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Abstract: Exact sequential state estimation of orbiting objects in space can be found by predicting the state 

using Fokker Planck Kolmogorov Equation (FPKE) and measurement correction using Bayes’ 

conditional/posterior Probability Density Function (PDF). Posterior PDF can be expressed as Gaussian density 

expanded in terms of Hermite polynomials named as Gram Charlier Series (GCS). This research is an extension 

of an earlier work on second order linearized solution to nonlinear Bayesian filtering using Taylor series and 

third order GCS expansion of posterior PDF. In this new extension, Bayes’ posterior PDF is approximated by a 

mixture of GCS functions for which the parameters are propagated using linear propagation theory. The 

update of weights of different components of GCS mixture model uses the FPKE error as feedback to adapt for 

the amplitude of different GCS components while solving a quadratic programming problem earlier used for 

Gaussian Mixture Model (GMM) PDF. Proposed filtering method is applied on tracking of space debris. The 

simulation results for the filter shows performance is moderately better than single GCS filter, Extended 

Kalman Filter (EKF) and Gaussian Sum Filter (GSF) under space debris’ highly uncertain initial conditions and 

sparse measurement availability. 

Keywords: bayesian filtering; fokker planck kolmogorov equation; hermite polynomial; gram charlier series; 

space object orbit determination 

 

1. Introduction 

State estimation of orbiting objects in space such as planets, asteroids, debris, or satellites can be 

realized by radar tracking or optical observations using batch or sequential filtering methods. These 

methods improve apriori orbit determination from a set of tracking data. Batch or least square 

estimators provide an object’s epoch state estimates by processing complete set of observations, while 

sequential estimators or filters process one measurement at a time to give state vector at the time of 

that measurement [1]. Optimal sequential estimation for linearized orbital dynamics in Minimum 

Mean Square Error (MMSE) sense is provided by Linearized Kalman Filter (KF) [1–3]. Proficient 

nonlinear filtering algorithms such as Extended Kalman Filter (EKF) and improved EKF (iEKF) were 

derived based on Gaussian assumption of Bayes’ posterior PDF and availability of rich measurement 

environment [1–6]. However, majority of the aerospace systems are nonlinear which consider non-

Gaussian evolution of state, for example tracking of an Exo-atmospheric Re-Entry Vehicle (ERV), 

space object tracking, navigation of robots or aircrafts [7–10]. Aerospace engineers and scientists need 

to find algorithms for real-time sequential state estimation. Methods based on Gaussian posterior 

PDF may be endowed with suboptimal estimates for space object state estimates due to highly 

nonlinear nature of orbital and measurement dynamics with multiple modes or elongated tail PDFs 

[11]. The Gaussian Sum Filter (GSF) [12] tackles multiple mode distributions by assuming the Bayes’ 

posterior PDF as Gaussian Mixture Model (GMM) [13] and can be considered as parallel banks of 

EKFs. Improved propagation of state uncertainty using GMM were proposed by [11,14]. Nonlinear 

filters for space surveillance based on such models were presented by [15–17]. Better alternatives to 

EKF include Sigma Point Filters Family (SPFF) approximations of Bayesian posterior statistics [18–
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20]. In essence, these algorithms are also based on Gaussian assumption of the nonlinear system state 

evolution and commonly termed as Unscented Kalman Filter (UKF). Proficient improvements to UKF 

based on adaptive techniques to surmount dynamic and measurement model mismatch is presented 

by [21]. Tightly coupled Global Positioning System (GPS) Pseudo-Range / Inertial Measurement Unit 

(IMU) and Precise Point Position (PPP)/IMU navigation systems [22] employed in aerospace systems 

show nonlinearity during large IMU misalignments and GPS outages. To keep the advantages of the 

nonlinear filtering methods in dealing with such nonlinear systems, a Cubature Kalman Filter (CKF) 

+ EKF hybrid filtering method based on dual estimation framework is proposed by [23]. CKF is a 

nonlinear filtering method based on the spherical-radial Cubature rule [24]. Being a deterministic 

sampling filtering method, CKF needs 2n (n=states/parameters of the system) Cubature points to 

propagate the state and covariance matrix, which shows a relatively smaller computational load than 

the UKF, as UKF mostly needs 2n+1 sigma points for the nonlinear states’ propagation [23]. Filtering 

methods based on Sequential Monte Carlo (SMC) methods known as Particle Filters (PF) have also 

been used for aerospace systems [7,25]. PF employ ensemble of weighted samples of state variables 

or parameters to solve online prediction and estimation requirements in a recursive manner. There 

are also efficient modifications to PFs presented in [26–28]. Gaussian density function expanded using 

Hermite polynomials [29] is termed as Gram Charlier Series (GCS) [30,31]. Hermite are orthogonal 

polynomials with Gaussian type weighting function over −∞ to ∞ domain. Culver used third order 

GCS to derive analytic solutions for nonlinear Bayesian filtering by expanding nonlinear system 

equations up to second order in Taylor series [32]. As an extension to use of GCS approximation for 

Bayes’ posterior density for filtering nonlinear systems [32–34], a GCS Mixture (GCSM) PDF was also 

proposed [35,36]. In this paper filtering technique based on high fidelity GCSM model to capture 

evolution of nonlinear state uncertainty is proposed by adapting the technique used by [14] for GMM. 

This filtering method is termed as Mixture Culver Filter (MCF). In this paper comparison of GCS 

filter [32] (named Culver Filter (CF)), EKF [1,2] and GSF [12] with MCF shall be presented. To authors 

knowledge use of GCSM for nonlinear state estimation has not been reported in filtering literature. 

The new filter has shown improvement/comparable performance over other methods especially 

under space objects’ uncertain initial conditions and sparse measurement availability. 

2. Continuous Discrete Nonlinear Filtering Problem 

Large number systems of concern fall under the classification of nonlinear systems. Filtering 

algorithm that captures characteristics of the nonlinearities is preferable than considering the 

nonlinear problem to that of a linear one. Consider a continuous time dynamical expressed by the 

nonlinear ito Stochastic Differential Equation (SDE) of the form [37]. 𝑑𝑑𝐱𝐱(𝑡𝑡) = 𝐟𝐟(𝐱𝐱(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐆𝐆(𝐱𝐱(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝛃𝛃(𝑡𝑡) (1) 

where, 𝐱𝐱(𝑡𝑡) ∈ ℝ𝑑𝑑 is state of the d-dimensional dynamical system, 𝐟𝐟(𝐱𝐱(𝑡𝑡), 𝑡𝑡) ∈ ℝ𝑑𝑑×1 is nonlinear 

function which describes time evolution of the dynamical system, 𝐆𝐆(𝐱𝐱(𝑡𝑡), 𝑡𝑡) ∈ ℝ𝑑𝑑×𝑚𝑚 is dispersion 

matrix considered as function of 𝐱𝐱(𝑡𝑡) and time “t”. 𝛃𝛃(𝑡𝑡) ∈ ℝ𝑚𝑚  is Brownian motion of zero mean 

value with diffusion 𝐐𝐐(𝑡𝑡) which can be expressed as: 𝐸𝐸[𝑑𝑑𝜷𝜷(𝑡𝑡)𝑑𝑑𝜷𝜷(𝑡𝑡)𝑇𝑇] = 𝑸𝑸(𝑡𝑡)𝑑𝑑𝑡𝑡 (2) 

Measurements of the system are observed at discrete time instant tk expressed as: 𝐲𝐲𝑘𝑘 = 𝐡𝐡(𝐱𝐱(𝑡𝑡𝑘𝑘)) + 𝐯𝐯𝑘𝑘 (3) 

where, 𝐲𝐲𝑘𝑘 ∈ ℝ𝑞𝑞 is q-dimensional discrete time observation vector, 𝐡𝐡(𝐱𝐱(𝑡𝑡𝑘𝑘)) ∈ ℝ𝑞𝑞×1 is discrete 

time nonlinear measurement equation considered as a function of 𝐱𝐱(𝑡𝑡𝑘𝑘)and 𝐯𝐯𝑘𝑘 ∈ ℝ𝑞𝑞 is zero-mean q-

dimensional Gaussian process noise. 

The measurement noise covariance is given by: 𝐸𝐸�𝐯𝐯𝑘𝑘𝐯𝐯𝑗𝑗T� = δ𝑘𝑘𝑗𝑗𝐑𝐑𝑘𝑘 (4) 

where, δ𝑘𝑘𝑗𝑗 is dirac-delta function and 𝐑𝐑𝑘𝑘, is covariance matrix. 

The requirement is to obtain conditional state estimates on availability of the measurement 𝐲𝐲𝑘𝑘. 

If apriori PDF of the dynamical system of Equation (1) is available, the predictive PDF 𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘−1) conditioned on previous observation satisfies FPKE [38]: 
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𝜕𝜕𝑝𝑝𝜕𝜕𝑡𝑡 = −� 𝜕𝜕𝜕𝜕𝑥𝑥𝑖𝑖 (𝐟𝐟(𝐱𝐱(𝑡𝑡), 𝑡𝑡)𝑝𝑝) +
1

2
�� 𝜕𝜕2𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 [(𝐆𝐆𝐐𝐐𝐆𝐆T)𝑖𝑖𝑗𝑗𝑝𝑝]

𝑑𝑑
𝑗𝑗=1

𝑑𝑑
𝑖𝑖=1

𝑑𝑑
𝑖𝑖=1  (5) 

where, 𝑝𝑝 = 𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘−1)is termed as state transition PDF, 𝐆𝐆𝐐𝐐𝐆𝐆T is diffusion matrix of SDE and 

subscripts 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑑𝑑} are dimension subscripts. 

On receipt of measurement On receipt of measurement at discrete time𝑡𝑡𝑘𝑘 the conditional PDF 

known as Bayes’ aposteriori PDF is expressed as [2,19]: 𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘) =  
𝑝𝑝�𝐲𝐲𝑘𝑘|𝐱𝐱(𝑡𝑡𝑘𝑘)�𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘−1)∫ 𝑝𝑝�𝐲𝐲𝑘𝑘|𝐱𝐱(𝑡𝑡𝑘𝑘)�𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘−1)𝑑𝑑𝐱𝐱(𝑡𝑡𝑘𝑘)

+∞−∞  (6) 

where, 𝑝𝑝�𝐲𝐲𝑘𝑘|𝐱𝐱(𝑡𝑡𝑘𝑘)� is given by:  𝑝𝑝�𝐲𝐲𝑘𝑘|𝐱𝐱(𝑡𝑡𝑘𝑘)� =  
1

|2𝜋𝜋𝐑𝐑𝑘𝑘|
12 exp �−1

2
�𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝐱𝐱(𝑡𝑡𝑘𝑘)��T𝐑𝐑𝑘𝑘−1�𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝐱𝐱(𝑡𝑡𝑘𝑘)��� (7) 

Equation: 5 and 6 are commonly termed as predictor (time evolution) and corrector 

(measurement conditioning) equations for progression of the dynamical system’s PDF. The optimal 

state of the system in MMSE sense is given by computing mean of Bayes’ aposteriori PDF [19]: 𝐱𝐱�𝑘𝑘 = � 𝐱𝐱(𝑡𝑡𝑘𝑘)𝑝𝑝(𝐱𝐱(𝑡𝑡𝑘𝑘)|𝐲𝐲𝑘𝑘)𝑑𝑑𝐱𝐱(𝑡𝑡𝑘𝑘)
+∞
−∞  (8) 

In general, analytical solution of Equation (5), is achievable for linear dynamical systems [2]. 

Typically numerical techniques are utilized to find solutions for nonlinear systems of lower 

dimensions (dimensions ≤ 6)  [39]. Therefore, sequential state estimation of space object using 

numerical solution of Partial Differential Equation (PDE) expressed in Equation (5) may not be 

considered optimal. Numerical solution of FPKE for such a need presents excessive memory 

requirement due to storage and recursively progress entire Bayes’ aposteriori PDF after each time step. 

Therefore, a requirement for computationally feasible solution to Bayes’ aposteriori PDF is indicative 

to build realistic ground-based space object Orbit Determination (OD) systems. 

