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Abstract: The Grassmann variables are used to transform a system with constraints into an

unconstraint system. As a result, the Schrödinger equation arises instead of the Wheeler-DeWitt

one. Formally, the Schrödinger equation describes a system’s evolution, but a definition of the scalar

product is needed to calculate the mean values of the operators. We suggest an explicit formula

for the scalar product. The calculation of the mean values is compared with the etalon method, in

which a redundant degree of freedom is excluded. Nevertheless, we could note that a complete

correspondence with the etalon picture is not found. Apparently, the picture with Grassmann

variables requires further search for underlying Hilbert space.

Keywords: minisuperspace model; quantum evolution; ghost variables; operator mean values

1. Introduction

There is a principal possibility to construct the theory of quantum gravity (QG) from the point

view that gravity is a usual physical system with constraints [1,2], and it has to be quantized using

the Dirac brackets [3]. The physical question is, which gravity theory type must be quantized? It

hardly is the general relativity (GR) because GR suffers from the loss of information (unitarity) in

black holes (see, e.g., [4]) and from the vacuum energy problem [5]. It seems possible [6] to repair GR

by restricting it to a class of manifolds without black holes [7–10]. Simultaneously, a possibility of

arbitrarily choosing an energy density level appears [6,11], which removes the vacuum energy problem,

at least for the massless particles. The resulting theory could be a suitable candidate for quantization.

Another mathematical question is how to realize the commutation relations corresponding to the Dirac

brackets. By now, there is no constructive way to do that [12].

In the quasi-Heisenberg picture [13–16], the commutator relations are determined near a small

scale factor that simplifies a problem. A more radical method is introducing the Grassmann variables

[17–20], which reduce a system with constraints to that without constraints. However, if one applies

the Grassmann variables not only to calculation of the scattering amplitudes, but also to mean values

of the operators, a question about the Hilbert space and scalar product arises [21,22].

For simplicity, the question about the scalar product could be considered on a minisuperspace

model example. Minisuperspace models are widely used in QG [23–26] to understand the main features

of gravity quantization and represents an example of a simple system with constraints. Without the

experimental data for the minisuperspace model, one could not check different approaches to gravity

quantization straightforwardly. Fortunately, an etalon quantization method for the minisuperspace

model exists, which "could not be wrong." It consists in the explicit exclusion (see Appendix) of the

redundant degree of freedom initially to obtain a physical Hamiltonian [27,28].
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2. Etalon Picture with the Exclusion of the Redundant Degrees of Freedom

Let us consider action for gravity and a real massless scalar field:

S =
1

16πG

∫

R
√

−g d4x +
1

2

∫

∂µφ gµν∂νφ
√

−g d4x, (1)

where R is a scalar curvature. By the consideration of the uniform, isotropic and flat universe

ds2 = gµνdxµdxν = a2(N2dη2 − d2
r), (2)

where functions a and N depend on η only, the action (1) reduces to

S =
1

2

∫

1

N

(

−M2
pa′2 + a2φ′2

)

dη =
∫

(

−paa′ + πφφ′ − N

(

−1

2
p2

a +
π2

φ

2a2

))

dη, (3)

where the reduced Planck mass Mp =
√

3
4πG is used. Hamiltonian

H = N

(

−1

2
p2

a +
π2

φ

2a2

)

, (4)

determines also the Hamiltonian constraint

Φ1 = −1

2
p2

a +
π2

φ

2a2
= 0, (5)

due to the equation δS
δN = 0. Time evolution of an arbitrary quantity A is expressed through the Poisson

brackets
dA

dη
=

∂A

∂η
+ {H, A}, (6)

which are defined as

{A, B} =
∂A

∂πφ

∂B

∂φ
− ∂A

∂φ

∂B

∂πφ
− ∂A

∂pa

∂B

∂a
+

∂A

∂a

∂A

∂pa
. (7)

The full system of the equations of motion has the form:

