

Review

Not peer-reviewed version

Old and Novel Enteric Parvoviruses of Dogs

[Paolo Capozza](#) , [Alessio Buonavoglia](#) , [Annamaria Pratelli](#) ^{*} , [Vito Martella](#) , [Nicola Decaro](#)

Posted Date: 20 April 2023

doi: 10.20944/preprints202304.0638.v1

Keywords: dog; enteric viruses; emerging parvoviruses; protoparvoviruses; bocaparvoviruses; chaphamaparvoviruses.

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Review

Old and Novel Enteric Parvoviruses of Dogs

Paolo Capozza ¹, Alessio Buonavoglia ², Annamaria Pratelli ^{1,*}, Vito Martella ¹
and Nicola Decaro ¹

¹ Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, BA, Italy.

paolo.capozza@uniba.it (P.C.); vito.martella@uniba.it (V.M.); nicola.decaro@uniba.it (N.D.)

² Dental School, Department of Biomedical and Neuromotor Sciences, Via Zamboni 33, 40126 Bologna, Italy.

alessio.buonavoglia85@gmail.com (A.B.)

* Correspondence: annamaria.pratelli@uniba.it; Tel.: +39-080-4679835

Abstract: Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dog. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.

Keywords: dog; enteric viruses; emerging parvoviruses; protoparvoviruses; bocaparvoviruses; chaphamaparvoviruses

1. Introduction

Gastroenteritis is considered a common clinical problem worldwide in domestic carnivores, chiefly in animals younger than one year of age and living in high-density animal environments, such as catteries and canine shelters. Viruses may be detected in 40-60% of diarrheal fecal samples from domestic dogs and cats, and they represent the main cause of gastroenteritis in these animal species [1-5]. Various viral agents, including astroviruses, adenoviruses, noroviruses, sapoviruses, rotaviruses, vesiviruses, kobuviruses, circoviruses, have been detected in the stools of dogs and/or cats, associated with diarrhea either alone or in mixed infections, occasionally resulting in severe clinical signs. However, the most widely recognized primary causes of viral gastroenteritis in domestic carnivores are parvoviruses and enteric coronaviruses [3-7].

In recent years, using molecular assays and metagenomic approaches for virus discovery and characterization, different research groups have detected novel variants, lineages and species of parvoviruses in domestic carnivores, leading to a change in the classification of the family *Parvoviridae* [7-18]. Parvoviruses (family *Parvoviridae*) are small (23 to 28 nm in diameter), nonenveloped viruses surrounded by an icosahedral capsid. They have a linear, single- stranded DNA genome, ranging from 4.5 to 5.5 kb (kilobases) in length, with complex hairpin structures at the 5' and 3' ends that are essential for viability [9]. The genome contains two open reading frames (ORFs). The first ORF encodes two non-structural (NS) proteins, NS1 and NS2, whilst the second ORF encodes two structural proteins, viral protein (VP) 1 and VP2 [8]. NS1 is a pleiotropic nuclear phosphoprotein [19], essential for viral replication and responsible for inducing cell apoptosis [9]. VP2 is the major capsid protein and determines the viral tissue tropism and the host range [20-23]. Parvoviruses are considered members of the same species if their NS1 proteins contain more than 85% amino acid (aa) sequence identity, in accordance with the the International Committee on Taxonomy of Viruses (ICTV) Classification standard. They can be classed as the same taxon if their protein sequences cluster as a strong monophyletic lineage based on their full NS1 protein sequence at the subfamily level and their SF3 helicase domains at the family level. Moreover, NS1 proteins of members of the same genus should share at least 35-40% aa sequence identity, with a coverage of >80% between any two members. Along with the sequence identity-based criteria, common genus affiliation can also be

justified based on a similar genome organization, i.e., presence or absence of certain auxiliary-protein-encoding genes, genome length, and/or transcription strategy [10,11,24–26].

The *Parvoviridae* family is classified into three subfamilies, according to current ICTV guidelines: *Parvovirinae* and *Densovirinae*, which infect vertebrates and arthropods, respectively, and the new subfamily *Hamaparvovirinae*, which infects both [10–12,25]. ICTV categorizes the subfamily *Parvovirinae* into eleven genera: Amdoparvovirus, Artiparvovirus, Aveparvovirus, Bocaparvovirus, Copiparvovirus, Dependoparvovirus, Erythroparvovirus, Loriparvovirus, Protoparvovirus, Sandeparvovirus and Tetraparvovirus (Table 1) [10–12,25,27]. Unknown parvoviruses have been found in a variety of domestic and wild species including dogs, sea otters, seals, bats, camels, horses, and pigs [28–34].

Table 1. Emerging parvoviruses detected in dogs and their current classification.

Subfamily	Genus	Species	Common names used in literature	Country of first identification			Detection source	Reference
				Year	Source	Reference		
<i>Parvovirinae</i>	<i>Protoparvovirus</i>	<i>Protoparvovirus</i>	Canine Parvovirus type 2 (CPV-2 and variant a, b, c)	Texas	1977	Stools	[35]	
		<i>Carnivoron 1</i>	Feline Panleukopenia Virus (FPV-like)	Germany	1992	Thymus, bone marrow		[36]
		<i>Protoparvovirus</i>	Canine Bufavirus (CBuV)	Italy	2018	Stools, respiratory samples	[32]	
		<i>Carnivoron 3</i>	Canine Parvovirus type 1 (CPV-1), Canine Minute Virus (CnMV/MCV), Canine Bocavirus 1 (CBoV-1)	USA	1967	Stools		
<i>Bocaparvovirus</i>	<i>Bocaparvovirus</i>	<i>Bocaparvovirus</i>	Canine Bocavirus 2 (CBoV-2)	USA	2012	Stools, respiratory samples	[38,39]	
		<i>Carnivoron 2</i>	Canine Bocavirus 3 (CBoV-3)	USA	2013	Liver		
	<i>Bocaparvovirus</i>	<i>Carnivoron 7</i>	Canine chaphamaparvovirus-1 (CChPV-1)	USA	2017	Stools	[41]	
<i>Hamaparvovirinae</i>	<i>Chaphamaparvovirus</i>	<i>Carnivorechaphamaparvovirus 1</i>	Canine chaphamaparvovirus-1 (CChPV-1)	USA	2017	Stools		

There is little information on the epidemiology and genetic variability of these novel parvoviruses, and it is uncertain if these viruses may operate as enteric infections in dogs or what effect they have on canine health.

The purpose of this study is to offer an update on canine paroviruses that have recently been found in relation with gastrointestinal signs.

2. Protoparvoviruses

The species *Protoparvovirus Carnivoron 1* (Table 1), within the genus *Protoparvovirus*, includes genetically and antigenically related viruses such as canine parvovirus type 2 (CPV-2), feline panleukopenia virus (FPV), and parvoviruses of wild animal, all which cause severe diseases, especially in young animals [7,10–12,27,42,43]. The phylogenetic relationships between CPV-2

isolates from dogs and the viruses isolated from cats (FPV), mink (mink enteritis virus, MEV), raccoon (raccoon parvovirus, RPV), raccoon dogs (raccoon dog parvovirus, RDPV) and blue foxes (blue fox parvovirus, BFPV) showed that all these viruses belong to the species *Protoparvovirus Carnivoron 1* and derive from a single common ancestor [44,45]. Due to a >99% nucleotide (nt) genomic identity with FPV, it was suggested that CPV-2 might be originated from a close relative of FPV through accumulation of punctate mutations [44]. Key amino acid (aa) residues (80R, 93N, 103A, 323N, 564S, and 568G) in VP2 protein distinguish CPV-2 from FPV [42,46–50]. CPV-2 likely arose by acquiring mutations that allowed binding to the canine transferrin receptor (TfR) type-1 [45,51,52]. Several studies have demonstrated that TfR plays a key role in the susceptibility of cells to infection by these viruses [20,53,54]. The evolutionary pathways and inter-species jump of protoparvoviruses in carnivores have stimulated a high scientific interest worldwide.

2.1. CPV-2 variants

CPV emerged as a pathogen of dogs in the late 1970s when it was responsible for a global panzootic in dogs of all ages, which at that time were naïve to the infection [42]. CPV is considered extremely contagious and cause high morbidity with increased incidence in shelters, pet stores and breeding kennels. A rapid clinical course characterizes the disease with death often occurring 2–3 days after the onset of signs in nonprotected animals [55,56]. The infection is generally acquired by the fecal-oral route through contact with feces from infected dogs or contaminated surfaces [5]. The virus mainly infects mitotically active tissues, such as the lymphoid tissues, intestinal epithelium and bone marrow, and the heart in neonatal pups. Following an incubation period of 3–7 days, an enteric form is observed that is characterized by vomiting, hemorrhagic diarrhea, depression, loss of appetite, fever, and dehydration in younger dogs [23,55–57]. The disease can affect dogs at any age, but severe infection is most common in puppies between 6 weeks and 6 months of age [58], with all breeds being susceptible to the disease [58,59].

The original strain was named CPV-2 to distinguish it from the genetically and antigenically unrelated canine parvovirus type 1 (CPV-1, also known as canine minute virus, CnMV or MCV), which has been reclassified as *Bocaparvovirus Carnivoron 1* (genus *Bocaparvovirus*) (Table 1) and is associated with neonatal mortality [42,60]. A few years after its emergence, CPV-2 gave origin to a first antigenic variant, named CPV-2a, which differs from the original type-2 in 5–6 aa positions of the major capsid (VP2) protein. A second antigenic variant, CPV-2b, displayed a further mutation in the VP2 protein (from asparagine to aspartic acid at aa residue 426) [61–63]. In 2000, a third antigenic variant, CPV-2c, was detected, which displayed the aa change asparagine/aspartic acid (N/D) to glutamic acid (E) at residue 426 of the VP2 protein [64]. A single aa change among CPV-2a, -2b and -2c confers different antigenic properties, as evidenced by the different reactivity to specific monoclonal antibodies [65]. However, the variants lack a clear monophyletic segregation due to accumulating other point mutations in different parts of their genome and encoded proteins [66].

