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Review 

Helicobacter Pylori and Its Role in Gastric Cancer 

Victor E. Reyes 

Department of Pediatrics and Microbiology & Immunology; University of Texas Medical Branch, 301 
University Blvd., Galveston, TX 77555-0372, USA; vreyes@utmb.edu; Tel.: +1-409-772-3824 

Abstract: Gastric cancer is a challenging public health concern worldwide and remains a leading cause of 
cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with 
Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to 
DNA damage and promotion of precancerous lesions. Disease manifestations associated with H. pylori are 
attributed to virulence factors with multiple activities and its capacity to subvert host immunity. One of the 
most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion 
system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, 
causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small 
percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. 
Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical 
in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to 
provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and 
other gastric diseases, and how it subverts the host immune system to establish persistent infection. 

Keywords: gastric cancer; Helicobacter pylori; cag pathogenicity island; cytotoxin-associated gene A; 
oncoprotein; vacuolating toxin A; immune evasion 

 

1. Introduction 

Gastric cancer (GC) remains among the deadliest cancers worldwide, taking close to one million 
lives annually. GC is the fourth leading cause of cancer-related deaths[1]. According to the American 
Cancer Society's (ACS) estimates for 2022, in the United States, there are 26,380 new cases and 11,090 
deaths attributed to GC[2]. Worldwide, in 2020 the incidence of GC was 1,089,103 and claimed 
768,793 lives[3]. Although its incidence in the United States is declining, the prognosis for patients 
with GC is bleak since their five-year survival rate is low due to most GC cases (90%) being diagnosed 
at an advanced stage because of our inadequate understanding of the underlying mechanisms that 
regulate carcinogenesis and the lack of routine screening for GC.    

The primary risk factor for GC is Helicobacter pylori, a micro-aerophilic, spiral-shaped Gram-
negative bacterium classified as a class I carcinogen[4]. H. pylori is perhaps the most successful human 
pathogen since its infection is prevalent, infecting approximately one-half of the world's population 
or approximately 4.4 billion individuals[5]. The human stomach is the only natural reservoir of H. 

pylori. In developing countries, the prevalence may reach as high as 90%[5]. In developed countries 
with the lowest infection rates, up to 40% of all adults are infected with H. pylori. Infection is generally 
acquired during childhood and, without appropriate treatment, can last the individual's lifetime. 
Limiting infection is practically impossible due to antibiotic resistance and elevated reinfection rates. 
Although H. pylori infection is strongly associated with GC, only 1-3% of infected individuals develop 
GA, while most remain asymptomatic. It is not clear why only some H. pylori-infected individuals 
develop GA. However, various factors likely influence the outcome of the infection, including host 
susceptibility, environmental factors, and virulence of the infecting strain.  

H. pylori was initially described by Australian scientists Barry Marshall and Robin Warren in 
1982[6]. Their work with human gastric specimens identified H. pylori as the primary cause of chronic 
gastritis and peptic ulcer disease (PUD). Their research challenged the prevailing medical dogma that 
ulcers result from stress and lifestyle factors. Before their discovery, they treated peptic ulcers 
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primarily using antacids and diet modification, such as avoiding spicy and acidic foods. However, 
these treatments were inadequate, and often vagotomy or surgery to remove the affected portion of 
the stomach or duodenum was the next step to reduce acid secretion. The work of Marshall and 
Warren transformed the treatment of PUD and has helped save many lives. Their efforts were 
recognized with the Nobel Prize in Physiology or Medicine in 2005. The infection is treated with 
antibiotics to eradicate the bacteria and acid-suppressing drugs. 

2. H. pylori and Associated Diseases 

2.1. Gastric Cancer 

Although most persons infected with H. pylori are asymptomatic, infection with H. pylori may 
lead to several clinically significant disorders, including chronic gastritis, PUD, mucosal tissue-
associated lymphoma, and GC.   Chronic gastritis, if left untreated, may progress to atrophic 
gastritis and intestinal metaplasia, precancerous lesions in the sequence proposed by Pelayo 
Correa[7]. According to his model, H. pylori infection activates a cascade of histologic changes that 
progress through several phases, from chronic superficial gastritis to atrophic gastritis, intestinal 
metaplasia, and dysplasia, before ultimately resulting in GC. This model of GC progression stresses 
the importance of early detection and treatment of chronic gastritis, specifically in persons with a 
history of H. pylori infection.  

The most common type of GC is adenocarcinoma, which represents 95% of cases. GC is usually 
regarded as one condition and is classified based on anatomic location within the stomach, histologic 
type of cancer, and stage[8]. Anatomically, GC is classified as either cardia/proximal (upper part of 
the stomach) or non-cardia/distal (antrum and pylorus). Histologically, it may be classified as either 
diffuse or intestinal. The GC stage is determined by the tumor size, spread to sentinel lymph nodes 
or whether it has metastasized to distant anatomical sites, such as the liver, lungs, or bones. 
Approximately 90% of non-cardia GC cases are due to H. pylori infection[9]. Because of the wealth of 
epidemiologic data linking H. pylori in the development of GC, in addition to observations in animal 
models, H. pylori was classified as a class I carcinogen by the International Agency for Research on 
Cancer (IARC) together with the World Health Organization (WHO)[10]. 

