy and forward packets to the next port [21]. As shown in Table 1, each node maintains

a Q-table, which records the Q value of all actions and states. The agent looks up the Q-table based on

the destination node of the packet, finds the action corresponding to the maximum Q value, and then

executes it, which is a packet forwarding process. Similar to Equation (1), the update of Q table is as

follows:

Qi(s, a) = (1 − α)Qi(s, a) + α[r + γ max
d∈A

Qj(s
′
, a

′
)] (2)

where α is the learning rate which determines the updating rate, and γ is discount factor, i,j

represent the index of different nodes respectively. This equation is the essence of agent learning.

Table 1. Q-TABLE OF NODE I

State Neighbor
N1 N2 N3 ...

(i, D1) Qi((i, D1), N1) Qi((i, D1), N2) Qi((i, D1), N3) ...

(i, D2) Qi((i, D2), N1) Qi((i, D2), N2) Qi((i, D2), N3) ...

(i, D3) Qi((i, D3), N1) Qi((i, D3), N2) Qi((i, D3), N3) ...

(i, ...) ... ... ... ...

2.3. Problem Statement

The LEO satellite network can be represented as graph G=(V,E), where V represents the set of

satellite nodes and E represents the set of satellite links. Consider an Iridium-like system with M

number of orbits and N satellites per orbit, we use (i,j) to represent the position of a satellite, where i

represents the satellite’s orbit number and j represents the satellite’s number in orbit (1 ≤ i ≤ M, 1 ≤

j ≤ N). There are intra-satellite links between satellites in the same orbit and inter-satellite links

between satellites in different orbits, which means that each satellite can communicate directly with up

to four satellites. For clarity, we list the notations and definitions in Table 2.

In this article, we only consider the process of packet transmission between satellites. The packet

starts from the initial node Ni, the node first finds the next hop node Nj from the set of neighbor

nodes Ngi, and then sends the packet out, the transmission delay of the packet is Dij, and then the

next hop node repeats the previous action, sends the packet to it’s neighbor node, and then updates

the transmission delay of the packet D according to the delay accumulation rule. The above steps

are repeated until the data packet is forwarded to the destination node, the problem is how to plan

a route which minimize D. In a real-world scenario, thousands of packets are passed through the

network, so the algorithm needs to consider the congestion of the link. First, the algorithm must be

able to plan a feasible path from the source node to the destination node, and secondly, the algorithm

should minimize the delay of this path, including propagation delay and queuing delay. Therefore,

the ultimate goal of the algorithm is to minimize the transmission delay of packets while ensuring the

packet arrival rate.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2023                   doi:10.20944/preprints202304.0656.v1

https://doi.org/10.20944/preprints202304.0656.v1


5 of 15

Table 2. Notations of variables.

Notations Definition

G graph of the LEO satellite network
V set of satellite nodes
E set of satellite links
M number of orbits
N number of satellites per orbit
Dij transmission delay between node i and node j

Ngi the set of neighbors of node i

3. Proposed FRL-SR Algorithm

In this section, we first discuss the design of the reinforcement learning model, including states,

reward functions and action in Section 3.1. Then, we briefly introduce the neighborhood discovery and

explain the propagation range of ’hello’ packets in reinforcement learning in Section 3.2. The training

approach and algorithm are proposed in 3.3 and 3.4. In 3.5,we analyze the time complexity and space

complexity of the FRL-SR algorithm and the Dijkstra algorithm.

3.1. Reinforcement Learning Model Setting

In solving the satellite routing problem using multi agent reinforcement learning, we consider

each satellite node as an agent. When the data packet arrives at the satellite node, it observes the

current state and forward the packet based on the present situation. Node adjusts the forwarding

strategy according to current state of network. Once a link is broken or there is congestion somewhere,

the reward of this port is decreased, packets are forwarded to another path. This is the main advantage

of reinforcement learning compared with traditional routing algorithm.

The whole packet forwarding process can be regarded as a finite state Markov Decision Process

(MDP), the final state is that packets arrived destination node. We use (S, A, P, R) to represent a state

of MDP, Where S is the state of the current system, A is the action space, P is the probability of state

transition, and R is the reward. For each satellite node, it only forwards packets to its neighborhood

nodes, which means that the action space is up to four. So we decide to use reinforcement learning

rather than deep reinforcement learning to achieve it.

When using reinforcement learning to solve problem, it is crucial to design state, action and

reward function [22]. For different scenarios, we should follow different design principles. In our

satellite network routing scenario, the states, actions and reward are defined as follows.

