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Abstract: The Grassmann variables are used to transform a system with constraints into an
unconstraint system. As a result, the Schrodinger equation arises instead of the Wheeler-DeWitt
one. Formally, the Schrodinger equation describes a system’s evolution, but a definition of the scalar
product is needed to calculate the mean values of the operators. We suggest an explicit formula
for the scalar product. The calculation of the mean values is compared with the etalon method, in
which a redundant degree of freedom is excluded. Nevertheless, we could note that a complete
correspondence with the etalon picture is not found. Apparently, the picture with Grassmann
variables requires further search for underlying Hilbert space.

Keywords: minisuperspace model; quantum evolution; ghost variables; operator mean values

1. Introduction

There is a principal possibility to construct the theory of quantum gravity (QG) from the point
view that gravity is a usual physical system with constraints [1,2], and it has to be quantized using
the Dirac brackets [3]. The physical question is, which gravity theory type must be quantized? It
hardly is the general relativity (GR) because GR suffers from the loss of information (unitarity) in
black holes (see, e.g., [4]) and from the vacuum energy problem [5]. It seems possible [6] to repair GR
by restricting it to a class of manifolds without black holes [7-10]. Simultaneously, a possibility of
arbitrarily choosing an energy density level appears [6,11], which removes the vacuum energy problem,
at least for the massless particles. The resulting theory could be a suitable candidate for quantization.
Another mathematical question is how to realize the commutation relations corresponding to the Dirac
brackets. By now, there is no constructive way to do that [12].

In the quasi-Heisenberg picture [13-16], the commutator relations are determined near a small
scale factor that simplifies a problem. A more radical method is introducing the Grassmann variables
[17-20], which reduce a system with constraints to that without constraints. However, if one applies
the Grassmann variables not only to calculation of the scattering amplitudes, but also to mean values
of the operators, a question about the Hilbert space and scalar product arises [21,22].

For simplicity, the question about the scalar product could be considered on a minisuperspace
model example. Minisuperspace models are widely used in QG [23-26] to understand the main features
of gravity quantization and represents an example of a simple system with constraints. Without the
experimental data for the minisuperspace model, one could not check different approaches to gravity
quantization straightforwardly. Fortunately, an etalon quantization method for the minisuperspace
model exists, which "could not be wrong." It consists in the explicit exclusion (see Appendix) of the
redundant degree of freedom initially to obtain a physical Hamiltonian [27,28].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Etalon Picture with the Exclusion of the Redundant Degrees of Freedom

Let us consider action for gravity and a real massless scalar field:

_L o4 1 uv o4
_167IG/R‘/ gd x+2/ay¢g ovp/—gdx, 1)

where R is a scalar curvature. By the consideration of the uniform, isotropic and flat universe
ds? = g dxt'dx’ = a®(N?dy* — d*r), )

where functions 2 and N depend on # only, the action (1) reduces to

2
Ll aon, 2n _/_/ r 1, T
S—Z/N( Mya"” +a°¢ )d;y— pad’ + 799" = N | —5P5+ 53 dn, 3)

where the reduced Planck mass M, = 4/ ﬁ is used. Hamiltonian

2
1 T
H=N P . 4
( zp a + 2a2> 7 ( )
determines also the Hamiltonian constraint

2
1,5, 7
D= —= — =
1 zpa+2a2 O/ (5)

due to the equation 6N = 0. Time evolution of an arbitrary quantity A is expressed through the Poisson

brackets
dA  0JA

=S A, ©
which are defined as

0A 0B 0A 0B dAJdB JdAJA
{A B} = %$*$%*Tm$+gﬁ- @)

The full system of the equations of motion has the form:

T :—ﬁzo, = 7y = k = const,

oH &k oH oH k2

/—7:— /:— = /:7:——
¢ = oy a?’ ? 9pa Par Pa= %4 a’’ ®

Their solutions are
=/2|mgln, ¢ = 2‘ " 1n17 + const. )

The additional time-dependent gauge fixing condition
Dy =a—/2|mplny (10)
can be introduced as the constraint @, that allows reducing this simple system to a sole degree of

freedom. Let us take 71y and ¢ as the physical variables, then 2 and p, have to be excluded by the
constraints. Substituting p,, 4’ and a into (3) results in

L= / <7T¢47/ - thys((nb/ T, 77)) dﬂ/ (11)

doi:10.20944/preprints202304.0508.v1
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where

thys(¢r T, 77) = Pall = & (12)

