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Abstract: Variable-DOF (or kinematotropic) mechanisms are a class of reconfigurable mechanisms.

However, the number of proposed variable-DOF multi-loop planar mechanisms is currently limited.

This paper introduces a new 8-link variable-DOF planar mechanism that has five motion modes.

Firstly, the 8-link variable-DOF planar mechanism is described. Then, reconfiguration analysis of the

mechanism is performed using a hybrid approach that combines elimination and algebraic geometry

methods. The analysis reveals that the 8-link mechanism has one 2-DOF motion mode and four

1-DOF motion modes. It can switch among three motion modes at four transition configurations

and between two motion modes at the remaining four transition configurations. The paper also

highlights the geometric characteristics of the mechanism in different motion modes. In contrast to

variable-DOF planar mechanisms presented in the literature, the proposed 8-link mechanism has

two inactive joints in one of its 1-DOF motion modes. Moreover, both 4R kinematic sub-chains of

the mechanism must appear as either a pair of parallelograms or a pair of anti-parallelograms in the

same motion mode. As a by-product of this research, a method for factoring trigonometric functions

in two angles is also proposed.

Keywords: variable-DOF mechanism; reconfigurable mechanism; reconfiguration analysis; motion

mode; factorization of two-angle trigonometric function

0. Introduction

One of the current research focuses in mechanisms and robotics is reconfigurable mechanisms and

robots [1,2], which could help meet the needs of robots and manufacturing systems that can rapidly

adapt to changes in environment and production.

Variable-DOF (or kinematotropic) mechanisms [3–14] are a class of reconfigurable mechanisms

that have different DOF in different motion modes 1. Considerable progress has been made in the type

synthesis and reconfiguration analysis of variable-DOF mechanisms, including single-loop spatial

mechanisms [5,6,11], parallel mechanisms [10,12–14,16–20], and multi-loop mechanisms [4,5,21–26].

Apart from the construction methods [6,22,26], most approaches for the type synthesis of

variable-DOF mechanisms are based on different mathematical methods ranging from displacement

group theory [5,10], intersection of surfaces [9,20], factorization of polynomials [11,27], and primary

decomposition of ideals [13,17–19] to the comprehensive Gröbner basis of parametric polynomial

equations [19,28]. Through the construction methods in [6,22,26], a number of variable-DOF

mechanisms have been constructed from existing overconstrained mechanisms. No overconstrained

mechanisms are required in advance if using methods in [5,9–11,27], however, only several

variable-DOF mechanisms have been obtained by using these methods. Using the methods in [13,17,18],

1 Variable-DOF mechanisms in this paper are composed of conventional kinematic joints and have no reconfigurable joints.
For variable-DOF mechanisms with reconfigurable joints, please refer to reference [15].
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one can detect whether a multi-DOF overconstrained parallel mechanism is a variable-DOF parallel

mechanism. Using the methods in [19,28], one can investigate the affect of link parameters of

multi-DOF overconstrained parallel mechanism on the number and types of motion modes and

identify different variable-DOF parallel mechanisms of the same topological structure. Variable-DOF

mechanisms were obtained by using multi-mode single-loop kinematic chain as building blocks

in [16,22]. With further development and application of the above methods, more and more

variable-DOF mechanisms are expected to be revealed.

Methods for the reconfiguration analysis of variable-DOF mechanisms mainly include the

elimination approaches [21], algebraic geometry methods [23,29,30], numerical algebraic geometry

methods [31], branch-and-prune methods [32], singular value decomposition approaches [33–36], and

the higher-order kinematics based approaches [37–40]. The first five methods can be used to identify all

the motion modes of a variable-DOF mechanism as long as the link parameters of the mechanism are

given, whereas a singular or transition configuration of the variable-DOF mechanism must be given in

advance if the last method, which is more computationally efficient, is used for the reconfiguration

analysis.

It is noted that there are no variable-DOF planar single-loop mechanisms composed of R (revolute)

and P (prismatic) joints, and the number of variable-DOF multi-loop planar mechanisms is still very

limited. The only four variable-DOF multi-loop planar mechanisms proposed so far are: the 12-link

Wunderlich mechanism in [3], the 10-link Kovalev mechanism in [4], the 8-link variable-DOF planar

mechanism in [5], and the 8-link variable-DOF planar mechanism in [41].

