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 ABSTRACT 

Optimization of Magnetohydrodynamics parameters on the velocity profile and temperature distribution of 

incompressible fluid flow on a porous channel was evaluated. The fluid flow was considered to be unsteady, 
incompressible and flowing in 2-D in porous channel. The effects of magnetic parameter, Darcy’s number and fluid 

pressure on velocity profiles, and the effect of variable viscosity and Eckert number on temperature distribution in 

incompressible fluid flow were determined. The flow was considered to be in a channel running along the x-axis on 

which the magnetic field exist and finally along the y-axis on the porous part of the channel. The resulting model 

equations were solved by Finite Difference Method (FDM) in MATLAB software. Analysis of results indicated that 

increasing Darcy’s number and fluid pressure leads to increase in fluid velocity profile, while increasing magnetic 

parameter decreases fluid velocity profile. Also, it was observed that increase in both Eckert number and fluid viscosity 

lead to increase in temperature distribution. Optimization in temperature was achieved by increasing the magnetic 

field while viscosity was optimized by increasing the length of the porous part of the channel. This study will helpful 

to contribute alternative equations and methodology to engineering and in factories where getting the MHD parameters 

optimally is the main objective, particularly on temperature, velocity and pressure.  

Key words: Magnetohydrodynamics; Finite Difference Method; Central Scheme; Optimization. 

Nomanclature:  , Permeability of porous medium; , Density [𝑘𝑔𝑚−3]; ∪, Kinetic coefficient of viscosity, 

[𝑚2𝑠−1]; 𝜎, Electrical conductivity [𝛺−1𝑚−1]; 𝐶𝑝, Specific heat at constant pressure [𝐽𝐾𝑔−1𝐾−1]; T, Temperature 

[K];  ,  Coefficient of viscosity;  , Viscous dissipation function [𝒔−𝟐]; DH, Hydraulic diameter [m]; Q, 

Volumetric flow rate [m3/s]; A, The pipe's cross-sectional area [m2]; u, Mean velocity of the fluid, [m/s]; U, 

Characteristic velocity scale; B, Magnetic field; Ha, Hartmann number; μ, Dynamic viscosity of the fluid 

[Pa·s=N·s/m2 = kg/(m·s)]; ν, kinematic viscosity  [m2/s]; W, mass flow rate of the fluid [kg/s]; L, Characteristic 
length; D, Diffusion coefficient; Re, Reynolds number; Sc, Schmidt number; Pr, Prandtl number; α, Thermal 

diffusivity; 
xg , Gravitational force on the x-axis; yg Gravitational force on the y-axis; R, Hall current effect. 

Introduction  

The effect of magnetohydrodynamic (MHD) fluid flow is a physical property that describes the movement of an 

electrically conducted fluid with the impact of externally applied magnetic effects. The electrolytes, salt water, and 

plasma are examples of MHD fluids. MHD fluid flow has plentiful industrial applications, for example,  cooling of 

reactors and drug targeting. Conceptually, MHD is based upon the induction of electric current by applied magnetic 

field through a conducted moving fluid (Ahmad, M.; Muhammad, T.; Ahmad, I.; Aly, S., (2020).) 

There is great theoretical interest in the study of Magnetohydrodynamic flow through a porous channel because it has 

attracted attention in applications to a variety of phenomena particularly in geophysics astrophysics. Practical interest 

of such studies includes applications in electromagnetic boundary cooling, lubrication and bio-physical systems. A 

porous material containing the fluid is considered a non-homogeneous medium but it can be considered as a 

homogeneous medium by taking its dynamical properties to be equal to the averages of the original non-homogeneous 

continuum. This way, a physical problem of the flow through a porous medium is reduced to the flow problem of a 

homogeneous fluid with imposed resistance (Luo C., et al., 2021). 

The study of MHD fluid dynamics on a porous channel has been studied by many scholars. Anil Kumar et al., (2010) 
investigated an unsteady periodic flow of a viscous incompressible fluid through a porous channel in the presence of 

transverse magnetic field. Hady, et al., (2006) studied free convection flow along a vertical surface enclosed in 

electrically conducting fluid saturated porous media in the presence of internal heat generation (or absorption effect). 
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The study focused mainly on the effect of thermal radiation and heat source on unsteady periodic flow of a viscous 

incompressible fluid through a porous planer channel under the influence of transverse magnetic field.  