The three variants are distributed worldwide, and they are undergoing dynamic changes. The original CPV-2 or CPV-2-like virus was completely replaced in the field by CPV-2 variants after 1980, while it is still present in some vaccine formulations [49,65,67–81]. A recent study revealed that the CPV-2c proportion has been increasing gradually, replacing CPV-2a as the new dominant variant since 2020 [82]. In addition, CPV-2b maintained a low epidemic relevance with a peak of circulation in 2003. However, the dynamic changes in CPV-2 variants may differ geographically. In Asia, CPV-2a has long been the dominant strain but it was replaced by CPV-2c in 2020. In Europe, CPV-2a/2b/2c are co-epidemic, accounting for a similar proportion, and the circulation rate of CPV-2/2-like viruses is relatively low. In 2004, CPV-2a replaced CPV-2c as the dominant variant in South America. In Oceania, there was a gradual change from CPV-2a to a co-endemic status for CPV-2a and CPV-2b. Interestingly, before 2014, CPV-2 variants in North America co-circulated without an apparent trend, but CPV-2c steadily became predominant from 2014 onwards. Likewise, based on the temporal dynamic patterns, CPV-2c after 2017 appeared to replace CPV-2a also in Asia, South America and Africa, but not in Europe and Oceania [82–84].

CPV-2 VP2 is the main component of the viral envelope. Several VP2 amino acids are related to antigenicity and host range [85], and antigenic drift may account for vaccine failure [86,87]. Previously, it was reported that three aa changes in VP2 (F267Y, Y324I and T440A) are of particular concern for vaccine failures [88]. Monitoring of the patterns of variation of these three aa residues has shown that strains with the mutations 267Y and 324I have become predominant. In contrast, the frequency of 440A did not exceed that of the original residue 440T, which peaked in 2014 and then declined gradually thereafter [82].

Recent analyses of aa mutations in the VP2 gene of CPV-2c Asian strains revealed two frequent mutations, A5G and Q370R [82,89]. A5G was first reported in China in 2015, although its potential functional consequences remain to be determined [90]. Q370R first appeared in CPV-2a strains isolated from giant pandas in Sichuan, China, and subsequently became the dominant mutation of CPV-2c [91]. It is unclear, to date, if the vaccines used for CPV prophylaxis provide complete protection against the 5G and 370R mutant strains [82].

In summary, it is important to monitor the evolution of VP2 to identify readily the emergence of new variants of CPV-2. Due to the rapid evolution of CPV-2 and the continuous emergence of new variants, some immunized dogs still develop the disease [51,66,92,93]. Overall, understanding the molecular and biological characteristics and epidemiological trends of CPV-2 can help to prevent and control parvovirus disease.

Compared with the original CPV-2 strain, the variants exhibit better adaptation to the canine hosts, and have re-gained the feline host range, causing subclinical infection or diseases indistinguishable from feline panleukopenia induced by FPV in cats [24,43].

2.2. FPV and FPV-like

Transmission of CPV-2 to cats and FPV to dogs has been an interesting topic for researchers, and many *in-vivo* and *in-vitro* experiments have been conducted to provide more details regarding the host ranges of these viruses [94]. Based on in vitro results, FPV efficiently replicates only in feline cells, whereas CPV-2 can replicate in both canine and feline cells [22,36,57,94–96].

The host ranges of FPV and CPV-2 are quite sophisticated *in vivo*. Specifically, FPV can replicate in feline tissues, including the thymus, spleen, lymph nodes, and intestinal epithelial cells, and high viral loads are shed in feces. In dogs, the virus is found only in the thymus and bone marrow, but it is not detected in the mesenteric lymph nodes or in the enteric tract [36].

Under natural conditions, all CPV-2 variants have been identified, although sporadically, from cats with feline panleukopenia with several independent reports from different countries [43,51,97–101]. On the opposite, reports on FPV in dogs are less frequent. In 1993, an isolate was made from a typical clinical parvoviral infection in a dog, but the virus possessed properties more similar to FPV [100]. More recently, transmission of FPV to dogs with enteric clinical signs has been reported in Pakistan, Thailand, Vietnam, China and in Italy [79,94,95,102–104]. These viruses have been characterized as FPV after either partial or complete sequence analysis of the gene encoding for the VP2. A unique K93N aa mutation involved in host range control was observed in an FPV-like strain in Thailand [103] and the I101T mutation was found in dog-associated FPV strains from Vietnam [94], China [95] and Italy [104]. The pathogenetic role, if any, of FPV in dogs remains unclear. The adoption of cost-effective sequencing strategies in recent years has demonstrated that residual circulation of FPV or FPV-like viruses occurs in dogs in some settings but, overall, FPV seems to infect dogs only occasionally. Apical domain residues in host TfR seem critical for controlling parvovirus binding [20,53,105,106]. Sequencing of the canine TfR from FPV-infected dogs could help to understand the ability of FPV to infect some dogs [50]. Likewise, genome sequencing could be useful to monitor the spread, evolution, and potential host jumping of *Protoparvovirus Carnivoron 1* variants in domestic and wild carnivores [104].

2.3. Canine bufavirus

In 2018, a new protoparvovirus strain was detected in a litter of five-month-old puppies involved in an Italian outbreak of canine infectious respiratory disease (CIRD) [32]. This virus was

provisionally named canine bufavirus (CBuV) and displayed low aa 19.3%–51.4% identity in the NS1 to members of the species *Protoparvovirus Carnivoron 1*, while the closest relatives to CBuV (47.2%–51.4% aa identity in NS1) were protoparvoviruses identified in human and non-human primates, commonly termed as bufaviruses (BuVs) [107–109]. In agreement with ICTV classification criteria, the canine protoparvovirus could be considered members of a new species, *Protoparvovirus Carnivoron 3* (Table 1), within the genus *Protoparvovirus* [32,110].

In humans and more recently in wild animals (wolves and foxes) BuVs have been identified almost exclusively in the enteric tract [111,112]. However, investigations in dogs [32,113], monkeys [109], shrews [114], and sea otters [33] suggest possible extraintestinal and/or systemic infections of BuVs. In 2019, in China, canine BuVs were detected in sera from dogs with signs of CIRD [113].

Presently, the circulation of CBuV has been reported in Italy [32,115], China [113,116], and India [117], but its genetic and pathobiological features are still unclear [118].

In Italy, the detection rate of this virus was 7.7% (16/207), with a higher frequency (8.8%) in diarrheic dogs, but CBuV infection was non statistically correlated with gastrointestinal disease [115]. In China, CBuV was found in Shanghai, Guangxi province and Henan province, and the positive rates were 42.15% (51/121), 2.5% (5/200), and 1.74% (2/115), respectively [113,116,119]. Another study in the Chinese province of Anhui revealed a CBuV prevalence of 2.5% (3/120) [118]. In a more recent investigation, CBuV was detected with a proportion of 4.3% (8/186) from both diarrheic puppies (< 1 year old) and adult dogs (> 1 year old) [117]. The nearly complete genome sequence (strain 407/PVNRTVU/2020) obtained in that study shared a 93.4–98.8% nucleotide (nt) identity to other available CBuV sequences. Furthermore, the strain 407/PVNRTVU/2020 was most closely related to other Chinese CBuV strains, forming a distinct lineage [117].

The primary clinical sign caused by a member of *Protoparvovirus* in carnivores is diarrhea [5]. Some studies have shown a positive correlation between CBuV infection and diarrhea, and CBuV DNA was also detected in the serum samples of dogs with gastroenteritis [116]. Genome sequencing of CBuV strains has demonstrated genetic heterogeneity and suggested that recombination may be important factors in the virus evolution [115].

In most cases, CBuV genome has been co-detected in dogs with other viral pathogens including CPV-2 [115,118], canine coronavirus (CCoV), canine kobuvirus (CKoV) [115], canine adenovirus type 1 (CAdV-1) and type 2 (CAdV-2) [117], suggesting that CBuV could be considered as a common component of the canine fecal virome. Although the patho-biological role of CBuV in dogs remains still unclear, a possible role of this virus in the etiology of canine enteritis can be hypothesized. Synergistic effects of co-infection with other enteric viruses could lead to more serious clinical signs.

As observed for CPV-2 and FPV, there is evidence that CBuV can also infect the feline host [110,120].

The ability of viruses in the genus *Protoparvovirus* to determine severe clinical signs in dogs, as well as their multi-host nature, must be considered in the implementation of individual and collective prophylaxis plans, in order to limit the spread of these viruses not only between individuals of the same species, but also between individuals of different species sharing the same environment.

3. Bocaparvoviruses

The genus *Bocaparvovirus* (BoVs), subfamily *Parvovirinae*, includes virus that cause diseases in humans and in various animals, including porcine BoVs [121,122], bovine parvovirus [123], California sea lion BoV [124], bat BoV [125], rabbit BoV [126], rodent BoV [127], pine marten BoV [128], mink BoV [129], canine BoVs [37–39], feline BoVs [13,14,38,130], gorilla BoV [131,132] and human BoVs (HBoVs) [133,134], suggesting a potentially wide host range of these viruses.