The most simple and straightforward way to describe a quantum evolution is to formulate the
Schrodinger equation

iy = Hypys¥ (13)

phys

with a physical Hamiltonian (12). In the momentum representation, the operators become

. N
The solution of Eq. (13) is written as
5 —ilk|/2
¥k =) (3kln) )

It is possible to calculate the mean values of an arbitrary operator A(k, i %) build from ¢ = ia%

and a = /2|k|y for some particular wave packet C(k) in the following way
< ClA|IC >= /‘Y*(k,;y)/\‘}’(k,;y)dk. (16)

. . . —ilk|/2
Since the basic wave functions (2|k|) i/

if A contains degrees of the differential operator % That may violate hermicity. To avoid this, the
wave packet has to be turned to zero at k = 0. For instance, it could be taken in the Gaussian form

contain module of k, a singularity may arise at k = 0

207

V3ml/4

with the multiplier k? in the front of exponent.
Let us come to calculation of some mean values taking ¢ = 1. The mean value of a? is

C(k) = K exp(—k*/(20%)) (17)

16 o 16
<c2c>:7/ RSk = 2y 18
|a”| szl h € N (18)

The next quantity is
< ClaY|C >= / e R Kbk = 19
|a*|C >= 3ff7 1072 (19)

Other mean values for this wave packet were calculated in [28,29].

3. Evolution in the Extended Space

Indeed, the etalon picture cannot be applied in the general case to QG because one cannot resolve
the constraints. It is believed that the Grassmann variables allow writing a Lagrangian in the form
where there are no constraints at all [19,20,30,31].

The discussion could be started in terms of a continual integral. The transition amplitude from in
vacuum to out vacuum state is written in the form [32]

2

, if<%¢ pad’'— ( ﬁa2ﬂ>>w SF
<outlin >=7Z = /e HWEHW(S(P)DpaDaDmqub’DN, (20)

where F(N) is a gauge fixing function (here non-canonical gauge fixing [21] is considered).
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The action (3) is invariant relatively the infinitesimal gauge transformations:
i=a+da=a+ed, (21)
$=¢+dp=0+e¢, (22)
N =N +06N = N + (Ne)/, (23)

where ¢ is an infinitesimal function of time. If to take the differential gauge condition F = N’ = 0, then
(23) follows in

SF = 5N" = (Ne)”, (24)
and the Faddev-Popov determinant [32] takes the form of App = % = %ﬂ = N"+2N' % +N %.
The functional (20) could be rewritten as

2
if <”¢¢'*Pua’7N<f%p§+j§> —é(N@)”) dn ]
£= /e Hn5(N/(U))DPaDaDmPD(pDNDQDQ, (25)

where using of the Grassmann variables [32] raises the determinant into an exponent.
Integration over N could be performed explicitly. In a discrete version, where N(7) is discretized
over the interval A, the term with delta functions IT,6(N’(#)) has the form

No— N N — N, Ni—1 — Ni k—1 _
/...5 < & ) 5 ( 5 ) w ( i ) ANL.dNp_q ~ AF16(Ng — Ny),  (26)

i.e., an initial value of Ny has to equal a final value Nj. For instance, one may take Ny = 1, and, then,
the Lagrangian from Eq. (25) becomes

2
/ / 15, T A’ o’
L =mpp — paa’ — —Epa+ﬁ + 600, (27)

The action (27) is a fixed gauge action with no Hamiltonian constraint, but instead, the ghost
(Grassmann) variables arise in (27). The expressions for the momentums of the Grassmann variables
e oL oL

S _ g
T 7 ﬂg—@—gl (28)
where, as usual, the left derivative over the Grassmann variables % (6f(8)) = f(f) is implied. The
Lagrangian (27), rewritten in terms of momentum, acquires the form of

g =

i} 1 né
L= 7'[4;(]3, — Pua/ + 6/7'[9’ + 1196’ — <—2P§ + 2[12> — TTyTTg. (29)

Following Vereshkov, Shestakova et al. [19,20] one may consider the Hamiltonian
1 2
H= (—2p§+a¢> + Tp75 (30)

as describing the quantum evolution of a system.
To quantize the system, the anticommutation relation has to be introduced for the Grassmann
variables

{7‘[9,9} = —i, {7'[9‘, é} = —1. (31)
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~