 

Computer based simulations are commonly used in Computational Fluid Dynamical Systems (CFDS) involving fluid 

flow, heat transfer and associated phenomena such as chemical reactions. Combustion in engines and gas turbines, 

turbo machinery and flows inside rotating passages, for example, apply this technique. (Kumar, A., et al., 2013). 
 

The velocity at any given point in space that vary with time is considered Unsteady Flow. In reality, therefore, almost 
all physical flows are unsteady since in such flows the velocity varies with time. For example, the flow generated by 

turning off a faucet to stop the flow of water is described as non-periodic unsteady flow. The periodic injection of the 

air-gasoline mixture into the cylinder of an automobile engine includes such examples of flow where unsteady effects 

may be periodic, occurring time after time in basically the same manner. However, in many situations the unsteady 

character of a flow is quite random, implying that there is no repeated regular variation to the unsteadiness. This 

behavior is observed in turbulent flow but absent in laminar flow. Highly viscous syrup flowing smoothly onto a 

pancake executes a deterministic laminar flow while the irregular splashing of water from a faucet onto the sink below 

it represents a turbulent flow. Also, the irregular gustiness of the wind represents random turbulent flow. Generally, 

in an unsteady flow, the flow variables such as velocity and the thermodynamic properties at every point in space vary 

with respect to time. (Kumar, R., 2018). 

 

Kumar, R. (2018) studied unsteady periodic flow of a viscous incompressible fluid through a porous planer channel 

with heat generation under the influence of transverse magnetic field. The governing equations were solved by 

perturbation techniques. Closed form solutions were obtained for the temperature and fluid velocity. The results were 

that the flow decelerates on the imposition of magnetic field. It was also realized that the fluid velocity decreases as 

the values of Reynolds number increases. Further, it was observed that fluid velocity accelerates as the radiation 

parameter is increased.  

In this study internally generated heat and the applied magnetic field from the external were both ignored. Only the 

internally generated magnetic field due to the MHD parameter were considered. Danial, et al., (2018) considered a 

laminar viscous fluid flow being electrically conducting due to an accelerated sheet with the fluid flow through a 

porous medium over a porous surface. The flow was assumed to be under the effect of radiative heat source, applied 

magnetic field, and slip conditions.  

Dimensionless numbers in fluid dynamical systems are a set of dimensionless quantities that have an important role 

in analyzing the behavior of fluids. Different dimensionless numbers give the relative strengths of the different 

phenomena of inertia, viscosity, conductive heat transport, and diffusive mass transport. Dimensionless numbers 

applied in this study are Darcy number, Eckert number and magnetic parameter (Li, Y.-X.; Alshbool, M.H.; Lv, Y.-

P.; Khan, I.; Khan, M.R.; Issakhov, A., 2021). 

This paper is organized as follows. First, the background to the study is described in section1. Then, the governing 

mathematical principles and equations are given in section 2, model formulation and applications are presented in 

section 3, results and discussion on results is provided in section 4, summary and conclusion in section 5, and 

recommendations in section 6. 

2.0 Background 

Several potential applications arise from studying natural convection in porous channel. These applications include 

geophysical and engineering applications, chemical engineering in purification and filtration processes, in agricultural 

engineering for channel irrigation and in studying the underground water resources, and in petroleum technology to 

study the movement of water, oil and natural gas.  

Most previous studies on Magnetohydrodynamics have focused on convective fluid, flow and heat transfer within a 

porous channel of flow where either the fluid is chemically reactive, viscous and electrically conductive fluid. The 

channels are either vertically porous, inclined angles are considered or ramped wall temperature and ramped surface 
concentration are put into account. In this study focus was on a two-dimensional, unsteady incompressible fluid. The 

effect of various variables such as viscosity, thermos-radiation, induced magnetic field, heat energy flow and 

temperature profiles in a free convective flow within a porous channel in two directions was considered. This study 
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focused on an incompressible viscous fluid flow through a porous channel. The systems of governing equations were 

introduced in two-dimensions to optimization of MHD parameters in incompressible fluid flow in a porous channel. 

The equations were then discretized and solved numerically through central scheme method. 

Existing literature on Magnetohydrodynamics focus on either a stationary fluid or the fluid is flowing through 

boundaries with radiation, stretching surfaces or vertically wavy surfaces. Some focus on the velocity moving axially. 

Heat transfer within a porous channel flowing in one direction in some cases were considered. In this study the effect 

of velocity on viscosity is considered in a two-dimensional fluid flow where the flow is considered incompressible, 

unsteady and flowing through a porous channel.  
 