Viruses in this genus are monophyletic and share >30% NS1 aa identity. However, <30% identity values are allowed between certain viruses to accommodate disparities between current and previous analytical methods. BoVs are unique among parvoviruses since they possess an additional ORF (ORF3), located between the non-structural (ORF1) and structural (ORF2) coding regions of their genome (5.5 kb ssDNA). ORF3 encodes the NP1, a highly phosphorylated protein that differs from proteins seen in other parvoviruses and is involved in RNA processing. NP1 regulates VP-

encoding RNAs splicing and read-through of the proximal polyadenylation [27,123,135-139]. The great majority of these viruses have been identified using metaviromic strategies and they have not been adapted to culture systems [10,11,27].

The genus was originally named according to its initial two members, bovine parvovirus (BPV) and CnMV (formerly known as CPV-1) [140]. Based on ICTV classification criteria, BoVs are classified into thirty-two species, of which at least six species have been detected in domestic carnivores and classified as *Bocaparvovirus Carnivoron* (CBoV) 1 to 5, while a sixth species (CBoV-6) has been found in minks (Table 1) [11,12,27,129]. Currently, BoVs identified in domestic dogs have been classified within the species CBoVs-1, 2 and 3 [13,14,38] and they have been associated with different clinical manifestations.

As previously mentioned, CnMV, is an autonomous parvovirus of dogs that is genetically and antigenically unrelated to CPV-2 [42]. CnMV is currently classified as species *Bocaparvovirus Carnivoron-1* [141]. CnMV was first isolated in 1967 from the feces of a clinically healthy military dog [35,142] and it seems common worldwide in domestic dogs of different ages. Its clinical significance and virulence are uncertain. It determines mild to inapparent infections in puppies, and it is weakly pathogenic in adults [140]. Pneumonitis, myocarditis, lymphadenitis, and hepatitis have been reported in dogs with CnMV infection [60,143,144]. CnMV may cross the placenta, causing early fetal death, birth defects and neonatal mortality [60,143,145].

Bocaparvovirus Carnivoron -2 (CBoV-2) was identified in 2012 in association with canine respiratory disease in a metagenomic study [39]. The NS, NP, and VP genes of CBoV-2 share less than 63%, 62%, and 64% aa identity with CnMV (CBoV-1), respectively [39] CBoV-2 infection also has been associated with massive enteritis in a litter of dogs with atrophied and fused villi, severe crypt regeneration, and severe bone marrow and lymphoid atrophy [28]. In addition, interstitial pneumonia has been reported to be a feature of CBoV-2 infection [146].

Variants of CBoV-2 have been also detected in fecal, nasal, urine and blood samples collected from dogs in Hong Kong [38], thus suggesting possible extraintestinal and/or systemic infections. A more recent investigation has identified a novel strain of CBoV-2 in a litter of puppies that died in Thailand from acute dyspnea and hemoptysis, using a metagenomic approach [147]. This strain was most closely related to previously identified CBoV-2 strains from South Korea [146] and Hong Kong [28].

Using deep sequencing, a third type of canine bocavirus, CBoV-3 (currently proposed as *Bocaparvovirus Carnivoron-7*) (Table 1) [27] was identified in 2013 in the liver of a dog with hemorrhagic gastroenteritis, necrotizing vasculitis, granulomatous lymphadenitis and anuric renal failure, and coinfected with a canine circovirus [40]. CBoV-3 has been classified as an additional novel species since in the NS1, NP1 and VP1 regions it shares only 49-51%, 52-57% and 56-57% aa identity, respectively, with CBoV-1 and CBoV-2 [40]. On phylogenetic analysis of the complete VP1, CBoV-3 is phylogenetically distinct from other canine bocaparvoviruses [40]. Episomal forms were detected by PCR indicating that replication may occur in hepatocytes or other liver cell types. Since circovirus infection can lead to lymphocyte depletion and immunosuppression in the host [148], the pathogenic role of CBoV-3 in the original study could not be assessed clearly [40].

Including CBoVs in the diagnostic algorithm of canine enteritis using specific molecular tools could help to understand better the enteropathogenic role of these viruses and to assess whether some CBoV species/strains possess peculiar phenotype changes.

Finally, it is noteworthy to mention that several bocaparvoviruses have been detected in cats and other wildlife carnivores [13,14,24,38,129,130,149].

4. Chaphamaparvoviruses

The genus *Chaphamaparvovirus* (ChPV), belonging to the subfamily *Hamaparvovirinae*, recently introduced into the family *Parvoviridae* (Table 1). This genus includes viruses genetically more related to invertebrate-infecting parvoviruses than to other members of the subfamily *Parvovirinae*. Detection and characterization of viruses related to this proposed taxon might eventually result in splitting the genus into more genera. Currently, however, their clustering as a single genus is the only common

node characterized by significant topology support by both Bayesian and ML-based inference [11,12,25,27].

ChPV was first identified in an oropharyngeal swab sample collected from a fruit bat (*Eidolon helvum*) in Ghana (Africa) [150], ChPV-like viruses have been described in several additional animal species [25], including dogs and cats [15,16,18,41,151]. The first description of ChPV in domestic carnivore's dates back to 2017, USA, in a metaviromic study carried out on the feces of two dogs with hemorrhagic diarrhea of unknown etiology [41]. In subsequent studies, viruses genetically related to the American strains of canine ChPV (provisionally termed as cachavirus) have been detected in feces of dogs and cats in China and Italy [15,18,151]. Based on ICTV classification criteria, all strains of canine origin segregate into the new species *Carnivore chaphamaparvovirus 1* (CaChPV-1) [11].

A possible association of CaChPV-1 with enteric disease in dogs was first hypothesized in a 2019 study [41]. However, this possible association has not been demonstrated in other studies [18,151]. In a recent investigation in Thailand, a correlation was observed with the presence of viral DNA in samples of young dogs with mild enteritis but not in archival samples of deceased animals with diarrhea [152].

Although the presence of CaChPV-1 DNA in cases of canine enteric disease has been documented repeatedly [18,41,151,152], information about CaChPV-1 tropism and viral distribution in the intestine or in other organs is limited.

Overall, the potential clinical impact of ChPVs on canine health and its possible role as primary enteric pathogen remain to be clarified [18,41,151,152]. Indeed, ChPVs DNA was often detected in dogs in co-infection with other viral pathogens such as CBuV, CAdV [153], CPV-2, CCoV [18,151], and canine distemper virus (CDV) [18].

5. Conclusions

In the last twenty years, exploration of canine virome using sequence-independent protocols and consensus (pan-viral) PCR strategies, has identified several novel parvovirus species and variants in dogs with enteric and/or respiratory disease. Whether these novel canine parvoviruses may act as primary causative pathogens or synergistic agents remain to be elucidated.

A trend in the diagnostics of human infectious disease is the adoption of syndromic testing panels covering a wide spectrum of common and uncommon pathogens based on advanced microbiology technologies such as multiplex molecular assays (i.e., syndromic diagnostic tests). Including these novel canine parvoviruses in the diagnostic algorithms of canine diseases, combined with larger epidemiological studies with a multidisciplinary approach and/or with experimental infections, could help to clarify their epidemiology and their eventual association, if any, with canine diseases. Expanding our knowledge on the enteric virome of animals at the animal-human interface is, by the way, necessary to assess more properly eventual zoonotic risks and fulfill the recommendations of the One Health paradigm.

Interestingly, multi-species circulation of some of these novel parvoviruses could represent a challenge when devising measures of prophylaxis in animals of different species living/housed in the same household, shelters and clinics.

Use of vaccines, when available, could prevent the spread of many of these emerging parvoviruses, although this strategy should be complemented with detailed disinfection plans and physical separation of animals, chiefly in the case of suspected parvovirus circulation in multi-animal and multi-species environments.

Author Contributions: Conceptualization, N.D and A.P.; writing—original draft preparation, P.C. and A.B.; writing—review and editing, N.D., A.P., and V.M.; funding acquisition, V.M. All authors have read and agreed to the published version of the manuscript.