The incidence of GC varies geographically across different parts of the world. It is highest in 
Eastern Europe, Eastern Asia, and Latin America, while the lowest incidence is in North America, 
Western Europe, Australia, and Africa[11]. Not surprisingly, the highest incidence of GC occurs in 
developing countries, coinciding with high H. pylori carriage rates. An interesting observation was 
made with patients in Africa, where the prevalence of H. pylori infection is very high, but the 
incidence of GC is low. This apparent discrepancy between the high prevalence of H. pylori infection 
in Africa and the low incidence of GC in these regions was initially referred to as the "African Enigma" 
[12],[13]. To address this paradox, Fox and colleagues investigated the possibility that concurrent 
parasitic infection could influence the immune response to H. pylori, initially reported by us and 
others as skewed toward a Th1 immune response[14]. They hypothesized that helminth infections, 
which stimulate Th2-polarized responses, could modify the Th1 immune response induced by H. 

pylori and thus change the outcome of the infection. They studied mice infected with H. felis with and 
without simultaneous infection with the enteric nematode Heligmosomoides polygyrus, which has a 
strictly enteric life cycle[15]. They observed that the nematode infection prevented the development 
of gastric atrophy. This correlated with a significant decrease in mRNA for cytokines and chemokines 
associated with a gastric inflammatory response of Th1 cells[15]. These observations led to the 
conclusion that nematode infections ameliorate gastric atrophy, a precancerous lesion. However, 
subsequent studies in mice by the same group suggested that concomitant infection with other 
Helicobacter species could differentially affect gastric pathology[16]. They noted that H. muridarum 
coinfection significantly attenuated H. pylori-associated gastric pathology; however, coinfection with 
H. hepaticus promoted H. pylori-associated gastric disease[16]. Interestingly, the exacerbated 
pathology in mice coinfected with H. pylori and H. hepaticus was not due to increased Th1 responses 
since those mice had lower mRNA levels of gastric Th1 cytokines Tnf-α, Ifn-γ, and Il-1β than mice 
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infected only with H. pylori. Instead, the dually infected mice had higher mRNA levels of gastric Il-
17A than mice infected with H. pylori alone[16].  

The concept of the "African enigma" was challenged by a study of the literature regarding PUD 
in the African continent[13]. As explained below, PUD is also linked to H. pylori infection, and similar 
observations have been made regarding its incidence in African populations; thus, PUD was 
considered a surrogate to examine its incidence in the context of H. pylori infection. The study 
concluded that the "African enigma" reflected inadequate data obtained from people lacking 
resources, healthcare access, and a comparatively short life expectancy[13]. However, a different set 
of H. pylori-related observations had been made with Asian populations with comparatively lower 
infection rates. One study reported the seroprevalence of H. pylori among Japanese and Chinese 
adults of approximately 50%, but the prevalence of GC in those populations is high[17]. One 
explanation for this higher prevalence of GC in East Asia could be differences in the H. pylori CagA 
virulence factor in East Asian strains compared to Western strains[18,19], which make those strains 
more virulent, as discussed in detail below. A more in-depth study to attempt to explain regional 
differences in GC prevalence in populations with similar rates of H. pylori infection was led by 
Correa's team of investigators who examined GC rates among inhabitants in the state of Nariño, 
Colombia. The rates of GC among inhabitants of the high-altitude Andes Mountains were high (∼150 
per 100,000), while the incidence rate of GC for those living at sea level was low (∼6 per 100,000)[20]. 
It is worth noting that the high-risk mountain (Tuquerres) population is only ~150 Mi away from the 
coastal low-risk populations (Tumaco). Although the prevalence of H. pylori infection is high in both 
groups (> 80% after age 10), there were significant differences in how their inhabitants were affected. 
Atrophy was more common, and the incidence of GC was higher in high versus low-altitude 
regions[20,21]. One study reported differences in the virulence genotypes (cagA positive and vacA s1 
and m1) in both regions' prevailing H. pylori strains [22]. It is important to note the differences 
between the inhabitants of those two regions. They differ in their ancestry, with primarily African 
origin in the coastal region (58%) and mostly Amerindian ancestry in the mountain region (67%)[23]. 
Also, dietary differences, the incidence of helminthiasis and toxoplasmosis, and, more recently, 
gastric microbiomes were reported to differ between both groups. Altogether, these observations in 
different regions led to the role of virulence of the infecting strains, the gastric microbiome, 
coinfections, environmental factors such as diet, and host genetics as factors influencing the outcome 
of the infection.  

2.2. Peptic Ulcer Disease 

PUD is another condition that most often involves H. pylori, accounting for 90–95% of duodenal 
ulcers and 70–85% of gastric ulcers[24]; the remainder of cases are due to non-steroidal anti-
inflammatory drugs (NSAIDs). PUD is frequently defined as a rupture in the gastric or duodenal 
mucosa greater than 3-5 mm caused by an imbalance in mucosal protective and injurious factors[25]. 
PUD may have significant complications such as bleeding, perforation, penetration into adjacent 
organs, obstructions, and death may result from these complications. A systematic literature review 
reported an average mortality of 8.6% after bleeding and 23.5% after perforation 30 days later[26]. 
Mortality increases with age, comorbidities, shock, and treatment delays[26]. Although the incidence 
of PUD has decreased recently due to improved diagnosis and treatment of H. pylori infection, PUD 
still is a public health issue that causes significant distress and severe complications if left untreated. 
The annual incidence of PUD is 0.1-0.3%, affecting approximately 10% of the population 
worldwide[27]. H. pylori infection and the ensuing inflammation can alter gastric acid output 
resulting in either hypochlorhydria or hyperchlorhydria, which determines the type of peptic ulcer. 
Hypochlorhydria results from suppressed gastric acid secretion and may lead to pangastritis and the 
formation of gastric ulcers. These patients have an increased prevalence of corpus atrophy and 
intestinal metaplasia[28]. On the other hand, approximately 15% of patients infected with H. pylori 
develop hyperchlorhydria with predominant antral gastritis associated with duodenal ulcers.  
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2.3. Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma 