The 8-link variable-DOF planar mechanism proposed in [5] has four inactive joints in its 3-DOF

motion mode and no inactive joint in its 1-DOF motion mode. In the 3-DOF motion mode, this 8-link

mechanism degenerates to a planar serial 3R mechanism. The 8-link variable-DOF planar mechanism

presented in [41] has four inactive joints in four of its 1-DOF motion modes and no inactive joint in its

2-DOF motion mode. In these four 1-DOF motion modes, a closed-loop 4R kinematic sub-chain of the

8-link mechanism degenerates (or loses its DOF).

One question arising from the above observations is: Are there variable-DOF 8-link planar

mechanisms which have neither a serial mechanism motion mode nor a motion mode with a

degenerated closed-loop 4R sub-kinematic chain? This paper will answer the above question by

presenting a novel 8-link variable-DOF planar mechanism. As will be shown later, this 8-link

mechanism has two inactive joints in one of its 1-DOF motion modes and no inactive joints in the other

motion modes.

This paper is organized as follows. In Section 1, a geometric description of a novel variable-DOF

8-link planar mechanism is given. A set of kinematic equations is set up in Section 2 with the variables

selected to better reflect the geometric characteristics of the mechanism in different motion modes.

The motion modes and transition configurations of the variable-DOF 8-link planar mechanism are

identified using an elimination and computer algebraic geometry hybrid approach in Sections 3 and

4. The reconfiguration of the variable-DOF 8-link planar mechanism is detailed in Section 5. Finally,

conclusions are drawn.

1. Geometric description of a novel 8-link variable-DOF planar mechanism

The 8-link variable-DOF planar mechanism [41] constructed using two-parallelograms is

composed of four binary links and four triangular ternary links and has four inactive joints in four of

its 1-DOF motion modes and no inactive joint in its 2-DOF motion mode. Recently, it was revealed

in [42] that in addition to the 1-DOF motion mode, a 3-RR planar parallelogram may have up to two

structure modes if the two ternary links are triangular or no structure mode if the two ternary links

are collinear. The four inactive joints in a motion mode of the 8-link variable-DOF planar mechanism

correspond to the structure mode of a 3-RR planar parallelogram. Using two parallelograms with no

structure mode, we can construct an 8-link variable-DOF planar mechanism that does not have 1-DOF

motion mode with four inactive joints. Alternatively, by simply replacing each triangular ternary link
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in the 8-link variable-DOF planar mechanism in [41] with a collinear ternary link, the 1-DOF motion

modes with four inactive joints of the original 8-link mechanism will be eliminated. This would lead

to a novel 8-link variable-DOF planar mechanism (Figure 1).

The novel 8-link variable-DOF planar mechanism is composed of four identical binary links,

A11B11, A12B12, A21B21 and A22B22, and four identical collinear ternary links AA11A12,BB11B12,

AA21A22 and BB21B22 connected by 10 R joints. The link parameters of the 8-link variable-DOF

planar mechanism are:

AA11 = BB11 = AA21 = BB21 = a1, AA12 = BB12 = AA22 = BB22 = a2, and A11B11 =

A12B12 = A21B21 = A22B22 = L1.

The link parameters of an example 8-link variable-DOF planar mechanism are: a1 = 45, a2 = 75,

and L1 = 25. Here, the link parameters satisfy L1 < (a2 − a1) in order to avoid link interference.

A

B

A11

X

Y

A12

B11

B12

A21

A22

B21

B22

φa
ψa φb

ψb

Figure 1. A novel 8-link variable-DOF planar mechanism.

2. Kinematic equations

To facilitate the identification of the geometric characteristics of the 8-link mechanism, the

coordinate system O − XY is set up such that O coincides with R joint center A, and R joint center B

is located on the positive X-axis. Let φa (ψa) denote the angle between the negative direction of the

X−axis and the link AA11 (AA21) measured clockwise, and φb (ψb) the angle between the positive

direction of the X−axis and the link BB11 (BB21) measured anti-clockwise. An auxiliary variable,

L = AB (L > 0), is introduced to simplify the reconfiguration analysis.

