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Towards an Artificial Intelligence Based Chronic
Disease Management

William Alberto Cruz-Castañeda, Pedro Bertemes-Filho

Abstract—Chronic non-communicable diseases (NCDs) are major public health problems and a significant financial burden on public
health systems. By 2030, mortality due to NCDs, such as cardiovascular diseases, cancer, respiratory diseases, and diabetes, is
predicted to increase in Brazil. A peculiar aspect of NCDs involves their long-term and integrated care management. This paper
proposes a chronic disease management platform based on artificial intelligence to deliver digital health services everywhere. The
proposed platform is anchored and built with healthcare 4.0 technologies, such as wearable devices, the internet of medical things, and
artificial intelligence cloud-based solutions that allow the deployment of a smart healthcare system. In addition, the paper presents the
feasibility of the platform in a diabetes prediction study case. For the study case, an initial dataset was established with bio-impedance,
oxygen concentration, pulse rate, skin impedance, and skin temperature attributes. A baseline was implemented with ten regression
models to assess the prediction performance of the mean squared error, root mean squared error, and r-squared score to compare
predictive findings with capillary blood glucose measurements. Results evidence that the decision tree regressor and three ensemble
methods (bagging decision tree regressor, random forest regressor, and AdaBoost regressor) yielded improvement over the other
models. Moreover, a comparison among those models revealed that the decision tree regressor outperforms them and presents
promissory outcomes.

Index Terms—Smart Health, Internet of Medical Things, Healthcare 4.0, Chronic-Disease Management, Artificial Intelligence.

F

1 INTRODUCTION

NONCOMMUNICABLE Diseases (NCDs) such as cardio-
vascular diseases, cancers, chronic respiratory dis-

eases, and diabetes are the world’s largest cause of prema-
ture deaths. In 2008, more than 36 million people died an-
nually from NCDs, including 14 million between the ages of
30 and 70. According to World Health Organization (WHO)
projections, the total annual number of deaths from NCDs
will increase to 55 million by 2030 [1]. In Brazil, premature
mortality rates from NCDs (30 to 69 year-olds) remained
stable at 27% in 1990 and 28% in 2017. However, after
2015, the trend reversed, and projections for 2030 indicate
increases [2].

Most of these premature deaths are preventable, if health
systems are able to respond more effectively to people’s
healthcare needs. To reduce the mortality due to NCDs, the
WHO established the Global Action Plan 2013-2020, which
involves nine overarching principles [1]. A tangible way
to implement those principles is through the healthcare 4.0
paradigm or smart health (s-health).

Health services are offered in s-health by using context-
aware sensing and network infrastructure. S-health can help
to redefine and improve the healthcare system with tech-
nologies such as cloud computing, data-driven applications,
artificial intelligence (AI), and the Internet of Things (IoT)
by extending the digital capabilities in three main aspects:
customization, user-oriented, and access to several services
and knowledge [3].
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Thus, the central goal is to promote health in a dis-
tributed, decentralized, connected, and continuous fashion
by reusing models and interactions with technologies in a
convergent new paradigm of ubiquitous health (u-health).
This can make medical care available anywhere through the
use of the Internet of Medical Things (IoMT) or Wearable
IoMT (WIoMT), which are not visible to the user but present
in an environment discreetly embedded and always avail-
able [4].

WioMT are devices that interconnect wearable sensors
to enable monitoring human factors of including health,
wellness, behaviors, and other data useful to improve peo-
ple’s everyday quality of life. They have been successfully
applied, with different purposes, to clinical applications, as
presented by [5], [6], [7], and in the healthcare domain, as
discussed by [8], [9], [10], [11].

Researchers such as [12], [13] have developed WIoMT
for monitoring and prevention of NCDs. Their use in an s-
health system is expected to provide long-term support and
integrated care management for a specific disease. Conse-
quently, several AI techniques can be used for inspection to
retrieve patterns from data.

For that reason, this paper proposes an AI-based Chronic
Disease Management (AI-CDM) platform as a widespread
solution to deliver smart digital health services everywhere.
Our platform interconnects biometric WIoMT devices with
cloud services to enable data-driven AI models that detect
useful patterns to efficiently address, manage, and support
NCD prevention.

The rest of the paper is organized as follows. First,
recent related works are briefly reviewed that focus on the
identification of s-health systems and their technologies.
Next, the proposed AI-based chronic disease management
platform is described. Furthermore, implementation of a
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preliminary diabetes prediction case study of the proposed
platform is provided. Then discussions, conclusions, and
future directions are presented.