Another gastric condition involving H. pylori is extranodal marginal zone gastric mucosa-
associated lymphoid tissue (MALT) lymphoma, a non-Hodgkin's lymphoma, an indolent 
lymphoproliferative disease involving small heterogeneous B lymphocytes. Gastric MALT 
lymphoma accounts for 40 to 50% of primary gastric lymphomas and 1 to 6% of all gastric 
malignancies[29]. Although the stomach is the most common site of MALT lymphomas, it usually 
lacks organized lymphoid tissue. Still, active chronic inflammation of the H. pylori-infected gastric 
mucosa induces the organization of lymphoid tissue. Studies in vitro showed that gastric MALT 
lymphoma cells were stimulated by heat-killed H. pylori and involved H. pylori-specific T-cells via 
CD40 and CD40L interactions[30,31]. Interestingly, in those studies, the investigators noted that the 
T-cell clones from MALT lymphoma had reduced perforin-mediated cytotoxicity and Fas-mediated 
apoptosis[30]. The gastric mucosa of most cases of gastric MALT lymphoma contains H. pylori[32], 
and eradicating H. pylori with the corresponding treatment results in the complete remission of 
gastric MALT lymphoma in most cases[33,34].  

2.4. Extragastric Manifestations of H. pylori 

Although the association of H. pylori infection with gastric diseases is well established, the 
infection is thought to exert systemic pathological effects leading to non-gastric clinical outcomes. 
Those conditions include type 2 diabetes mellitus[35], insulin resistance[36], myocardial 
infarction[37], iron deficiency anemia[38], primary immune thrombocytopenia[39], Parkinson 
disease [40], among others. However, it is unclear how infection with H. pylori is positively associated 
with these non-GI disorders. 

As research into H. pylori disease associations and efforts to eradicate this common human 
pathogen have expanded, leading to increased prevalence of some conditions; a question that has 
emerged is whether H. pylori is a true pathogen or a commensal organism. Various studies have 
credited H. pylori with positive effects for the host because H. pylori infection was noted to be inversely 
associated with the development of some disorders. For instance, there seems to be an inverse 
relationship between the H. pylori infection and gastroesophageal reflux disease (GERD)[41]. A cross-
sectional case-control study of 5,616 subjects undergoing both upper endoscopy and H. pylori 
serology reported an inverse relationship between the presence of H. pylori and GERD [41]. In that 
study, H. pylori prevalence was lower in cases with reflux esophagitis than in the controls (38.4% vs. 
58.2%, P < 0.001). A meta-analysis showed that eradicating H. pylori could lead to erosive GERD[42]. 

Interestingly, a meta-analysis also showed an inverse correlation between H. pylori colonization 
and the risk of esophageal cancer[43]. The study suggested that the increase in esophageal cancer 
incidence may be linked to the decreased prevalence of H. pylori in Western countries. A likely 
mechanism underlying this outcome is H. pylori urease activity (described below in detail) which 
neutralizes gastric acidity and, in turn, decreases the risk of GERD.   

Other studies have also attributed H. pylori colonization with protection against childhood 
asthma, inflammatory bowel disease (IBD), and celiac disease. The relationship between H. pylori and 
asthma has been the subject of active investigation. Evidence suggests that H. pylori infection may be 
associated with a reduced risk of developing asthma[44][45]. As the incidence of H. pylori infection 
decreases in developed countries and various developing areas, asthma in children and other atopic 
disorders are rising. Chen and colleagues found a compelling inverse relationship between H. pylori 
infection and the early onset of asthma[44]. A hospital-based case-control study of a pediatric 
population reported that children who were H. pylori seropositive had a reduced likelihood of 
developing asthma than seronegative children (adjusted OR, 0.31 [95% CI, 0.10-0.89])[46]. H. pylori 
infection may protect from asthma and atopy by promoting an immune response that reduces 
inflammation in the airways, a crucial feature of asthma. The inverse relationship between H. pylori 
infection and asthma may involve the H. pylori induction of a polarized Th1 response[14,47]. Several 
mechanisms contribute to the prevalent H. pylori-induced mucosal Th-1 response. One virulence 
factor discussed below is the H. pylori neutrophil-activating protein (HP-NAP), which strongly 
upregulates both IL-12 and IL-23 production, fostering polarized Th-1 response[48,49]. The resulting 
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cytokines from those Th1 cells may inhibit the Th2 responses characteristic of atopy. Another possible 
mechanism underlying the inverse association between H. pylori and asthma is the induction of 
regulatory T cells (Tregs) by H. pylori infection[50–52], which may influence the prevention of allergic 
disease. In fact, H. pylori-positive persons have higher gastric and circulating Treg levels than H. 

pylori-negative individuals[53,54]. The remote regulation of the respiratory mucosa by immune 
responses in the gastrointestinal mucosa is consistent with the concept of the "common mucosal 
immune system[55] 

IBD is another disease noted to have an inverse association with H. pylori infection. IBD is an 
umbrella term for chronic relapsing-remitting digestive disorders, including Crohn's Disease (CD) 
and ulcerative colitis (UC). H. pylori infection was regarded as a possible IBD risk factor due to 
similarities in the immunobiology of H. pylori infection and IBD. However, multiple studies have 
suggested an inverse association between H. pylori infection and the prevalence of IBD. There are 
essential epidemiological differences between H. pylori and IBD. H. pylori infection is more prevalent 
in developing countries than in developed countries. In contrast, the opposite is true for IBD, which 
is more prevalent in developed than developing countries. The prevalence of IBD is steadily 
increasing in developed countries, while rates of H. pylori infection are decreasing. IBD is less frequent 
among individuals who are H. pylori seropositive when compared to seronegative subjects[56]. A 
meta-analysis of 80,789 subjects (6,130 patients with IBD and 74,659 non-IBD controls) revealed a 
significant negative correlation between IBD and H. pylori infection[57]. In that study, the 
investigators observed a consistent negative association between IBD and H. pylori infection 
regardless of age, ethnicity, and detection methods[57]. These observations suggest that H. pylori 
might exert a protective effect against IBD. 