In the particular representation & = Ina, p, = i%, =i
Schrodinger equation reads as

0 (1 o[ > 0 0
where the operator ordering in the form of the two-dimensional Laplacian has been used. It should be
supplemented by the scalar product

iy = k

o
<
SN
5

|

|
-

Q)
I
<
=N
)
|

|
-

1l
-
=
[¢)

< grlypn >= / Wik, 8,0) (1, k, , 8, 8) X dudkdods, (33)

20

where the measure e“* arises due to hermicity requirement [18,33]. This measure is a consequence

of a minisuperspace metric if the Hamiltonian is written in the form of H = % gip; pj + ety with

pi = {pa, 7y}, g7 = diag{—e"**,e72*}. Thus, the measure takes the form ,/|detg;j| = ¢** [33].

Formal solutions of the equation (32) can be written as
Y(n,k,a,0,0)=(0+0)u(nka)+i(0—0)v(yka), (34)

where the functions u and v satisfy the equation

.0 -
z%u = Hyu, (35)
with
Oy = Le2 > + k2 (36)
072 o2 '

Then, the scalar product (33) reduces to
<Y1l >= —2i/ (uivy — viup) e**dadk. (37)

Although the constraint Hy = 0 formally disappears from the theory, one may think that the space
of solutions of the Wheeler-DeWitt equation (WDW) equation still plays a role [22]. Otherwise, the
question of correspondence with the classical theory, where the Hamiltonian constraint holds, arises.
We would like to relate the space of the functions, satisfying to the Schrédinger equation (32) with
the functions x satisfying the equation Hyx = 0, i.e., the WDW equation. Operator Hy (36) has the
Klein-Gordon form. Thus the Klien-Gordon-type scalar product has to be used. According to this
hypotheses, let us represent the functions u, v as

o(a, k) = e I D4y (4, k), (38)
Hon d
u(a, k) = e HID=V45(0 — zxo)ax(zx,k), (39)
where operator D = —%, or D = k? in the representation (14) and x(a, k) = e*i“\;:;ro C(k) (compare

with (15)). The operator D (see Appendix in [34]) is a necessary attribute of the scalar product for the
Klein-Gordon equation to obtain hermicity. It should be noted that, in fact, the function v does not
depend on the time 7 because Hoy = 0 and D commute with Hy. Thus, the time evolution arises only
due to function u, or more accurately, due to the presence of the Dirac delta function in (39).

Thus scalar product (37) reduces to

(9] X2\ 2
<Y1l >= _21/<8wX2_X18¢x e

dk. (40)

doi:10.20944/preprints202304.0508.v1
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The expression for the mean value of an operator A has the form:

dk, (41)

x=ng——00

< plAlp >= —Zi/ez"‘ (u*Av— v*/lu)

where u, v are given by (38), (39) and it is assumed that an operator A does not contains ghost variables
6, 0, that is expectable for physical operators. The limit « — —oo in (41) implies that an evolution
begins at 7 = 0, when a4 = 0 and & = Ina tends to —co.

Both Schrodinger and Heisenberg pictures are possible with this scalar product. For the last, the
time-dependent operators have the form

A(y) = e Ae~Hor, (42)
while the functions u and v have to be used without multiplier e~ it

4. Mean values of scale factor degrees

Table 1. Comparison of the mean values < C|a?"|C >= ky, 5" over the wave packet (17).

2n 2 4 6 8 10 12 14
ko, for the etalon model de 10 /L Y140 /10 /2520 7/20480
3y NG N NS
ky,, for the model with the Grassmann variables % V2 3 % V876 5 % /118280 7/ %\/%80
7
6F
5
= 4’
£
3r
2
10
0 i\ L L L L L L L L L
0 2 4 6 8 10 12 14

2n

Figure 1. n-th root of coefficient ky,, in the expression < C |a?*|C >= ky, n" for the mean value of 2nth
degree of scale factor over wave packet (17). Red and blue curves correspond to the etalon method and
that with the Grassmann variables, respectively.