2 SMART HEALTHCARE SYSTEM: A BRIEF RE-
VIEW

To identify Smart Healthcare System (SHS) solutions and
their related technologies, a literature search was carried out
covering the period between 2019 to 2022. IEEEXplore Dig-
ital Library, ScienceDirect, ACM Digital Library, Springer
Link, and PubMed as well as arXiv and Google Scholar were
searched to find published articles. A search phrase com-
bined keywords and Boolean operators as follows: chronic
diseases AND smart health AND ubiquitous health AND ar-
tificial intelligence AND management. The search retrieved
19 articles that address technologies like IoT, cloud, and fog
computing as well as machine learning and deep learning
as AI methods.

[14] provide a framework for orchestrating SHS. The
framework has the following elements: temporal displace-
ment of care through ICT infrastructure and integration of
AI with IoT to enable analytical operations. [15] explain that
the s-health environment helps practitioners monitor the pa-
tient at home providing cloud-based services, implantable
wearable medical devices, wireless sensor networks (WSN),
IoT, and fog computing. As a result, these technologies
create a new broad paradigm called ubiquitous s-health,
organized in layers (edge or perception, access gateway,
middle-ware, applications, and business) to connect entities.

Defining key technologies to support s-health, [16] de-
scribe health services as an intelligent infrastructure using
wearable devices, IoT, mobile internet, cloud computing,
big data, 5G, microelectronics, and AI for actively managing
and responding to medical ecosystem needs. [17] establish
IoT, cloud computing and big data as the three fundamental
pillars for healthcare 4.0. Supplemental technologies such
as 5G, radio frequency identification (RFID), WSN, and
wireless body area networks (WBAN) support these pillars.

On the other hand, [18] consider the transition from
healthcare 4.0 to healthcare 5.0 (Hc5.0) through AI, IoT, fog
computing, cloud computing, blockchain, sensors, 5G, and
IoMT. [19] designed a smart and pervasive health system
(SPHS) to monitor patients with chronic illnesses. The main
components of SPHS include ambient and wearable sensors,
a decision-making module, and patient feedback for effec-
tive self-management.

Identifying the role of IoMT to develop an SHS, [20] dis-
covered that a SHS operates properly with the following in-
tegrated layers. The perception layer consists of sensor sys-
tems for data collection. The gateway layer establishes net-
work communication and storage. The management layer
processes massive raw data to extract relevant information
using analytics, security controls, process modeling, and
management. The application layer employs AI methods to
monitor trends and changes.

A general architecture for IoMT focused on health mon-
itoring is presented by [21]. The solution includes three
different levels. In the edge level, portable devices perform
preprocessing and data acquisition throughout WBAN. In

the fog level, servers/gateways gather data from edge de-
vices to perform local processing and storage. In the cloud
level, services are called for computing tasks.

The study of [22] presents a patient-centric framework
based on AI, blockchain, and wearable devices for appli-
cations in chronic disease management. [23] discuss the
current state-of-the-art of SHS, highlighting wearable and
smartphone devices for health monitoring as well as ma-
chine learning (ML) for disease diagnosis. They also present
an integrated software architecture to create SHS with the
benefit of data analytics and AI tools.

A hybrid real-time remote monitoring (HRRM) frame-
work is proposed by [24]. HRRM consists of four layers.
Layer 1 is responsible for gathering medical data with IoT
devices. Layer 2 processes and aggregates the sensor data.
Layer 3 acts as a personal information cloud repository for
every patient monitored. Layer 4 contains components on
both local and cloud sides used for knowledge extraction
and classification of patient’s health status.

Detailed by [25], an s-health monitoring system in-
cludes deep learning algorithms and data generated by
IoMT devices. [26] propose redefining healthcare with an
architecture for patient monitoring that considers IoT and
telemedicine for continuous online condition monitoring.
[27] discuss the role of ML as well as IoMT. The general
architecture for IoMT systems consists of three levels, in-
cluding the edge, where preprocessing is performed by de-
vices; the fog, where data is collected from sensor networks
and edge devices; and the cloud, which involves services for
high-level computing tasks.

A framework for IoT-WBN with ML algorithms is pro-
posed by [28]. The framework has four layers. Layer 1
involves data acquisition from an IoT device. Layer 2 is the
gateway between the data acquisition and layer 3. Layer 3
is a cloud where ML-based disease diagnosis is built. Layer
4 is the diagnosis alert generation. For an SHS wide-scale
adoption, [29] identify technical challenges in IoT device
security and privacy, as well as standardization, authenti-
cation, information exchange, device communication, and
data management. Some proposed AI algorithms for data
analysis and mining are neural network, genetic algorithms,
ant colony optimization, and simulated annealing.

[30] discuss the state-of-the-art of deep learning (DL)
based pervasive health monitoring focusing on human ac-
tivity recognition and physiological monitoring. The two
classes of DL architectures used are standard models, such
as multi-layer perceptron (MLP), convolutional neural net-
work, long short-term memory, deep belief network, and
deep auto-encoder, and customized models, where more
than one standard model is combined to improve perfor-
mance.