Ajibade, A. O. and Tafida, M. K. (2020) investigated the effect of variable thermal conductivity and variable viscosity 

on natural convection Couette flow. The combined effects of thermal conductivity and variable viscosity was analyzed 

on thermodynamics and fluid flow in a vertical channel. Perturbation method was used to solve the resulting 

conservation equations of energy and momentum that described the dynamics of the flow. The numerical results 

showed that fluid velocity and temperature decreased with increase in thermal conductivity. The theoretical analysis 
provided indicate that thermal conductivity and variable viscosity are important fluid properties whose incorporation 

into fluid flow equations affect the flow thermodynamics and fluid formation within the channel of flow. 

Most previous studies have focused on convective and laminar viscous fluid flow. In most cases an electrically 

conducting surface or a shrinking surface has been considered. Different techniques have been used to solve the 

resulting problems like Homotopy analysis method, Perturbation Technique, Explicit Infinite Difference Scheme as 

well as Finite Element Galekin’s Approach. In this study optimization of pressure has been implemented in a two-

dimensional unsteady incompressible fluid flow through a porous channel. The governing equations were then solved 

numerically through Central Scheme method. 

 

3.0 Governing Equations and Method of Solution 

The geometry of the problem was set up as shown in figure 3.1 and mathematical conservation equations were applied 

on MHD fluid flows through a channel along the x-axis (labelled, a) and along the y-axis (labelled, b) through the 

porous part of the channel.  

The magnetic field is at the part labeled (a) in definite length where it is expected to have a difference of the pressure 

and the viscosity of the fluid as the flow gets through the porous part of the channel. 

 

 
             Figure 1: Geometry of the flow through the porous channel. 
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Dimensional analysis makes the equations more concise from the physical relationship. This process reduces the 

number of independent variables that defines the problem. The following non-dimensional quantities were introduced 

and applied on the governing equations for this study, 

𝑥 =
𝑥̄

𝑎
, 𝑦 =

𝑦̄

𝑎
, 𝑢 =

𝑢̄

𝑎
, 𝑡 =

𝑡̄𝑣

𝑎
, 𝑝 =

𝑝̄

𝜌𝑣2
, 𝜃 =

𝑇 − 𝑇𝜊

𝑇1 − 𝑇𝜊

 

𝜆 =
𝑣𝑎

𝑣
, 𝐷𝑎 =

𝑘̄𝑣

𝑣𝑎
, 𝑀 = 𝑎𝐵𝑜√

𝜎

𝜇
                                                                            (3.1)                          

Where, 𝑡 is time, 𝑢 is the axial velocity, 𝑣 is the transverse velocity, 𝑝 is the pressure, 𝜆 is the injection/suction 

parameter, Da is the Darcy number and 𝑀 is the magnetic parameter. 

3.1 Finite Difference Method 

The finite difference technique involves replacing the partial derivatives occurring in the partial differential equation 

as well as in the boundary and initial conditions by their corresponding finite difference approximations and then 

solving the resulting linear algebraic system of equations by a standard iterative procedure or by using a direct method 

The numerical values of the dependent variable are obtained at the mesh points. Thus, finite difference approximations 

are obtained in algebraic form, and the solutions are presented on grid points. 

Discretization of equations involves transformation of functions, continuous variables, or models into discrete forms. 

To investigate the predictions of PDE models, it is found necessary to numerically approximate their solutions. The 

approximate solution are then represented by functional values at certain discrete points.  

3.2 Continuity Equation 

The equation of continuity (equation of conservation of mass) is always provided based on two fundamental principles: 

conservation of mass of fluid, and continuity in fluid flow. 

Considering an incompressible fluid (the density of the fluid is assumed to be constant), the general continuity equation 

in 3D is given as    

0
u v w

x y z

  
+ + =

  
                                (3.1) 

3.3 Momentum Conservation Equations 

In the momentum equation, the rate of change of momentum counters with the surface and the body forces. Surface 

forces are proportional to area and they result from stresses such as static pressure and viscous stresses acting on the 

surface of the volume element. Body forces are forces that are proportional to the volume element and act on the fluid 

element from external force field, such as gravitational force and centrifugal force. The forces acting on the fluid have 

to be specified for a particular flow configuration being considered. Classically, the equation for conservation of 

momentum is derived using Newton’s second law of motion. For forced convection the following momentum equation 

holds, 

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
= −

1

𝜌

∂𝑝

∂𝑥
+ 𝜇 (

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
) − (

𝜎𝐵𝑜
2

𝜌
−

𝜈

𝐾
)𝑢                         (3.2) 
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 where 𝑢 and 𝑣 are the velocity components, 𝜌 is the fluid density, 𝐵0is the strength of magnetic field, 𝐾 is the 

permeability. 