π′
φ = −∂H

∂φ
= 0, =⇒ πφ = k = const,

φ′ =
∂H

∂πφ
=

k

a2
, a′ = − ∂H

∂pa
= pa, p′a =

∂H

∂a
= − k2

a3
. (8)

Their solutions are

a =
√

2|πφ|η, φ =
πφ

2|πφ|
ln η + const. (9)

The additional time-dependent gauge fixing condition

Φ2 = a −
√

2|πφ|η (10)

can be introduced as the constraint Φ2 that allows reducing this simple system to a sole degree of

freedom. Let us take πφ and φ as the physical variables, then a and pa have to be excluded by the

constraints. Substituting pa, a′ and a into (3) results in

L =
∫

(

πφφ′ − Hphys(φ, πφ, η)
)

dη, (11)
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where

Hphys(φ, πφ, η) = paa′ =
|πφ|
2 η

. (12)

The most simple and straightforward way to describe a quantum evolution is to formulate the

Schrödinger equation

i∂ηΨ = ĤphysΨ (13)

with a physical Hamiltonian (12). In the momentum representation, the operators become

π̂φ = k, φ̂ = i
∂

∂k
. (14)

The solution of Eq. (13) is written as

Ψ(k, η) = C(k)

(

2

e
|k|η

)−i|k|/2

. (15)

It is possible to calculate the mean values of an arbitrary operator Â(k, i ∂
∂k ) build from φ̂ = i ∂

∂k

and a =
√

2|k|η for some particular wave packet C(k) in the following way

< C|Â|C >=
∫

Ψ∗(k, η)Â Ψ(k, η)dk. (16)

Since the basic wave functions
(

2
e |k|η

)−i|k|/2
contain module of k, a singularity may arise at k = 0

if Â contains degrees of the differential operator ∂
∂k . That may violate hermicity. To avoid this, the

wave packet has to be turned to zero at k = 0. For instance, it could be taken in the Gaussian form

C(k) =
2σ5

√
3π1/4

k2 exp(−k2/(2σ2)) (17)

with the multiplier k2 in the front of exponent.

Let us come to calculation of some mean values taking σ = 1. The mean value of a2 is

< C|a2|C >=
16

3
√

π
η
∫ ∞

0
e−k2

k5dk =
16

3
√

π
η. (18)

The next quantity is

< C|a4|C >=
16

3
√

π
η2
∫ ∞

−∞
e−k2

k6dk = 10η2. (19)

Other mean values for this wave packet were calculated in [28,29].

3. Evolution in the Extended Space

Indeed, the etalon picture cannot be applied in the general case to QG because one cannot resolve

the constraints. It is believed that the Grassmann variables allow writing a Lagrangian in the form

where there are no constraints at all [19,20,30,31].

The discussion could be started in terms of a continual integral. The transition amplitude from in

vacuum to out vacuum state is written in the form [32]

< out|in >= Z =
∫

e
i
∫

(

πφφ′−paa′−N

(

− 1
2 p2

a+
π2

φ

2a2

))

dη

Πη
δF

δε
Πηδ(F)DpaDaDπφDφDN, (20)

where F(N) is a gauge fixing function (here non-canonical gauge fixing [21] is considered).
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The action (3) is invariant relatively the infinitesimal gauge transformations:

ã = a + δa = a + ε a′, (21)

φ̃ = φ + δφ = φ + ε φ′, (22)

Ñ = N + δN = N + (Nε)′, (23)

where ε is an infinitesimal function of time. If to take the differential gauge condition F = N′ = 0, then

(23) follows in

δF = δN′ = (Nε)′′, (24)

and the Faddev-Popov determinant [32] takes the form of ∆FP = δF
δε = δN′

δε = N′′ + 2N′ ∂
∂η + N ∂2

∂η2 .

The functional (20) could be rewritten as

Z =
∫

e
i
∫

(

πφφ′−paa′−N

(

− 1
2 p2

a+
π2

φ

2a2

)

−θ̄(Nθ)′′
)

dη

Πηδ(N′(η))DpaDaDπφDφDNDθDθ̄, (25)

where using of the Grassmann variables [32] raises the determinant into an exponent.