Funding: Parvovirus research was supported by EU funding within the MUR PNRR Extended Partnership Initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Decaro, N.; Desario, C.; Billi, M.; Mari, V.; Elia, G.; Cavalli, A.; Martella, V.; Buonavoglia, C. Western European epidemiological survey for parvovirus and coronavirus infections in dogs. *Vet J* **2011**, *187*, 195–199, doi:10.1016/j.tvjl.2009.10.027.
- Gizzi, A.B.; Oliveira, S.T.; Leutenegger, C.M.; Estrada, M.; Kozemjakin, D.A.; Stedile, R.; Marcondes, M.; Biondo, A.W. Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel. *BMC Vet Res* **2014**, *10*, 23, doi:10.1186/1746-6148-10-23.
- Greene, E.C. Feline enteric viral infections. In *Infectious Diseases of the Dog and Cat*, 4th ed.; E., G.C., Ed.; Linda Duncan: St. Louis, Missouri, 2012; pp. 80–88.
- Greene, E.C.; Decaro, N. Canine viral enteritis. In *Infectious Diseases of the Dog and Cat*, 4th ed.; E., G.C., Ed.; Linda Duncan: St. Louis, Missouri, 2012; pp. 67–79.
- Mazzaferro, E.M. Update on Canine Parvoviral Enteritis. *Vet Clin North Am Small Anim Pract* **2020**, *50*, 1307–1325, doi:10.1016/j.cvsm.2020.07.008.
- Caddy, S.L. New viruses associated with canine gastroenteritis. *Vet J* **2018**, *232*, 57–64, doi:10.1016/j.tvjl.2017.12.009.
- Di Martino, B.; Di Profio, F.; Melegari, I.; Marsilio, F. Feline Virome—A Review of Novel Enteric Viruses Detected in Cats. *Viruses* **2019**, *11*, doi:10.3390/v11100908.
- Hoelzer, K.; Parrish, C.R. The emergence of parvoviruses of carnivores. *Vet Res* **2010**, *41*, 39, doi:10.1051/vetres/2010011.
- Cotmore, S.F.; Tattersall, P. Parvovirus diversity and DNA damage responses. *Cold Spring Harb Perspect Biol* **2013**, *5*, doi:10.1101/cshperspect.a012989.
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Penzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. *J Gen Virol* **2019**, *100*, 367–368, doi:10.1099/jgv.0.001212.
- Penzes, J.J.; Soderlund-Venermo, M.; Canuti, M.; Eis-Hubinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. *Arch Virol* **2020**, *165*, 2133–2146, doi:10.1007/s00705-020-04632-4.
- Chung, H.C.; Kim, S.J.; Nguyen, V.G.; Shin, S.; Kim, J.Y.; Lim, S.K.; Park, Y.H.; Park, B. New genotype classification and molecular characterization of canine and feline parvoviruses. *J Vet Sci* **2020**, *21*, e43, doi:10.4142/jvs.2020.21.e43.
- Ng, T.F.; Mesquita, J.R.; Nascimento, M.S.; Kondov, N.O.; Wong, W.; Reuter, G.; Knowles, N.J.; Vega, E.; Esona, M.D.; Deng, X.; et al. Feline fecal virome reveals novel and prevalent enteric viruses. *Vet Microbiol* **2014**, *171*, 102–111, doi:10.1016/j.vetmic.2014.04.005.
- Zhang, W.; Li, L.; Deng, X.; Kapusinszky, B.; Pesavento, P.A.; Delwart, E. Faecal virome of cats in an animal shelter. *J Gen Virol* **2014**, *95*, 2553–2564, doi:10.1099/vir.0.069674-0.
- Ji, J.; Hu, W.; Liu, Q.; Zuo, K.; Zhi, G.; Xu, X.; Kan, Y.; Yao, L.; Xie, Q. Genetic Analysis of Cachavirus-Related Parvoviruses Detected in Pet Cats: The First Report From China. *Front Vet Sci* **2020**, *7*, 580836, doi:10.3389/fvets.2020.580836.
- Li, Y.; Gordon, E.; Idle, A.; Altan, E.; Seguin, M.A.; Estrada, M.; Deng, X.; Delwart, E. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. *Viruses* **2020**, *12*, doi:10.3390/v12050506.
- Di Profio, F.; Sarchese, V.; Palombieri, A.; Fruci, P.; Massirio, I.; Martella, V.; Fulvio, M.; Di Martino, B. Feline chaphamaparvovirus in cats with enteritis and upper respiratory tract disease. *Transbound Emerg Dis* **2021**, doi:10.1111/tbed.14032.
- Hu, W.; Liu, Q.; Chen, Q.; Ji, J. Molecular characterization of Cachavirus firstly detected in dogs in China. *Infect Genet Evol* **2020**, *85*, 104529, doi:10.1016/j.meegid.2020.104529.
- Gilbert, L.; Valilehto, O.; Kirjavainen, S.; Tikka, P.J.; Mellett, M.; Kapyla, P.; Oker-Blom, C.; Vuento, M. Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells. *FEBS Lett* **2005**, *579*, 385–392, doi:10.1016/j.febslet.2004.11.101.
- Hueffer, K.; Govindasamy, L.; Agbandje-McKenna, M.; Parrish, C.R. Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. *J Virol* **2003**, *77*, 10099–10105, doi:10.1128/jvi.77.18.10099–10105.2003.

21. Hueffer, K.; Parker, J.S.; Weichert, W.S.; Geisel, R.E.; Sgro, J.Y.; Parrish, C.R. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. *J Virol* **2003**, *77*, 1718-1726, doi:10.1128/jvi.77.3.1718-1726.2003.
22. Hueffer, K.; Parrish, C.R. Parvovirus host range, cell tropism and evolution. *Curr Opin Microbiol* **2003**, *6*, 392-398, doi:10.1016/s1369-5274(03)00083-3.
23. Nelson, C.D.; Palermo, L.M.; Hafenstein, S.L.; Parrish, C.R. Different mechanisms of antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of monoclonal antibodies. *Virology* **2007**, *361*, 283-293, doi:10.1016/j.virol.2006.11.032.
24. Capozza, P.; Martella, V.; Buonavoglia, C.; Decaro, N. Emerging Parvoviruses in Domestic Cats. *Viruses* **2021**, *13*, doi:10.3390/v13061077.
25. Penzes, J.J.; de Souza, W.M.; Agbandje-McKenna, M.; Gifford, R.J. An Ancient Lineage of Highly Divergent Parvoviruses Infects both Vertebrate and Invertebrate Hosts. *Viruses* **2019**, *11*, doi:10.3390/v11060525.
26. Reed, A.P.; Jones, E.V.; Miller, T.J. Nucleotide sequence and genome organization of canine parvovirus. *J Virol* **1988**, *62*, 266-276, doi:10.1128/JVI.62.1.266-276.1988.
27. International Committee on Taxonomy of Viruses (ICTV). Available online: Current ICTV Taxonomy Release | ICTV (accessed on accessed 14 March 2023).
28. Bodewes, R.; Lapp, S.; Hahn, K.; Habierski, A.; Forster, C.; Konig, M.; Wohlsein, P.; Osterhaus, A.D.; Baumgartner, W. Novel canine bocavirus strain associated with severe enteritis in a dog litter. *Vet Microbiol* **2014**, *174*, 1-8, doi:10.1016/j.vetmic.2014.08.025.
29. Canuti, M.; Eis-Huebinger, A.M.; Deijs, M.; de Vries, M.; Drexler, J.F.; Oppong, S.K.; Muller, M.A.; Klose, S.M.; Wellinghausen, N.; Cottontail, V.M.; et al. Two novel parvoviruses in frugivorous New and Old World bats. *PLoS One* **2011**, *6*, e29140, doi:10.1371/journal.pone.0029140.
30. Cui, J.; Fan, J.; Gerber, P.F.; Biernacka, K.; Stadejek, T.; Xiao, C.T.; Opriessnig, T. First identification of porcine parvovirus 6 in Poland. *Virus Genes* **2017**, *53*, 100-104, doi:10.1007/s11262-016-1386-y.
31. Divers, T.J.; Tenant, B.C.; Kumar, A.; McDonough, S.; Cullen, J.; Bhuva, N.; Jain, K.; Chauhan, L.S.; Scheel, T.K.H.; Lipkin, W.I.; et al. New Parvovirus Associated with Serum Hepatitis in Horses after Inoculation of Common Biological Product. *Emerg Infect Dis* **2018**, *24*, 303-310, doi:10.3201/eid2402.171031.
32. Martella, V.; Lanave, G.; Mihalov-Kovacs, E.; Marton, S.; Varga-Kugler, R.; Kaszab, E.; Di Martino, B.; Camero, M.; Decaro, N.; Buonavoglia, C.; et al. Novel Parvovirus Related to Primate Bocaviruses in Dogs. *Emerg Infect Dis* **2018**, *24*, 1061-1068, doi:10.3201/eid2406.171965.
33. Siqueira, J.D.; Ng, T.F.; Miller, M.; Li, L.; Deng, X.; Dodd, E.; Batac, F.; Delwart, E. Endemic Infection of Stranded Southern Sea Otters (*Enhydra Lutris Nereis*) with Novel Parvovirus, Polyomavirus, and Adenovirus. *J Wildl Dis* **2017**, *53*, 532-542, doi:10.7589/2016-04-082.
34. Lau, S.K.P.; Ahmed, S.S.; Tsoi, H.W.; Yeung, H.C.; Li, K.S.M.; Fan, R.Y.Y.; Zhao, P.S.H.; Lau, C.C.C.; Lam, C.S.F.; Choi, K.K.F.; et al. Bats host diverse parvoviruses as possible origin of mammalian dependoparvoviruses and source for bat-swine interspecies transmission. *J Gen Virol* **2017**, *98*, 3046-3059, doi:10.1099/jgv.0.000969.
35. Eugster, A.K.; Bendele, R.A.; Jones, L.P. Parvovirus infection in dogs. *J Am Vet Med Assoc* **1978**, *173*, 1340-1341.
36. Truyen, U.; Parrish, C.R. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo. *J Virol* **1992**, *66*, 5399-5408, doi:10.1128/JVI.66.9.5399-5408.1992.
37. Binn, L.N.; Lazar, E.C.; Eddy, G.A.; Kajima, M. Recovery and characterization of a minute virus of canines. *Infect Immun* **1970**, *1*, 503-508, doi:10.1128/IAI.1.5.503-508.1970.
38. Lau, S.K.P.; Woo, P.C.Y.; Yeung, H.C.; Teng, J.L.L.; Wu, Y.; Bai, R.; Fan, R.Y.Y.; Chan, K.H.; Yuen, K.Y. Identification and characterization of bocaviruses in cats and dogs reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. *J Gen Virol* **2012**, *93*, 1573-1582, doi:10.1099/vir.0.042531-0.
39. Kapoor, A.; Mehta, N.; Dubovi, E.J.; Simmonds, P.; Govindasamy, L.; Medina, J.L.; Street, C.; Shields, S.; Lipkin, W.I. Characterization of novel canine bocaviruses and their association with respiratory disease. *J Gen Virol* **2012**, *93*, 341-346, doi:10.1099/vir.0.036624-0.
40. Li, L.; Pesavento, P.A.; Leutenegger, C.M.; Estrada, M.; Coffey, L.L.; Naccache, S.N.; Samayoa, E.; Chiu, C.; Qiu, J.; Wang, C.; et al. A novel bocavirus in canine liver. *Virol J* **2013**, *10*, 54, doi:10.1186/1743-422X-10-54.
41. Fahsborder, E.; Altan, E.; Seguin, M.A.; Young, P.; Estrada, M.; Leutenegger, C.; Delwart, E. Chapparvovirus DNA Found in 4% of Dogs with Diarrhea. *Viruses* **2019**, *11*, doi:10.3390/v11050398.