[31] present a health monitoring system that consists
of four layers: physical measurements (sensing), extracting
features (perception), data analysis (reasoning), and trigger-
ing alarms (actuation). Moreover, these authors classified
real-time data analysis techniques into statistical and ML.
Their findings indicate that ML is not a universal solution
for all health domains; however, support vector machine is
a predominant method. Among the application domains,
cardiovascular disease is the most investigated.

Federated Learning (FL) is an AI distributed paradigm
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that coordinates multiple clients to perform training without
sharing raw data. [32] present a generic FL s-health process
that includes the following steps: System initialization and
client selection, where the aggregation server selects an
analytic task along with model requirements; Distributed
training and updates, where the server sends an initial
model to the client to trigger the distributed training; and
Model aggregation and download, in which, after receiving
all updates, the server calculates a new version of the model
and broadcasts it to all clients.

3 PROPOSED APPROACH FOR AI-CDM
The related works helped identify the fundamental com-
ponents to build an SHS such as AI, IoT, wearable devices,
cloud computing, fog computing, edge computing, big data,
mobile cloud, and blockchain. As shown in Figure 1, the
proposed AI-based chronic diseases management platform
is organized into three separate layers: hardware, broker,
and cloud learning.

The hardware layer collects the patient’s physiological
data from the wearable device for further manipulation. The
WIoMT devices in this layer contain sensors, a microcon-
troller, and a Bluetooth communication module. The broker
layer receives data from the hardware layer. Thus, the
acquired data are managed and temporarily saved before
being sent to the next layer. Furthermore, the broker layer
renders data from the cloud after AI model inference is
performed.

The final layer - cloud learning - links the broker layer
with an inner AI-cloud engine, which implements three
asynchronous components into a pipeline: data handling,
modeling, and inference. Thus, the AI-cloud engine pulls
in a large amount of data, processes it, trains models, and
presents a result that interacts with the broker layer.

Each AI-cloud engine component has distinct roles,
which work together to enhance learning of a new capability
by reinforcing the wrong ones. Details of the three inner
components are shown in Figure 2 and are as follows.
The data handling (DH) component accepts data from the
broker layer and stores it in the cloud. DH also involves
data conversion, scaling for standardization of attributes
(features), and feature engineering to select and extract
relevant features for the model to be developed.

The modeling component involves the selection and
training of an appropriate algorithm for the problem state-
ment to make predictions based on the available features.
Thus, the trained model is used for inference. The inference
component is responsible for making predictions on new
unknown input data and returns an outcome. During the
training, the algorithm generates a model with optimized
parameters ready to be deployed for inference tasks. Thus,
the model accepts the input data, executes it, and returns
the predicted output. Inference does not reevaluate models,
apply knowledge from the training, and use it to infer a
result. Finally, the model result is transmitted to the broker
layer.

4 DIABETES PREDICTION: A CASE OF STUDY

Diabetes management is more than just tracking markers,
such as glycated hemoglobin. This section presents a closer

Hardware Layer

Broker Layer

Cloud-learning Layer

AI-Cloud

Engine

Data

Handling

Modeling

Inference

Fig. 1. Proposed AI-based Chronic Disease Management (AI-CDM)
platform organized in three layers: hardware, broker, and cloud learning.
In the cloud layer, AI-cloud engine implements three asynchronously
components: data handling, modeling, and inference.

look at the proposed AI-CDM platform in a diabetes pre-
diction study case to demostrate how it can be managed.
Initially, the hardware layer allows people with diabetes to
monitor their blood glucose levels in real-time, sensing het-
erogeneous physiological parameters (bio-impedance, oxy-
gen concentration, pulse rate, skin impedance, and skin
temperature). A smartphone app (broker layer) stores the
data temporarily and sends it to the cloud.

In the cloud, the platform performs data analysis, pro-
cessing, and training then predicts fluctuations in glucose
levels by applying an AI model. Thus, the results allow
the patient to take corrective measures to maintain blood
glucose levels within the preferred range. Moreover, AI
algorithms habituate with the users’ physiology data and
gradually become more accurate at predicting blood glucose
as it amasses data from the user.

This case study presents an initial practical application of
diabetes. The dataset used was generated by a homemade
bio-impedance WIoMT multi-parametric meter prototype.
Measurements were taken every 15 minutes for 2 hours. At
the same time, capillary blood glucose was collected with
a digital glucometer ( R©Accu-Check Guide) and samples of
venous glucose with a spectrophotometer ( R©Bioplus BIO-
2000).

In the first measurement, the volunteer fasted for 12
hours and then consumed a liquid substance containing 75
g of glucose to assess the glycemic response. There are 18
instances available in the dataset. The independent param-
eters for this dataset are bio-impedance, oxygen concentra-
tion, pulse rate, skin impedance, and skin temperature. The
first step is to conduct feature scaling techniques for stan-
dardization before implementing AI model estimators. After
the dataset is scaled, sequential feature selection is applied
to reduce over-fitting and provide suitable performance on
each AI model.