In applications, equation (3.2) is discretized to study the effects of magnetohydrodynamic parameters on 

incompressible fluid flow systems.  

3.3.1 Dimensinalizing Momentum Equation 

To reduce the complexity of the physical problem, first the momentum equation (3.2) was dimensionalized by 

introducing equations (3.1) into equation (3.2), yielding  

          

𝑈
∂𝑈

∂𝑡
+ 𝑈

∂𝑈

∂𝑥
+ 𝑉

∂𝑈

∂𝑦
= −

∂𝑃

∂𝑥
+

1

𝜆
(
∂2𝑈

∂𝑥2
+

∂2𝑈

∂𝑦2
) − (

𝑀2

𝜆
+

1

𝐷𝑎
)𝑈           (3.3) 

where, the emerging quantities are:  t is time, 𝑈 is the axial velocity, 𝑉 is the transverse velocity, 𝑃 is the pressure, 𝜆 

is the injection/suction parameter, Da is the Darcy number and 𝑀 is the magnetic parameter. 

3.3.2 Discretization of Momentum Equation 

Equation (3.3) was then discretized to study the effects of pressure change 𝛥𝑃,  Darcy number Da, and magnetic 

parameter M on velocity profiles and temperature distribution of an incompressible fluid over a varied length of porous 

channel. Discretization was achieved using a central difference numerical scheme in which partial 

derivatives 𝑈𝑥 , 𝑈𝑦 , 𝑈𝑥𝑥 , and Uyy were replaced by three-point central difference approximation by substituting these 

approximations into equation (3.2), yielding 

𝑈𝑛+1
𝑖,𝑗 − 𝑈𝑛−1

𝑖,𝑗

2Δ𝑡
+ 𝑈

𝑈𝑛
𝑖+1,𝑗 − 𝑈𝑛

𝑖−1,𝑗

2Δ𝑥
+ 𝑉

𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗−1

2Δ𝑦
 

                                                    

                                                            

=  −(
𝑃𝑛

𝑖+1,𝑗 − 𝑃𝑛
𝑖−1,𝑗

2Δ𝑥
) +

1

𝜆
(
𝑈𝑛

𝑖+1,𝑗 − 2𝑈𝑛
𝑖,𝑗 + 𝑈𝑛

𝑖−1,𝑗

(Δ𝑥)2
+

𝑈𝑛
𝑖,𝑗+1 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗−1

(Δ𝑦)2
) 

                                                                                              −(
1

𝜆
𝑀2 +

1

𝐷𝑎
)𝑈𝑖,𝑗

𝑛  

     

                                                                                                                                            (3.4) 

The effect of Da and M on the fluid velocity profiles were investigated. Taking  𝛥𝑡 = 0.01 and 𝛥𝑥 = 𝛥𝑦 = 0.2, in a 

square mesh and letting V= U= λ=1, and multiplying by 2𝛥𝑡 gives the central difference scheme, 

−2𝑈𝑛
𝑖+1,𝑗 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈𝑛

𝑖,𝑗 − 3𝑈𝑛
𝑖−1,𝑗 

  
                             = 2𝑈𝑛

𝑖,𝑗+1 + 3𝑈𝑖,𝑗−1
𝑛 + 𝑈𝑖,𝑗

𝑛−1 − 𝑈𝑖,𝑗
𝑛+1 − 0.5𝑃𝑖+1,𝑗

𝑛 − 0.5𝑃𝑖−1,𝑗
𝑛  

          

                                                                                                                                            (3.5) 

Taking i=1, 2, …, 5 and j= 1 and n=0 in equation (3.5) the following systems of linear algebraic equations were 

formed.            