42. Decaro, N.; Buonavoglia, C. Canine parvovirus--a review of epidemiological and diagnostic aspects, with emphasis on type 2c. *Vet Microbiol* **2012**, *155*, 1-12, doi:10.1016/j.vetmic.2011.09.007.

43. Decaro, N.; Buonavoglia, D.; Desario, C.; Amorisco, F.; Colaianni, M.L.; Parisi, A.; Terio, V.; Elia, G.; Lucente, M.S.; Cavalli, A.; et al. Characterisation of canine parvovirus strains isolated from cats with feline panleukopenia. *Res Vet Sci* **2010**, *89*, 275-278, doi:10.1016/j.rvsc.2010.03.001.

44. Allison, A.B.; Kohler, D.J.; Fox, K.A.; Brown, J.D.; Gerhold, R.W.; Shearn-Bochsler, V.I.; Dubovi, E.J.; Parrish, C.R.; Holmes, E.C. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts. *J Virol* **2013**, *87*, 2342-2347, doi:10.1128/JVI.02428-12.

45. Allison, A.B.; Harbison, C.E.; Pagan, I.; Stucker, K.M.; Kaelber, J.T.; Brown, J.D.; Ruder, M.G.; Keel, M.K.; Dubovi, E.J.; Holmes, E.C.; et al. Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus. *J Virol* **2012**, *86*, 865-872, doi:10.1128/JVI.06187-11.

46. Battilani, M.; Balboni, A.; Ustulin, M.; Giunti, M.; Scagliarini, A.; Prosperi, S. Genetic complexity and multiple infections with more Parvovirus species in naturally infected cats. *Vet Res* **2011**, *42*, 43, doi:10.1186/1297-9716-42-43.

47. Li, X.; Wu, H.; Wang, L.; Spibey, N.; Liu, C.; Ding, H.; Liu, W.; Liu, Y.; Tian, K. Genetic characterization of parvoviruses in domestic cats in Henan province, China. *Transbound Emerg Dis* **2018**, *65*, 1429-1435, doi:10.1111/tbed.13014.

48. Miranda, C.; Vieira, M.J.; Silva, E.; Carvalheira, J.; Parrish, C.R.; Thompson, G. Genetic Analysis of Feline Panleukopenia Virus Full-length VP2 Gene in Domestic Cats Between 2006-2008 and 2012-2014, Portugal. *Transbound Emerg Dis* **2017**, *64*, 1178-1183, doi:10.1111/tbed.12483.

49. Decaro, N.; Buonavoglia, C. Canine parvovirus post-vaccination shedding: Interference with diagnostic assays and correlation with host immune status. *Vet J* **2017**, *221*, 23-24, doi:10.1016/j.tvjl.2017.01.020.

50. Wang, J.; Chen, X.; Zhou, Y.; Yue, H.; Zhou, N.; Gong, H.; Tang, C. Prevalence and characteristics of a feline parvovirus-like virus in dogs in China. *Vet Microbiol* **2022**, *270*, 109473, doi:10.1016/j.vetmic.2022.109473.

51. Truyen, U.; Platzer, G.; Parrish, C.R. Antigenic type distribution among canine parvoviruses in dogs and cats in Germany. *Vet Rec* **1996**, *138*, 365-366, doi:10.1136/vr.138.15.365.

52. Shackelton, L.A.; Parrish, C.R.; Truyen, U.; Holmes, E.C. High rate of viral evolution associated with the emergence of carnivore parvovirus. *Proc Natl Acad Sci U S A* **2005**, *102*, 379-384, doi:10.1073/pnas.0406765102.

53. Palermo, L.M.; Hafenstein, S.L.; Parrish, C.R. Purified feline and canine transferrin receptors reveal complex interactions with the capsids of canine and feline parvoviruses that correspond to their host ranges. *J Virol* **2006**, *80*, 8482-8492, doi:10.1128/JVI.00683-06.

54. Miranda, C.; Parrish, C.R.; Thompson, G. Epidemiological evolution of canine parvovirus in the Portuguese domestic dog population. *Vet Microbiol* **2016**, *183*, 37-42, doi:10.1016/j.vetmic.2015.11.037.

55. Carman, P.S.; Povey, R.C. Pathogenesis of canine parvovirus-2 in dogs: histopathology and antigen identification in tissues. *Res Vet Sci* **1985**, *38*, 141-150.

56. Parrish, C.R. Pathogenesis of feline panleukopenia virus and canine parvovirus. *Baillieres Clin Haematol* **1995**, *8*, 57-71, doi:10.1016/s0950-3536(05)80232-x.

57. Hoelzer, K.; Shackelton, L.A.; Holmes, E.C.; Parrish, C.R. Within-host genetic diversity of endemic and emerging parvoviruses of dogs and cats. *J Virol* **2008**, *82*, 11096-11105, doi:10.1128/JVI.01003-08.

58. Houston, D.M.; Ribble, C.S.; Head, L.L. Risk factors associated with parvovirus enteritis in dogs: 283 cases (1982-1991). *J Am Vet Med Assoc* **1996**, *208*, 542-546.

59. Glickman, L.T.; Domanski, L.M.; Patronek, G.J.; Visintainer, F. Breed-related risk factors for canine parvovirus enteritis. *J Am Vet Med Assoc* **1985**, *187*, 589-594.

60. Decaro, N.; Amorisco, F.; Lenoci, D.; Lovero, A.; Colaianni, M.L.; Losurdo, M.; Desario, C.; Martella, V.; Buonavoglia, C. Molecular characterization of Canine minute virus associated with neonatal mortality in a litter of Jack Russell terrier dogs. *J Vet Diagn Invest* **2012**, *24*, 755-758, doi:10.1177/1040638712445776.

61. Parrish, C.R. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. *Virology* **1991**, *183*, 195-205, doi:10.1016/0042-6822(91)90132-u.

62. Parrish, C.R.; Aquadro, C.F.; Strassheim, M.L.; Evermann, J.F.; Sgro, J.Y.; Mohammed, H.O. Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. *J Virol* **1991**, *65*, 6544-6552, doi:10.1128/JVI.65.12.6544-6552.1991.

63. Parrish, C.R.; O'Connell, P.H.; Evermann, J.F.; Carmichael, L.E. Natural variation of canine parvovirus. *Science* **1985**, *230*, 1046-1048, doi:10.1126/science.4059921.

64. Buonavoglia, C.; Martella, V.; Pratelli, A.; Tempesta, M.; Cavalli, A.; Buonavoglia, D.; Bozzo, G.; Elia, G.; Decaro, N.; Carmichael, L. Evidence for evolution of canine parvovirus type 2 in Italy. *J Gen Virol* **2001**, *82*, 3021-3025, doi:10.1099/0022-1317-82-12-3021.

65. Nakamura, M.; Tohya, Y.; Miyazawa, T.; Mochizuki, M.; Phung, H.T.; Nguyen, N.H.; Huynh, L.M.; Nguyen, L.T.; Nguyen, P.N.; Nguyen, P.V.; et al. A novel antigenic variant of Canine parvovirus from a Vietnamese dog. *Arch Virol* **2004**, *149*, 2261-2269, doi:10.1007/s00705-004-0367-y.

66. Decaro, N.; Buonavoglia, C.; Barrs, V.R. Canine parvovirus vaccination and immunisation failures: Are we far from disease eradication? *Vet Microbiol* **2020**, *247*, 108760, doi:10.1016/j.vetmic.2020.108760.

67. Grecco, S.; Iraola, G.; Decaro, N.; Alfieri, A.; Alfieri, A.; Gallo Calderon, M.; da Silva, A.P.; Name, D.; Aldaz, J.; Calleros, L.; et al. Inter- and intracontinental migrations and local differentiation have shaped the contemporary epidemiological landscape of canine parvovirus in South America. *Virus Evol* **2018**, *4*, vey011, doi:10.1093/ve/vey011.

68. Mira, F.; Canuti, M.; Purpari, G.; Cannella, V.; Di Bella, S.; Occhiogrosso, L.; Schiro, G.; Chiaramonte, G.; Barreca, S.; Pisano, P.; et al. Molecular Characterization and Evolutionary Analyses of Carnivore Protoparvovirus 1 NS1 Gene. *Viruses* **2019**, *11*, doi:10.3390/v11040308.

69. Organtini, L.J.; Allison, A.B.; Lukk, T.; Parrish, C.R.; Hafenstein, S. Global displacement of canine parvovirus by a host-adapted variant: structural comparison between pandemic viruses with distinct host ranges. *J Virol* **2015**, *89*, 1909-1912, doi:10.1128/JVI.02611-14.