3. H. pylori Virulence Factors and Cancer Mechanisms 

H. pylori possesses a panel of virulence mechanisms that allow it to survive in the harshest 
environment of the body, which is the stomach (pH between 1.5 and 3.5)[58], colonize the gastric 
mucosa, influence the integrity of the epithelium, and subvert the host response to establish persistent 
infection and induce pathology[59–64].  

3.1. Urease 

H. pylori urease is a critical virulence factor for H. pylori. It is the most abundant protein 
expressed by H. pylori, representing 10–15% of total protein by weight.[65]. H. pylori urease is a 
multimeric nickel-containing enzyme consisting of two subunits, α and β subunits, of 29.5 kDa and 
66 kDa, which catalyzes the hydrolysis of urea into carbonic acid and ammonia. Six α and six β 
subunits aggregate to form a multimeric complex of 550 kDa.[65]. The released ammonia from urea 
hydrolysis increases the pH and provides a local protective environment for H. pylori.  

H. pylori urease can play a role in pathogenesis beyond its enzymatic action. Urease influences 
the host response by activating monocytes and polymorphonuclear leucocytes, leading to 
inflammation and damage to the epithelium[66]. Approximately 30% of total urease is located on the 
bacterial surface[67,68]. The mechanism behind the presence of urease on the bacterial surface 
involves bacterial autolysis and association with remaining whole cells[69]. This surface localization 
allows urease to mediate additional effects via interactions with proteins on the surface of epithelial 
cells. We showed that urease binds to class II major histocompatibility complex (MHC) and triggers 
apoptosis of gastric epithelial cells[70,71], which express class II MC molecules[72,73]. This 
interaction is mediated by the urease A subunit[74]. Interestingly, the urease B subunit also 
contributes to the adhesion of H. pylori to gastric epithelial cells via association with CD74[75]. Using 
recombinant urease subunits and urease B knockout bacteria, H. pylori urease B was shown to bind 
CD74 on gastric epithelial cells and induce NF-κB activation and interleukin-8 (IL-8) production[75]. 
These responses decreased in the presence of blocking CD74 with monoclonal antibodies.  
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3.2. Adhesins 

Adhesins are bacterial cell-surface proteins contributing to the bacterial attachment to host cells. 
The adhesion of H. pylori to the gastric epithelium is a key step for colonizing the gastric mucosa. A 
bacterial adhesin that contributes to this process and determines colonization density is encoded by 
the babA2 gene is the blood group antigen binding adhesin (BabA), which bind to Lewis B blood 
group antigens (Leb) on gastric epithelial cells[76][77]. One study classified H. pylori strains into BabA 
high producers (BabA-H) with Leb binding activity, BabA low producers (BabA-L) without Leb 
binding activity, and BabA-negative strain (lacked the babA gene)[78]. Studies by Sheu et al. noted 
that strains positive for the babA2 gene with lower levels of BabA expression appeared to be 
associated with the highest GC risk[79].  

The H. pylori outer inflammatory protein A (OipA), or HopH, is an outer membrane protein that 
behaves as an adhesin and stimulates IL-8 secretion. Yamaoka's group showed that the functional 
status (on or off) of Oipa is controlled by a slipped-strand mispairing mechanism that depends on 
the number of CT dinucleotide repeats in the 5′ region of the oipA gene[80]. H. pylori strains with the 
oipA gene on "on" status are associated with greater colonization density, higher IL-8 production, 
and, consequently, a higher neutrophil infiltration. Further, strains with the oipA gene on "on" status 
significantly associate with GC and PUD.  

The adherence-associated lipoproteins A and B (AlpA/AlpB) are outer membrane proteins 
participating in H. pylori binding to gastric epithelial cells and enhancing colonization. They also 
induce the production of the inflammatory cytokines IL-6 and IL-8[81]. Proof of their role in adhesion 
came from studies in which antiserum against the AlpA fusion protein or knock-out of alpAB or alpA 
genes blocked or decreased the binding of H. pylori to epithelial cells[82,83]. Moreover, we reported 
that AlpAB mediated binding to live gastric epithelial cells and triggered cellular signaling pathways 
within the cells[81]. Despite the multiple adhesins employed by H. pylori to attach to gastric epithelial 
cells, deletion of alpAB alone reduced bacterial binding by 60–70% and reduced H. pylori colonization 
of mice.  

Sialic acid-binding adhesin A (SabA) is another crucial virulence factor that facilitates adherence 
to the gastric epithelium and colonizing the gastric mucosa[84]. SabA is a sizeable outer membrane 
protein encoded by the sabA gene, which is present in the H. pylori cag pathogenicity island 
(described below)[84]. SabA is a pleiotropic protein with sialic acid-binding activity. It links the sialyl-
Lewis A and X glycan antigens explicitly. SabA specifically binds to α2-3-linked sialic acids 
abundantly expressed on the gastric mucosa, especially in the gastric antrum, where H. pylori 
primarily colonize[85,86]. The SabA binding to sialic acids on surface gastric mucins aids H. pylori 
adherence to the epithelium, a crucial step in establishing infection. In addition to sialic acid binding, 
SabA has been shown to interact with other host molecules, such as laminin[85], fibronectin[85], and 
blood group antigens. These interactions enhance the ability of H. pylori to adhere to diverse types of 
gastric epithelial cells and promote colonization in different stomach regions.  