• States: Each state st ∈ S = {Nc, Nd, qt
1, qt

2, ..., qt
P} indicates the present situation in the satellite

network environment, where Nc, Nd represent current node and destination node for packet

respectively. The parameter qt
p represents the current queue length of the p-th node for p=1

to p=P. In multi agent reinforcement learning, each agent observes a different state, they make

independent routing decisions based on the current state.
• Actions: The action at ∈ A = {p1, p2, ..., pP} represents the agent choose a node from its

neighborhood nodes for each upcoming packet, where pp represents p-th satellite node. In

satellite network, each satellite has up to four neighbor nodes, so the length of A is up to four

[23].
• Reward: The reward function is designed according to the goal we want to achieve, such as the

minimum time delay and the maximum packet arrival rate. In this paper, the transmission delay

consists of two parts, propagation time and waiting time, so the reward function consists of the

following three parts:

– Propagation delay. In satellite networks, the star link often fails and becomes unavailable,

which requires frequent inter-satellite reconnections. For convenience, we consider

both reconnection time and propagation time as propagation time delay. Dij represents

propagation delay between node Ni and node Nj.
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– Queue length. Each satellite node maintains the receiving queue qr and the transmitting

queue qt. Queuing delay occurs when the number of packets received by the satellite is

larger than the length of the satellite receive queue. The agent learns how to forward data

packets to satellite nodes with small queue length to reduce the waiting time.
– Load growth. To avoid packets being forwarded centrally to individual satellite nodes,

causing network congestion, we record the receiving queue length in the previous stage

as the load growth of the satellite, which is recorded as gi. Therefore, gi could be seen as

the congestion level of nodes Ni. This avoids the situation that everyone sends data to

"high-quality" nodes at the same time.

Equation (3) gives the expression of reward function, where qmax represents the maximum queue

length, w1 and w2 represent the growth and delay coefficients respectively. When the next hop is the

destination node, we set the reward to 20N, which will ensure that the packets are transmitted to the

destination node as soon as possible.

rewardj =

{

20N Nj is the destination

qmax − (qr + qt)− w1 ∗ gj − w2 ∗ Dj Otherwise
(3)

As shown in Figure 2, the system framework is consisted by three parts: neighbor node discovery,

offline training and online training. In multi agent reinforcement learning, the learning process of

agent need the information of neighborhood agents, which includes Q-table, link state, and available

resources. So we design the neighborhood discovery part for agents to exchange information. During

the offline training phase, we perform initial training of the agents in a ground network environment.

With generating packets randomly, agents act by observing the state of the packets and the state

of the neighbor nodes. To avoid local optimal solutions, we use the ǫ-greedy strategy to explore

more unknown space. Static network training results are not fully suitable to dynamic LEO satellite

networks, so online training is required to fine-tune the Q-table. Agents make routing decisions for

satellite networks based on the pre-trained model, and update the Q-table with the results of the

feedback. It is important to note that the ǫ-greedy strategy is not used at this stage because we only

need to fine-tune the Q-table. The advantage of using the pre-trained method is that it saves on-board

resources and improves the performance of the initial phase of the algorithm.

Figure 2. Model framework of FRL-SR.

3.2. Neighborhood Discovery

Because the satellite network topology is dynamically changing and the inter-satellite links are

unstable, the satellite’s neighbor nodes change. Therefore, agents need to ensure the neighborhood

nodes periodically so that it knows where could be forwarded to when packets arrived.
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Satellite nodes obtain the neighbor’s information by receiving ’hello’ packets from neighborhood

nodes periodically [24]. In addition, There are Q-table, link information, and available resources

in ’hello’ packet, that Nodes could use to calculate reward values and update its own Q-table. If a

node does not receive hello packets from a neighboring node for a long time, it will assume that the

neighboring node is down and will not send packets to it later. In this paper, nodes only send ’hello’

packet to its neighbors, comparing with flooding ’hello’ packets in terrestrial networks, this method

saves satellite energy costs and does not burden the network.

3.3. Offline Training

The algorithm proposed in this paper needs offline training before being applied to satellite nodes.

The purpose of this process is to reduce the training time of the algorithm online and improve its initial

performance. The network Gt0 at t0 time will be input as the initial state, and the output is that each

satellite node gets a Q-table.