𝑖 = 1,−2𝑈0
2,1 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈0

1,1 − 3𝑈0
0,1 = 2𝑈0

1,2 + 3𝑈0
1,0 + 𝑈−1

1,1 − 𝑈1
0,1 − 0.5𝑃0

2,1 − 0.5𝑃0
0,0 

𝑖 = 2,−2𝑈0
3,1 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈0

2,1 − 3𝑈0
1,1 = 2𝑈0

2,2 + 3𝑈0
2,0 + 𝑈−1

2,1 − 𝑈1
1,1 − 0.5𝑃0

3,1 − 0.5𝑃0
1,0 
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𝑖 = 3,−2𝑈0
4,1 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈0

3,1 − 3𝑈0
2,1 = 2𝑈0

3,2 + 3𝑈0
3,0 + 𝑈−1

3,1 − 𝑈1
2,1 − 0.5𝑃0

4,1 − 0.5𝑃0
2,0 

𝑖 = 4,−2𝑈0
5,1 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈0

4,1 − 3𝑈0
3,1 = 2𝑈0

4,2 + 3𝑈0
4,0 + 𝑈−1

4,1 − 𝑈1
3,1 − 0.5𝑃0

5,1 − 0.5𝑃0
3,0 

 𝑖 = 5,−2𝑈0
6,1 + (10 + 0.2𝑀2 +

0.2

𝐷𝑎
)𝑈0

5,1 − 3𝑈0
4,1 = 2𝑈0

5,2 + 3𝑈0
5,0 + 𝑈−1

5,1 − 𝑈1
4,1 − 0.5𝑃0

6,1 − 0.5𝑃0
4,0                      

                                                                                                                                              (3.6) 

The initial conditions were set from discretization of energy equation as 𝑈(𝑥, 𝑦, 0) = 10, 𝑃(𝑥, 0,0) = 0 and boundary 

conditions as 𝑈(0, 𝑦, 1) = 0, and 𝑈(𝑥, 0,−1) = 0. Letting P(x,1,0) = ∆P and applying the set initial conditions and 

boundary conditions, the above algebraic equations (3.20) were expressed in matrix form as 

 

( )

( )

( )

( )

( )

( )

2 0.2

0

1,12 0.2
0

2,1
2 0.2 0

3,1

02 0.2
4,1

0
2 0.2 5,1

0

6,1
2 0.2

10 0.2 2 0 0 0 0
0

3 10 0.2 2 0 0 0

0 3 10 0.2 2 0 0

0 0 3 10 0.2 2 0

0 0 0 3 10 0.2 2

0 0 0 0 3 10 0.2

Da

Da

Da

Da

Da

Da

M
U

M
U

M U

UM

U
M

U
M

 + + −
   
 − + + −  
   
 − + + −  
  = 
 − + + −  
   

− + + −   
    

− + +  

.5 10

0.5 10

0.5 10

0.5 10

0.5 10

0.5 10

P

P

P

P

P

P

 + 
  +
 
  +
 

 + 
  +
 

 + 

 
   

                                                                                                                                            (3.7)                 

The solutions for varying values of 𝑀, Da and ∆P were obtained by solving the above matrix equation (3.7) 

numerically MATLAB. The magnetic parameter (𝑀) was varied between 2.0 to 4.0, while Darcy’s number (Da) was 

varied between 0.1 to 0.3, and fluid pressure (∆P) was varied from 1.0 𝐾𝑃𝑎 to 4.0 𝐾𝑃𝑎. The numerical results obtained 

for 𝑀, Da and ∆P were recorded in tables 4.1,4.2, and 4.3,spectively. 

3.4 Energy Conservation Equations 

It is a common practice to mathematically derive the energy equation involving dynamical systems from the first law 

of thermodynamics which states that the rate of energy increase in a system is equated to the work done on the system 

and the heat added to the system. Assuming no external heat source, the energy equation can be expressed as 

                     

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝑝𝑢

𝜕𝑇

𝜕𝑥
+ 𝜌𝑐𝑝𝑣

𝜕𝑇

𝜕𝑦
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) + 𝛷                   (3.8) 

                      

where, α is the thermal diffusivity and 𝛷 = 𝜇 {2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

]} represents the dissipation function. 

3.3.1 Non-Dimensinalizing Momentum Equation 

To non-dimensionalize the Energy equation, equation (3.8) below was considered, 

 

     

                                                                                                                                              (3.9) 

Simplifying equation (3.9) gives 

( ) ( ) ( ) 22 2
1 1 1

2 2 2 2

p pc u T T c u T T T T u
U V

L t L x y L x y L

     
      


− − −       

+ + = + +   
       
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                                                                                                     (3.10) 

 

Since the flow is along the x-axis, and for low velocities viscous dissipation is negligible. Equation (3.10) becomes 

 

                                

                                                                                                                                           (3.11) 

The viscosity (𝛿) of the fluid in this study was taken to be an inverse linear function of temperature and was expressed 

in the following form (Abdou and Zahar, 2012). 