3.3. CagA and the Pathogenicity Island 

The H. pylori cag pathogenicity island (cag PAI) is a region of about 40 kb DNA that encode the 
cytotoxin-associated gene A (cagA) and approximately 27-30 additional genes that encode proteins that 
form a type IV secretion system (T4SS)[87]. The T4SS is a syringe-like pilus feature that facilitates the 
translocation of the effector protein CagA and other bacterial products into gastric epithelial cells, 
influencing the pathogenesis of H. pylori. CagA is a 120-140 kDa protein whose expression by H. pylori 
represents the most potent risk factor for GC[88]. The CagA N-terminal domain contains a binding 
site for α5β1 integrin which is a crucial interaction in the transfer of CagA into the gastric epithelial 
cells[89][90]. Once inside gastric epithelial cells, CagA binds to phosphatidyl serine (PS) in the inner 
surface of the cell membrane and is tyrosine-phosphorylated by Src/Abl tyrosine kinases at 
glutamate-proline-isoleucine-tyrosine-alanine (EPIYA) motifs located in the C-terminus of CagA. 
Phosphorylated CagA forms complexes with Src-homology 2 (SH2) domains in SHP2, Grb2, and CSK 
and modifies several signaling pathways in gastric epithelial cells resulting in anomalous cytoskeletal 
changes, cellular proliferation, and differentiation as well as induction of inflammatory cytokines[91]. 
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The magnitude of activation of downstream pathways depends on the type of CagA EPIYA motif 
and the number of copies. EPIYA motifs vary widely among H. pylori strains and are classified into 
four types based on the variation of flanking regions and orders of spacers. The four EPIYA motif 
types are EPIYA-A, -B, -C, and -D. CagA in Western strains of H. pylori contains EPIYA-A, EPIYA-B, 
and EPIYA-C motifs. In contrast, CagA from East Asian H. pylori strains have EPIYA-A, EPIYA-B, 
and EPIYA-D but not the EPIYA-C motif[92]. Higashi and colleagues reported that the EPIYA-C 
segment comprises 34 amino-acid residues that variably repeat [92]. These motifs in the C-terminus 
of CagA enhance its polymorphism and are present as tandem repeats varying from one to seven[18]. 
The levels of phosphorylation and the effects seen in gastric epithelial cells are proportional to the 
number of EPIYA motifs[93]. Because CagA rarely contains both EPIYA-C and EPIYA-D motifs, 
EPIYA-C is considered characteristic of Western CagA, while EPIYA-D is a feature of East Asian 
CagA. The East Asian CagA has a stronger SHP-2 binding, which confers a stronger ability to perturb 
cellular functions[92], which may explain differences in GC incidence in East Asia versus Western 
countries.  

CagA has also been reported to impact epithelial cells in a tyrosine phosphorylation-
independent manner. CagA has a conserved repeat responsible for phosphorylation-independent 
activity (CRPIA:  FPLKRHDKVDDLSKVG) motif in its C-terminal region, different from the EPIYA 
motifs. The CRPIA motif in non-phosphorylated CagA interacts with c-Met, the hepatocyte growth 
factor scatter factor receptor, which plays a role in the invasive growth of neoplastic cells. CagA binds 
c-Met, which then binds phospholipase Cγ (PLCγ) and turns on phosphatidylinositol 3-kinase/Akt 
signaling. This initiates β-catenin and NF-κB signaling, leading to proliferation and 
inflammation[94,95]. Growth factor receptor-bound protein 2 (Grb2) also interacts with CagA 
independent of tyrosine phosphorylation, and this interaction stimulates the Ras/MEK/ERK pathway 
to cause cell scattering and proliferation[96].  

Support for the role of CagA as an oncoprotein was obtained from multiple observations. A 
study by Peek's group that included Mongolian gerbils infected with the carcinogenic strain 7.13 
resulted in gastric dysplasia and cancer in >50% of gerbils infected with the wild-type strain. In that 
study, none of the gerbils infected with the cagA− mutant strain developed these preneoplastic 
lesions[97]. Various studies in which the H. pylori cagA gene alone was transfected into cells have 
shown that its expression significantly affects the transfected cells. In one report, CagA transfected 
into human gastric epithelial cells revealed that CagA targets partitioning-defective 1 (PAR1). The 
CagA-PAR1 interaction causes junctional and polarity defects that release cells from growth-
inhibitory signals and promote neoplasia[98]. Using the transfection approach, another group 
demonstrated that CagA interacted with E-cadherin and perturbed the formation of E-cadherin/ -
catenin complexes, leading to the accumulation of β-catenin in the cytoplasm and nucleus and 
activating β-catenin signaling[99]. In that study, CagA-transfected cells expressed intestinal-specific 
molecules as an indication of intestinal transdifferentiation of gastric epithelial cells. Another process 
whereby CagA promotes gastric cancer was recently reported in which CagA phosphorylation affects 
the ubiquitin-proteasome system by binding the E3 ubiquitin ligases SIVA1 and ULF[100]. That 
interaction caused the activation of ULF and degradation of SIVA1 and the tumor suppressor 
p14ARF. The suppression of ARF results in the inhibition of apoptosis and oncogenic stress response, 
advancing cancer. Perhaps the most convincing study was reported by Ohnishi et al., who engineered 
transgenic mice expressing wild-type or phosphorylation-resistant CagA[101]. The mice expressing 
wild-type CagA developed gastric epithelial hyperplasia, and some developed gastric polyps and 
adenocarcinomas. Remarkably, some wild-type CagA transgenic mice developed hematological 
malignancies such as myeloid leukemias and B-cell lymphomas. In contrast, mice expressing 
phosphorylation-resistant CagA did not have evidence of these pathological abnormalities[101]. 
These observations led to CagA being regarded as a bacterial oncoprotein of importance in human 
neoplasia. 