Integration over N could be performed explicitly. In a discrete version, where N(η) is discretized

over the interval ∆η, the term with delta functions Πηδ(N′(η)) has the form

∫

. . . δ

(

N0 − N1

∆η

)

δ

(

N1 − N2

∆η

)

...δ

(

Nk−1 − Nk

∆η

)

dN1..dNk−1 ∼ ∆ηk−1δ(N0 − Nk), (26)

i.e., an initial value of N0 has to equal a final value Nk. For instance, one may take N0 = 1, and, then,

the Lagrangian from Eq. (25) becomes

L = πφφ′ − paa′ −
(

−1

2
p2

a +
π2

φ

2a2

)

+ θ̄′θ′. (27)

The action (27) is a fixed gauge action with no Hamiltonian constraint, but instead, the ghost

(Grassmann) variables arise in (27). The expressions for the momentums of the Grassmann variables

are

πθ = − ∂L

∂θ′
= θ̄′, πθ̄ =

∂L

∂θ̄′
= θ′, (28)

where, as usual, the left derivative over the Grassmann variables ∂
∂θ

(

θ f (θ̄)
)

= f (θ̄) is implied. The

Lagrangian (27), rewritten in terms of momentum, acquires the form of

L = πφφ′ − paa′ + θ̄′πθ̄ + πθθ′ −
(

−1

2
p2

a +
π2

φ

2a2

)

− πθπθ̄ . (29)

Following Vereshkov, Shestakova et al. [19,20] one may consider the Hamiltonian

H =

(

−1

2
p2

a +
π2

φ

2a2

)

+ πθπθ̄ (30)

as describing the quantum evolution of a system.

To quantize the system, the anticommutation relation has to be introduced for the Grassmann

variables

{πθ , θ} = −i, {πθ̄ , θ̄} = −i. (31)
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In the particular representation α = ln a, p̂α = i ∂
∂α , φ̂ = i ∂

∂k , π̂φ = k, π̂θ = −i ∂
∂θ , π̂θ̄ = −i ∂

∂θ̄
, the

Schrödinger equation reads as

i
∂

∂η
ψ =

(

1

2
e−2α

(

∂2

∂α2
+ k2

)

− ∂

∂θ

∂

∂θ̄

)

ψ, (32)

where the operator ordering in the form of the two-dimensional Laplacian has been used. It should be

supplemented by the scalar product

< ψ1|ψ2 >=
∫

ψ∗
1 (η, k, α, θ̄, θ)ψ2(η, k, α, θ̄, θ)e2αdαdkdθdθ̄, (33)

where the measure e2α arises due to hermicity requirement [18,33]. This measure is a consequence

of a minisuperspace metric if the Hamiltonian is written in the form of H = 1
2 gij pi pj + πθπθ̄ with

pi ≡ {pα, πφ}, gij = diag{−e−2α, e−2α}. Thus, the measure takes the form
√

|det gij| = e2α [33].

Formal solutions of the equation (32) can be written as

ψ(η, k, α, θ̄, θ) = (θ̄ + θ)u(η, k, α) + i(θ̄ − θ)v(η, k, α), (34)

where the functions u and v satisfy the equation

i
∂

∂η
u = Ĥ0u, (35)

with

Ĥ0 =
1

2
e−2α

(

∂2

∂α2
+ k2

)

. (36)

Then, the scalar product (33) reduces to

< ψ1|ψ2 >= −2i
∫

(u∗
1v2 − v∗1u2) e2αdαdk. (37)

Although the constraint H0 = 0 formally disappears from the theory, one may think that the space

of solutions of the Wheeler-DeWitt equation (WDW) equation still plays a role [22]. Otherwise, the

question of correspondence with the classical theory, where the Hamiltonian constraint holds, arises.