70. Martella, V.; Cavalli, A.; Pratelli, A.; Bozzo, G.; Camero, M.; Buonavoglia, D.; Narcisi, D.; Tempesta, M.; Buonavoglia, C. A canine parvovirus mutant is spreading in Italy. *J Clin Microbiol* **2004**, *42*, 1333-1336, doi:10.1128/JCM.42.3.1333-1336.2004.

71. Decaro, N.; Desario, C.; Addie, D.D.; Martella, V.; Vieira, M.J.; Elia, G.; Zicola, A.; Davis, C.; Thompson, G.; Thiry, E.; et al. The study molecular epidemiology of canine parvovirus, Europe. *Emerg Infect Dis* **2007**, *13*, 1222-1224, doi:10.3201/eid1308.070505.

72. Decaro, N.; Elia, G.; Martella, V.; Desario, C.; Campolo, M.; Trani, L.D.; Tarsitano, E.; Tempesta, M.; Buonavoglia, C. A real-time PCR assay for rapid detection and quantitation of canine parvovirus type 2 in the feces of dogs. *Vet Microbiol* **2005**, *105*, 19-28, doi:10.1016/j.vetmic.2004.09.018.

73. Decaro, N.; Martella, V.; Desario, C.; Bellacicco, A.L.; Camero, M.; Manna, L.; d'Aloja, D.; Buonavoglia, C. First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain. *J Vet Med B Infect Dis Vet Public Health* **2006**, *53*, 468-472, doi:10.1111/j.1439-0450.2006.00974.x.

74. Perez, R.; Francia, L.; Romero, V.; Maya, L.; Lopez, I.; Hernandez, M. First detection of canine parvovirus type 2c in South America. *Vet Microbiol* **2007**, *124*, 147-152, doi:10.1016/j.vetmic.2007.04.028.

75. Hong, C.; Decaro, N.; Desario, C.; Tanner, P.; Pardo, M.C.; Sanchez, S.; Buonavoglia, C.; Saliki, J.T. Occurrence of canine parvovirus type 2c in the United States. *J Vet Diagn Invest* **2007**, *19*, 535-539, doi:10.1177/104063870701900512.

76. Calderon, M.G.; Mattion, N.; Bucafusco, D.; Fogel, F.; Remorini, P.; La Torre, J. Molecular characterization of canine parvovirus strains in Argentina: Detection of the pathogenic variant CPV2c in vaccinated dogs. *J Virol Methods* **2009**, *159*, 141-145, doi:10.1016/j.jviromet.2009.03.013.

77. Nandi, S.; Chidri, S.; Kumar, M.; Chauhan, R.S. Occurrence of canine parvovirus type 2c in the dogs with haemorrhagic enteritis in India. *Res Vet Sci* **2010**, *88*, 169-171, doi:10.1016/j.rvsc.2009.05.018.

78. Joao Vieira, M.; Silva, E.; Oliveira, J.; Luisa Vieira, A.; Decaro, N.; Desario, C.; Muller, A.; Carvalheira, J.; Buonavoglia, C.; Thompson, G. Canine parvovirus 2c infection in central Portugal. *J Vet Diagn Invest* **2008**, *20*, 488-491, doi:10.1177/104063870802000412.

79. Charoenkul, K.; Tangwangvivat, R.; Janetanakit, T.; Boonyapisitsopa, S.; Bunpapong, N.; Chaiyawong, S.; Amonsin, A. Emergence of canine parvovirus type 2c in domestic dogs and cats from Thailand. *Transbound Emerg Dis* **2019**, *66*, 1518-1528, doi:10.1111/tbed.13177.

80. Chiang, S.Y.; Wu, H.Y.; Chiou, M.T.; Chang, M.C.; Lin, C.N. Identification of a novel canine parvovirus type 2c in Taiwan. *Virol J* **2016**, *13*, 160, doi:10.1186/s12985-016-0620-5.

81. Zhao, Z.; Liu, H.; Ding, K.; Peng, C.; Xue, Q.; Yu, Z.; Xue, Y. Occurrence of canine parvovirus in dogs from Henan province of China in 2009-2014. *BMC Vet Res* **2016**, *12*, 138, doi:10.1186/s12917-016-0753-1.

82. Hao, X.; Li, Y.; Xiao, X.; Chen, B.; Zhou, P.; Li, S. The Changes in Canine Parvovirus Variants over the Years. *Int J Mol Sci* **2022**, *23*, doi:10.3390/ijms231911540.

83. Tion, M.T.; Shima, F.K.; Ogbu, K.I.; Omobowale, T.O.; Amine, A.A.; Nguetyo, S.A.; Igoh, F.A.; Oochi, J.O.; Fotina, H.A.; Saganuwan, S.A.; et al. Genetic diversity of canine parvovirus variants circulating in Nigeria. *Infect Genet Evol* **2021**, *94*, 104996, doi:10.1016/j.meegid.2021.104996.

84. Balboni, A.; Niculae, M.; Di Vito, S.; Urbani, L.; Terrusi, A.; Muresan, C.; Battilani, M. The detection of canine parvovirus type 2c of Asian origin in dogs in Romania evidenced its progressive worldwide diffusion. *BMC Vet Res* **2021**, *17*, 206, doi:10.1186/s12917-021-02918-6.

85. Chang, S.F.; Sgro, J.Y.; Parrish, C.R. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. *J Virol* **1992**, *66*, 6858-6867, doi:10.1128/JVI.66.12.6858-6867.1992.

86. Allison, A.B.; Kohler, D.J.; Ortega, A.; Hoover, E.A.; Grove, D.M.; Holmes, E.C.; Parrish, C.R. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species. *PLoS Pathog* **2014**, *10*, e1004475, doi:10.1371/journal.ppat.1004475.

87. Mittal, M.; Chakravarti, S.; Mohapatra, J.K.; Chug, P.K.; Dubey, R.; Upmanuyu, V.; Narwal, P.S.; Kumar, A.; Churamani, C.P.; Kanwar, N.S. Molecular typing of canine parvovirus strains circulating from 2008 to 2012 in an organized kennel in India reveals the possibility of vaccination failure. *Infect Genet Evol* **2014**, *23*, 1-6, doi:10.1016/j.meegid.2014.01.015.

88. Zhou, P.; Zeng, W.; Zhang, X.; Li, S. The genetic evolution of canine parvovirus - A new perspective. *PLoS One* **2017**, *12*, e0175035, doi:10.1371/journal.pone.0175035.

89. Hao, X.; He, Y.; Wang, C.; Xiao, W.; Liu, R.; Xiao, X.; Zhou, P.; Li, S. The increasing prevalence of CPV-2c in domestic dogs in China. *PeerJ* **2020**, *8*, e9869, doi:10.7717/peerj.9869.

90. Wang, J.; Lin, P.; Zhao, H.; Cheng, Y.; Jiang, Z.; Zhu, H.; Wu, H.; Cheng, S. Continuing evolution of canine parvovirus in China: Isolation of novel variants with an Ala5Gly mutation in the VP2 protein. *Infect Genet Evol* **2016**, *38*, 73-78, doi:10.1016/j.meegid.2015.12.009.

91. Guo, D.; Wang, Z.; Yao, S.; Li, C.; Geng, Y.; Wang, E.; Zhao, X.; Su, M.; Wei, S.; Wang, X.; et al. Epidemiological investigation reveals genetic diversity and high co-infection rate of canine bocavirus strains circulating in Heilongjiang province, Northeast China. *Res Vet Sci* **2016**, *106*, 7-13, doi:10.1016/j.rvsc.2016.03.003.

92. Truyen, U. Evolution of canine parvovirus--a need for new vaccines? *Vet Microbiol* **2006**, *117*, 9-13, doi:10.1016/j.vetmic.2006.04.003.

93. Truyen, U.; Gruenberg, A.; Chang, S.F.; Obermaier, B.; Veijalainen, P.; Parrish, C.R. Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. *J Virol* **1995**, *69*, 4702-4710, doi:10.1128/JVI.69.8.4702-4710.1995.

94. Hoang, M.; Wu, C.N.; Lin, C.F.; Nguyen, H.T.T.; Le, V.P.; Chiou, M.T.; Lin, C.N. Genetic characterization of feline panleukopenia virus from dogs in Vietnam reveals a unique Thr101 mutation in VP2. *PeerJ* **2020**, *8*, e9752, doi:10.7717/peerj.9752.

95. Chen, B.; Zhang, X.; Zhu, J.; Liao, L.; Bao, E. Molecular Epidemiological Survey of Canine Parvovirus Circulating in China from 2014 to 2019. *Pathogens* **2021**, *10*, doi:10.3390/pathogens10050588.

96. Ikeda, Y.; Nakamura, K.; Miyazawa, T.; Takahashi, E.; Mochizuki, M. Feline host range of canine parvovirus: recent emergence of new antigenic types in cats. *Emerg Infect Dis* **2002**, *8*, 341-346, doi:10.3201/eid0804.010228.

97. Battilani, M.; Scagliarini, A.; Ciulli, S.; Morganti, L.; Prosperi, S. High genetic diversity of the VP2 gene of a canine parvovirus strain detected in a domestic cat. *Virology* **2006**, *352*, 22-26, doi:10.1016/j.virol.2006.06.002.

98. Decaro, N.; Desario, C.; Amorisco, F.; Losurdo, M.; Colaianni, M.L.; Greco, M.F.; Buonavoglia, C. Canine parvovirus type 2c infection in a kitten associated with intracranial abscess and convulsions. *J Feline Med Surg* **2011**, *13*, 231-236, doi:10.1016/j.jfms.2010.11.012.