3. Gram Charlier Series Mixture Model 

Orthogonal expansion of Gaussian PDF using Hermite polynomials and higher order moments 

can approximate probability distributions of a nonlinear dynamical system. Third order GCS can be 

expressed as [31]: 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝐱𝐱𝑘𝑘) = 𝒩𝒩(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) �1 + �P𝑖𝑖𝑗𝑗𝑖𝑖(3)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘)𝑖𝑖,𝑗𝑗,𝑖𝑖 � (9) 

where, k, is subscript for discrete time (𝑡𝑡𝑘𝑘) for the state 𝐱𝐱𝑘𝑘 = 𝐱𝐱(𝑡𝑡𝑘𝑘)), 𝒩𝒩(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) is Gaussian 

PDF with mean, 𝛍𝛍𝑘𝑘  and covariance, 𝐏𝐏𝑘𝑘 , ℎ𝑖𝑖𝑗𝑗𝑖𝑖(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) is multi-dimensional third order Hermite 

polynomials with dimensions 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 ∈ {1, …𝑑𝑑}, and P𝑖𝑖𝑗𝑗𝑖𝑖(3)
 is an element of multivariate Co-skewness 

tensor with dimensions 𝑖𝑖, 𝑗𝑗, 𝑙𝑙. Time subscript (𝑘𝑘) can be omitted for Co-skewness tensor notations 

by considering time dependence implicitly. Rodrigues formula can be used to generate Hermite 

polynomials by differentiating 𝒩𝒩(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) [33,34]: ℎ𝑖𝑖…𝑖𝑖(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) = (−1)𝑖𝑖+..+𝑖𝑖 1𝒩𝒩(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘)

𝑑𝑑𝑖𝑖+..+𝑖𝑖𝑑𝑑𝑥𝑥1𝑖𝑖 …𝑑𝑑𝑥𝑥𝑑𝑑𝑖𝑖 𝒩𝒩(𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘,𝐏𝐏𝑘𝑘) (10) 

Higher order polynomials can be used to approximate PDF of nonlinear dynamical systems. 

Estimation algorithms basing on single GCS [32–34] are specified at a particular low order moment 

term. Negative probability regions could be formed for lower order GCS which may not always be a 

suitable PDF [36]. This may result a PDF not integrated to unity. PDFs with multi-modes or centroid 

of such PDFs may not be captured by Single GCS, especially GCS with lower orders(order ≤ 4). 

Generally, GCS of the higher orders(order ≥ 15)would be required to find good approximation to 

such cases [35]. Computational complexity increases for multivariate systems of higher order. An 

increase in order of GCS adds (𝑜𝑜 + 𝑑𝑑 − 1)!/(𝑜𝑜! (𝑑𝑑 − 1)!) moment terms where, o = order and d = 

multivariate dimension of the PDF. Furthermore, a point may be reached where an increase in GCS 

orders would not improve the approximation any further [40]. Consequently, Van Hulle suggested 
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GCS mixture models of lower orders(3 ≤ order ≤ 5) to overcome complexity related with single 

higher order series [41]. Model based on GCS Mixture (GCSM) up to third order can be expressed as: 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱𝑘𝑘) = �𝛼𝛼𝑘𝑘(𝑔𝑔)𝒩𝒩�𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘(𝑔𝑔)
,𝐏𝐏𝑘𝑘(𝑔𝑔)� �1 + �P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖�𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘(𝑔𝑔)

,𝐏𝐏𝑘𝑘(𝑔𝑔)�𝑖𝑖,𝑗𝑗,𝑖𝑖 �𝐺𝐺
𝑔𝑔=1  (11) 

where,𝛼𝛼𝑘𝑘(𝑔𝑔)
 = Weight of 𝑔𝑔th component of the GCSM model, G = Total components of GCSM. 

Aforesaid, one may now consider third order GCSM model as a better approximation of Bayes’ 

aposteriori PDF needed for state estimation of space objects. 

4. Description of Mixture Culver Filter  

In this paper we shall consider Bayes’ aposteriori PDF expressed in Equation (6) as GCSM up to 

third order (Equation (11)): 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘) =
1𝐶𝐶𝑘𝑘�𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔) 𝒩𝒩�𝐱𝐱𝑘𝑘;𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � �1 +�P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �𝑖𝑖,𝑗𝑗,𝑖𝑖 �𝐺𝐺
𝑔𝑔=1 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘) (12) 

where, 𝑘𝑘|𝑘𝑘 − 1, is subscript for state predictive PDF indicating transition from k-1 to kth instant 

of time, 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘) , is PDF of measurement conditioned on evolved state and 𝐶𝐶𝑘𝑘 , is normalizing 

constant (expressed later). 

4.1. Time Update 

Predictive PDF for a nonlinear continuous time dynamical system is obtained exactly by solving 

FPKE (Equation (5)) between the measurements from time 𝑡𝑡𝑘𝑘  to 𝑡𝑡𝑘𝑘−1 . However, in GCSM 

approximation of predictive PDF, the parameters of each GCS component, mean 𝛍𝛍𝑘𝑘|𝑘𝑘−1, covariance, 𝐏𝐏𝑘𝑘|𝑘𝑘−1  covariance and co-skewness P𝑖𝑖𝑗𝑗𝑖𝑖(3)
 tensor components shall be obtained by numerically 

integrating following Equations [32]: 𝑑𝑑μ𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 = f𝑖𝑖(𝛍𝛍, 𝑡𝑡) + A𝑖𝑖𝑖𝑖𝑖𝑖(𝛍𝛍, 𝑡𝑡)P𝑖𝑖𝑖𝑖  

 
(13) 𝑑𝑑P𝑖𝑖𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡 = 2�F𝑖𝑖𝑖𝑖(𝛍𝛍, 𝑡𝑡)P𝑗𝑗𝑖𝑖 + A𝑖𝑖𝑖𝑖𝑖𝑖(𝛍𝛍, 𝑡𝑡)P𝑗𝑗𝑖𝑖𝑖𝑖(3)�s + V𝑖𝑖𝑗𝑗  (14) 𝑑𝑑P𝑖𝑖𝑗𝑗𝑖𝑖(3)

(𝑡𝑡)𝑑𝑑𝑡𝑡 = 3�F𝑖𝑖𝑖𝑖(𝛍𝛍, 𝑡𝑡)P𝑗𝑗𝑖𝑖𝑖𝑖(3)
+ A𝑖𝑖𝑖𝑖𝑖𝑖(𝛍𝛍, 𝑡𝑡)(P𝑗𝑗𝑖𝑖P𝑖𝑖𝑖𝑖 + P𝑗𝑗𝑖𝑖P𝑖𝑖𝑖𝑖)�s 

(15) 

The Equation (13) to Equation (15) are derived using Taylor series expansion of the nonlinear 

function 𝐟𝐟[(𝐱𝐱(𝑡𝑡), 𝑡𝑡)] (Equation (1)) up to second order and employing ito differential rule [32,37]. 

Therefore, F𝑖𝑖𝑖𝑖(𝐱𝐱�, 𝑡𝑡) = 𝜕𝜕f𝑖𝑖(𝐱𝐱�, 𝑡𝑡)/𝜕𝜕x𝑖𝑖   is a component of Jacobian matrix, A𝑖𝑖𝑖𝑖𝑖𝑖(𝐱𝐱�, 𝑡𝑡) = �12� 𝜕𝜕2f𝑖𝑖(𝐱𝐱�, 𝑡𝑡)/𝜕𝜕x𝑖𝑖𝜕𝜕x𝑖𝑖 is component of Hessian matrix with tensor subscripts notations 𝑖𝑖, 𝑒𝑒, 𝑓𝑓 ∈ {1 …𝑑𝑑} . 𝑁𝑁{. }s 

represents number of terms in the bracket by symmetrizing with respect to all subscripts. For 

example, symmetric terms are expressed as; 3�P𝑖𝑖𝑗𝑗P𝑖𝑖𝑚𝑚�s = P𝑖𝑖𝑗𝑗P𝑖𝑖𝑚𝑚 + P𝑖𝑖𝑖𝑖P𝑗𝑗𝑚𝑚 + P𝑖𝑖𝑚𝑚P𝑗𝑗𝑖𝑖. In order to compute 

time update of weights 𝛼𝛼𝑘𝑘|𝑘𝑘−1 of each GCSM component of Equation: 12 methodology suggested by 

[14] is selected. The idea for optimal weight updates for each component of GCSM is realized by 

minimizing error between FPKE equation (Equation (5)) and time derivative of GCSM PDF. A 

continuous time notation (Equation (11)) will be used for development of time update of weights. 

The error in FPKE and time derivative of GCSM is expressed as:  𝑒𝑒(𝐱𝐱, 𝑡𝑡) =
𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)𝜕𝜕𝑡𝑡 − ℒ𝐹𝐹𝐹𝐹(𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)) (16) 

where,ℒ𝐹𝐹𝐹𝐹(. ) = Fokker-Planck operator, is described as: ℒ𝐹𝐹𝐹𝐹 �𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)� = �𝛼𝛼𝑡𝑡(𝑔𝑔)ℒ𝐹𝐹𝐹𝐹 �𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)�𝐺𝐺
𝑔𝑔=1  

= 𝟏𝟏𝐹𝐹𝐹𝐹𝑇𝑇 𝜶𝜶𝑡𝑡 (17) 

where, 𝜶𝜶𝑡𝑡 ∈ ℝ𝑑𝑑×1  is the vector of weights and the elements of  𝟏𝟏𝐹𝐹𝐹𝐹 ∈ ℝ𝑑𝑑×1  are given by 

application of Fokker-Planck operator on individual GCS components: 
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ℒ𝐹𝐹𝐹𝐹 �𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)� = −𝜕𝜕𝑇𝑇𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝑡𝑡 𝒇𝒇(𝒙𝒙, 𝑡𝑡) − 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝑇𝑇𝑇𝑇 �𝜕𝜕𝒇𝒇(𝒙𝒙, 𝑡𝑡)𝜕𝜕𝒙𝒙 � +
1

2
Tr �ℚ ∂2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)∂𝐱𝐱 ∂𝐱𝐱𝑇𝑇� 

 

(18) 

The first term on right of Equation: 16 is obtained by taking total derivative expressed as: 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)𝜕𝜕𝑡𝑡 = ���̇�𝛼𝑡𝑡(𝑔𝑔)𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)
+ 𝛼𝛼𝑡𝑡(𝑔𝑔) 𝜕𝜕𝑇𝑇𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝛍𝛍𝑡𝑡(𝑔𝑔)

�̇�𝛍𝑡𝑡(𝑔𝑔)
+ 𝛼𝛼𝑡𝑡(𝑔𝑔)

Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝐏𝐏𝑡𝑡(𝑔𝑔)
�̇�𝐏𝑡𝑡(𝑔𝑔)�+ 𝛼𝛼𝑡𝑡(𝑔𝑔) 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝑃𝑃𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

�̇�𝑃𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)�𝐺𝐺
𝑔𝑔=1  

 

(19) 

where, Tr = trace and the last term in Equation: 19 implies summation of derivatives over all 

indices (i,j,l) obtained as: 𝛼𝛼𝑡𝑡(𝑔𝑔) � 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)
Ṗ𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)𝑖𝑖,𝑗𝑗,𝑖𝑖  

 

(20) 

The derivative of the moments �̇�𝛍𝑡𝑡(𝑔𝑔)
, �̇�𝐏𝑡𝑡(𝑔𝑔)

and Ṗ𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)
 for each GCS component are obtained from 

Equation: 13-15 and the derivative of weights, �̇�𝛼𝑡𝑡(𝑔𝑔)
 is obtained by time discretization using the first 

forward difference: �̇�𝛼𝑡𝑡(𝑔𝑔)
=

1Δ𝑡𝑡 �𝛼𝛼𝑡𝑡′(𝑔𝑔) − 𝛼𝛼𝑡𝑡(𝑔𝑔)� 

 
(21) 

where, 𝑡𝑡′ = 𝑡𝑡 + Δ𝑡𝑡 
Now by substituting Equation (21) into Equation (19) one may rewrite total time derivative of 

GCSM as:  

 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)𝜕𝜕𝑡𝑡 = � 1Δ𝑡𝑡 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝛼𝛼𝑡𝑡′(𝑔𝑔)

𝐺𝐺
𝑔𝑔=1 + ��𝜕𝜕𝑇𝑇𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝛍𝛍𝑡𝑡(𝑔𝑔)

�̇�𝛍𝑡𝑡(𝑔𝑔)
+ Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕𝐏𝐏𝑡𝑡(𝑔𝑔)

�̇�𝐏𝑡𝑡(𝑔𝑔)�+
𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝜕𝜕P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

Ṗ𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔) − 1Δ𝑡𝑡 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)�𝐺𝐺
𝑔𝑔=1 𝛼𝛼𝑡𝑡(𝑔𝑔)

 

 

(22) 

𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚(𝐱𝐱, 𝑡𝑡)𝜕𝜕𝑡𝑡 =
1Δ𝑡𝑡 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇 𝜶𝜶𝑡𝑡′ + 𝐦𝐦𝐓𝐓𝐓𝐓𝑇𝑇 𝜶𝜶𝑡𝑡 (23) 

where, 𝜶𝜶𝑡𝑡′ ∈ ℝ𝑑𝑑×1 is the vector of new weights which are being found out, 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔 ∈ ℝ𝑑𝑑×1 is the 

vector of GCS components and the elements of 𝐦𝐦𝐓𝐓𝐓𝐓 ∈ ℝ𝑑𝑑×1 are expressed as second of Equation (22) 

(underlined). Now by substituting Equation (17) and Equation (23) into Equation (16) one would get 

FPKE error as: 𝑒𝑒(𝑡𝑡, 𝐱𝐱) =
1Δ𝑡𝑡 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇 𝜶𝜶𝑡𝑡′ + (𝐦𝐦𝐓𝐓𝐓𝐓 − 𝟏𝟏𝐹𝐹𝐹𝐹)𝑇𝑇𝜶𝜶𝑡𝑡 

 
(24) 

Furthermore, analytical expressions for different derivatives used in Equation (22) can be 

expressed in component wise tensor notation as: 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝜕𝜕μ𝑎𝑎 = �P𝑎𝑎𝑎𝑎−1(x𝑎𝑎 − μ𝑎𝑎)

+
1

3!
P𝑖𝑖𝑗𝑗𝑖𝑖(𝟑𝟑)�P𝑎𝑎𝑎𝑎−1(x𝑎𝑎 − μ𝑎𝑎)ℎ𝑖𝑖𝑗𝑗𝑖𝑖 − P𝑖𝑖𝑎𝑎−1ℎ𝑗𝑗ℎ𝑖𝑖 − P𝑗𝑗𝑎𝑎−1ℎ𝑖𝑖ℎ𝑖𝑖 − P𝑖𝑖𝑎𝑎−1ℎ𝑖𝑖ℎ𝑗𝑗 + P𝑖𝑖𝑎𝑎−1P𝑗𝑗𝑖𝑖−1 + P𝑗𝑗𝑎𝑎−1P𝑖𝑖𝑖𝑖−1 + P𝑖𝑖𝑎𝑎−1P𝑖𝑖𝑗𝑗−1�� 𝑝𝑝𝑔𝑔 

 

(25) 

𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝜕𝜕P𝑚𝑚𝑚𝑚 = �1
2

(P𝑚𝑚𝑚𝑚−1P𝑚𝑚𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔) − P𝑚𝑚𝑚𝑚−1)

+
1

3!
P𝑖𝑖𝑗𝑗𝑖𝑖(3) �1

2
(P𝑚𝑚𝑚𝑚−1P𝑚𝑚𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔) − P𝑚𝑚𝑚𝑚−1)ℎ𝑖𝑖𝑗𝑗𝑖𝑖 − P𝑖𝑖𝑚𝑚−1P𝑚𝑚𝑚𝑚−1P𝑗𝑗𝑔𝑔−1P𝑖𝑖𝑙𝑙−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔)(x𝑙𝑙 − μ𝑙𝑙)− P𝑗𝑗𝑚𝑚−1P𝑚𝑚𝑔𝑔−1P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑙𝑙−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔)(x𝑙𝑙 − μ𝑙𝑙) − P𝑖𝑖𝑚𝑚−1P𝑚𝑚𝑙𝑙−1P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔)(x𝑙𝑙 − μ𝑙𝑙)

+ P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑖𝑖−1P𝑚𝑚𝑚𝑚−1(x𝑚𝑚 − μ𝑚𝑚) + P𝑗𝑗𝑚𝑚−1P𝑚𝑚𝑖𝑖−1P𝑖𝑖𝑚𝑚−1(x𝑚𝑚 − μ𝑚𝑚) + P𝑖𝑖𝑖𝑖−1P𝑗𝑗𝑚𝑚−1P𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − μ𝑔𝑔) + P𝑖𝑖𝑚𝑚−1P𝑚𝑚𝑖𝑖−1P𝑗𝑗𝑔𝑔−1(x𝑔𝑔 − μ𝑔𝑔)

+ P𝑖𝑖𝑗𝑗−1P𝑖𝑖𝑚𝑚−1P𝑚𝑚𝑡𝑡−1(x𝑙𝑙 − μ𝑙𝑙) + P𝑖𝑖𝑚𝑚−1P𝑚𝑚𝑗𝑗−1P𝑖𝑖𝑙𝑙−1(x𝑙𝑙 − μ𝑙𝑙)�� 𝑝𝑝𝑔𝑔 

(26) 
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𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝜕𝜕x𝑎𝑎 = �−P𝑎𝑎𝑎𝑎−1(x𝑎𝑎 − μ𝑎𝑎)

+
1

3!
P𝑖𝑖𝑗𝑗𝑖𝑖(𝟑𝟑)�−P𝑎𝑎𝑎𝑎−1(x𝑎𝑎 − μ𝑎𝑎)ℎ𝑖𝑖𝑗𝑗𝑖𝑖 + P𝑖𝑖𝑎𝑎−1P𝑗𝑗𝑔𝑔−1P𝑖𝑖𝑙𝑙−1(x𝑔𝑔 − μ𝑔𝑔)(x𝑙𝑙 − μ𝑙𝑙)+P𝑗𝑗𝑎𝑎−1P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑙𝑙−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑙𝑙 − μ𝑙𝑙)

+ P𝑖𝑖𝑎𝑎−1P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔) − P𝑖𝑖𝑎𝑎−1P𝑗𝑗𝑖𝑖−1 − P𝑗𝑗𝑎𝑎−1P𝑖𝑖𝑖𝑖−1 − P𝑖𝑖𝑎𝑎−1P𝑖𝑖𝑗𝑗−1�� 𝑝𝑝𝑔𝑔 

(27) 

𝜕𝜕2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝜕𝜕x𝑚𝑚𝜕𝜕x𝑚𝑚 = �(P𝑚𝑚𝑚𝑚−1P𝑚𝑚𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔) − P𝑚𝑚𝑚𝑚−1)

+
1

3!
P𝑖𝑖𝑗𝑗𝑖𝑖(3) �1

2
(P𝑚𝑚𝑚𝑚−1P𝑚𝑚𝑔𝑔−1(x𝑚𝑚 − μ𝑚𝑚)(x𝑔𝑔 − μ𝑔𝑔) − P𝑚𝑚𝑚𝑚−1)ℎ𝑖𝑖𝑗𝑗𝑖𝑖 + P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑚𝑚−1P𝑖𝑖𝑙𝑙−1(x𝑙𝑙 − μ𝑙𝑙)

+ P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑔𝑔−1(x𝑔𝑔 − μ𝑔𝑔) + P𝑗𝑗𝑚𝑚−1P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑙𝑙−1(x𝑙𝑙 − μ𝑙𝑙) + P𝑗𝑗𝑚𝑚−1P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑚𝑚−1(x𝑚𝑚 − μ𝑚𝑚) + P𝑖𝑖𝑚𝑚−1P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑔𝑔−1(x𝑔𝑔 − μ𝑔𝑔)

+ P𝑖𝑖𝑚𝑚−1P𝑗𝑗𝑚𝑚−1P𝑖𝑖𝑚𝑚−1(x𝑚𝑚 − μ𝑚𝑚)�� 𝑝𝑝𝑔𝑔 

(28) 

𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝜕𝜕P𝑖𝑖𝑗𝑗𝑖𝑖(3)
= �1

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖� 𝑝𝑝𝑔𝑔 (29) 

where, component wise tensor notation used in above expressions (Equation (25) to Equation 

(29)) implies summation of indices, 𝑝𝑝𝑔𝑔  is a Gaussian PDF and μ𝑎𝑎 , P𝑎𝑎𝑎𝑎−1 and P𝑖𝑖𝑗𝑗𝑖𝑖(𝟑𝟑)
including similar 

forms, indicates individual components of mean, covariance and Coskewness tensors respectively. 

By propagating the mean 𝛍𝛍𝑡𝑡(𝑔𝑔)
, covariance 𝐏𝐏𝑡𝑡(𝑔𝑔)

and P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)
 of individual GCS component using 

Equation (13) to Equation (15), one seeks to obtain new weights by minimizing the error in FPKE over 

a selected volume of state space [14]: 

min𝛼𝛼𝑡𝑡′(𝑔𝑔)  
1

2
� 𝑒𝑒2𝑉𝑉 (𝑡𝑡, 𝐱𝐱)𝑑𝑑𝐱𝐱 (30) 

s. t�𝛼𝛼𝑡𝑡′(𝑔𝑔)
= 1

𝐺𝐺
𝑔𝑔=1   𝛼𝛼𝑡𝑡′(𝑔𝑔) ≥ 0, 𝑔𝑔 = 1 …𝐺𝐺  

The aforementioned problem can be formulated as a quadratic programming   problem [14,42]: 

min𝛼𝛼𝑡𝑡′(𝑔𝑔)

1

2
𝜶𝜶𝑡𝑡′𝑇𝑇𝐌𝐌c𝜶𝜶𝑡𝑡 + 𝜶𝜶𝑡𝑡′𝑇𝑇 𝐍𝐍c𝜶𝜶𝑡𝑡 + (𝜶𝜶𝑡𝑡′ − 𝜶𝜶𝑡𝑡)𝑇𝑇(𝜶𝜶𝑡𝑡′ − 𝜶𝜶𝑡𝑡) 

s. t 𝟏𝟏𝑑𝑑×1𝑇𝑇 𝜶𝜶𝑡𝑡′ = 1 𝜶𝜶𝑡𝑡′ ≥ 𝟎𝟎𝑑𝑑×1 

(31) 

where, 𝟏𝟏𝑑𝑑×1 ∈ ℝ𝑑𝑑×1 is a vector of ones,  𝟎𝟎𝑑𝑑×1 ∈ ℝ𝑑𝑑×1 is a vector of zeros and the matrices 𝐌𝐌c ∈ℝ𝑑𝑑×𝑑𝑑 and 𝐍𝐍c ∈ ℝ𝑑𝑑×𝑑𝑑 are given by: 𝐌𝐌c =
1∆𝑡𝑡2� 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔𝑉𝑉 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇 𝑑𝑑𝐱𝐱 𝐍𝐍c =

1∆𝑡𝑡� 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔𝑉𝑉 (𝐦𝐦𝐓𝐓𝐓𝐓 − 𝟏𝟏𝐹𝐹𝐹𝐹)𝑇𝑇𝑑𝑑𝐱𝐱 

 

(32) 

where, “V” is domain of the 𝐩𝐩𝑔𝑔𝑔𝑔𝑔𝑔  

Analytical solutions were found out for above integrals and presented in Appendix A [35]. To 

author’s knowledge the adaptation of FPKE error feedback methodology for GCSM based nonlinear 

filter using analytical or numerical methods is new and has not appeared anywhere in space objects’ 

state estimation and filtering literature. 