The loop closure equations of loops ABB11 A11 A, ABB12 A12 A, ABB21 A21 A, and ABB22 A22 A

written in vector form are






















(
−→
AB +

−−→
BB11 −

−−−→
AA11) · (

−→
AB +

−−→
BB11 −

−−−→
AA11) = L2

1

(
−→
AB +

−−→
BB12 −

−−−→
AA12) · (

−→
AB +

−−→
BB12 −

−−−→
AA12) = L2

1

(
−→
AB +

−−→
BB21 −

−−−→
AA21) · (

−→
AB +

−−→
BB21 −

−−−→
AA21) = L2

1

(
−→
AB +

−−→
BB22 −

−−−→
AA22) · (

−→
AB +

−−→
BB22 −

−−−→
AA22) = L2

1
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Rewriting the above equation in complex number form, we have



















(L + a1eiφb − a1ei(π−φa)(L + a1e−iφb − a1e−i(π−φa)− L2
1 = 0

(L + a2eiφb − a2ei(π−φa)(L + a2e−iφb − a2e−i(π−φa)− L2
1 = 0

(L + a1eiψb − a1ei(π−ψa)(L + a1e−iψb − a1e−i(π−ψa)− L2
1 = 0

(L + a2eiψb − a2ei(π−ψa)(L + a2e−iψb − a2e−i(π−ψa)− L2
1 = 0

Simplifying the above equation, we obtain



















a1C(φb + φa) + L(Cφb + Cφa) + (L2 − L2
1)/(2a1) + a1 = 0

a2C(φb + φa) + L(Cφb + Cφa) + (L2 − L2
1)/(2a2) + a2 = 0

a1C(ψb + ψa) + L(Cψb + Cψa) + (L2 − L2
1)/(2a1) + a1 = 0

a2C(ψb + ψa) + L(Cψb + Cψa) + (L2 − L2
1)/(2a2) + a2 = 0

(1)

where S∗ and C∗ denote sin ∗ and cos ∗ respectively.

3. Motion mode analysis of an 8-link variable-DOF planar mechanism

In this section, we will reveal all the motion modes of the novel 8-link variable-DOF mechanism

(Figure 1) by using resultant elimination, which has been extensively used in the kinematic analysis of

mechanisms [43], and the primary decomposition of ideals from computer algebraic geometry [29],

which has been used in the reconfiguration analysis of multi-mode mechanisms [17,23,30].

Eliminating φb from the first and second equations of Eq. (1) and ψb from the third and fourth

equations of Eq. (1), Eq. (1) is reduced to the following set of two equations in three variables φa, φa

and L (see Appendix A for details)

{

(1 − C2φa)[1 − (k2 − Cφa)2]− [k1 − Cφa(k2 − Cφa)]2 = 0

(1 − C2ψa)[1 − (k2 − Cψa)2]− [k1 − Cψa(k2 − Cψa)]2 = 0
(2)

where k1 = (L2 − L1
2)/(2a1a2)− 1 and k2 = −(a1 + a2)(L2 − L1

2)/(2La1a2).

For simplicity reasons and without loss of generality, we will investigate the reconfiguration

analysis of the 8-link variable-DOF mechanism via the example mechanism given in Section 1.

Substituting the link parameters of the example 8-link mechanism into Eq. (2), we obtain

{

(L − 25)(L + 25) f1 = 0

(L − 25)(L + 25) f2 = 0
(3)

where f1 = L4 + 240L3Cφa + 6750C(2φa)L2 + 7025L2 − 150000CφaL − 9000000 and f2 = L4 +

240L3Cψa + 6750C(2ψa)L2 + 7025L2 − 150000CψaL − 9000000.

Since L > 0, Eq. (3) leads to two cases:

Case A

L − 25 = 0 (4)

Equation (4) represents a 2-DOF motion mode, motion mode 1 (Figure 2a), of the 8-link mechanism.