To simulate the random nature of packet generation, the initial and destination nodes of packets

are randomly selected from the set of satellite nodes. To reduce training time, if a packet is forwarded

to its destination node, a new packet is generated, and its initial node and destination node are also

randomly generated.

In order to better explore the unknown space, the ǫ-greedy strategy is adopted in the offline

training phase. As shown in Equation (4), agent randomly chooses an action with probability ǫ, and

with probability 1−ǫ, it chooses the action with the maximum q value. This strategy prevents local

optimal solutions, but the speed of convergence is low. In order to solve the above problem, the

value of ǫ gradually decreases as the reinforcement learning progresses, which can accelerate the

convergence of the algorithm without affecting the learning effect.

at =

{

random action w.p.ǫ

argmaxaQt+1 w.p.1 − ǫ

(4)

Algorithm 1 is the process of offline training. First we need to initialize the training parameters:

numstep is the total number of steps trained, ǫ is the probability value of the greedy strategy, lr is the

learning rate of reinforcement learning, and γ is the discount factor of the Q value update function.

At each step, the algorithm first cleans up the remaining packets in the network and then randomly

generates a preset number of packets. For each satellite node, we first determine whether its sending

queue qt is empty, and the top packet pops up when it is not empty, then select the next hop node

m according to the ǫ−greedy strategy. If the receive queue qr of node m is not full, the packet is

forwarded to m, and the current node will receive the Q table and reward value of node m. After that,
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the Q table of the current node should be updated according to Equation (2). Otherwise, the network

is congested and packets will not do anything until the next round arrives.

Algorithm 1: FRL-SR offline training algorithm

Input: Gt0 =< N, E >; numstep; ǫ; lr; γ

Output: Q-tables for each satellite node

1 initial env, Q-tables;

2 for k=1 to numstep do

3 Clear all data packages;

4 Randomly generate xt data packages;

5 for n=1 to N do

6 if qt in current node n 6= ∅ then

7 Pop a package p from qt;

8 Select an action m according to ǫ − greedy;

9 if qr of node m is not full then

10 Forward packets p to node m;

11 Node m send Q-table and reward to node n;

12 Update the state and Q-table of node n;

13 Update the state of node m;

14 if m is the destination node of package p then

15 reward = 20;

16 Randomly generate a package;

17 end

18 else

19 Wait a round;

20 end

21 end

22 end

23 end

3.4. Online Training

In online training phase, the pre-trained parameter in 3.3 is used as the initial routing decision

strategy. The online training algorithm does two things: one is to make routing decisions based on

the pre-trained model, and the other is to fine-tune the Q-table based on the real satellite network

environment.

Different from offline training, agents in the online training do not make decisions according to

the ǫ−greedy strategy, because agents have avoided the local optimal solution in the previous step.

The main purpose of this process is fine-tune the routing strategy. Moreover, agents at this stage are

already making routing decisions, and the algorithm must ensure that the decisions are sound.

We simplify the satellite network routing problem to finding the smallest delay path. The delay of

a packet consists of two parts: propagation delay and queuing delay. The propagation delay depends

on the inter-satellite link distance and link status, and the queuing delay depends on the available

resources. According to Equation (3), We know that the reward value is linearly related to the delay of

the packet. Equation (5) is the definition of the Q value in reinforcement learning, from which we can

conclude that the Q value represents the estimated total return of an action in the current state, and the

larger the Q value, the smaller the delay. Therefore, the path with the maximum Q is the path with the

minimum delay. According to the greedy algorithm, if each agent chooses the action with the largest

Q value, the latency of the obtained packet is close to the optimal choice.

As shown in Equation (6), we use Qsum to represent the goal of algorithm optimization, which is

a linear combination of the Q values of each agent. Combined with Equation (5), we can derive the
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relationship between Qsum and each reward value, knowing that the reward value and delay are linear,

then Qsum and delay are also linear, so we only need to maximize Qsum to get the minimum delay path.