4.2. Measurement Update 

Using the time updated GCSM along with new weights for each GCS component 𝛼𝛼𝑘𝑘|𝑘𝑘−1

(𝑔𝑔)
, one 

now consider treatment of Bayes’ posterior PDF (Equation (12)) for MMSE solution for nonlinear 

filtering problem. Firstly, the normalization constant 𝐶𝐶𝑘𝑘 in Equation (12) can be obtained as: 
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𝐶𝐶𝑘𝑘 ≜ 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐲𝐲𝑘𝑘−1) = �� �𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔) 𝒩𝒩�𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)
,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � �1𝐺𝐺

𝑔𝑔=1
+∞
−∞

+ �P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �𝑖𝑖,𝑗𝑗,𝑖𝑖 � 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)𝑑𝑑𝐱𝐱𝑘𝑘� 

 

(33a) 

where, each GCS component"𝑔𝑔"inside integral of Equation (33a) can be written as: � �𝒩𝒩 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)
,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � �1 + �P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �𝑖𝑖,𝑗𝑗,𝑖𝑖 � 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)�+∞
−∞ 𝑑𝑑𝐱𝐱𝑘𝑘 

 

(33b) 

One may approximate 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)  as a multidimensional Gaussian PDF. Therefore, by 

linearization of the measurement function 𝐡𝐡(. )  (Equation (3)) utilizing first order Taylor series 

expansion around predicted estimates 𝛍𝛍𝑘𝑘|𝑘𝑘−1

(𝑔𝑔)
, 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘) can be formulated as [32]: 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘) =

1�|2𝜋𝜋𝐑𝐑|
exp �−1

2
�𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � − 𝐇𝐇𝑘𝑘 �𝐱𝐱𝑘𝑘 − 𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) ��T𝐑𝐑−1 �𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �−𝐇𝐇𝑘𝑘 �𝐱𝐱𝑘𝑘 − 𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) ��� 

 

(34) 

where, 𝐇𝐇𝑘𝑘 = (∂𝐡𝐡/𝜕𝜕𝐱𝐱𝑘𝑘)|𝐱𝐱𝑘𝑘=𝛍𝛍𝑘𝑘|𝑘𝑘−1

(𝑔𝑔)  

By substituting Equation (34) in Equation (33b) and computing the integral for each GCS 

component can be expressed as [32]: 

D𝑘𝑘(𝑔𝑔)
=

exp{−1
2
�𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) ��T��𝐈𝐈+𝐇𝐇𝑘𝑘|𝑘𝑘−1T(𝑔𝑔) 𝐑𝐑𝑘𝑘−1𝐇𝐇𝑘𝑘|𝑘𝑘−1(𝑔𝑔) 𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � × �𝐑𝐑𝑘𝑘−1 − 𝐑𝐑𝑘𝑘−1𝐇𝐇𝑘𝑘|𝑘𝑘−1(𝑔𝑔) 𝛀𝛀𝑘𝑘(𝑔𝑔)𝐇𝐇𝑘𝑘|𝑘𝑘−1T(𝑔𝑔) 𝐑𝐑𝑘𝑘−1� �𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔) ��}�1 + 𝒱𝒱𝑘𝑘(𝑔𝑔)� (35) 

where, I denote identity matrix and 𝒱𝒱𝑘𝑘(𝑔𝑔)
is expressed in Table 1. This would yield the 

denominator 𝐶𝐶𝑘𝑘 as: 𝐶𝐶𝑘𝑘 = �𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

𝐺𝐺
𝑔𝑔=1 D𝑘𝑘(𝑔𝑔)

 (36) 

Now Mean, Covariance and Co-skewness of Bayes’ aposteriori PDF (Equation (12)) can be 

calculated using following integrals: 𝐱𝐱𝑘𝑘+ =
1𝐶𝐶𝑘𝑘� 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘)

+∞
−∞ 𝐱𝐱𝑘𝑘𝑑𝑑𝐱𝐱𝑘𝑘  (37a) 𝐏𝐏𝑘𝑘+ =

1𝐶𝐶𝑘𝑘� 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘)
+∞
−∞ (𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+)(𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+)T𝑑𝑑𝐱𝐱𝑘𝑘  (37b) 𝐏𝐏𝑘𝑘+(3)

=
1𝐶𝐶𝑘𝑘� 𝑝𝑝(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘)

+∞
−∞ (𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+)(𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+)T⊗ (𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+)T𝑑𝑑𝐱𝐱𝑘𝑘  (37c) 

Firstly, one compute means 𝐱𝐱𝑘𝑘+ by rewriting Equation (37a) as: 𝐱𝐱𝑘𝑘+ =
1∑ 𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔)𝐺𝐺𝑔𝑔=1 D𝑘𝑘(𝑔𝑔)

� �𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔) 𝒩𝒩�𝐱𝐱𝑘𝑘;𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)
,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � �1 + �P𝑖𝑖𝑗𝑗𝑖𝑖(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �𝑖𝑖,𝑗𝑗,𝑖𝑖 �𝐺𝐺
𝑔𝑔=1 𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)

+∞
−∞ 𝐱𝐱𝑘𝑘𝑑𝑑𝐱𝐱𝑘𝑘  (38) 

Each GCS component in Equation (38) can be solved as: 𝐱𝐱𝑘𝑘+(𝑔𝑔)
=

1

D𝑘𝑘(𝑔𝑔)
� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)�𝐱𝐱𝑘𝑘|𝑘𝑘−1|𝐲𝐲𝑘𝑘−1�𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)
+∞
−∞ 𝐱𝐱𝑘𝑘𝑑𝑑𝐱𝐱𝑘𝑘  (39) 

where,  𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)�𝐱𝐱𝑘𝑘|𝑘𝑘−1|𝐲𝐲𝑘𝑘−1� = 𝒩𝒩�𝐱𝐱𝑘𝑘;𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)
,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) � �1 + �P𝑖𝑖𝑗𝑗𝑖𝑖(𝑔𝑔)

3!
ℎ𝑖𝑖𝑗𝑗𝑖𝑖 �𝐱𝐱𝑘𝑘,𝛍𝛍𝑘𝑘|𝑘𝑘−1(𝑔𝑔)

,𝐏𝐏𝑘𝑘|𝑘𝑘−1(𝑔𝑔) �𝑖𝑖,𝑗𝑗,𝑖𝑖 � (40) 

Similarly, one may now compute Covariance and Co-skewness for each GCS component using 

following equations: 𝐏𝐏𝑘𝑘+(𝑔𝑔)
=

1

D𝑘𝑘(𝑔𝑔)
� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)

(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘)
+∞
−∞ �𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+(𝑔𝑔)��𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+(𝑔𝑔)�T𝑑𝑑𝐱𝐱𝑘𝑘  (41a) 
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𝐏𝐏𝑘𝑘+(3)(𝑔𝑔)
=

1

D𝑘𝑘(𝑔𝑔)
� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)

(𝐱𝐱𝑘𝑘|𝐲𝐲𝑘𝑘)
+∞
−∞ �𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+(𝑔𝑔)��𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+(𝑔𝑔)�T⊗ �𝐱𝐱𝑘𝑘 − 𝐱𝐱𝑘𝑘+(𝑔𝑔)�T𝑑𝑑𝐱𝐱𝑘𝑘  (41b) 

The solution of integrals in Equation (39)-(41) are given by measurement update equations 

expressed as [32]: 

x�𝑖𝑖+(𝑔𝑔)
= x�𝑖𝑖−(𝑔𝑔)

+ d𝑖𝑖(𝑔𝑔)
+ 𝜙𝜙𝑖𝑖(𝑔𝑔)

 (42a) 

P𝑖𝑖𝑗𝑗+(𝑔𝑔)
= Ω𝑖𝑖𝑗𝑗(𝑔𝑔)

+ 𝜑𝜑𝑖𝑖𝑗𝑗(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜙𝜙𝑗𝑗(𝑔𝑔)
 (42b) 

P𝑖𝑖𝑗𝑗𝑖𝑖+(3)(𝑔𝑔)
= 𝔑𝔑𝑖𝑖𝑗𝑗𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜑𝜑𝑗𝑗𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑗𝑗(𝑔𝑔)𝜑𝜑𝑖𝑖𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜑𝜑𝑖𝑖𝑗𝑗(𝑔𝑔)

+ 2𝜙𝜙𝑖𝑖(𝑔𝑔)𝜙𝜙𝑗𝑗(𝑔𝑔)𝜙𝜙𝑖𝑖(𝑔𝑔)
 (42c) 

The weight estimates in the measurement update could be found using D𝑘𝑘(𝑔𝑔)
 (Equation (35)) of 

each GCS component of the Bayes’ aposteriori PDF: 𝛼𝛼𝑘𝑘(𝑔𝑔)
=

𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔)
D𝑘𝑘(𝑔𝑔)∑ 𝛼𝛼𝑘𝑘|𝑘𝑘−1(𝑔𝑔)𝐺𝐺𝑔𝑔=1 D𝑘𝑘(𝑔𝑔) (43) 

MCF can be initialized using Expectation Maximization algorithm (EM) [43,44]  using Matlab’s 

ReBEL Toolkit [45]. To simplify computation initial PDF can be assumed as GMM. An addition of 

Residual Resampling (RR) step [19] can be done in MCF algorithm after the weight update of 

Equation: 43 in order to generate children of GCS components with relatively significant weights and 

removal of components with insignificant weights. Thus, the effective size of weight 𝐺𝐺𝐸𝐸could be 

expressed as [19]: 𝐺𝐺𝐸𝐸 =
1∑ �𝛼𝛼𝑘𝑘(𝑔𝑔)�2𝐺𝐺𝑔𝑔=1  (44) 

If  𝐺𝐺𝐸𝐸 < 𝐺𝐺𝑇𝑇where 𝐺𝐺𝑇𝑇 is required (threshold) size of weights, we would perform RR step. Time 

update of weights for each GCS component in MCF described earlier could become quite extensive 

for higher dimensional systems. Therefore, alternatively one can simplify the algorithm by keeping 

the weights constant between the measurements. This is essentially the same methodology used in 

traditional Gaussian Sum Filter (GSF). Algorithm for MCF is shown in Table: 1. 

Table 1. MCF Algorithm. 

Steps 

1. Initial estimates/ higher order and noise statistics: 𝐱𝐱�0+,𝐏𝐏0+,𝐏𝐏0+(3)
,𝑝𝑝(𝐖𝐖) = 𝒩𝒩(0,𝐆𝐆𝐐𝐐𝐆𝐆T) 

2. Perform Expectation Maximization (EM) to obtain GCSM from step.1. 

3. Compute time update for states for 𝑔𝑔 = 1 …𝐺𝐺 

x�𝑖𝑖(𝑘𝑘)

−(𝑔𝑔)
= � 𝑑𝑑x�𝑖𝑖(𝑔𝑔)

(𝑡𝑡)𝑑𝑑𝑡𝑡 = f𝑖𝑖(𝑔𝑔)
(𝐱𝐱�, 𝑡𝑡) + A𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔)

(𝐱𝐱�, 𝑡𝑡)P𝑖𝑖𝑖𝑖(𝑔𝑔)𝑑𝑑𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡𝑘𝑘−1  

P𝑖𝑖𝑗𝑗(𝑘𝑘)

−(𝑔𝑔)
= � 𝑑𝑑P𝑖𝑖𝑗𝑗(𝑔𝑔)

(𝑡𝑡)𝑑𝑑𝑡𝑡 = 2 �F𝑖𝑖𝑖𝑖(𝑔𝑔)
(𝐱𝐱�, 𝑡𝑡)P𝑗𝑗𝑖𝑖(𝑔𝑔)

+ A𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔)
(𝐱𝐱�, 𝑡𝑡)P𝑗𝑗𝑖𝑖𝑖𝑖(3)(𝑔𝑔)�s + V𝑖𝑖𝑗𝑗𝑡𝑡𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑑𝑑𝑡𝑡 

P𝑖𝑖𝑗𝑗𝑖𝑖(𝑘𝑘)

−(3)(𝑔𝑔)
= � 𝑑𝑑P𝑖𝑖𝑗𝑗𝑖𝑖(3)(𝑔𝑔)

(𝑡𝑡)𝑑𝑑𝑡𝑡 = 3 �F𝑖𝑖𝑖𝑖(𝑔𝑔)
(𝐱𝐱�, 𝑡𝑡)P𝑗𝑗𝑖𝑖𝑖𝑖(3)(𝑔𝑔)

+ A𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔)
(𝐱𝐱�, 𝑡𝑡)(P𝑗𝑗𝑖𝑖(𝑔𝑔)

P𝑖𝑖𝑖𝑖(𝑔𝑔)
+ P𝑗𝑗𝑖𝑖(𝑔𝑔)

P𝑖𝑖𝑖𝑖(𝑔𝑔)
)�s𝑡𝑡𝑘𝑘𝑡𝑡𝑘𝑘−1 𝑑𝑑𝑡𝑡 

where, V𝑖𝑖𝑗𝑗 = individual components of diffusion matrix of SDE (𝐆𝐆𝐐𝐐𝐆𝐆T) 

4. Compute time update of GCSM weights, 𝛼𝛼𝑘𝑘|𝑘𝑘−1 

5. Compute measurement update for 𝑔𝑔 = 1 …𝐺𝐺 

 𝓿𝓿𝑘𝑘(𝑔𝑔)
= 𝐲𝐲𝑘𝑘 − 𝐡𝐡�𝐱𝐱�𝑘𝑘−(𝑔𝑔)� , 𝚲𝚲𝑘𝑘(𝑔𝑔)

= 𝐇𝐇𝑘𝑘T(𝑔𝑔)𝐑𝐑−1𝐇𝐇𝑘𝑘(𝑔𝑔)
, 𝛀𝛀𝑘𝑘(𝑔𝑔)

= �𝐏𝐏𝑘𝑘−1(𝑔𝑔)
+ 𝚲𝚲𝑘𝑘(𝑔𝑔)�−1 𝐝𝐝𝑘𝑘(𝑔𝑔)