In motion mode 1, both 4R kinematic sub-chains, A11B11B12A12 and A21B21B22A22, are parallelograms.
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A B

A11

A12

B11

B12

A21

A22

B21

B22

(a)

A B

A11

A12

B11

B12

A21

A22

B21

B22

(b)

A B

A11 (A21)

A12(A22)

B11(B21)

B12(B22)

(c)

A
B

A11

A12

B11

B12

A21

A22

B21

B22

(d)

A B

A11

A12

B11

B12

A21

A22

B21

B22

(e)

Figure 2. The 8-link variable-DOF planar mechanism in: (a) 2-DOF Motion mode 1; (b) 1-DOF Motion

mode 2; (c) 1-DOF Motion mode 3; (d) 1-DOF Motion mode 4; and (e) 1-DOF Motion mode 5.

Case B

{

L4 + 240L3Cφa + 6750C(2φa)L2 + 7025L2 − 150000CφaL − 9000000 = 0

L4 + 240L3Cψa + 6750C(2ψa)L2 + 7025L2 − 150000CψaL − 9000000 = 0
(5)

In the following, we will identify the motion modes associated with Eq. (5) by eliminating L using

resultant first and then using the primary decomposition of ideals from the algebraic geometry [29] to

find the positive-dimensional solutions to the resulted equations.

Eliminating L using resultants from Eq. (5), we obtain

36905625000000000000000000g(Cφa − Cψa)
4 = 0 (6)

where g = 72900Cφ4
a − 5940Cφ3

aCψa − 215280Cφ2
aCψ2

a − 5940CφaCψ3
a + 72900Cψ4

a + 63661Cφ2
a +

12122CφaCψa + 63661Cψ2
a − 57600.

From Eq. (6), we obtain the following two sub-cases

Cφa − Cψa = 0 (7)

and

g = 0 (8)
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Equation (7) has two solutions:

ψa = −φa (9)

and

ψa = φa (10)

Equation (9) represents a 1-DOF motion mode, motion mode 2 (Figure 2b), of the 8-link

mechanism. In motion mode 2, both 4R sub-kinematic chains, A11B11B12A12 and A21B21B22A22,

are anti-parallelograms, and the 8-link mechanism is symmetric about line AB. Motion mode 2 is called

the kite motion mode since the 8-link is in the shape of a kite in this motion mode.

Equation (10) represents a 1-DOF motion mode, motion mode 3 (Figure 2c), of the 8-link

mechanism. In motion mode 3, both 4R kinematic sub-chains, A11B11B12A12 and A21B21B22A22,

coincide, and the 8-link mechanism has two inactive joints A and B. Motion mode 3 is called the planar

4R mechanism mode since the 8-link degenerates to a planar 4R mechanism.

Using the primary decomposition of ideals from computer algebraic geometry, Eq. (8) can be

rewritten as (See Appendix B for details)

g1g2 = 0 (11)

where g1 = −281 + 135C(2φa) − 306C(φa − ψa) + 295C(φa + ψa) + 135C(2ψa) and g2 = −281 +

135C(2φa) + 295C(φa − ψa)− 306C(φa + ψa) + 135C(2ψa).

Equation (11) has two solutions:

g1 = 0 (12)

and

g2 = 0 (13)

Equation (12) represents a 1-DOF motion mode, motion mode 4 (Figure 2d), of the 8-link

mechanism. In motion mode 4, both 4R sub-kinematic chains, A11B11B12A12 and A21B21B22A22,

are anti-parallelograms, and the 8-link mechanism is rotational symmetric. Motion mode 4 is called

the parallelogram motion mode since the 8-link is in the shape of a parallelogram in this motion mode.

Equation (13) represents a 1-DOF motion mode, motion mode 5 (Figure 2e), of the 8-link

mechanism. In motion mode 5, both 4R kinematic sub-chains, A11B11B12A12 and A21B21B22A22,

are anti-parallelograms, and the 8-link mechanism is symmetric about the perpendicular bisector of

AB. Motion mode 5 is called the isosceles trapezium motion mode since the 8-link mechanism is in the

shape of an isosceles trapezium in this motion mode.