Qi(s, a) = Ri + γ(Ri+1 + Ri+2 + ... + Rn) (5)

Qsum =
n

∑
i=1

wiQi(si, a) (6)

Suppose the link state of a satellite changes, it is obtained first by the two satellite nodes of this

link, followed by the neighboring nodes of the two satellite nodes. Therefore, the state of links is

serial propagation, which causes certain difficulties for the convergence of the reinforcement learning

algorithm. Especially the state of the satellite network is prone to change, it is possible that the

convergence of the previous stage is not yet complete and the link state has changed again. As show

in Figure 3, different colors represent different orders of transmission (the information of red node

transfer to white node requires four rounds). In the traditional Q-routing algorithm, the agent receives

the Q-table and link state information feedback from the neighbor nodes when and only when it sends

a packet to its neighbor nodes. Then node updates its own Q-table, which is a learning process. This

paper proposes a method named empty packet convergence method to accelerate the perception of

the network state by agents. Neighboring nodes don’t just send status information after receiving a

packet, but broadcast its own message by period t. The traditional learning process only updates a

certain item of the two-dimensional Q table at a time, while the empty packet convergence method

updates the entire content of a node’s action space at a time. The smaller the t, the more often agents

perceives the network. Therefore, we design t to be inversely proportional to the node traffic density;

the higher the traffic density, the smaller the t, and the faster agents perceive the network. This ensures

faster awareness of the state of the network without increasing the network overhead too much.

Figure 3. Schematic diagram of link state propagation.

Algorithm 2 is the pseudocode of online learning process of the algorithm. It differs from the

traditional reinforcement learning algorithm in that this paper proposes an empty packet convergence
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method, which accelerates the obtaining of network status and is more suitable for the state-variant

satellite network environment.

Algorithm 2: FRL-SR online training algorithm

Input: Trained routing strategy model; user data request; lr; γ

Output: Real time routing decision

1 while not done do

2 if time mod t == 0 then

3 Neighborhood discovery;

4 Update the Q-table according to Eq.(2);

5 end

6 while user data request received do

7 Choose the next hop according to Q-table;

8 if qr of the next hop is not full then

9 Transmit data packets;

10 Calculate the reward;

11 Update the Q-table according to Eq.(2);

12 else

13 Wait a round;

14 end

15 end

16 end

3.5. Complexity Analysis

In this paper, we compare FRL-SR with dijkstra algorithm in the algorithm complexity. The

time complexity of the dijkstra algorithm is O(n2), it needs to obtain global state information, and

then calculate the shortest path from the current node to any node through two layers of loops. The

FRL-SR algorithm proposed in this paper only simply queries the Q table stored in the satellite when

making routing decisions, so the time complexity is constant. Therefore, FRL-SR is better suited to

handle routing problems for large satellite constellations. In terms of spatial complexity, both of them

store a two-dimensional array. The spatial complexity of the dijkstra algorithm is O(E +4N) when

using adjacency tables for data storage, where E is the number of edges in the network diagram. The

maximum action space of the FRL-SR algorithm is 4, so the space complexity is O(4N), which not take

up more storage space compared to the dijkstra algorithm.

Another important indicator is the communication overhead during the operation of the algorithm.

For the dijkstra algorithm, it requires each satellite node to broadcast its own status information in

flood, so that each satellite node can receive the global information. The communication overhead is

high, it also has a certain badly impact on the network load. In the FRL-SR algorithm, each satellite

node only needs to broadcast status information to its neighbor nodes, without broadcasting to the

whole network. Even if we increase the number of communication between neighboring nodes in

order to improve the convergence speed, it is much lower than the communication overhead of the

dijkstra algorithm.

4. Simulation Results

In this section, we present the simulation results of the FRL-SR algorithm. The experiment is

mainly divided into two parts, first we simulate different reward functions in reinforcement learning,

and find out which can minimize the delay for our subsequent experiments. Then, we compare the

performance differences between the FRL-SR algorithm proposed in this paper and the traditional

dijkstra algorithm, both of them run in the same network environment and have the same user data

requests. We compared these two algorithms in terms of average delay, packet arriving ratio, and
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network load balance, and explains the reasons for their performance differences. In order to make the

experimental results more accurate, we repeated all the experiments three times, taking the average of

the results as the final results.

The parameters of the experiment are given in Table 3. The network has a total of 7 satellite orbits,

each containing 7 satellites, for a total of 49 satellites [25]. Because interstellar links fail frequently

and link recovery varies, to simulate a satellite network more realistically, we set the propagation

delay to vary according to the sinusoidal curve. In the offline training phase, algorithm runs for 30

episodes, the step for each episode is 200, which ensures each agent can learn the routing strategy in a

limited number of training steps. In the online training phase, we observe the delivery of packets in

the network every 1 second and recorded it. In order to ensure the stability of the network, we adjust

the learning rate of this stage to 0.2, and the corresponding learning rate of the offline training stage is

0.8.

Table 3. Simulation parameters.