= 𝛀𝛀𝑘𝑘(𝑔𝑔)𝐇𝐇𝑘𝑘T(𝑔𝑔)𝐑𝐑−1𝓿𝓿𝑘𝑘(𝑔𝑔)
, 𝛈𝛈𝑘𝑘(𝑔𝑔)

= 𝐏𝐏𝑘𝑘−1(𝑔𝑔)𝐝𝐝𝑘𝑘(𝑔𝑔)
, 𝓖𝓖𝑘𝑘(𝑔𝑔)

= 𝛀𝛀𝑘𝑘(𝑔𝑔)𝐏𝐏𝑘𝑘−1(𝑔𝑔)
, 𝓠𝓠𝑘𝑘(𝑔𝑔)

= 𝐏𝐏𝑘𝑘−1(𝑔𝑔)𝓖𝓖𝑘𝑘(𝑔𝑔)
, 𝓔𝓔𝑘𝑘(𝑔𝑔)

= 𝓠𝓠𝑘𝑘(𝑔𝑔) − 𝐏𝐏𝑘𝑘−1(𝑔𝑔)
+

13𝛈𝛈𝑘𝑘(𝑔𝑔)𝛈𝛈𝑘𝑘T(𝑔𝑔)
, 𝓞𝓞𝑘𝑘(𝑔𝑔)

= 𝓠𝓠𝑘𝑘(𝑔𝑔) − 𝐏𝐏𝑘𝑘−1(𝑔𝑔)
+ 𝛈𝛈𝑘𝑘(𝑔𝑔)𝛈𝛈𝑘𝑘T(𝑔𝑔)

 

 

6. Compute tensors (time subscript “k” is removed from notations for clarity) 

 𝒱𝒱(𝑔𝑔) =
1

2
P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑔𝑔)η𝑎𝑎(𝑔𝑔)ℰ𝑎𝑎𝑔𝑔(𝑔𝑔)

, 𝔎𝔎(𝑔𝑔) =
1

(1 + 𝒱𝒱(𝑔𝑔))
, 𝜙𝜙𝑖𝑖(𝑔𝑔)

=
1

2
𝔎𝔎(𝑔𝑔)P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑔𝑔)𝒢𝒢𝑖𝑖𝑎𝑎(𝑔𝑔)𝒪𝒪𝑎𝑎𝑔𝑔(𝑔𝑔)
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 𝜑𝜑𝑖𝑖𝑗𝑗(𝑔𝑔)
= 𝔎𝔎(𝑔𝑔)P𝑎𝑎𝑎𝑎𝑔𝑔(𝑔𝑔)(3)η𝑎𝑎(𝑔𝑔)𝒢𝒢𝑖𝑖𝑎𝑎(𝑔𝑔)𝒢𝒢𝑗𝑗𝑔𝑔(𝑔𝑔)

, 𝔑𝔑𝑖𝑖𝑗𝑗𝑖𝑖(𝑔𝑔)
= 𝔎𝔎(𝑔𝑔)P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑔𝑔)𝒢𝒢𝑖𝑖𝑎𝑎(𝑔𝑔)𝒢𝒢𝑗𝑗𝑎𝑎(𝑔𝑔)𝒢𝒢𝑖𝑖𝑔𝑔(𝑔𝑔)

 

 

x�𝑖𝑖+(𝑔𝑔)
= x�𝑖𝑖−(𝑔𝑔)

+ d𝑖𝑖(𝑔𝑔)
+ 𝜙𝜙𝑖𝑖(𝑔𝑔)

, P𝑖𝑖𝑗𝑗+(𝑔𝑔)
= Ω𝑖𝑖𝑗𝑗(𝑔𝑔)

+ 𝜑𝜑𝑖𝑖𝑗𝑗(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜙𝜙𝑗𝑗(𝑔𝑔)
 

 

P𝑖𝑖𝑗𝑗𝑖𝑖+(3)(𝑔𝑔)
= 𝔑𝔑𝑖𝑖𝑗𝑗𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜑𝜑𝑗𝑗𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑗𝑗(𝑔𝑔)𝜑𝜑𝑖𝑖𝑖𝑖(𝑔𝑔) − 𝜙𝜙𝑖𝑖(𝑔𝑔)𝜑𝜑𝑖𝑖𝑗𝑗(𝑔𝑔)

+ 2𝜙𝜙𝑖𝑖(𝑔𝑔)𝜙𝜙𝑗𝑗(𝑔𝑔)𝜙𝜙𝑖𝑖(𝑔𝑔)
 

7. Compute weight updates: 𝛼𝛼𝑘𝑘(𝑔𝑔)
=

𝛼𝛼𝑘𝑘−1(𝑔𝑔)
D𝑘𝑘−1(𝑔𝑔)∑ 𝛼𝛼𝑘𝑘−1(𝑔𝑔)𝐺𝐺𝑔𝑔=1 D𝑘𝑘−1(𝑔𝑔)

 

8. Residual Resampling (optional step): 𝐺𝐺𝐸𝐸 =
1∑ �𝛼𝛼𝑘𝑘(𝑔𝑔)�2𝐺𝐺𝑔𝑔=1  

where, 𝐺𝐺𝐸𝐸 < 𝐺𝐺𝑇𝑇 is prescribed threshold criteria. 

9. Compute inference: Conditional mean state estimates 𝐱𝐱�𝑘𝑘+ estimates and Covariance 𝐏𝐏𝑘𝑘+: 𝐱𝐱�𝑘𝑘+ = �𝛼𝛼𝑘𝑘(𝑔𝑔)𝐱𝐱�𝑘𝑘+(𝑔𝑔)

𝐺𝐺
𝑔𝑔=1 ,𝐏𝐏𝑘𝑘+ = �𝛼𝛼𝑘𝑘(𝑔𝑔) �𝐏𝐏𝑘𝑘+(𝑔𝑔)

+ �𝐱𝐱�𝑘𝑘+(𝑔𝑔) − 𝐱𝐱�𝑘𝑘+��𝐱𝐱�𝑘𝑘+(𝑔𝑔) − 𝐱𝐱�𝑘𝑘+�T�𝐺𝐺
𝑔𝑔=1  

 

5. Tracking of Space Object Using RADAR Measurements  

In this section algorithms discussed for MCF would now be implemented for tracking of space 

object such as space debris using ground-based radars. Generally, for space debris tracking, some 

orbital elements, and the approximate size of the debris (radar cross-section) are available. The radar 

beam is pointed to a pre-determined position in space and after detection the debris is tracked, and 

observation vectors are collected. These observations are used to compute orbital parameters and 

radar signature. This mode of observation is called ‘target directed’ and is used when the uncertainty 

in the knowledge of a debris’ orbit is high and precise information is required for collision-avoidance 

maneuvers for operational spacecraft and for reentry predictions for potentially dangerous objects 

[46]. Equations of motion for space debris true orbital trajectory in Low Earth Orbit (LEO) used in this 

paper are given as: �̇�𝒓 = 𝐯𝐯 (45a) �̇�𝐯 = −𝜇𝜇𝐸𝐸𝑇𝑇3 𝒓𝒓 + 𝒂𝒂𝐺𝐺 + 𝒂𝒂𝐷𝐷 (45b) 𝒂𝒂𝐷𝐷 =
1

2
𝜌𝜌 𝐶𝐶𝐷𝐷𝐴𝐴

m
v2 𝐯𝐯

|𝐯𝐯|
 (45c) 

where, 𝒓𝒓 = [𝑋𝑋,𝑌𝑌,𝑍𝑍]T, 𝐯𝐯 = [𝑋𝑋,̇ �̇�𝑌, �̇�𝑍]T are position and velocity of a space debris in ECI coordinates,v =

 |𝐯𝐯|, 𝑇𝑇 = |𝒓𝒓|, 𝒂𝒂𝐺𝐺 = perturbation acceleration due to zonal gravitational harmonic including up to J4, 

and 𝒂𝒂𝐷𝐷 = acceleration due to atmospheric drag, 𝐶𝐶𝐷𝐷 = drag coefficient, 𝜌𝜌= atmospheric density, A = 

cross-sectional area of space debris and m = mass of debris [1,47]. 

The true trajectory shall be measured by Radar. Measurement consists of range, azimuth and 

elevation angles in Topocentric coordinate system [1]. Radar site is selected as Eglin US Air Force 

Base (AFB). Normally distributed measurement errors with following variances are selected (adapted 

from reference [8]): 𝜎𝜎range = 25 m,𝜎𝜎azimuth = 0.015 deg 𝜎𝜎elevation = 0.015 deg 

(46) 

Initial conditions of space debris to generate true trajectory are considered in LEO vicinity of 

International Space Station (ISS). Correct state estimation of space debris at such heights is crucial for 

safe operations of ISS. 
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5.1. MCF Results and Comparison with Other Nonlinear Filters for Shorter Durations 

Space debris apriori estimates could be highly uncertain especially in case of sparsely tracked 

debris. Therefore, filters performance with significant uncertainty in initial position variance of 

107m2  and initial velocity variance of 50000m2. s−2  shall be observed. Firstly, one provides the 

measurement data availability of 1 Hz. Due to this high frequency of measurement availability the 

time update using FPKE error feedback is not used in our first simulations. The time history of 

Instantaneous Error (IE) in ECI coordinates given Figure: 1 (a & b) shows that the estimates of CF, 

MCF, GSF and EKF are close to each other.  The convergence to lower errors of MCF is 

comparatively better than other three filters. The MCF and GSF are both being propagated using two 

GCSM and GMM components respectively. The error plots of these figures are obtained after 

averaging 100 Monte Carlo runs for each filter. 

 

Figure 1. Comparison of filters with MCF for absolute position/velocity errors (∆) in ECI coordinates 

(shown in log scale) when measurement availability is 1 Hz (a & b) and 0.033 Hz (c & d). 

One of the drawbacks of filters based on mixture PDFs is the suboptimal time update of mixand 

weights when there are fewer or no measurements. In this situation the weights would remain 

constant until a measurement is received. This could possibly produce inferior estimates for filters 

based on mixture models. One would now incorporate optimal time update of weights in MCF 

algorithm using FPKE error feedback to compare filters for 0.033 Hz measurement availability (see 

Figure 1 (c & d)) and consider filtering performance over period once no observation is available. The 

time history of IE is shown in Figure 1 (c & d). The figures clearly show efficiency of MCF over CF 

owing to use of optimal weight updates. The error curves for position and velocity are lower for MCF. 

Moreover, the Root Mean Square Error (RMSE) criteria (Table: 2) and convergence to lower errors 

shows improvement provided by MCF over other filtering methods. Moreover, the performance of 
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CF is slightly better than EKF. In general, the filters based on mixture PDFs (GSF and MCF) show 

improvement over single approximation of Bayes’ posterior PDF. These error curves are obtained by 

averaging 50 simulations runs for each filter. This provides a reasonable confidence over these 

estimation results. 

Table 2. RMSE in ECI Coordinates for Filters with Measurement Availability of 0.033 Hz. 

Filter 
Position RMSE (m) Velocity RMSE (m/s) 

X Y Z �̇�𝐗 �̇�𝐘 �̇�𝐙 

Extended Kalman Filter 2319 2392 2335 80 81 80 

Culver Filter 1340 1328 1402 79 79 78 

Mixture Culver Filter 1268 1423 1307 79 79 79 

Gaussian Sum Filter 1298 1390 1316 79 79 79 

One can also define instantaneous RMS error for the filters expressed as: 

𝜀𝜀𝑖𝑖(𝑘𝑘) = �1𝑁𝑁��𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) − 𝑥𝑥�𝑖𝑖,𝑗𝑗(𝑘𝑘)�2𝑁𝑁
𝑗𝑗=1  (47) 

where, 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) is the true state, 𝑥𝑥�𝑖𝑖,𝑗𝑗(𝑘𝑘) is the estimated, i = ith component of state, j = jth simulation 

and N = total number of simulations. 

5.2. MCF Results and Comparison with Other Nonlinear Filters for Longer Durations 

Now one extends the filtering performance for later orbital period i.e., once there are no 

observations available. Figure: 2 depicts time history of IE and instantaneous RMSE (Equation (47)) 

over 3 orbital periods. The measurements (0.033 Hz) are only available for 4 min once the satellite is 

in viewing position from the radar site. These simulations are obtained from processing 50 Monte 

Carlo runs for each filter. The performance of CF and MCF are very close when compared for IE 

criteria, however, one may observe distinct improvement in RMSE results by MCF over other filtering 

methods. 
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Figure 2. Comparison of filters with MCF for absolute position/velocity errors (∆) in ECI coordinates 

(shown in log scale) when measurement availability is 0.03 Hz during which the space debris appears 

on the sky for 4 min only (a to h). 