We would like to relate the space of the functions, satisfying to the Schrödinger equation (32) with

the functions χ satisfying the equation H0χ = 0, i.e., the WDW equation. Operator Ĥ0 (36) has the

Klein-Gordon form. Thus the Klien-Gordon-type scalar product has to be used. According to this

hypotheses, let us represent the functions u, v as

v(α, k) = e−iH0η D̂1/4χ(α, k), (38)

u(α, k, η) = e−iH0η D̂−1/4δ(α − α0)
∂

∂α
χ(α, k), (39)

where operator D̂ = − ∂2

∂φ2 , or D = k2 in the representation (14) and χ(α, k) = e−i α|k|−α0√
2|k|

C(k) (compare

with (15)). The operator D̂ (see Appendix in [34]) is a necessary attribute of the scalar product for the

Klein-Gordon equation to obtain hermicity. It should be noted that, in fact, the function v does not

depend on the time η because Ĥ0χ = 0 and D̂ commute with H0. Thus, the time evolution arises only

due to function u, or more accurately, due to the presence of the Dirac delta function in (39).

Thus scalar product (37) reduces to

< ψ1|ψ2 >= −2i
∫

(

∂χ∗
1

∂α
χ2 − χ∗

1
∂χ2

∂α

)

e2α

∣

∣

∣

∣

α=α0

dk. (40)
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The expression for the mean value of an operator Â has the form:

< ψ|Â|ψ >= −2i
∫

e2α

(

u∗ Âv − v∗ Âu

)∣

∣

∣

∣

α=α0→−∞

dk, (41)

where u, v are given by (38), (39) and it is assumed that an operator Â does not contains ghost variables

θ, θ̄, that is expectable for physical operators. The limit α → −∞ in (41) implies that an evolution

begins at η = 0, when a = 0 and α = ln a tends to −∞.

Both Schrödinger and Heisenberg pictures are possible with this scalar product. For the last, the

time-dependent operators have the form

Â(η) = eiĤ0η Âe−iĤ0η , (42)

while the functions u and v have to be used without multiplier e−iĤ0η .

4. Mean values of scale factor degrees

Table 1. Comparison of the mean values < C|a2n|C >= k2n ηn over the wave packet (17).

2n 2 4 6 8 10 12 14

k2n for the etalon model 16
3
√

π

√
10 3

√

64√
π

4
√

140 5

√

1024√
π

6
√

2520 7

√

20480√
π

k2n for the model with the Grassmann variables 16
3
√

π

√
2 3

√

512
3
√

π
4
√

876 5

√

7936
3
√

π
6
√

118280 7

√

1172480√
π

0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

7

2n

k
2
n

Figure 1. n-th root of coefficient k2n in the expression < C|a2n|C >= k2n ηn for the mean value of 2nth

degree of scale factor over wave packet (17). Red and blue curves correspond to the etalon method and

that with the Grassmann variables, respectively.

The simplest way to test a theory is to compare it with the etalon picture by calculating the mean

value of the squared scale factor, which has to be equal 16
3
√

π
η according to (18). For its value calculation

with (38), (39), (41), it is sufficient to expand e−iĤ0η ≈ 1 − iĤ0η − 1
2 Ĥ2

0 η2 in (38) and (39) and perform

the calculation according (41). It turns out to be, that the mean value of a2 = e2α actually coincides

with that given by (18). The next test is the calculation of < C|a4|C >. The result of calculation is

< C|a4|C >= 2η2, (43)
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while the etalon model gives another value (19). An origin of this discrepancy could be better seen in

the Heisenberg picture. Evolution equations for the Heisenberg operators follow from the operator

commutators with the Hamiltonian (36)

dâ2

dη
= i[Ĥ0, â2]. (44)

It is possible to guess a solution for this particular case:

â2(η) = e2α + 2η e−α p̂αeα − 2η2Ĥ0, (45)

where p̂α = i ∂
∂α . Actually, calculation of the commutator (44) using (36),(45) gives

i[Ĥ0, â2(η)] = 2 e−α p̂αeα − 4ηĤ0, (46)

which is exactly equals to the derivative of (45) over η. Under calculation of the mean value of

< C|a2|C >, third term in (45) does not contribute and the result coincides with that of etalon method.