Another bacterial product translocated by the T4SS into gastric epithelial cells is peptidoglycan, 
which is recognized by NOD1 (Nucleotide Binding Oligomerization Domain Containing 1), a 
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cytoplasmic pattern recognition receptor[102–104], abundantly expressed in gastric epithelial 
cells[104]. NOD1 activation results in NF-κB activation and inflammatory cytokine production[105].  

3.4. Vacuolating Toxin (VacA) 

The H. pylori vacuolating toxin (VacA) is a major secreted virulence factor without known 
homologs in other bacterial species except for H. cetorum, a Helicobacter species found in the 
stomachs of marine mammals[106]. The VacA toxin is a pore-forming toxin secreted by H. pylori and 
has pleiotropic effects on host cells. The pores induced by VacA in the membranes of the gastric 
epithelial lining lead to the leakage of small molecules and ions from the cells. This damage to the 
cells disrupts the epithelium's barrier function, facilitating invasion and colonization of the stomach. 
VacA can also induce apoptosis in immune cells and gastric epithelial cells. This contributes to gastric 
inflammation and the progression of H. pylori-associated diseases. VacA also modulates the host 
immune response to H. pylori by suppressing the activation of specific immune cells and inhibiting 
the production of cytokines. This permits H. pylori to evade immune-mediated clearance and 
establish a persistent infection in the stomach. 

VacA is first synthesized as a 140 kDa pro-toxin with an N-terminal signal peptide, a central 
region representing the toxin, and a C-terminus that mediates transport function. The central region 
(about 88 kDa), the mature virulent form of the toxin, is secreted after processing and is further 
cleaved into an A subunit and B subunit of 33 and 55 kDa, respectively. The p33 form was initially 
regarded as the pore-forming subunit, and the p55 form was ascribed to the cell binding 
function[107,108]. However, both subunits bind and form vacuoles [109,110]. H. pylori VacA binds to 
sphingomyelin on lipid rafts[111] and is then endocytosed via a clathrin-independent route[112]. 
VacA is delivered to early endosomes, which are routed by F-actin comets to become integrated into 
motile vesicles that fuse with mitochondria or late endosomes, where VacA induces apoptosis or 
vacuolation, respectively[113,114]. VacA has multiple damaging effects on mitochondria, including 
activation of the proapoptotic proteins Bax and Bak[115], cytochrome c release[116], and 
mitochondrial fragmentation[117], ultimately resulting in cell death.  

Even though all strains of H. pylori have the vacA gene, there is substantial diversity in the gene, 
which includes five heterogenic regions with considerable sequence differences. The first three 
regions identified correspond to the signal (s) sequence, middle (m), and intermediate (i)[118]. There 
are two genotypes for s (s1a-c, s2), four for m (m1a, m1b, m1c, and m2), and three for the i region 
(subdivided into i1a, i1b, and i2). More recently, the deletion d-region (d1 and d2) and the c-region 
(c1 and c2), which corresponds to a 15 bp deletion at the 3′ end of the p55 domain of the vac A gene, 
were described[119,120]. The signal peptide region of VacA provides vacuolating activity and target 
specificity. The s2 region contains an additional 12-amino-acid N-terminal sequence which abolishes 
the formation of anion-selective channels and cell vacuolation[121]. While s1/m1 and s1/m2 VacA 
genotypes cause severe chronic inflammation when compared to the other genotypes, H. pylori 
strains with m1 VacA represent a higher risk factor for gastric ulcers[122], and VacA s1 and m1 
genotypes are associated with higher pathology, including substantial infiltrates of neutrophils and 
lymphocytes, gastric atrophy, and intestinal metaplasia[123,124]. Yamaoka's group showed that the 
vacAs1i1m1 allelic combination is strongly associated with the existence of cagA[125], and a recent 
study by Chang and colleagues demonstrated that strains expressing both vacAs1m1 and cagA 
concurrently have a 4.8-fold greater risk of inducing preneoplastic lesions than other H. pylori 
strains[126]. The i region is found between the s and m regions and is associated with polymorphism 
and GC[127]. The m region has a 148 amino acid segment that defines VacA's cell binding 
specificity[128]. The roles of the c and d regions in the biology of VacA are currently unknown.  

VacA is crucial in H. pylori's ability to evade host immunity since it can act on several immune 
cells affecting innate and adaptive immunity. VacA impairs functions of macrophages[129][130], 
eosinophils[131], mast cells[132], dendritic cells[133], and lymphocytes[134,135]. Due to its effects on 
endosomal trafficking, VacA interferes with antigen processing by B cells. Molinari and colleagues 
showed that VacA disrupts the proteolytic processing of antigens and inhibits the Ii-dependent 
antigen presentation pathway, which involves newly synthesized major histocompatibility complex 
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(MHC) class II in endosomes[136]. Macrophages, another professional antigen-presenting cell type, 
are also disrupted by VacA in their ability to process antigens as the toxin induces the formation of 
large vesicles termed megasomes, impairing the maturation and function of endosomal 
compartments[137]. VacA also impairs T cells as it efficiently prevents the proliferation of T cells by 
inducing a G1/S cell cycle arrest. VacA was shown to block the T cell receptor/interleukin-2 (IL-2) 
signaling pathway at the Ca++-calmodulin-dependent phosphatase calcineurin[135]. These effects of 
VacA on immune cells undoubtedly contribute to immune avoidance by H. pylori and highlight its 
important role in the pathogenesis of H. pylori-associated diseases. 