Several AI models were explored to predict blood glu-
cose levels. The AI learning algorithms used to structure
a baseline were multiple linear regression, support vector
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Fig. 2. AI-cloud engine components pipeline. Data handling standard-
izes and extracts relevant features. Modeling train algorithms based on
the available features. Inference produces and optimizes a model to
predict results.

regressor, k-nearest neighbors regressor, decision tree re-
gressor (DTR), Bagging DTR (B-DTR), random forest re-
gressor (RFR), AdaBoost regressor (ABR), gradient boosting
regressor, xgboost regressor, and MLP.

To train AI models, a random partitioning was created of
the dataset split with an 80-20% ratio for training and testing
sets, respectively. For the MLP neural network, the hyper-
parameters were fine-tuned using the grid-search algorithm
to obtain the best parameters. Thus, MLP was implemented
with two hidden layers (150 and 100 neurons), fully con-
nected with a hyperbolic tangent activation function and
quasi-newton optimizer.

For the performance evaluation of the different AI mod-
els, well-known regression metrics were implemented, in-
cluding mean square error (MSE), root mean squared error
(RMSE), and coefficient of determination (R2). Figure 3
shows the performance of the AI model on the training
and test sets. Comparision of the AI models elucidated
that DTR and three ensemble methods (B-DTR, RFR, ABR)
yielded slight improvement over the other models. More-
over, a comparison among these models revealed that DTR
outperformed by a wide margin; 3.22, 1.80 in MSE; 0.99,
8.88 in RMSE; 2.98, 0.72 in (R2), respectively, on training
and test sets. RFR is the second best with 23.22, 4.82 in MSE,
0.90, 17.83 in RMSE, and 4.22, 0.44 in (R2), respectively, on
training and test sets.

On the one hand, the goal of decision trees is to create
a model that predicts the value of a target variable by
learning simple decision rules inferred from the data fea-
tures. On the other hand, random forest is a meta-estimator
that fits several classifying decision trees on various sub-
samples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting. In addition,
ensemble methods combine the predictions of several base
estimators built with a given learning algorithm to improve
generalization, and robustness over a single estimator. In
Figure 4, the DTR outcome is compared with capillary blood
glucose (FPG) acquired by the digital glucometer.

5 DISCUSSIONS AND CONCLUSION

The development and implementation of AI, IoT, and cloud-
enabled technologies for a smart healthcare system feasibly
allow monitoring of the blood glucose level in real-time
to control diabetes and prevent serious consequences. This
work proposed an AI-based chronic disease management
platform. The proposed scenario connects WIoMT to the

Fig. 3. Performance metrics of AI regression models. (a) Performance on
training 80% dataset partition, teaching AI models to properly interpret
data and learn from it. (b) Performance on test 20% dataset partition,
which finds in unseen data how well the AI models understand the data.
MSE: Mean square error; RMSE: Root mean square error; R2: coef-
ficient of determination; MLR: multiple linear regression; SVR: support
vector regressor; KNN-R: k-nearest neighbors regressor; DTR: decision
tree regressor; B-DTR: Bagging DTR; RFR: random forest regressor;
ABR: AdaBoost regressor; GBR: gradient boosting regressor; XGBR:
xgboost regressor; and MLP: Multilayer perceptron.

cloud server continuously through a smartphone app for
real-time monitoring of physiological signals.

AI, as a computational method for automated learning
from experience, enhances performance to deliver better
predictions. This provides a conceived AI-based platform
available for the prognosis of diabetes. The proposed AI
platform analyses multiple physiological signal data to
make an inference that could assist patients and physicians
to make appropriate decisions for a clinical condition. The
purpose of this study was to make AI-based diabetes prog-
nosis available everywhere and for everyone without the
requiring blood tests or visiting a hospital.

The vision is to provide accessible healthcare services
promoting the tangible concepts of s-health. However, this
is only a preliminary prognosis. The metrics performance
of all AI models presented in the study case needs to be
improved with extensive experiments, the size of dataset
samples increased, and the diversification of volunteers
extended. Moreover, strategies need to be done including
tuning hyperparameters to influence how the parameters of
the model will be updated and learned during training.

Ensemble methods could be promising, as observed
in the preliminary results. Experiments with an expanded
dataset combining knowledge of several models will pro-
vide a more accurate final result than the knowledge of any
single one of them. In addition, a careful selection and ma-
nipulation of the data feature to make accurate predictions
can boost the performance of the model by looking for a
suitable feature that can be obtained as new knowledge.
Thus, the performance of AI models could be improved,
and the results could be more convenient.
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Fig. 4. Predicted Decision Tree Regressor (DTR) model values com-
pared with capillary blood glucose (FPG).
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