99. Ikeda, Y.; Mochizuki, M.; Naito, R.; Nakamura, K.; Miyazawa, T.; Mikami, T.; Takahashi, E. Predominance of canine parvovirus (CPV) in unvaccinated cat populations and emergence of new antigenic types of CPVs in cats. *Virology* **2000**, *278*, 13-19, doi:10.1006/viro.2000.0653.

100. Mochizuki, M.; Harasawa, R.; Nakatani, H. Antigenic and genomic variabilities among recently prevalent parvoviruses of canine and feline origin in Japan. *Vet Microbiol* **1993**, *38*, 1-10, doi:10.1016/0378-1135(93)90070-n.

101. Nakamura, K.; Sakamoto, M.; Ikeda, Y.; Sato, E.; Kawakami, K.; Miyazawa, T.; Tohya, Y.; Takahashi, E.; Mikami, T.; Mochizuki, M. Pathogenic potential of canine parvovirus types 2a and 2c in domestic cats. *Clin Diagn Lab Immunol* **2001**, *8*, 663-668, doi:10.1128/CDLI.8.3.663-668.2001.
102. Ahmed, N.; Riaz, A.; Zubair, Z.; Saqib, M.; Ijaz, S.; Nawaz-Ul-Rehman, M.S.; Al-Qahtani, A.; Mubin, M. Molecular analysis of partial VP-2 gene amplified from rectal swab samples of diarrheic dogs in Pakistan confirms the circulation of canine parvovirus genetic variant CPV-2a and detects sequences of feline panleukopenia virus (FPV). *Virol J* **2018**, *15*, 45, doi:10.1186/s12985-018-0958-y.
103. Inthong, N.; Kaewmongkol, S.; Meekhanon, N.; Sirinarumitr, K.; Sirinarumitr, T. Dynamic evolution of canine parvovirus in Thailand. *Vet World* **2020**, *13*, 245-255, doi:10.14202/vetworld.2020.245-255.
104. Diakoudi, G.; Desario, C.; Lanave, G.; Salucci, S.; Ndiana, L.A.; Zarea, A.A.K.; Fouad, E.A.; Lorusso, A.; Alfano, F.; Cavalli, A.; et al. Feline Panleukopenia Virus in Dogs from Italy and Egypt. *Emerg Infect Dis* **2022**, *28*, 1933-1935, doi:10.3201/eid2809.220388.
105. Goodman, L.B.; Lyi, S.M.; Johnson, N.C.; Cifuentes, J.O.; Hafenstein, S.L.; Parrish, C.R. Binding site on the transferrin receptor for the parvovirus capsid and effects of altered affinity on cell uptake and infection. *J Virol* **2010**, *84*, 4969-4978, doi:10.1128/JVI.02623-09.
106. Kaelber, J.T.; Demogines, A.; Harbison, C.E.; Allison, A.B.; Goodman, L.B.; Ortega, A.N.; Sawyer, S.L.; Parrish, C.R. Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs. *PLoS Pathog* **2012**, *8*, e1002666, doi:10.1371/journal.ppat.1002666.
107. Phan, T.G.; Vo, N.P.; Bonkoungou, I.J.; Kapoor, A.; Barro, N.; O'Ryan, M.; Kapusinszky, B.; Wang, C.; Delwart, E. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. *J Virol* **2012**, *86*, 11024-11030, doi:10.1128/JVI.01427-12.
108. Yahiro, T.; Wangchuk, S.; Tshering, K.; Bandhari, P.; Zangmo, S.; Dorji, T.; Tshering, K.; Matsumoto, T.; Nishizono, A.; Soderlund-Venermo, M.; et al. Novel human bufavirus genotype 3 in children with severe diarrhea, Bhutan. *Emerg Infect Dis* **2014**, *20*, 1037-1039, doi:10.3201/eid2006.131430.
109. Handley, S.A.; Thackray, L.B.; Zhao, G.; Presti, R.; Miller, A.D.; Droit, L.; Abbink, P.; Maxfield, L.F.; Kambal, A.; Duan, E.; et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. *Cell* **2012**, *151*, 253-266, doi:10.1016/j.cell.2012.09.024.
110. Diakoudi, G.; Lanave, G.; Capozza, P.; Di Profio, F.; Melegari, I.; Di Martino, B.; Pennisi, M.G.; Elia, G.; Cavalli, A.; Tempesta, M.; et al. Identification of a novel parvovirus in domestic cats. *Vet Microbiol* **2019**, *228*, 246-251, doi:10.1016/j.vetmic.2018.12.006.
111. Melegari, I.; Di Profio, F.; Palombieri, A.; Sarchese, V.; Diakoudi, G.; Robetto, S.; Orusa, R.; Marsilio, F.; Banyai, K.; Martella, V.; et al. Molecular detection of canine bufaviruses in wild canids. *Arch Virol* **2019**, *164*, 2315-2320, doi:10.1007/s00705-019-04304-y.
112. Vaisanen, E.; Paloniemi, M.; Kuisma, I.; Lithovius, V.; Kumar, A.; Franssila, R.; Ahmed, K.; Delwart, E.; Vesikari, T.; Hedman, K.; et al. Epidemiology of two human protoparvoviruses, bufavirus and tusavirus. *Sci Rep* **2016**, *6*, 39267, doi:10.1038/srep39267.
113. Sun, W.; Zhang, S.; Huang, H.; Wang, W.; Cao, L.; Zheng, M.; Yin, Y.; Zhang, H.; Lu, H.; Jin, N. First identification of a novel parvovirus distantly related to human bufavirus from diarrheal dogs in China. *Virus Res* **2019**, *265*, 127-131, doi:10.1016/j.virusres.2019.03.020.
114. Sasaki, M.; Orba, Y.; Anindita, P.D.; Ishii, A.; Ueno, K.; Hang'ombe, B.M.; Mweene, A.S.; Ito, K.; Sawa, H. Distinct Lineages of Bufavirus in Wild Shrews and Nonhuman Primates. *Emerg Infect Dis* **2015**, *21*, 1230-1233, doi:10.3201/eid2107.141969.
115. Di Martino, B.; Sarchese, V.; Di Profio, F.; Palombieri, A.; Melegari, I.; Fruci, P.; Aste, G.; Banyai, K.; Fulvio, M.; Martella, V. Genetic heterogeneity of canine bufaviruses. *Transbound Emerg Dis* **2021**, *68*, 802-812, doi:10.1111/tbed.13746.
116. Li, J.; Cui, L.; Deng, X.; Yu, X.; Zhang, Z.; Yang, Z.; Delwart, E.; Zhang, W.; Hua, X. Canine bufavirus in faeces and plasma of dogs with diarrhoea, China. *Emerg Microbes Infect* **2019**, *8*, 245-247, doi:10.1080/22221751.2018.1563457.
117. Ganji, V.K.; Buddala, B.; Yella, N.R.; Putty, K. First report of canine bufavirus in India. *Arch Virol* **2022**, *167*, 1145-1149, doi:10.1007/s00705-022-05398-7.
118. Wang, Y.; Guo, X.; Zhang, D.; Sun, J.; Li, W.; Fu, Z.; Liu, G.; Li, Y.; Jiang, S. Genetic and phylogenetic analysis of canine bufavirus from Anhui Province, Eastern China. *Infect Genet Evol* **2020**, *86*, 104600, doi:10.1016/j.meegid.2020.104600.

119. Shao, R.; Zheng, F.; Cai, S.; Ji, J.; Ren, Z.; Zhao, J.; Wu, L.; Ou, J.; Lu, G.; Li, S. Genomic sequencing and characterization of a novel group of canine bufaviruses from Henan province, China. *Arch Virol* **2020**, *165*, 2699-2702, doi:10.1007/s00705-020-04785-2.

120. Shao, R.; Ye, C.; Zhang, Y.; Sun, X.; Cheng, J.; Zheng, F.; Cai, S.; Ji, J.; Ren, Z.; Zhong, L.; et al. Novel parvovirus in cats, China. *Virus Res* **2021**, *304*, 198529, doi:10.1016/j.virusres.2021.198529.

121. Cheng, W.X.; Li, J.S.; Huang, C.P.; Yao, D.P.; Liu, N.; Cui, S.X.; Jin, Y.; Duan, Z.J. Identification and nearly full-length genome characterization of novel porcine bocaviruses. *PLoS One* **2010**, *5*, e13583, doi:10.1371/journal.pone.0013583.

122. Shan, T.; Lan, D.; Li, L.; Wang, C.; Cui, L.; Zhang, W.; Hua, X.; Zhu, C.; Zhao, W.; Delwart, E. Genomic characterization and high prevalence of bocaviruses in swine. *PLoS One* **2011**, *6*, e17292, doi:10.1371/journal.pone.0017292.

123. Chen, K.C.; Shull, B.C.; Moses, E.A.; Lederman, M.; Stout, E.R.; Bates, R.C. Complete nucleotide sequence and genome organization of bovine parvovirus. *J Virol* **1986**, *60*, 1085-1097, doi:10.1128/JVI.60.3.1085-1097.1986.

124. Li, L.; Shan, T.; Wang, C.; Cote, C.; Kolman, J.; Onions, D.; Gulland, F.M.; Delwart, E. The fecal viral flora of California sea lions. *J Virol* **2011**, *85*, 9909-9917, doi:10.1128/JVI.05026-11.