It can be observed that if (φ∗
a , ψ∗

a , L∗) is a set of solution to Eq. (5), then (π ± φ∗
a , π ± ψ∗

a , −L∗) are

also solutions to Eq. (5). Since L > 0, the φa-ψa curve for motion mode 4 (or 5) (see Figure 3) is only

one half of the curve obtained using Eq. (12) (or Eq. (13)) that lies outside of the region enclosed by

lines ψa − φa = ±π (or φa + ψa = ±π).
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ψa = φa + π

ψa = φa − π

g1 = 0

φa

ψa

(a)

ψa = −φa + π

ψa = −φa − π

g2 = 0

φa

ψa

(b)

Figure 3. Kinematic analysis of the 8-link variable-DOF planar mechanism in: (a) motion mode 4; (b)

motion mode 5.

In summary, the 8-link variable-DOF mechanism has one 2-DOF motion mode and four 1-DOF

motion modes (Figure 2). Table 1 summarizes all the five motion modes of the 8-link mechanism and

their geometric characteristics. Figure 4 shows the φa-ψa curves for the four 1-DOF motion modes 2

(Eq. (9)), 3 (Eq. (10)), 4 (Eq. (12)) and 5 (Eq. (13)).
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Table 1. Five motion modes of the 8-link variable-DOF mechanism.

No DOF Constraint equations Description

1 2
L = 25

Both 4R sub-kinematic chains are
parallelograms (Figure 2a). φa and
ψa are independent.

2 1
ψa = −φa

Both 4R kinematic sub-chains are
anti-parallelograms. The 8-link
mechanism is symmetric about line
AB (Figure 2b).

3
ψa = φa

Both 4R sub-kinematic chains are
anti-parallelograms that coincide
with each other (Figure 2c), and the
8-link mechanism has two inactive
joints A and B.

4

−281 + 135C(2φa)

−306C(φa − ψa)

+295C(φa + ψa)

+135C(2ψa) = 0

Both 4R kinematic sub-chains are
anti-parallelograms. The 8-link
mechanism is rotational symmetric
(Figure 2d).

5

−281 + 135C(2φa)

+295C(φa − ψa)

−306C(φa + ψa)

+135C(2ψa) = 0

Two 4R sub-kinematic chains are
anti-parallelograms. The 8-link
mechanism is symmetric about the
perpendicular bisector of AB
(Figure 2e).

Motion mode 2

Motion mode 3

Motion mode 4

Motion mode 5

φa

ψa

Figure 4. Four 1-DOF motion modes on φa-ψa plane.

Unlike the two 8-link variable-DOF planar mechanisms in [5,41] which have four inactive joints

in some of their motion modes, this 8-link variable-DOF planar mechanism has two inactive joints A

and B in one of the 1-DOF motion modes (motion mode 3).

It is also observed from Figure 2 that both 4R kinematic sub-chains of this novel 8-link

variable-DOF planar mechanism must appear as parallelograms in its 2-DOF motion mode or

anti-parallelograms in any of its 1-DOF motion mode, whereas both the 8-link variable-DOF planar

mechanism [41] and the 12-link Wunderlich mechanism have a motion mode with an odd number of

4R sub-kinematic chains appearing as anti-parallelograms.

Although one can solve Eq. (5) directly using the primary decomposition of ideals to identify

all the motion modes of the 8-link variable-DOF mechanism, it was found hard to obtain the concise
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equations (Eqs. (12 and (13)) for motion modes 4 and 5 that were obtained by eliminating L before

calculating the primary decomposition of ideals.

4. Transition configuration analysis of the 8-link variable-DOF planar mechanism

The transition configurations between two or more motion modes can be obtained by solving the

kinematic equations composed of equations of these motion modes [30].

Let us take the transition configurations between motion modes 2 and 4, T(2
∧

4), of the 8-link

mechanism as an example.

The set of equations composed of Eqs. (9) (motion mode 2) and (12) (motion mode 4) is

{

ψa = −φa

−281 + 135C(2φa)− 306C(φa − ψa) + 295C(φa + ψa) + 135C(2ψa) = 0
(14)

Solving Eq. (14), we obtain two solutions2

{

φa = 2.5559(rad)

ψa = −φa
(15)

{

φa = −2.5559(rad)

ψa = −φa
(16)

Equations (15) and (16) show that there are two transition configurations between motion modes

2 and 4, T(2
∧

4)I (Figure 5a) and T(2
∧

4)I I (Figure 5b). In these two transition configurations, links

Ai1Bi1 and Bi2Ai2 are parallel to AB. One can readily obtain that the instantaneous DOF of the 8-link

variable-DOF mechanism is 2 in these transition configurations. The details are omitted here since the

calculation of instantaneous DOF of a mechanism has been well-documented in the literature.