Parameters Values

Number of satellites 49
Delay type sinusoidal

Trials 3
Offline training network load 3000

Initial network load for online training 3000
Max queue length 150

Max transmit packages at one time 10
Number of episodes 30

Number of steps peer episode 200
discount factor 0.9

Learning rate for offline training 0.8
Learning rate for online training 0.2

The performance of different rewards is shown in Figure 4. The reward1 function is designed to

be related only to the length of the link between the two nodes. Where Dij is the distance between

node i and node j.

Figure 4. Comparison of different reward performance.
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reward1 =

{

980 Next node is the destination

−0.1 ∗ Dij Otherwise
(7)

The reward2 function is inversely relative to the queue length of the node and the distance

between the two nodes.

reward2 =

{

980 Next node is the destination

300 − (qr + qt)− 5 ∗ gj − 0.1 ∗ Dij Otherwise
(8)

Based on the simulation results, we can conclude that the design of the reward function has a

great influence on the performance of the algorithm. The goal of the algorithm is to obtain the path

with the least delay, so we choose the second reward function for subsequent simulations.

Figure 5 shows the average delay of FRL-SR algorithm and dijksta algorithm. We observe that

both algorithms show good stability over time, FRL-SR algorithm has much lower average latency than

the dijkstra algorithm. The main reason is that FRL-SR not only the propagation delay is considered,

but also the congestion level of the satellite nodes to reduce the waiting delay.

Figure 5. Comparison of the average delay of the FRL-SR algorithm and the Dijkstra algorithm.

The relationship between cumulative number of packets and time is shown in Figure 6. We can see

that over time, the advantages of the FRL-SR algorithm over the dijkstra algorithm gradually become

apparent. For the complex and changeable satellite network environment, the FRL-SR algorithm can

quickly adjust the routing strategy and make the correct routing decision, showing the advantages of

the online decision-making algorithm in dealing with satellite routing problems.

Combining Figure 5 and Figure 6, we observe that the FRL-SR algorithm transmits a higher

number of successful packets in the same amount of time, with the smallest average delay per packet.

This is enough to show the advantages of the FRL-SR algorithm proposed in this paper over the

traditional satellite routing algorithm.

s =

√

∑(x − M)2

n
(9)
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Figure 6. Comparison of the number of successfully delivered packets by FRL-SR algorithm and

Dijkstra algorithm.

Figure 7 shows a comparison of the load balance of nodes in the network. We use the population

standard deviation to express the load balance of the network, as shown in Equation (9) where M is

the mean of the data and n is the total number of nodes in the network, which is a commonly used

parameter to describe the degree of discreteness of the system. By observing the simulation results, we

can get that under the same user request conditions, the FRL-SR algorithm has a better load balancing

effect than the Dijkstra algorithm, the former can make full use of the resources of each node for

routing, while the Dijkstra algorithm is more likely to cause network congestion.

Figure 7. Measure the balance of node load in the network.

Based on the above simulation results, we conclude that the FRL-SR algorithm has lower network

latency and higher data throughput, which is more suitable for satellite networks with variable network

status. In addition, the FRL-SR algorithm also has good load balancing characteristics, and it would

consider both satellite link status and satellite load when making data forwarding decisions, avoiding
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network congestion. The Dijkstra algorithm only blindly forward packets to ports with good link

status, causing congestion on some network links.

5. Conclusions

In this paper, we propose a fast-convergence reinforcement learning algorithm to construct the

routing issue in LEO constellation. Aiming at the characteristics of large dynamic satellite network

status and unstable inter-satellite links, we design a routing method named the fast-convergence

reinforcement learning satellite routing (FRL-SR) for online decision-making, which is always aware

of the network link status and then dynamically adjusts its routing strategy. The FRL-SR algorithm

includes three parts: neighbor node discovery, offline training, and online training. By shortening the

cycle time of agent obtaining network states, we accelerate the convergence speed of the algorithm, so

that the routing decision is more suitable for current network state. In addition, we also performed

a complexity analysis, and the FRL-SR algorithm is superior to the dijkstra algorithm in both time

complexity and spatial complexity.

The simulation results show that the FRL-SR algorithm has a lower average delay and higher

packet arriving ratio compared with the dijkstra algorithm. In addition, the FRL-SR algorithm also

has a good performance on load balancing. It makes full use of the resources of each node and reduce

the probability of network congestion. Multi-agent cooperation is a promising method to solve the

problem of large-scale satellite network routing. In the future work, we will continue to work on

multi-agent reinforcement learning algorithms to better solve the problem of satellite network routing.
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