5.3. MCF for Onboard Satellite Navigation Using GPS 
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 LEO small satellites are equipped with a GPS receiver such as SGR-05P of Surrey Satellite 

Technology (SSTL), whose position and velocity accuracy are 10 m and 0.15 m/s, respectively [48]. 

Due to limited power resource onboard small satellites, use of GPS for OD should be done carefully 

to conserve the power and enhance satellite’s mission lifetime. Now we compare MCF with CF for 

OD of an in-orbit satellite whose position and velocity are available after 95 min (~ 1 orbital period). 

The time history of IE and RMSE are shown in Figure: 3. 

 

 

Figure 3. Comparison of CF with MCF for position/velocity errors (∆) in ECI coordinates (shown in 

log scale) when measurement availability is once per orbital period (a to h). 

Figure: 3 shows improvements achieved using MCF over CF. Convergence to lower errors is 

obtained by MCF in merely over 5 orbital periods. Therefore, by employing MCF one could increase 

mission lifetime of a satellite along with better OD. The error curves have also been produced by 

averaging using 50 Monte Carlo runs. 
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6. Conclusion 

In this paper we have developed an improved nonlinear filter based on GCSM model 

approximation of Bayes’ aposteriori PDF for space object state estimation using radar measurements. 

Comparative analysis of our filter with other methods for tracking of space debris shows 

improvement/comparable performance under highly uncertain initial conditions and availability of 

sparse and no measurement data. MCF can also be used in other astrophysical computations such as 

motion and position of celestial bodies and satellites. 
Funding: This research was funded by National University of Sciences and Technology, Pakistan. 
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Appendix A 

A.1 Integral of product of two gaussian densities 𝑝𝑝𝑔𝑔(𝑖𝑖) and 𝑝𝑝𝑔𝑔(𝑗𝑗)
: � exp [−1/2�|2𝜋𝜋(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

−∞
−∞ × ��𝐱𝐱 − 𝛍𝛍(𝑖𝑖)�T𝐏𝐏−1(𝑖𝑖)�𝐱𝐱 − 𝛍𝛍(𝑖𝑖)�+ �𝐱𝐱 − 𝛍𝛍(𝑗𝑗)�T𝐏𝐏−1(𝑗𝑗)�𝐱𝐱 − 𝛍𝛍(𝑗𝑗)��]𝑑𝑑𝐱𝐱 (48) 

The bove integral can be re-expressed as [32]: 

exp [K(𝑖𝑖)]

(2𝜋𝜋)
𝑑𝑑2�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

� exp �− 1

2
��𝐞𝐞(𝑖𝑖) − 𝐝𝐝(𝑖𝑖)�T𝛀𝛀−1�𝐞𝐞(𝑖𝑖) − 𝐝𝐝(𝑖𝑖)��� 𝑑𝑑𝐞𝐞(𝑖𝑖)−∞

−∞  (49) 

where, 

K(𝑖𝑖) =  
1

2
𝐳𝐳(𝑖𝑖)𝑇𝑇�𝐏𝐏−1(𝑗𝑗)𝛀𝛀𝐏𝐏−1(𝑗𝑗) − 𝐏𝐏−1(𝑗𝑗)�𝐳𝐳(𝑖𝑖) 𝐞𝐞(𝑖𝑖) = 𝐱𝐱 − 𝛍𝛍(𝑖𝑖) 𝐳𝐳(𝑖𝑖) = 𝛍𝛍(𝑗𝑗) − 𝛍𝛍(𝑖𝑖) 𝐝𝐝(𝑖𝑖) =  𝛀𝛀𝐏𝐏−1(𝑗𝑗)𝐳𝐳(𝑖𝑖) 𝛀𝛀 = �𝐏𝐏−1(𝑖𝑖) + 𝐏𝐏−1(𝑗𝑗)�−1 

A.2 Gaussian based expectation integrals can be expressed as [32]: 𝐼𝐼0 = � exp �−1

2
�(x𝑚𝑚 − b𝑚𝑚)TΩ𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − b𝑔𝑔)�� 𝑑𝑑𝐱𝐱−∞

−∞ = (2𝜋𝜋)
𝑑𝑑2�Ω𝑖𝑖𝑗𝑗�1/2

 (50) 𝐼𝐼1 = � exp �−1

2
�(x𝑚𝑚 − b𝑚𝑚)TΩ𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − b𝑔𝑔)��−∞

−∞ (x𝑖𝑖 − b𝑖𝑖)𝑑𝑑𝐱𝐱 = 0 (51) 𝐼𝐼2 = � exp �−1

2
�(x𝑚𝑚 − b𝑚𝑚)TΩ𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − b𝑔𝑔)�� (x𝑖𝑖 − b𝑖𝑖)�x𝑗𝑗 − b𝑗𝑗�𝑑𝑑𝐱𝐱−∞

−∞ =  (2𝜋𝜋)
𝑑𝑑2�Ω𝑖𝑖𝑗𝑗�1/2Ω𝑖𝑖𝑗𝑗 (52) 

𝐼𝐼3 = � exp �− 1

2
�(x𝑚𝑚 − b𝑚𝑚)TΩ𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − b𝑔𝑔)�� (x𝑖𝑖 − b𝑖𝑖)�x𝑗𝑗 − b𝑗𝑗�(x𝑘𝑘 − b𝑘𝑘)𝑑𝑑𝐱𝐱 = 0

−∞
−∞  (53) 

𝐼𝐼4 = � exp �− 1

2
�(x𝑚𝑚 − b𝑚𝑚)TΩ𝑚𝑚𝑔𝑔−1(x𝑔𝑔 − b𝑔𝑔)�� (x𝑖𝑖 − b𝑖𝑖)�x𝑗𝑗 − b𝑗𝑗�(x𝑘𝑘 − b𝑘𝑘)(x𝑖𝑖 − b𝑖𝑖)𝑑𝑑𝐱𝐱−∞

−∞
=  (2𝜋𝜋)

𝑑𝑑2�Ω𝑖𝑖𝑗𝑗�1/2�Ω𝑖𝑖𝑗𝑗Ω𝑘𝑘𝑖𝑖 + Ω𝑖𝑖𝑘𝑘Ω𝑗𝑗𝑖𝑖 + Ω𝑖𝑖𝑖𝑖Ω𝑗𝑗𝑘𝑘� (54) 

where, �Ω𝑖𝑖𝑗𝑗�1/2
is determinant of 𝛀𝛀 

A.3 The components of matrix 𝑀𝑀𝑔𝑔 (Equation (32)): 

 𝑚𝑚c𝑖𝑖𝑖𝑖 =
1Δ𝑡𝑡2 � exp [K(𝑗𝑗)]

(2𝜋𝜋)
𝑑𝑑2�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

+
exp [K(𝑗𝑗)]�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

�Ω𝑖𝑖𝑗𝑗�1/2𝒱𝒱(𝑗𝑗) +
exp [K(𝑖𝑖)]�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

�Ω𝑖𝑖𝑗𝑗�1/2𝒱𝒱(𝑖𝑖)� (55) 

where, the term for jth component are shown below: 

 

K(𝑗𝑗) =  
1

2
𝐳𝐳(𝑗𝑗)𝑇𝑇�𝐏𝐏−1(𝑖𝑖)𝛀𝛀𝐏𝐏−1(𝑖𝑖) − 𝐏𝐏−1(𝑖𝑖)�𝐳𝐳(𝑗𝑗) 𝐞𝐞(𝑗𝑗) = 𝐱𝐱 − 𝛍𝛍(𝑗𝑗) 𝐳𝐳(𝑗𝑗) = 𝛍𝛍(𝑖𝑖) − 𝛍𝛍(𝑗𝑗) 𝐝𝐝(𝑗𝑗) =  𝛀𝛀𝐏𝐏−1(𝑖𝑖)𝐳𝐳(𝑗𝑗) 𝛀𝛀 = �𝐏𝐏−1(𝑖𝑖) + 𝐏𝐏−1(𝑗𝑗)�−1 

(56) 
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𝒱𝒱(𝑗𝑗) =
1

2
P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

E𝑎𝑎𝑔𝑔(𝑗𝑗)
 𝜂𝜂𝑎𝑎(𝑗𝑗)

= P𝑎𝑎𝑚𝑚−1(𝑗𝑗)
d𝑚𝑚(𝑗𝑗)

 

G𝑎𝑎𝑎𝑎(𝑗𝑗)
= Ω𝑎𝑎𝑖𝑖P𝑖𝑖𝑎𝑎−1(𝑗𝑗)

 

Q𝑎𝑎𝑎𝑎(𝑗𝑗)
= P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

G𝑖𝑖𝑎𝑎(𝑗𝑗)
 

E𝑎𝑎𝑔𝑔(𝑗𝑗)
= Q𝑎𝑎𝑎𝑎(𝑗𝑗) − P𝑎𝑎𝑎𝑎−1(𝑗𝑗)

+
1

3
𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

 

 

For K(𝑖𝑖) and 𝒱𝒱(𝑖𝑖) replace “j” by “i” in Equation (56).  

For i = j: 𝑚𝑚c𝑖𝑖𝑖𝑖 =
1Δ𝑡𝑡2 � 1

(2𝜋𝜋)
𝑑𝑑2�|2𝐏𝐏(𝑖𝑖)|

� (57) 

 

A.4 The components of matrix 𝑁𝑁𝑔𝑔 (Equation (32)) are expressed as: 𝑛𝑛c𝑖𝑖𝑖𝑖 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) ��𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝛍𝛍(𝑗𝑗)

�̇�𝛍(𝑗𝑗)�+ Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝐏𝐏(𝑗𝑗)
�̇�𝐏(𝑗𝑗)�+

𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝜕𝜕𝑃𝑃𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)
Ṗ𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗) − 1Δ𝑡𝑡 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)

+
𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝐱𝐱 𝐟𝐟(𝑡𝑡, 𝐱𝐱) + 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)

Tr �𝜕𝜕𝐟𝐟(𝑡𝑡, 𝐱𝐱)𝜕𝜕𝐱𝐱 �−∞
−∞

− 1

2
Tr �ℚ𝜕𝜕2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝜕𝜕𝐱𝐱𝜕𝜕𝐱𝐱𝑇𝑇�� 𝑑𝑑𝐱𝐱 

(58) 

We shall utilize tensor notations to solve the above integral analytically. Each of the above term 

inside the square bracket of integrand can be treated separately: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖1 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) ��𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝛍𝛍𝑗𝑗 �̇�𝛍𝑗𝑗��+∞

−∞ 𝑑𝑑𝐱𝐱 (59) 

Substituting Equation (25) and taking expectation of the function inside bracket (Equation (59)) 

and making use of results given in Equation (48) to Equation (54) we obtain following: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖1 =
1Δ𝑡𝑡 �Ω𝑖𝑖𝑗𝑗�1/2μ̇𝑎𝑎(𝑗𝑗)�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

�exp [K(𝑗𝑗)]�𝜂𝜂𝑎𝑎(𝑗𝑗)

+
P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑗𝑗)

3!
�Q𝑖𝑖𝑚𝑚(𝑗𝑗)

Q𝑚𝑚𝑎𝑎(𝑗𝑗)
[3] + 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

+ Q𝑖𝑖𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)
[3] + Q𝑖𝑖𝑎𝑎(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)

[3]− P𝑚𝑚𝑚𝑚−1(𝑗𝑗)
Q𝑖𝑖𝑎𝑎(𝑗𝑗)

[3]− P𝑚𝑚𝑚𝑚−1(𝑗𝑗)𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)
[3]− P𝑖𝑖𝑎𝑎−1(𝑗𝑗)

Q𝑚𝑚𝑚𝑚(𝑗𝑗)
[3]− P𝑖𝑖𝑎𝑎−1(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)

[3] + P𝑖𝑖𝑎𝑎−1(𝑗𝑗)
P𝑚𝑚𝑚𝑚−1(𝑗𝑗)

[3]��
+ exp [K(𝑖𝑖)]

P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑖𝑖)
3!

