

Supplementary Material Supplementary material 1 2 The protocol of the expression and purifications of 7α -HSDH or 7β -HSDH. The E. coli BL₂₁ (DE₃) strains with 7α -HSDH or 7β -HSDH recombinant plasmids were cultured at 37 °C, 220 rpm in Luria-Bertani (LB) medium containing 100 mg mL-1 ampicillin. IPTG was added to a final concentration of 0.2 mM until the OD600 reached 0.7-0.8. The recombinant cells were harvested by centrifugation and wall-cracking achieved by sonication. Target protein in supernatant bound with Glutathione Sepharose 4B using GST tag. 7α -HSDH or 7β -HSDH was eluted from columns after prescission protease digestion. The purity of the recombinant protein was confirmed by 12 % polyacrylamide gel electrophoresis (SDS-PAGE). Protein concentration was determined using the BCA protein assay Kit. 10 11 Supplementary material 2 12 The synthetic procedure of T-7-KLCA 13 To a magnetically stirred solution of 7-KLCA (0.25 mmol) in dry dimethylformamide (DMF; 1 mL) were added succes-14 sively powdered taurine (0.5 mmol), diethyl phosphorocyanidate (DEPC 0.3 mmol), and anhydrous triethylamine (Et₃N 15 0.4 mL), and the resulting suspension was stirred at room temperature for 60 min (the reaction was monitored by HPLC). 16 The reaction mixture was adjusted to pH 12-14 with 1 M NaOH and then to pH 7-8 with 10% HCl. The solution was 17 diluted with water (9 mL), passed through a preconditioned Sep-PakVac tC18 cartridge, and eluted successively with 18 water (20 mL), 25% CH3CH2OH (20 mL), and CH3CH2OH (25 mL). The last fraction containing the desired taurine 19 conjugate sodium salt was evaporated to dryness under a nitrogen stream, and the residue was recrystallized from an 20 appropriate solvent. (Reference: T. Momose, T. Tsubaki, T. Iida, T. Nambara, An improved synthesis of taurine- and 21 glycine-conjugated bile acids, Lipids, 32 (1997) 775-778.) 22 23 Supplementary material 3 The fitting formulas for TCDCA, T-7-KLCA and TUDCA 25

Table S1 The fitting formulas for TCDCA, T-7-KLCA and TUDCA

Bile acid	Fitting formula	R^2
TCDCA	y = 1.60x + 3.80	0.9998
T-7-KLCA	y = 1.53x + 4.73	0.9999
TUDCA	y = 1.61x + 4.46	0.9989

TCDCA, T-7-KLCA and TUDCA were dissolved in methanol and analyzed by HPLC-ELSD with at following different concentrations: 0.12 mg·mL⁻¹, 0.24 mg·mL⁻¹, 0.36 mg·mL⁻¹, 0.48 mg·mL⁻¹ and 0.60 mg·mL⁻¹. The constant flow rate was 0.8 mL·min⁻¹, and a linear gradient elution was used.

Supplementary material 4

Table S2 The low energy comformation of combination between bilirubin and 7α -HSDH

Num- ber	Binding energy (kcal/mol)	Van der Waals force + Hydro- gen bond + Desolvation energy (kcal/mol)	Electrostatic interac- tion (kcal/mol)
1	-4.71	-6.17	-0.77
2	-4.67	-5.03	-1.64
3	-4.6	-5.17	-1.9
4	-4.55	-4.46	-2.33
5	-4.39	-5.65	-0.01
6	-4.35	-5.27	-1.31
7	-4.31	-4.38	-1.25
8	-4.27	-4.21	-1.57
9	-4.16	-5.3	-0.96
10	-4.07	-4.87	-1.13

Table S3 The low energy comformation of combination between bilirubin and 7β -HSDH

Num-	Binding energy	Van der Waals force + Hydro-	Electrostatic interac-
ber	(kcal/mol)	gen bond + Desolvation energy	tion

26

27

28

29

30

31

32

		(kcal/mol)	(kcal/mol)
1	-5.79	-5.57	-1.69
2	-5.62	-4.72	-1.58
3	-5.39	-5.41	-1.55
4	-4.97	-5.41	-1.61
5	-4.91	-5.27	-1.18
6	-4.68	-5.42	-0.86
7	-4.83	-4.81	-2.31
8	-4.8	-4.66	-2.18
9	-4.74	-4.32	-2.6
10	-4.32	-3.67	-2.63

Supplementary material 5

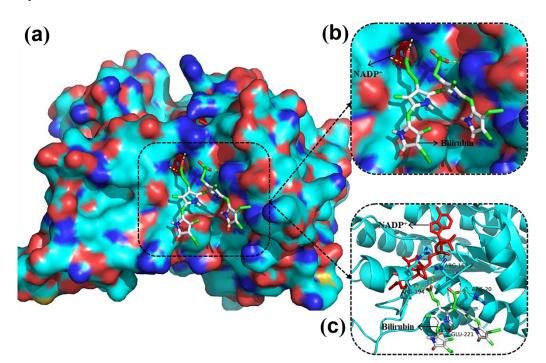
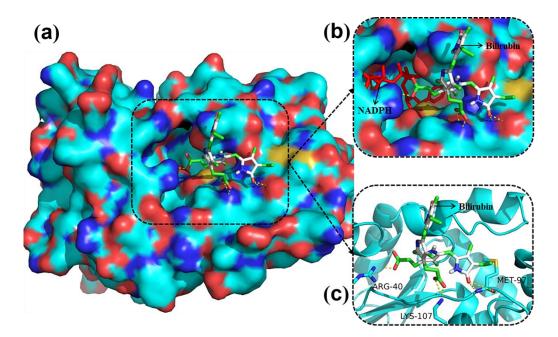


Figure S1. The docking simulation of bilirubin and 7α -HSDH. (a) The overview of combination between bilirubin and

 7α -HSDH; **(b)** The relative positions of cofactor NADP⁺ and bilirubin; **(c)** The specific amino acid residues of 7α -HSDH

33


34

35

36

37

combined with bilirubin. Molecular docking was performed on autodock 4.2 and the results were analyzed by VMD1.8.3.

Figure S2. The docking simulation of bilirubin and 7β -HSDH. (a) The overview of combination between bilirubin and 7β -HSDH; (b) The relative positions of cofactor NADPH and bilirubin; (c) the specific amino acid residues of 7β -HSDH combined with bilirubin. Molecular docking was performed on autodock 4.2 and the results were analyzed by VMD1.8.3.