3.5. H. pylori Neutrophil activating protein (HP-NAP) 

HP-NAP, or NapA, is another critical virulence factor of H. pylori[49]. HP-NAP is a highly 
conserved protein encoded by the napA gene expressed by most H. pylori strains. It is a 164-amino 
acid protein secreted by H. pylori and can be found in both the bacterial cell wall and the extracellular 
milieu. NAP's three-dimensional structure was characterized by Zanotti et al. as having a quaternary 
structure consisting of a spherical dodecamer containing ∼17 kDa identical subunits with a four-helix 
bundle structure similar to bacterial ferritins[138]. HP-NAP is a multifunctional protein that has been 
shown to interact with various cells and modulate host immunity. 

Among the critical functions of HP-NAP is its ability to activate neutrophils to generate reactive 
oxygen species (ROS)[139] and reactive nitrogen species (RNS) and to adhere to endothelial cells[140]. 
ROS and RNS induced by H. pylori can cause DNA damage and mutations that lead to the initiation 
of cancer[141]. HP-NAP activates neutrophils by binding to specific receptors on their surface, such 
as the formyl peptide receptor 1 (FPR1) and Toll-like receptor 2 (TLR2)[48,142], which stimulate the 
release of ROS, RNS, and inflammatory cytokines[48,143,144]. A recent report showed that HP-NAP 
could induce the formation of neutrophil extracellular traps (NETs)[145], a novel mechanism of 
neutrophil-mediated host defense[146]. Cytokine production by HP-NAP-activated neutrophils 
leads to further neutrophil recruitment to the site of infection. The immune responses are meant to 
clear H. pylori. Still, they can also cause collateral damage to the gastric mucosa, leading to 
inflammation and tissue injury[147], which are outcomes that implicate HP-NAP in GC. Overall, the 
chronic inflammation of the gastric mucosa is a pivotal contributor to the development of H. pylori-
related diseases, including GC. 

In addition to its influence on innate immune cells, HP-NAP affects the adaptive immune 
response. HP-NAP crosses the epithelial barrier and promotes the skewing of CD4+ T helper (Th) cell 
responses to Th1 responses by inducing the production of IL-12 and IL-23 by neutrophils, monocytes, 
and dendritic cells[48][148]. Those cytokines promote the differentiation of monocytes toward 
matured dendritic cells (DCs). DCs respond to HP-NAP with increased expression of major 
histocompatibility complex (MHC) class II molecules and produce IL-12 to further the polarization 
of Th1 cells[148]. It is important to note that IL-23 produced in response to HP-NAP may promote 
the development of Th17 and the production of interleukin-17 (IL-17). IL-17 is a pro-inflammatory 
cytokine critical in the immune response to bacterial infections. IL-17 may contribute to the 
recruitment of neutrophils and the clearance of H. pylori infection. However, excessive production of 
IL-17 can also contribute to chronic inflammation and tissue damage.  

3.6. H. pylori γ-glutamyltranspeptidase (GGT) 

GGT is an enzyme that plays a crucial role in H. pylori's survival and pathogenesis. H. pylori GGT 
(HpGGT) is a type I membrane protein anchored to the bacterial outer membrane. HpGGT is highly 
conserved and present in all strains[149]. It involves several critical functions, including glutathione 
detoxification, nutrient acquisition, and host immune response modulation. HpGGT catalyzes 
transpeptidation and hydrolysis of the gamma-glutamyl group of glutathione and similar 
compounds[150]. HpGGT hydrolyzes glutamine into glutamate, ammonia, and glutathione into 
glutamate and cysteinylglycine[151]. Since H. pylori cannot take up extracellular glutamine and 
glutathione directly, this enzyme allows H. pylori to use extracellular glutamine and glutathione as 
sources of glutamate for subsequent use in the tricarboxylic acid cycle[152]. HpGGT is vital for the 
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survival of H. pylori in acidic conditions as H. pylori GGT- isogenic mutant strains cannot colonize the 
gastric mucosa in animal models of infection or do so less efficiently[153,154]. A study by Chevalier 
et al. reported that H. pylori GGT- mutants could not be recovered from the stomachs of mice at 3-60 
days post-infection[154]. 

HpGGT has wide-ranging effects in gastric epithelial cells and plays a significant role in the 
pathogenesis of Hp-induced GC. HpGGT functions through multiple pathways to damage the gastric 
epithelial barrier. HpGGT induces epithelial cell apoptosis by a mitochondria-dependent pathway 
and reduces cell viability[155]. HpGGT also promotes cell death by reducing survivin levels[156], 
prompting cell cycle arrest at the G1-S phase transition[157], and ROS production, resulting in 
glutathione depletion and DNA damage[158]. HpGGT stimulates the expression of heparin-binding 
epidermal growth factor-like growth factor (HB-EGF), a ligand of the epidermal growth factor 
receptor (EGFR)[159]. HB-EGF binding to EGFR initiates the Raf/Ras/MEK/Erk and PI3K/Akt 
pathways, reducing apoptosis and promoting proliferation[160]. The expression of HB-EGF is 
increased in various types of cancer, including GC[161]. HB-EGF also contributes to GC progression 
by potentiating the epithelial-mesenchymal transition[162]. H. pylori infection also affects 
mesenchymal stem cells (MSCs) by inducing their migration to the gastric mucosa, where they may 
contribute to GC development by differentiating into epithelial cells or assisting in angiogenesis[163]. 
HpGGT was recently shown to disturb MSCs by obstructing alpha-ketoglutarate to boost 
trimethylation of histones H3K9 and H3K27, triggering PI3K/AKT signaling, and helping 
proliferation, migration, self-renewal, and pluripotency in cancerogenesis[164]. Another recent 
report showed that HpGGT might help GC development by activating the Wnt/β-catenin signaling 
pathway through up-regulation of ten-eleven translocation 1 (TET1)[165], which is a crucial DNA 
demethylase and is overexpressed in GC.  