However, under calculation of < C|a4|C >, the first and third terms in (45) play a role, and discrepancy

with the etalon method arises. One could also calculate the mean values of the other degrees of a,

which are presented in Table 1. It is interesting to plot these values k2n = 1
η

n
√

< C|a2n(η)|C >, that is

shown in Figure 1.

5. Discussion and Conclusion

A reasonable expression for the scalar product using the Grassmann variables is suggested. It

establishes a relation of a picture with the Grassmann variables to the Klein-Gordon scalar product and

allows calculating the mean values of operators in both Schrödinger and Heisenberg pictures, which

give the same results. However, it is shown that the mean values of a2n are different for n > 1 than

those calculated in the etalon method, implying explicit exclusion of superfluous degrees of freedom.

In principle, the above methods may have different Hilbert spaces. That means the different wave

packets have to be taken for these methods to obtain the same set of operator mean values. Here we

cannot find the wave packet C̃(k), which would give the same mean values as the wave packet C(k)

for the etalon method.

There could also be more profound reasons why there is no correspondence with the etalon

method. The well-known phenomenon of Zitterbewegung (see [35] and references therein) is an

inevitable feature of the Klein-Gordon equation. It could be possible that an effect of that kind plays a

role in the picture with the Grassmann variables producing an additional dispersion compared to the

etalon picture. One of the possible ways to correct the picture is to consider that operators of physical

quantities act not only in k and α space, but also in the extended space of the Grassmann variables θ,

θ̄. This hypothesis needs further investigation as well the general issue of the scalar product for the

approach with the Grassmann variables.

It should be noted that the quasi-Heisenberg picture corresponds entirely with the etalon method

[28,29].

Appendix A. Resolving constraints in path integrals

The theory of constraint systems considers reducing a system with constraints to the system with

excluded redundant degrees of freedom as a proof [17,18] of formalism. Let us consider action of an

arbitrary system with n dynamical variables q and m constraints

S =
∫

(

n

∑
i=1

piq
′
i − H(p, q)−

m

∑
α=1

λαφα(p, q)

)

dt. (A1)
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The constraints φα(p, q) have to be supplemented by additional gauge fixing conditions χα(p, q) so

that the total system of constraints

φα(p, q) = 0, (A2)

χα(p, q) = 0 (A3)

leads to a second kind system with constraints. It is suggested that the determinant det |{φα, χβ}| 6= 0,

where the Poisson brackets are defined as

{ f , g} = ∑
i

∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi
. (A4)

Let us consider a transformation to a new set of coordinates

qα = qα(p∗, q∗), (A5)

pα = pα(p∗, q∗) (A6)

in the < in|out > transition functional [17,18,20]

Z =
∫

exp

(

i
∫

(

n

∑
i=1

piq
′
i − H(p, q)−

m

∑
α=1

λαφα(p, q)
)

)

Πt,αδ(χα(q, t))Πt det |{φα, χβ}|

Dp(t)Dq(t)Dλ(t) =
∫

exp

(

i
∫

(

n

∑
i=1

piq
′ − H(p, q)

)

)

Πt det |{φα, χβ}|Πα,tδ(φα)

Piβ,tδ(χβ)Dp(t)Dq(t) = exp

(

i
∫

(

n

∑
i=m+1

p∗i q∗′i − H∗(p∗, q∗)
)

)

Dp∗(t)Dq∗(t),

where the delta function δ(χ(t)) appears in a second equality after integration over λ(t). Last equality

has been proved in [18] by taking functions χα(q, t) as new coordinates q∗i , where i = 1, . . . m, or in [17],

where χα(q, t) is associated with momentums p∗i , i = 1, . . . m. As it was shown [17,18], the continual

integration Πi=m
t,i=1Dp∗i (t)Dq∗i (t) could be performed explicitly and only continual integration over

n − m coordinates remains in the final result in (A7). However, the result (A7) could be deduced

generally, in particular, in Section 2 we take φ, πφ as independent variables and exclude a, pa using the

constraints.
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