     

𝛿 =
1

𝛼(𝑇 − 𝑇∞)
                                                                                    (3.12) 

                                                                                                              

where,   is the thermal property of the fluid and T  is ambient temperature. Thus, equation (3.10) yields 

𝜇𝑢𝑜
2

𝜌𝑐𝑝𝐿(𝑇1 − 𝑇𝜊)
=

𝑢𝑜
2

𝜌𝑐𝑝𝐿(𝑇1 − 𝑇𝜊)𝛼(𝑇 − 𝑇∞)
= (

𝑢𝑜
2

𝜌𝑐𝑝(𝑇1 − 𝑇𝜊)
)𝜇 = (

𝑢𝑜
2

𝜌𝑐𝑝(𝑇1 − 𝑇𝜊)
)(

1

𝛼(𝑇 − 𝑇∞)
) 

 

                                                                                                                                          (3.13) 

 

  Rewriting expressions in equations (3.12):   
𝛼

𝜌𝑐𝑝𝑢𝜊𝐿
=

𝛼

𝜌𝑐𝑝𝑢𝜊𝐿
(

𝜇

𝜇
) = (

𝛼

𝜇𝑐𝑝
)(

𝜇

𝜌𝑢𝜊𝐿
), 𝑃𝑟 =

𝜇𝑐𝑝

𝛼
, 𝑅𝑒 =

𝜌𝑢𝜊𝐿

𝜇
,     

     𝐸𝑐 =
𝑢𝑜

2

𝐶𝑝(𝑇1−𝑇𝜊)𝐿
, and   𝛿 =

1

𝛼(𝑇−𝑇∞)
. Equation (3.10), therefore, becomes 

   

𝜕𝜃

𝜕𝑡
+ 𝑈

𝜕𝜃

𝜕𝑥
+ 𝑉

𝜕𝜃

𝜕𝑦
=

1

𝑅𝑒𝑃𝑟 (
𝜕2𝜃
𝜕𝑥2 +

𝜕2𝜃
𝜕𝑦2)

𝑐

(
𝜕𝑈
𝜕𝑥)

2                               (3.14)

 

3.3.1 Discretization of Energy Equation  

Equation (3.14) was discretized to study the effects of Eckert number (Ec) and viscosity (δ) on temperature distribution. 

Using a three-central-difference numerical scheme, the partial derivatives 𝜃𝑥, 𝜃𝑥, 𝜃𝑥𝑥  and 𝜃𝑦𝑦 were replaced by three-

point-central difference approximation by inserting the approximations into equation (3.14), yielding 

2 2

2 2
p

U V
t x y c u L x y

     



     
+ + = +       

( )

2 222

1

o

p

u U U

c L T T x y y x


  



         
+ + + +      

−           

( )

222 2

2 2
1

o

p p

u U
U V

t x y c u L c L T T xx y 

     

 

         
+ + = + +        −        
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𝜃𝑖𝑗
𝑛+1 − 𝜃𝑖𝑗

𝑢

𝛥𝑡
+

𝜃𝑖+1,𝑗
𝑛 − 𝜃𝑖−1,𝑗

𝑢

2𝛥𝑥
+

𝜃𝑖,𝑗+1
𝑢 − 𝜃𝑖 ,𝑗−1

𝑛

2𝛥𝑦

= (
1

𝑃𝑟𝑅𝑒
() (

𝜃𝑖+1,𝑗
𝑢 − 2𝜃𝑖𝑗

𝑛 + 𝜃𝑖−1,𝑗
𝑛

(𝛥𝑥)2

+
𝜃𝑖,𝑗+1

𝑛 − 2𝜃𝑖𝑗
𝑛 + 𝜃𝑖,𝑗−1

𝑛

(𝛥𝑦)2
)

𝐶

(
(𝑢𝑖,𝑗+1

𝑛 )
2
+ 2𝑢𝑖,𝑗+1

𝑛 − 𝑢𝑖,𝑗−1
𝑛 + (𝑢𝑖,𝑗+1

𝑛 )
2

4(𝛥𝑦)2
)) 

                     

                                                                                                                                          (3.15) 

  Simplifying (3.15), and letting Pr = Re = 1, the central difference scheme gives,  

                               2𝜃𝑖+1,𝑗
𝑛 − 44𝜃𝑖,𝑗

𝑛 − 2𝜃𝑖−1,𝑗
𝑛 = 18𝜃𝑖,𝑗

𝑛 + 22𝜃𝑖,𝑗+1
𝑛 + 10𝐸𝑐𝛿               (3.16) 

Taking and   i = 1,2,3,..,5 and j  = 1 the  following systems of linear algebraic equations were formed. 