HpGGT also affects immune cells directly. One of the earliest studies on the immune response 
effects of HpGGT showed that the enzyme could dampen T-cell proliferation[166,167]. It was 
reported to induce cell cycle arrest at the G1 phase due to interference with the Ras-dependent 
signaling pathway[167]. This effect of HpGGT on T cell proliferation is thought to mediate 
immunosuppression which assists in the persistence of H. pylori infection. Another study showed 
that HpGGT-induced microRNA-155 (miR-155) expression in both CCRF-CEM cells (a human T 
lymphoblast cell line) and primary human peripheral blood mononuclear cells[168]. This response 
depends on forkhead box P3 (Foxp3), the master regulator of regulatory T cells (Treg) 
development[169], and requires activation of the cyclic adenosine monophosphate cascade. Treg cells 
have an immune suppressive activity, often found in the H. pylori-infected gastric mucosa[170], 
promoting higher H. pylori colonization and infiltrating tumors[171]. In support of the role of HpGGT 
in promoting Treg development, mice infected with ggt- isogenic H. pylori mutant strains were 
reported to have lower Treg counts than wild-type-infected mice[133]. These observations suggested 
that HpGGT is influential in regulating the immune system.  

4. Immune Checkpoints in H. pylori Infection as Immune Escape Mechanisms 

In addition to the various immune evasion mechanisms associated with virulence factors 
described above, H. pylori stealthily direct the expression of multiple receptors that influence T cell 
activity. The optimal balance between protective immunity and immune tolerance controls immune 
responses. T-cell activity is determined by the combination of signals initiated by T cell receptors 
(TCR) recognition of antigen/MHC complexes and co-stimulatory molecules on APCs, divided into 
co-stimulatory and co-inhibitory molecules (Figure 1). While the co-stimulatory receptors are critical 
in initiating immune responses, co-inhibitory molecules are essential for avoiding immune-driven 
pathology but can also restrain immune-mediated clearance of pathogens. Many pathogens and 
cancers promote inhibitory interactions via immune checkpoint proteins to evade immune clearance. 
H. pylori induces the expression of gastric epithelial cells of the checkpoint inhibitor B7-H1 (aka PD-
L1), which inhibits effector T cells via PD-1 engagement on their surface and fosters Treg cell 
development[172–174]. This contributes to the overall T cell supression elicited by the various 
virulence factors described above (Figure 2). Further, the H. pylori-infected gastric epithelial cells 
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simultaneously downregulate their expression of the co-stimulator B7-H2, thus, not only reducing 
effector T cell responses but also altering T cell sub-sets balances by increasing Treg and decreasing 
Th17 cell numbers[173–175]. This imbalance favors bacterial persistence. We demonstrated that H. 

pylori uses cagPAI to induce these effects on gastric epithelial cells and activates the mTOR/p70 S6 
kinase pathway to downregulate B7-H2 expression[172,175]. B7-H1 expression is also increased in 
GC[176–178]. In a subsequent report, we demonstrated that H. pylori T4SS-mediated transfer of CagA 
and cell wall peptidoglycan (PG) fragment upregulated B7-H3 expression by gastric epithelial cells 
via activation of the p38MAPK signaling pathway[179]. Thus, H. pylori effectively hijack the regulated 
expression of co-inhibitory molecules to avoid immunity and may favor immune escape by 
developing cancer cells through these mechanisms.  

 

Figure 1. Immune Checkpoints Regulators of T cell Activity. In red are immune checkpoints whose 
expression is altered by H. pylori. Black arrows represent positive signals. Red arrows represent 
inhibitory signals. 

 

Figure 2. H. pylori sets Immunosuppressive Environment. H. pylori interferes with effector T cells 
functions using an array of virulence factors and by manipulating the expression by the epithelium 
of immune checkpoint regulatory receptors. 
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5. Conclusions and Future Directions 

Over the past 40 years, significant advances were made in our comprehension of H. pylori's 
properties since its initial identification as a human pathogen. While infection with H. pylori was 
initially linked with chronic gastritis and the development of peptic ulcer disease, research by 
multiple laboratories worldwide has established the bacterium as the most potent known risk factor 
for GC, one of the world's deadliest cancers. 

Although antibiotic therapies are available to treat H. pylori infection, the high prevalence of the 
bacterium and the escalation of antibiotic resistance highlights the need for a protective vaccine. H. 

pylori has an extensive array of virulence factors that mediate pathogenesis and could represent 
potential vaccine targets to prevent the morbidity and mortality associated with the infection. 
Nevertheless, vaccine development efforts have encountered various challenges. The variability 
among H. pylori strains and the bacterium's immune escape mechanisms create significant obstacles 
to developing an effective vaccine. Clinical trials of candidate vaccines have yielded mixed or 
disappointing results. 

Although an H. pylori vaccine is not currently available, continued research is promising and 
may eventually lead to an avenue to help decrease the burden of H. pylori-associated diseases. In 
summary, H. pylori is the foremost risk factor for developing GC, and understanding how to override 
the bacterium's immune evasion strategies is crucial for developing new approaches to treat and 
prevent the conditions associated with the infection. 
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