125. Wu, Z.; Ren, X.; Yang, L.; Hu, Y.; Yang, J.; He, G.; Zhang, J.; Dong, J.; Sun, L.; Du, J.; et al. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. *J Virol* **2012**, *86*, 10999-11012, doi:10.1128/JVI.01394-12.

126. Lanave, G.; Martella, V.; Farkas, S.L.; Marton, S.; Feher, E.; Bodnar, L.; Lavazza, A.; Decaro, N.; Buonavoglia, C.; Banyai, K. Novel bocaparvoviruses in rabbits. *Vet J* **2015**, *206*, 131-135, doi:10.1016/j.tvjl.2015.08.005.

127. Lau, S.K.; Yeung, H.C.; Li, K.S.; Lam, C.S.; Cai, J.P.; Yuen, M.C.; Wang, M.; Zheng, B.J.; Woo, P.C.; Yuen, K.Y. Identification and genomic characterization of a novel rat bocavirus from brown rats in China. *Infect Genet Evol* **2017**, *47*, 68-76, doi:10.1016/j.meegid.2016.11.014.

128. van den Brand, J.M.; van Leeuwen, M.; Schapendonk, C.M.; Simon, J.H.; Haagmans, B.L.; Osterhaus, A.D.; Smits, S.L. Metagenomic analysis of the viral flora of pine marten and European badger feces. *J Virol* **2012**, *86*, 2360-2365, doi:10.1128/JVI.06373-11.

129. Yang, S.; Wang, Y.; Li, W.; Fan, Z.; Jiang, L.; Lin, Y.; Fu, X.; Shen, Q.; Sun, Z.; Wang, X.; et al. A novel bocavirus from domestic mink, China. *Virus Genes* **2016**, *52*, 887-890, doi:10.1007/s11262-016-1380-4.

130. Piewbang, C.; Kasantikul, T.; Pringproa, K.; Techangamsuwan, S. Feline bocavirus-1 associated with outbreaks of hemorrhagic enteritis in household cats: potential first evidence of a pathological role, viral tropism and natural genetic recombination. *Sci Rep* **2019**, *9*, 16367, doi:10.1038/s41598-019-52902-2.

131. Kapoor, A.; Mehta, N.; Esper, F.; Poljsak-Prijatelj, M.; Quan, P.L.; Qaisar, N.; Delwart, E.; Lipkin, W.I. Identification and characterization of a new bocavirus species in gorillas. *PLoS One* **2010**, *5*, e11948, doi:10.1371/journal.pone.0011948.

132. Sharp, C.P.; LeBreton, M.; Kantola, K.; Nana, A.; Diffo Jle, D.; Djoko, C.F.; Tamoufe, U.; Kiyang, J.A.; Babila, T.G.; Ngole, E.M.; et al. Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild. *J Virol* **2010**, *84*, 10289-10296, doi:10.1128/JVI.01304-10.

133. Allander, T.; Tammi, M.T.; Eriksson, M.; Bjerkner, A.; Tiveljung-Lindell, A.; Andersson, B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. *Proc Natl Acad Sci U S A* **2005**, *102*, 12891-12896, doi:10.1073/pnas.0504666102.

134. Vicente, D.; Cilla, G.; Montes, M.; Perez-Yarza, E.G.; Perez-Trallero, E. Human bocavirus, a respiratory and enteric virus. *Emerg Infect Dis* **2007**, *13*, 636-637, doi:10.3201/eid1304.061501.

135. Fasina, O.O.; Dong, Y.; Pintel, D.J. NP1 Protein of the Bocaparvovirus Minute Virus of Canines Controls Access to the Viral Capsid Genes via Its Role in RNA Processing. *J Virol* **2016**, *90*, 1718-1728, doi:10.1128/JVI.02618-15.

136. Fasina, O.O.; Stupps, S.; Figueroa-Cuilan, W.; Pintel, D.J. Minute Virus of Canines NP1 Protein Governs the Expression of a Subset of Essential Nonstructural Proteins via Its Role in RNA Processing. *J Virol* **2017**, *91*, doi:10.1128/JVI.00260-17.

137. Zou, W.; Cheng, F.; Shen, W.; Engelhardt, J.F.; Yan, Z.; Qiu, J. Nonstructural Protein NP1 of Human Bocavirus 1 Plays a Critical Role in the Expression of Viral Capsid Proteins. *J Virol* **2016**, *90*, 4658-4669, doi:10.1128/JVI.02964-15.

138. Sun, Y.; Chen, A.Y.; Cheng, F.; Guan, W.; Johnson, F.B.; Qiu, J. Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. *J Virol* **2009**, *83*, 3956-3967, doi:10.1128/JVI.02569-08.

139. Huang, Q.; Deng, X.; Yan, Z.; Cheng, F.; Luo, Y.; Shen, W.; Lei-Butters, D.C.; Chen, A.Y.; Li, Y.; Tang, L.; et al. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. *PLoS Pathog* **2012**, *8*, e1002899, doi:10.1371/journal.ppat.1002899.

140. Choi, J.W.; Jung, J.Y.; Lee, J.I.; Lee, K.K.; Oem, J.K. Molecular characteristics of a novel strain of canine minute virus associated with hepatitis in a dog. *Arch Virol* **2016**, *161*, 2299-2304, doi:10.1007/s00705-016-2895-7.

141. Manteufel, J.; Truyen, U. Animal bocaviruses: a brief review. *Intervirology* **2008**, *51*, 328-334, doi:10.1159/000173734.

142. Hashimoto, A.; Takiguchi, M.; Hirai, K.; Kida, H.; Carmichael, L.E. A serological survey of minute virus of canines (MVC; canine parvovirus type-1) in dogs in the Tokai area of Japan. *Jpn J Vet Res* **2001**, *49*, 249-253.

143. Ohshima, T.; Kawakami, K.; Abe, T.; Mochizuki, M. A minute virus of canines (MVC: canine bocavirus) isolated from an elderly dog with severe gastroenteritis, and phylogenetic analysis of MVC strains. *Vet Microbiol* **2010**, *145*, 334-338, doi:10.1016/j.vetmic.2010.03.033.

144. Shan, T.L.; Cui, L.; Dai, X.Q.; Guo, W.; Shang, X.G.; Yu, Y.; Zhang, W.; Kang, Y.J.; Shen, Q.; Yang, Z.B.; et al. Sequence analysis of an isolate of minute virus of canines in China reveals the closed association with bocavirus. *Mol Biol Rep* **2010**, *37*, 2817-2820, doi:10.1007/s11033-009-9831-9.

145. Campalto, M.; Carrino, M.; Tassoni, L.; Rizzo, G.; Rossmann, M.C.; Cocchi, M.; De Benedictis, P.; Beato, M.S. Divergent minute virus of canines strains identified in illegally imported puppies in Italy. *Arch Virol* **2020**, *165*, 2945-2951, doi:10.1007/s00705-020-04800-6.

146. Choi, J.W.; Lee, K.H.; Lee, J.I.; Lee, M.H.; Lee, K.K.; Oem, J.K. Genetic characteristics of canine bocaviruses in Korean dogs. *Vet Microbiol* **2015**, *179*, 177-183, doi:10.1016/j.vetmic.2015.07.023.

147. Piewbang, C.; Jo, W.K.; Puff, C.; Ludlow, M.; van der Vries, E.; Banlunara, W.; Rungsipipat, A.; Kruppa, J.; Jung, K.; Techangamsuwan, S.; et al. Canine Bocavirus Type 2 Infection Associated With Intestinal Lesions. *Vet Pathol* **2018**, *55*, 434-441, doi:10.1177/0300985818755253.

148. Segales, J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. *Virus Res* **2012**, *164*, 10-19, doi:10.1016/j.virusres.2011.10.007.

149. Canuti, M.; Mira, F.; Sorensen, R.G.; Rodrigues, B.; Bouchard, E.; Walzthoni, N.; Hopson, M.; Gilroy, C.; Whitney, H.G.; Lang, A.S. Distribution and diversity of dog parvoviruses in wild, free-roaming and domestic canids of Newfoundland and Labrador, Canada. *Transbound Emerg Dis* **2022**, *69*, e2694-e2705, doi:10.1111/tbed.14620.

150. Baker, K.S.; Leggett, R.M.; Bexfield, N.H.; Alston, M.; Daly, G.; Todd, S.; Tachedjian, M.; Holmes, C.E.; Crameri, S.; Wang, L.F.; et al. Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus. *Virology* **2013**, *441*, 95-106, doi:10.1016/j.virol.2013.03.014.

151. Palombieri, A.; Di Profio, F.; Lanave, G.; Capozza, P.; Marsilio, F.; Martella, V.; Di Martino, B. Molecular detection and characterization of Carnivore chaphamaparvovirus 1 in dogs. *Vet Microbiol* **2020**, *251*, 108878, doi:10.1016/j.vetmic.2020.108878.

152. Piewbang, C.; Lohavicharn, P.; Nguyen, T.V.; Punyathi, P.; Kasantikul, T.; Techangamsuwan, S. Carnivore chaphamaparvovirus-1 (CaChPV-1) infection in diarrheic dogs reveals viral endotheliotropism in intestine and lung. *Vet Q* **2023**, *43*, 1-10, doi:10.1080/01652176.2023.2185696.

153. Abayli, H.; Aslan, O.; Tumer, K.C.; Can-Sahna, K.; Tonbak, S. Investigation of canine chaphamaparvovirus, canine bufavirus, and canine adenovirus in dogs with diarrhea: First report of novel canine bufavirus in Turkey. *Virus Genes* **2023**, *1*-10, doi:10.1007/s11262-023-01982-4.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.