                                            𝑖 = 1,        2𝜃2,1
0 − 44𝜃1,1

0 − 2𝜃0,1
0 = 18𝜃1,1

0 + 22𝜃1,2
0 + 10𝐸𝑐𝛿 

𝑖 = 2, 2𝜃3,1
0 − 44𝜃2,1

0 − 2𝜃1,1
0 = 18𝜃2,1

0 + 22𝜃2,2
0 + 10𝐸𝑐𝛿 

𝑖 = 3,         2𝜃4,1
0 − 44𝜃3,1

0 − 2𝜃2,1
0 = 18𝜃3,1

0 + 22𝜃3,2
0 + 10𝐸𝑐𝛿 

𝑖 = 4, 2𝜃5,1
0 − 44𝜃4,1

0 − 2𝜃3,1
0 = 18𝜃4,1

0 + 22𝜃4,2
0 + 10𝐸𝑐𝛿 

                                           𝑖 = 5,         2𝜃6,1
0 − 44𝜃5,1

0 − 2𝜃4,1
0 = 18𝜃5,1

0 + 22𝜃5,2
0 + 10𝐸𝑐𝛿                                                                                               

                                                                                                                                        (3.17) 

The initial and boundary conditions obtained from discretization of energy equation were 𝜃𝑖,0
0 = 𝜃0,𝑗

0 = 10  and 

boundary conditions  𝜃𝑖 ,2
0 = 𝜃𝑖,1

0 = 0, respectively. Applying these conditions in the above algebraic equations (3.17) 

and expressing the equations in matrix gives, 

[
 
 
 
 
−44 2 0 0 0
−2 −44 2 0 0
0 −2 −44 2 0
0 0 −2 −44 2
0 0 0 −2 −44]

 
 
 
 

[
 
 
 
 
 
𝑈1,1

0

𝑈2,1
0

𝑈3,1
0

𝑈4,1
0

𝑈5,1
0 ]

 
 
 
 
 

=

[
 
 
 
 
10𝐸𝑐𝛿 + 20

10𝐸𝑐𝛿
10𝐸𝑐𝛿
10𝐸𝑐𝛿
10𝐸𝑐𝛿 ]

 
 
 
 

 

                                                                                                                                           (3.18) 

The solutions for varying values of Eckert number (Ec) and fluid viscosity (δ) were obtained by solving the above 

matrix equation (3.18) in MATLAB. The numerical results obtained for varying Elkert number and fluid viscosity (δ) 

were recorded in tables 4.4 and 4.5, respectively. 
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4.0 Results and Discussion 

The simulation results obtained in this study focus on the effects of the Magnetic parameter M, Darcy number Da, 

and fluid pressure P, Eckert number EC and viscosity , on velocity profile and temperature distribution, 

respectively. 

4.1 Effects of Magnetic parameters on velocity profile 

 Equation (3.7) was solved numerically using MATLAB to obtain the results of the effects of M on velocity profile as 

shown in table 4.1 below. 

          Table 4.1. Value of velocity profile for varying Magnetic parameters 

 

Magnetic 

parameters 

Length of Porous channel 

0 1 2 3 4 

M = 2
 

68.83728 85.55858 89.31898 88.30366 76.16492 

M = 3 62.54598 76.56727 79.49516 78.66569 68.55051 

M = 4
 

55.48979 66.722339 68.21814 68.21814 60.17463 

       

  The above results in table 4.1 were presented in figure 4.1 below.  

 

 

         Figure 4.1: Velocity profile against Length of Porous channel at varying Magnetic parameter 

The effect of magnetic parameter can be observed from figure 4.1. Increase in magnetic parameter leads to a decrease 

in the velocity profile. This is due to Lorentz force generated by the application of constant inclined magnetic field 

which produces resistance opposing the fluid motion thereby decreasing the flow in the channel. 
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4.2 Effects of Darcy numbers on velocity profile  

Equation (3.7) was solved numerically in MATLAB to obtain the results of the effects of Da number on velocity 

profile as shown in table 4.2 below. 