�Q𝑖𝑖𝑚𝑚(𝑖𝑖) Q𝑚𝑚𝑎𝑎(𝑖𝑖𝑗𝑗)
[3] + 𝜂𝜂𝑖𝑖(𝑖𝑖)𝜂𝜂𝑚𝑚(𝑖𝑖)𝜂𝜂𝑚𝑚(𝑖𝑖)𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖) + Q𝑖𝑖𝑚𝑚(𝑖𝑖)𝜂𝜂𝑚𝑚(𝑖𝑖)𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖)[3] + Q𝑚𝑚𝑎𝑎(𝑖𝑖𝑗𝑗)𝜂𝜂𝑖𝑖(𝑖𝑖)𝜂𝜂𝑚𝑚(𝑖𝑖)[3]− P𝑚𝑚𝑚𝑚−1(𝑖𝑖)

Q𝑖𝑖𝑎𝑎(𝑖𝑖𝑗𝑗)
[3]− P𝑚𝑚𝑚𝑚−1(𝑖𝑖)𝜂𝜂𝑖𝑖(𝑖𝑖)𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖)[3]�� 

(60) 

 

where, double superscript variables are: 

Q𝑛𝑛𝑛𝑛(𝑖𝑖𝑗𝑗) ∈ 𝐏𝐏−1(𝑖𝑖)𝛀𝛀𝐏𝐏−1(𝑗𝑗) 𝜁𝜁𝑛𝑛(𝑗𝑗𝑖𝑖) = P𝑛𝑛𝑎𝑎−1(𝑗𝑗)(d𝑎𝑎(𝑖𝑖) − z𝑎𝑎(𝑖𝑖)) 𝜂𝜂𝑛𝑛(𝑗𝑗𝑖𝑖) = P𝑛𝑛𝑎𝑎−1(𝑗𝑗)d𝑎𝑎(𝑖𝑖) 
Other variables used in above expression are like the Equation (55). 

Now we solve the second integrand of Equation (58) as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖2 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)

Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝐏𝐏(𝑗𝑗)
�̇�𝐏(𝑗𝑗)�+∞

−∞ 𝑑𝑑𝐱𝐱 (61) 

By substituting Equation (26) in above equation the solution can be 

expressed as: 
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𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖2 =
1Δ𝑡𝑡 �Ω𝑖𝑖𝑗𝑗�1/2

Ṗ𝑚𝑚𝑖𝑖(𝑗𝑗)�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|
�exp�K(𝑗𝑗)� �1

2
�Q𝑖𝑖𝑚𝑚(𝑗𝑗)

+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗) − P𝑖𝑖𝑚𝑚−1(𝑗𝑗)�
− P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)

3!
�1
2
��𝜂𝜂𝑖𝑖(𝑗𝑗)

Q𝑚𝑚𝑎𝑎(𝑗𝑗)
[3]�P𝑎𝑎𝑔𝑔−1(𝑗𝑗)

+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)
P𝑎𝑎𝑔𝑔−1(𝑗𝑗)

+ �𝜂𝜂𝑖𝑖(𝑗𝑗)
Q𝑚𝑚𝑎𝑎(𝑗𝑗)

[3]�P𝑎𝑎𝑔𝑔−1(𝑗𝑗)
+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

P𝑎𝑎𝑔𝑔−1(𝑗𝑗)

+ �𝜂𝜂𝑖𝑖(𝑗𝑗)
Q𝑚𝑚𝑔𝑔(𝑗𝑗)

[3]�P𝑎𝑎𝑎𝑎−1(𝑗𝑗)
+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)

P𝑎𝑎𝑎𝑎−1(𝑗𝑗)
+ (𝜂𝜂𝑎𝑎(𝑗𝑗)

Q𝑎𝑎𝑔𝑔(𝑗𝑗)
[3])P𝑖𝑖𝑚𝑚−1(𝑗𝑗)

+ 𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)
P𝑖𝑖𝑚𝑚−1(𝑗𝑗)�− 1

2
�P𝑖𝑖𝑚𝑚−1(𝑗𝑗)

(P𝑎𝑎𝑎𝑎−1(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)
[3])�+ �𝜂𝜂𝑚𝑚(𝑗𝑗)

Q𝑎𝑎𝑔𝑔(𝑗𝑗)
[3]�P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

+ 𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)
P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

+ �𝜂𝜂𝑎𝑎(𝑗𝑗)
Q𝑚𝑚𝑔𝑔(𝑗𝑗)

[3]�P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

+ 𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)
P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

+ �𝜂𝜂𝑎𝑎(𝑗𝑗)
Q𝑚𝑚𝑎𝑎(𝑗𝑗)

[3]�P𝑔𝑔𝑖𝑖−1(𝑗𝑗)
+ 𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)

P𝑔𝑔𝑖𝑖−1(𝑗𝑗) − �P𝑎𝑎𝑖𝑖−1(𝑗𝑗)
P𝑎𝑎𝑔𝑔−1(𝑗𝑗)

[3]� 𝜂𝜂𝑚𝑚(𝑗𝑗)

− (P𝑎𝑎𝑖𝑖−1(𝑗𝑗)
P𝑚𝑚𝑔𝑔−1(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

[3])��
− exp�K(𝑖𝑖)�P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖)

3!
�1

2
�(𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)

[3])Q𝑖𝑖𝑚𝑚(𝑗𝑗)
+ (𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)[3])𝜁𝜁𝑖𝑖(𝑗𝑗𝑖𝑖)𝜁𝜁𝑚𝑚(𝑗𝑗𝑖𝑖) + ((P𝑎𝑎𝑎𝑎−1(𝑖𝑖)

Q𝑚𝑚𝑔𝑔(𝑖𝑖𝑗𝑗)
[3])𝜁𝜁𝑖𝑖(𝑗𝑗𝑖𝑖)�

+ �P𝑎𝑎𝑎𝑎−1(𝑖𝑖)
Q𝑖𝑖𝑔𝑔(𝑗𝑗𝑖𝑖)[3]� 𝜁𝜁𝑚𝑚(𝑗𝑗𝑖𝑖) + P𝑖𝑖𝑚𝑚−1(𝑗𝑗)

(�𝜂𝜂𝑎𝑎(𝑖𝑖)Q𝑎𝑎𝑔𝑔(𝑖𝑖)[3]�+ 𝜂𝜂𝑎𝑎(𝑖𝑖)𝜂𝜂𝑎𝑎(𝑖𝑖)𝜂𝜂𝑔𝑔(𝑖𝑖) − 𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)[3])�� 

(62) 

where,  

Q𝑚𝑚𝑚𝑚(𝑗𝑗𝑖𝑖) ∈ 𝐏𝐏−1(𝑗𝑗)𝛀𝛀𝐏𝐏−1(𝑖𝑖) 
Now we solve the third integrand inside square bracket of Equation 

(58). The integrand can be written as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖3 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝜕𝜕P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)

Ṗ𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)
+∞
−∞ 𝑑𝑑𝐱𝐱 (63) 

Substituting Equation (29) and using the results of Equation (48) to 

Equation (49), we perform expectations of above integral with respect 𝑝𝑝𝑔𝑔𝑚𝑚𝑔𝑔(𝑖𝑖)  . The solution can be expressed as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖3 =
1Δ𝑡𝑡 �Ω𝑖𝑖𝑗𝑗�1/2

exp�K(𝑗𝑗)�
3!�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

�Ṗ𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)�𝜂𝜂𝑎𝑎(𝑗𝑗)
E𝑎𝑎𝑔𝑔(𝑗𝑗)

[3]�� (64) 

See the Equation (55) for solution of fourth integrand of Equation (58) 

as these are identical: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖4 =
1Δ𝑡𝑡2� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)

+∞
−∞ 𝑑𝑑𝐱𝐱 (65) 

Now we solve for 5th integrand of Equation (58): 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖5 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝑇𝑇𝜕𝜕𝐱𝐱 𝐟𝐟(𝑡𝑡, 𝐱𝐱)

+∞
−∞ 𝑑𝑑𝐱𝐱 (66) 

The solution of above integral can be simplified by expanding the 

nonlinear function up to second order in Taylor series and substituting 

Equation (27) in Equation (66). The solution can be written as: 
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𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖5 =
1Δ𝑡𝑡 �Ω𝑖𝑖𝑗𝑗�1/2�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|

�exp�K(𝑗𝑗)� �−P𝑎𝑎𝑎𝑎−1(𝑗𝑗) �d𝑎𝑎(𝑗𝑗)
f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑗𝑗)�+ F𝑎𝑎𝑎𝑎(𝑗𝑗)

(Ω𝑎𝑎𝑎𝑎 + d𝑎𝑎(𝑗𝑗)
d𝑎𝑎(𝑗𝑗)

) + A𝑎𝑎𝑎𝑎𝑖𝑖(𝑗𝑗)
(d𝑎𝑎(𝑗𝑗)Ω𝑎𝑎𝑖𝑖 + d𝑎𝑎(𝑗𝑗)Ω𝑎𝑎𝑖𝑖

+ d𝑖𝑖(𝑗𝑗)Ω𝑎𝑎𝑎𝑎 + d𝑎𝑎(𝑗𝑗)
d𝑎𝑎(𝑗𝑗)

d𝑖𝑖(𝑗𝑗)�− P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑗𝑗)

3!
�f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑗𝑗)��Q𝑖𝑖𝑚𝑚(𝑗𝑗)

Q𝑚𝑚𝑎𝑎(𝑗𝑗)
[3] + 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)

+ Q𝑖𝑖𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)
[3] + Q𝑖𝑖𝑎𝑎(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)

[3]− P𝑚𝑚𝑚𝑚−1(𝑗𝑗)
Q𝑖𝑖𝑎𝑎(𝑗𝑗)

[3]− P𝑚𝑚𝑚𝑚−1(𝑗𝑗)𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)
[3]− �P𝑖𝑖𝑎𝑎−1(𝑗𝑗)

Q𝑚𝑚𝑚𝑚(𝑗𝑗)
+ P𝑖𝑖𝑎𝑎−1(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)�[3]�− (P𝑖𝑖𝑎𝑎−1(𝑗𝑗) �𝜂𝜂𝑚𝑚(𝑗𝑗)

L𝑚𝑚𝑎𝑎(𝑗𝑗)
+ 𝜂𝜂𝑚𝑚(𝑗𝑗)

L𝑚𝑚𝑎𝑎(𝑗𝑗)
+ 𝜉𝜉𝑎𝑎(𝑗𝑗)

Q𝑚𝑚𝑚𝑚(𝑗𝑗)
+ 𝜂𝜂𝑚𝑚(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)𝜉𝜉𝑎𝑎(𝑗𝑗)�)[3]

+ �f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑗𝑗)�+ F𝑎𝑎𝑎𝑎(𝑗𝑗)
d𝑎𝑎(𝑗𝑗)

+ A𝑎𝑎𝑎𝑎𝑖𝑖(𝑗𝑗) �Ω𝑎𝑎𝑖𝑖 + d𝑎𝑎(𝑗𝑗)
d𝑖𝑖(𝑗𝑗)�� �P𝑖𝑖𝑎𝑎−1(𝑗𝑗)

P𝑚𝑚𝑚𝑚−1(𝑗𝑗)
[3]���

+
exp�K(𝑖𝑖)�P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑖𝑖)

3!
�f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑗𝑗)�(P𝑖𝑖𝑚𝑚−1(𝑖𝑖)

Q𝑎𝑎𝑚𝑚(𝑖𝑖𝑗𝑗)
[3] + 𝜂𝜂𝑖𝑖(𝑖𝑖)𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖)P𝑚𝑚𝑚𝑚−1(𝑖𝑖)

[3])

+ �L𝑎𝑎𝑎𝑎(𝑗𝑗)𝜂𝜂𝑖𝑖(𝑖𝑖)P𝑚𝑚𝑚𝑚−1(𝑖𝑖)
+ Q𝑎𝑎𝑖𝑖(𝑗𝑗𝑖𝑖)

P𝑚𝑚𝑚𝑚−1(𝑖𝑖)𝜉𝜉𝑎𝑎(𝑗𝑗𝑖𝑖) + 𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖)L𝑎𝑎𝑖𝑖(𝑖𝑖𝑗𝑗)
P𝑚𝑚𝑚𝑚−1(𝑖𝑖)

+ 𝜂𝜂𝑖𝑖(𝑖𝑖)P𝑚𝑚𝑚𝑚−1(𝑖𝑖)𝜉𝜉𝑎𝑎(𝑗𝑗𝑖𝑖)𝜁𝜁𝑎𝑎(𝑗𝑗𝑖𝑖)�[3]�� 

(67) 

where, the new variables defined in above equation are: 