2 Two solutions, φa = ±0.5856 (rad), to Eq. (14) that lead to L < 0 were discarded.
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A B

A11

A12

B11

B12

A21

A22

B21

B22

(a)

A B

A21

A22

B21

B22

A11

A12

B11

B12

(b)

A B

A11 (A21)

A12(A22)

B11(B21)

B12(B22)

(c)

A B

A11 (A21)

A12(A22)

B11(B21)

B12(B22)

(d)

A BA11 (A21)A12(A22)

B11(B21)B12(B22)

(e)

A B A11 (A21) A12(A22)

B11(B21) B12(B22)

(f)

A B A11 A12B11 B12A21A22 B21B22

(g)

A B A21 A22B21 B22A11A12 B11B12

(h)

Figure 5. The 8-link variable-DOF planar mechanism in transition configuration: (a) T(2
∧

4)I ; (b) T(2
∧

4)I I ; (c) T(3
∧

5)I ; (d) T(3
∧

5)I I ; (e) T(1
∧

2
∧

3)I ; (f) T(1
∧

2
∧

3)I I ; (g) T(1
∧

4
∧

5)I ; and (h) T(1
∧

4
∧

5)I I .

Following the above steps, we can identify six more transition configurations of the 8-link

mechanism, including two transition configurations, T(3
∧

5)I (Figure 5c) and T(3
∧

5)I I) (Figure 5d),

in which the mechanism can switch between two motion modes and four transition configurations,

(T(1
∧

2
∧

3)I (Figure 5e), T(1
∧

2
∧

3)I I (Figure 5f), T(1
∧

4
∧

5)I (Figure 5g), and T(1
∧

4
∧

5)I I)

(Figure 5h), in which the mechanism can switch among three motion modes. It is noted that there

are no transition configurations between motion modes 2 and 5 or between motion modes 3 and 4.

The geometric characteristics of the 8-link mechanism in all the eight transition configurations are

summarized in Table 2. All the transition configurations are singular configurations. The instantaneous

DOF of the 8-link variable-DOF in transition configurations can be readily obtained as: 2 in transition

configurations T(2
∧

4)I , T(2
∧

4)I I , T(3
∧

5)I and T(3
∧

5)I I and 4 in transition configurations T(1
∧

2
∧

3)I , T(1
∧

2
∧

3)I I , T(1
∧

4
∧

5)I , and T(1
∧

4
∧

5)I I .
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Table 2. Transition configurations of the 8-link mechanism.

No φa and ψa (rad) Description Instantaneous DOF

T(2
∧

4)I

{

φa = 2.5559
ψa = −φa

Links Ai1Bi1 and Bi2Ai2

are parallel to AB.
(Figure 5a)

2

T(2
∧

4)I I

{

φa = −2.5559
ψa = −φa

Links Ai1Bi1 and Bi2Ai2

are parallel to AB
(Figure 5b).

T(3
∧

5)I

{

φa = 2.5559
ψa = φa

Links Ai1Bi1 and Bi2Ai2

(i=1 and 2) are parallel to
AB (Figure 5c).

T(3
∧

5)I I

{

φa = −2.5559
ψa = φa

Links Ai1Bi1 and Bi2Ai2

(i=1 and 2) are parallel to
AB (Figure 5d).

T(1
∧

2
∧

3)I

{

φa = 0
ψa = 0

All the R joint centers are
collinear (Figure 5e).

4

T(1
∧

2
∧

3)I I

{

φa = π

ψa = π

All the R joint centers are
collinear (Figure 5f).

T(1
∧

4
∧

5)I

{

φa = π

ψa = 0

All the R joint centers are
collinear (Figure 5g).

T(1
∧

4
∧

5)I I

{

φa = 0
ψa = π

All the R joint centers are
collinear (Figure 5h).

5. Reconfiguration of the variable-DOF 8-link planar mechanism

Figure 6 illustrates the reconfiguration of the 8-link planar mechanism among the five motion

modes via the eight transition configurations on the φa − ψa plane. The curves on the φa − ψa plane of

the four 1-DOF motion modes, motion modes 2, 3, 4 and 5, are shown in green, pink, red and blue

respectively. The 2-DOF motion mode, motion mode 1 in which L = 25, covers the whole φa −ψa plane.