      Table 4.2. Value of velocity profile for varying Darcy numbers 

Darcy numbers 

Length of Porous channel 

0 1 2 3 4 

Da = 0.1
 

68.83728 85.55858 89.31898 88.30366 76.16492 

Da = 0.2 75.23219 97.3234 102.8954 101.5184 85.31186 

Da = 0.3
 

84.24966 108.3732 114.6778 113.1684 95.40957 

   

  The above results in table 4.2 were presented in figure 4.2 below.  

 

             Figure 4.2: Graph of velocity against Length of Porous channel at varying Darcy numbers 

The effect of Darcy numbers can be observed from figure 4.2. An increase in Darcy number leads to an increase in 

the velocity profile. Also, at initial stages the fluid velocities increase from x=0 to x=2 but it starts to decrease 

thereafter up to x=4. It indicates that a positive increase in Darcy numbers strongly accelerates the flow. The study 

has important applications in nuclear heat transfer control, material processing and magnetohydrodynamic energy 

generators.  
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4.3 Effects of Pressure on velocity profile 

Equation (3.7) was solved in MATLAB to obtain the results of the effects of pressure on velocity profile as shown in 

table 4.3 below. 

Table 4.3. Value of velocity profile for varying fluid pressure 

 

Fluid Pressure 
Length of Porous channel 

0 1 2 3 4 

P = 1000
 

49.4465 61.45757 64.15871 63.42939 54.71001 

P = 1200 59.14189 73.50807 76.73885 75.86652 65.43747 

P = 1400
 

68.83728 85.55858 89.31898 88.30366 76.16492 

   

         The above results in table 4.3 were presented in figure 4.3 below.  

 

          Figure 4.3: Graph of velocity profile against Length of Porous channel at varying fluid pressure. 

The effect of fluid pressure on fluid velocity profile can be observed from figure 4.3. Increase in fluid pressure 

increases the velocity profile. 

4.4 Effects of Eckert number on temperature distribution 

Equation (3.18) was solved numerically in MATLAB to obtain the results of the effects of Eckert number on 

temperature distribution as recorded in table 4.4 below.  
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          Table 4.4. Value of temperature distribution for varying Eckert number 

 

Eckert number 
Length of Porous channel 

0 1 2 3 4 

EC = 15
 

1.607319 1.013841 0.8660641 0.8231372 0.7450029 

EC = 20 1.812403 1.269772 1.134412 1.092474 0.9921149 

EC = 25
 

2.017488 1.525702 1.402759 1.361811 1.239227 

   

     The above results in table 4.4 were presented in figure 4.4 below.  

 

     Figure 4.4: Temperature distribution against Length of Porous channel at varying Eckert number. 

The effect of Eckert (Ec) number on fluid temperature can be observed from figure 4.4. Increase in Ec increases the 

temperature distribution. 

4.5 Effects of Viscosity on temperature distribution 

Equation (3.18) was solved numerically in MATLAB to obtain the results of the effects of viscosity on temperature 

distribution as shown in table 4.5 below. 
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            Table 4.5. Value of temperature distribution for varying viscosity 

 

Viscosity 
Length of Porous channel 

0 1 2 3 4 

 
1.0 =  2.212403 1.269772 1.134412 1.092474 0.9921149 

1.5 =  2.470589 1.843145 1.686362 1.634929 1.487256 

2.0 =  2.722742 2.293498 2.207801 2.169821 1.980563 

   

  The above results in table 4.5 were presented in figure 4.5 below.  

 

           Figure 4.5: Temperature distribution against Length of Porous channel at varying Viscosity  

The effect of Viscosity on fluid temperature can be observed from figure 4.5. Increase in fluid viscosity increases 

the temperature distribution. 

5.0 Summary and Conclusions 

The following observations and conclusions were made from the results of this study. 

• The flow profile increases with the greater Darcy number. A positive increase in Darcy numbers strongly 

accelerates the flow.  

• The argumentation in magnetic parameter reduces the velocity profile. 

• Increase in fluid pressure leads to increase in the velocity profile.  

• Increase in Eckert number leads to increase in the temperature distribution. 

• Increase in fluid viscosity leads to increases in the temperature distribution. 
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6.0 Recommendation 

From this study, the following areas are recommended:  

• An extension of this study to the case of optimization of MHD parameters on 3-D on a porous channel with 

heat generation along the fluid flow. 

• An extension of this study to incorporate friction coefficient between flow channel and fluid surface. This 

will obviously affect the rate of fluid flow.  
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