F𝑛𝑛𝑎𝑎(𝑗𝑗) =
𝜕𝜕f𝑛𝑛(𝑡𝑡, 𝐱𝐱)𝜕𝜕x𝑎𝑎 �𝐱𝐱=𝛍𝛍(𝑗𝑗) , A𝑛𝑛𝑎𝑎𝑓𝑓(𝑗𝑗)

=
1

2

𝜕𝜕2f𝑛𝑛(𝑡𝑡, 𝐱𝐱)𝜕𝜕x𝑎𝑎𝜕𝜕x𝑓𝑓 �𝐱𝐱=𝛍𝛍(𝑗𝑗) 𝐋𝐋(𝑗𝑗) = 𝐏𝐏(𝑗𝑗)𝛀𝛀𝐅𝐅𝑇𝑇(𝑗𝑗), 𝐋𝐋(𝑖𝑖𝑗𝑗) = 𝐏𝐏(𝑖𝑖)𝛀𝛀𝐅𝐅𝑇𝑇(𝑗𝑗) 𝜉𝜉𝑛𝑛(𝑗𝑗) = F𝑛𝑛𝑎𝑎(𝑗𝑗)d𝑎𝑎(𝑗𝑗),   𝜉𝜉𝑛𝑛(𝑗𝑗𝑖𝑖) = F𝑛𝑛𝑎𝑎(𝑗𝑗)(d𝑎𝑎(𝑖𝑖) − z𝑎𝑎(𝑖𝑖)) 
 

Sixth integrand of Equation (58) is zero for OD problem considered in 

this paper: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖6 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)

Tr �𝜕𝜕𝐟𝐟(𝑡𝑡, 𝐱𝐱)𝜕𝜕𝐱𝐱 �+∞
−∞ 𝑑𝑑𝐱𝐱 = 𝟎𝟎 (68) 

Seventh integrand of Equation (58) can be written as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖7 = − 12Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 1

2
Tr �ℚ𝜕𝜕2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑗𝑗)𝜕𝜕𝐱𝐱𝜕𝜕𝐱𝐱𝑇𝑇�+∞

−∞ 𝑑𝑑𝐱𝐱 (69) 

By substituting Equation (28) in Equation (69), the solution of this 

integral can be written as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖7 = − 12Δ𝑡𝑡 �Ω𝑖𝑖𝑗𝑗�1/2ℚ𝑚𝑚𝑖𝑖�|(𝐏𝐏(𝑖𝑖) + 𝐏𝐏(𝑗𝑗))|
�exp�K(𝑗𝑗)� ��Q𝑖𝑖𝑚𝑚(𝑗𝑗)

+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗) − P𝑖𝑖𝑚𝑚−1(𝑗𝑗)�
− P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑗𝑗)

3!
�(𝜂𝜂𝑖𝑖(𝑗𝑗)

Q𝑚𝑚𝑎𝑎(𝑗𝑗)
[3])P𝑎𝑎𝑔𝑔−1(𝑗𝑗)

+ (𝜂𝜂𝑖𝑖(𝑗𝑗)
Q𝑚𝑚𝑎𝑎(𝑗𝑗)

[3])P𝑎𝑎𝑔𝑔−1(𝑗𝑗)
+ (𝜂𝜂𝑖𝑖(𝑗𝑗)

Q𝑚𝑚𝑔𝑔(𝑗𝑗)
[3])P𝑎𝑎𝑎𝑎−1(𝑗𝑗)

+ (𝜂𝜂𝑎𝑎(𝑗𝑗)
Q𝑎𝑎𝑔𝑔(𝑗𝑗)

[3])P𝑖𝑖𝑚𝑚−1(𝑗𝑗)

+ 𝜂𝜂𝑖𝑖(𝑗𝑗)𝜂𝜂𝑚𝑚(𝑗𝑗)
(𝜂𝜂𝑎𝑎(𝑗𝑗)

P𝑎𝑎𝑔𝑔−1(𝑗𝑗)
[3]) + 𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑎𝑎(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)

P𝑖𝑖𝑚𝑚−1(𝑗𝑗) − P𝑖𝑖𝑚𝑚−1(𝑗𝑗)
(𝜂𝜂𝑎𝑎(𝑗𝑗)

P𝑎𝑎𝑔𝑔−1(𝑗𝑗)
[3])− P𝑎𝑎𝑖𝑖−1(𝑗𝑗)

P𝑎𝑎𝑚𝑚−1(𝑗𝑗)𝜂𝜂𝑔𝑔(𝑗𝑗)
[6]��

− exp�K(𝑖𝑖)�P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖)
3!

��(𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)
[3])Q𝑖𝑖𝑚𝑚(𝑗𝑗)

+ (𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)[3])𝜁𝜁𝑖𝑖(𝑗𝑗𝑖𝑖)𝜁𝜁𝑚𝑚(𝑗𝑗𝑖𝑖) + (P𝑎𝑎𝑎𝑎−1(𝑖𝑖)
Q𝑚𝑚𝑔𝑔(𝑖𝑖𝑗𝑗)

[3])𝜁𝜁𝑖𝑖(𝑗𝑗𝑖𝑖)�
+ �P𝑎𝑎𝑎𝑎−1(𝑖𝑖)

Q𝑖𝑖𝑔𝑔(𝑖𝑖𝑗𝑗)
[3]� 𝜁𝜁𝑚𝑚(𝑗𝑗𝑖𝑖) + P𝑖𝑖𝑚𝑚−1(𝑗𝑗)

(�𝜂𝜂𝑎𝑎(𝑖𝑖)Q𝑎𝑎𝑔𝑔(𝑖𝑖)[3]�+ 𝜂𝜂𝑎𝑎(𝑖𝑖)𝜂𝜂𝑎𝑎(𝑖𝑖)𝜂𝜂𝑔𝑔(𝑖𝑖) − 𝜂𝜂𝑎𝑎(𝑖𝑖)P𝑎𝑎𝑔𝑔−1(𝑖𝑖)[3])�� 
(70) 

Now for i=j the component of matrix 𝐍𝐍c are expressed as: 

  𝑛𝑛c𝑖𝑖𝑖𝑖 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) ��𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝛍𝛍(𝑖𝑖) �̇�𝛍(𝑖𝑖)�+ Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝐏𝐏(𝑖𝑖) �̇�𝐏(𝑖𝑖)�+

𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝜕𝜕𝑃𝑃𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖) Ṗ𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖) − 1Δ𝑡𝑡 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)
+
𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝐱𝐱 𝐟𝐟(𝑡𝑡, 𝐱𝐱) + 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)

Tr �𝜕𝜕𝐟𝐟(𝑡𝑡, 𝐱𝐱)𝜕𝜕𝐱𝐱 �−∞
−∞

− 1

2
Tr �ℚ𝜕𝜕2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝜕𝜕𝐱𝐱𝜕𝜕𝐱𝐱𝑇𝑇�� 𝑑𝑑𝐱𝐱 

(71) 
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We shall utilize tensor notations to solve the above integral analytically. Each of the above term 

inside the square bracket of integrand can be treated separately. 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖1 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) ��𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝛍𝛍𝑖𝑖 �̇�𝛍𝑖𝑖��+∞

−∞ 𝑑𝑑𝐱𝐱 (72a) 

Substituting Equation (25) and taking expectations of the function inside square bracket 

(Equation (72)) and making use of results provided in Equation (48) to Equation (54), we obtain 

following: 

  𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖1 = − 1Δ𝑡𝑡 �𝐏𝐏(𝑖𝑖)�1/2μ̇𝑎𝑎(𝑖𝑖)
2(𝑑𝑑/2)�|(2𝐏𝐏(𝑖𝑖))|

��P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑖𝑖)
3!

�2P𝑖𝑖𝑚𝑚(𝑖𝑖)Q𝑎𝑎𝑚𝑚(𝑖𝑖)
[3] + P𝑖𝑖𝑎𝑎(𝑖𝑖)Q𝑚𝑚𝑚𝑚(𝑖𝑖)

[3]− P𝑖𝑖𝑎𝑎(𝑖𝑖)P𝑚𝑚𝑚𝑚(𝑖𝑖)
[3]��� (72b) 

 Now we solve the second integrand of Equation (71) as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖2 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)

Tr �𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝐏𝐏(𝑖𝑖) �̇�𝐏(𝑖𝑖)�+∞
−∞ 𝑑𝑑𝐱𝐱 (73) 

By substituting Equation (26) in above Equation (73) the solution can be 

expressed as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖2 =
1Δ𝑡𝑡 �𝐏𝐏(𝑖𝑖)�1/2

Ṗ𝑚𝑚𝑖𝑖(𝑖𝑖)
2(𝑑𝑑/2)�|(2𝐏𝐏(𝑖𝑖))|

��1

2
�Q𝑖𝑖𝑚𝑚(𝑖𝑖) − P𝑖𝑖𝑚𝑚−1(𝑖𝑖)��� (74) 

Now we solve the third integrand inside square bracket of Equation 

(71). Substituting Equation (29) and using the results of Equation (48) 

and Equation (49), we perform expectation of the integral with respect 

to 𝑝𝑝𝑔𝑔𝑚𝑚𝑔𝑔(𝑖𝑖) . The solution can be expressed as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖3 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝜕𝜕P𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖) Ṗ𝑎𝑎𝑎𝑎𝑔𝑔(3)(𝑖𝑖)+∞

−∞ 𝑑𝑑𝐱𝐱 = 𝟎𝟎 (75) 

The furth term inside the square bracket of Equation (71) can be 

expressed as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖4 =
1Δ𝑡𝑡2� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)+∞

−∞ 𝑑𝑑𝐱𝐱 =
1Δ𝑡𝑡2 �𝐏𝐏(𝑖𝑖)�1/2

(2)
𝑑𝑑2�|2𝐏𝐏(𝑖𝑖)|

 (76) 

Now we solve for 5th integrand of Equation (71) as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖5 =
1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 𝜕𝜕𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝑇𝑇𝜕𝜕𝐱𝐱 𝐟𝐟(𝑡𝑡, 𝐱𝐱)

+∞
−∞ 𝑑𝑑𝐱𝐱 (77) 

The solution of the above integral can be simplified by expanding the 

nonlinear function up to second order in Taylor series and substituting 

Equation (27) in Equation (77). The solution can be written as: 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖5 =
1Δ𝑡𝑡 �𝐏𝐏(𝑖𝑖)�1/2

(2)
𝑑𝑑2�|(2𝐏𝐏(𝑖𝑖))|

��−P𝑎𝑎𝑎𝑎−1(𝑖𝑖)
F𝑎𝑎𝑎𝑎(𝑖𝑖)

P𝑎𝑎𝑎𝑎−1(𝑖𝑖)
+

P𝑖𝑖𝑚𝑚𝑚𝑚(3)(𝑖𝑖)
3!

�f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑖𝑖)��P𝑖𝑖𝑚𝑚(𝑖𝑖)Q𝑎𝑎𝑚𝑚(𝑖𝑖)
[3] + P𝑚𝑚𝑎𝑎(𝑖𝑖)Q𝑖𝑖𝑚𝑚(𝑖𝑖) [3]� − �f𝑎𝑎�𝑡𝑡,𝛍𝛍(𝑖𝑖)�+ A𝑎𝑎𝑎𝑎𝑖𝑖(𝑖𝑖)

P𝑎𝑎𝑖𝑖−1(𝑖𝑖)��P𝑖𝑖𝑎𝑎−1(𝑖𝑖)
P𝑚𝑚𝑚𝑚−1(𝑖𝑖)

[3]���� (78) 

Sixth integrand 𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖6 = 0, therefore, we solve for seventh integrand of 

Equation (71): 𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖7 = − 1Δ𝑡𝑡� 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) 1

2
Tr �ℚ𝜕𝜕2𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖)𝜕𝜕𝐱𝐱𝜕𝜕𝐱𝐱𝑇𝑇�+∞

−∞ 𝑑𝑑𝐱𝐱 (79) 

By substituting Equation (28) in Equation (79), the solution of the 

integral can be written as:  𝑛𝑛𝑔𝑔𝑖𝑖𝑖𝑖7 = − 12Δ𝑡𝑡 �𝐏𝐏(𝑖𝑖)�1/2ℚ𝑚𝑚𝑖𝑖
(2)

𝑑𝑑2�|(2𝐏𝐏(𝑖𝑖))|

�Q𝑖𝑖𝑚𝑚(𝑖𝑖) − P𝑖𝑖𝑚𝑚−1(𝑖𝑖)� (80) 

Note: To find solutions of integrals in Appendix A, fourth and higher 

order moments and their multiplicative terms involving differentials 

are neglected.  
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