The simplest way to test a theory is to compare it with the etalon picture by calculating the mean

value of the squared scale factor, which has to be equal %17 according to (18). For its value calculation

with (38), (39), (41), it is sufficient to expand e—iHon a1 — iHmy — %H(%UZ in (38) and (39) and perform
the calculation according (41). It turns out to be, that the mean value of a2 = o™ actually coincides
with that given by (18). The next test is the calculation of < C|a*|C >. The result of calculation is

< Cla*|C >= 272, (43)
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while the etalon model gives another value (19). An origin of this discrepancy could be better seen in
the Heisenberg picture. Evolution equations for the Heisenberg operators follow from the operator
commutators with the Hamiltonian (36)

da> .
- i[Ho, 42]. (44)

It is possible to guess a solution for this particular case:
8%(17) = & + 25 e pae® — 29> Hp, (45)
where p, = i%. Actually, calculation of the commutator (44) using (36),(45) gives
i[Ho,8%(n)] = 2 *pae® — 4y Hj, (46)

which is exactly equals to the derivative of (45) over 7. Under calculation of the mean value of
< Cla?|C >, third term in (45) does not contribute and the result coincides with that of etalon method.
However, under calculation of < C|a*|C >, the first and third terms in (45) play a role, and discrepancy
with the etalon method arises. One could also calculate the mean values of the other degrees of a,
which are presented in Table 1. It is interesting to plot these values ky, = % {/< Cla?"(n)|C >, that is
shown in Figure 1.

5. Discussion and Conclusion

A reasonable expression for the scalar product using the Grassmann variables is suggested. It
establishes a relation of a picture with the Grassmann variables to the Klein-Gordon scalar product and
allows calculating the mean values of operators in both Schrodinger and Heisenberg pictures, which
give the same results. However, it is shown that the mean values of a*" are different for n > 1 than
those calculated in the etalon method, implying explicit exclusion of superfluous degrees of freedom.
In principle, the above methods may have different Hilbert spaces. That means the different wave
packets have to be taken for these methods to obtain the same set of operator mean values. Here we
cannot find the wave packet C(k), which would give the same mean values as the wave packet C (k)
for the etalon method.

There could also be more profound reasons why there is no correspondence with the etalon
method. The well-known phenomenon of Zitterbewegung (see [35] and references therein) is an
inevitable feature of the Klein-Gordon equation. It could be possible that an effect of that kind plays a
role in the picture with the Grassmann variables producing an additional dispersion compared to the
etalon picture. One of the possible ways to correct the picture is to consider that operators of physical
quantities act not only in k and « space, but also in the extended space of the Grassmann variables 0,
6. This hypothesis needs further investigation as well the general issue of the scalar product for the
approach with the Grassmann variables.

It should be noted that the quasi-Heisenberg picture corresponds entirely with the etalon method
[28,29].

Appendix A. Resolving constraints in path integrals

The theory of constraint systems considers reducing a system with constraints to the system with
excluded redundant degrees of freedom as a proof [17,18] of formalism. Let us consider action of an
arbitrary system with n dynamical variables g and m constraints

5= / (; pig; — H(p.q) - ZlA“cp“(p,q)) dt. (A1)
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The constraints ¢*(p, q) have to be supplemented by additional gauge fixing conditions x*(p,q) so
that the total system of constraints

¢*(p,q) =0, (A2)
xX“(p,g9) =0 (A3)

leads to a second kind system with constraints. It is suggested that the determinant det [{¢x, x}| # 0,
where the Poisson brackets are defined as

_yv9f9g 9df g
tfo8)= Zl; dq; dp;  9p; 9q; (A4

Let us consider a transformation to a new set of coordinates

7" =q"(p*, 9%, (A5)
pt=p"(r*,q7) (A6)

in the < in|out > transition functional [17,18,20]
Z= /eXp (i/(Z pigi —H(p.q) — ) A“¢“(P,q))>ﬂt,a5(xa(q, £))11; det [{ ¢, X} |
i=1 a=1
Dp(1Dg(1DA0) = [ exp (i [ (3 pit = H(p0) ) et {3 Thsd ()
i=1

Pipadep) Pr(0Pa(t) = exp(i (L piai’ — H' () ) P (0" (1)
i=m+

where the delta function §(x()) appears in a second equality after integration over A(t). Last equality
has been proved in [18] by taking functions x«(q, t) as new coordinates g}, wherei = 1,...m, orin [17],
where x.(g,t) is associated with momentums pi,i=1,...m. Asit was shown [17,18], the continual
integration H’;;”le;‘(t)Dq?‘(t) could be performed explicitly and only continual integration over
n — m coordinates remains in the final result in (A7). However, the result (A7) could be deduced
generally, in particular, in Section 2 we take ¢, 77y as independent variables and exclude 4, p, using the

constraints.
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