However, the 8-link mechanism can only transit among motion modes 1, 2 and 3 at two transition

configurations T(1
∧

2
∧

3)I and T(1
∧

2
∧

3)I I and among motion modes 1, 4 and 5 at two transition

configurations T(1
∧

4
∧

5)I and T(1
∧

4
∧

5)I I since we have L > 25 in the other configurations in

motion modes 2, 3, 4 and 5.

Photos of the LEGO model of this 8-link mechanism at all the transition configurations,

configurations with φa = ±π/2 and/or ψa = ±π/2 in 1-DOF motion modes 2, 3, 4 and 5, and

a configuration with φa = π/2 and ψa = −π/2 in 2-DOF motion mode 1 are given. To distinguish the

only 2-DOF motion mode from the 1-DOF motion modes, the photos of the sample configuration and

the four transition configurations associated with motion mode 1 are framed. In the LEGO model, the

links are allocated in six layers, and the axis of R joint A is in a curved shape to allow the mechanism

to switch among all the five motion modes through the eight transition configurations without link

interference. An animation of the reconfiguration of the 8-link mechanism among the five motion

modes can be found in the supplementary materials. For simplicity reasons, all “
∧

” are omitted in the

notations for transition configurations in the animation.
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Figure 6. Reconfiguration of the example variable-DOF 8-link planar mechanism among the five

motion modes.

The mechanism could be more compact if it is only required to switch among some but not all

of its motion modes. For example, if one needs the 8-link mechanism to switch among four motion

modes 1, 2, 4 and 5 only (Figure 7), all the links can be located in four layers without encountering

link interference as shown in the CAD model of the mechanism in transition configuration T(1
∧

4
∧

5)I . This 8-link planar mechanism could be used as a construction unit of new variable-DOF

multi-loop mechanisms, which would enrich the types of reconfigurable/multi-mode deployable

mechanisms [24–26,36,44,45].

T(1 ∧ 4 ∧ 5)I

Motion mode 1 Motion mode 5

Motion mode 4 T(2 ∧ 4)II Motion mode 2

Figure 7. A variable-DOF 8-link planar mechanism in compact design that can transit among four

motion modes.
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6. Conclusions

A novel 8-link variable-DOF planar mechanism with five motion modes has been proposed.

Reconfiguration analysis has shown that the mechanism has one 2-DOF double parallelogram motion

mode and four 1-DOF motion modes. In addition, the mechanism can switch among three motion

modes at four transition configurations and between two motion modes at four other transition

configurations.

In contrast to the two 8-link variable-DOF planar mechanisms in [5,41], which have four inactive

joints in some of their motion modes, this novel 8-link variable-DOF planar mechanism has two

inactive joints in one of its 1-DOF motion modes. The two 4R kinematic sub-chains of the novel

mechanism must appear either as a pair of parallelograms in the 2-DOF motion mode or a pair of

anti-parallelograms in a 1-DOF motion mode.

Both 4R kinematic sub-chains of this novel mechanism must appear as parallelograms in a pair or

anti-parallelograms in a pair in the same motion mode.

The elimination and algebraic-geometry approach has been found to be more efficient than

the algebraic geometry approach without elimination. As a by-product, a method for factoring

trigonometric functions in two angles has been proposed.

This work, together with reference [41], provides a starting point for the design and analysis of

variable-DOF multi-loop mechanisms constructed using more than two parallelograms, which could

be used as reconfigurable/multi-mode deployable mechanisms.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org, Video S1: Reconfiguration of a novel 8-link variable-DOF planar mechanism with five
motion modes.
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Appendix A. Derivation of Eq. (2)

Solving the set of equations composed of the first and second equations in Eq. (1) as a set of linear

equations in C(φb + φa) and Cφb + Cφa, we have

{

C(φa + φb) = k1

Cφa + Cφb = k2
(A1)

To eliminate φb from Eq. (A1), rewrite the first equation in Eq. (A1) as

−SφaSφb = k1 − CφaCφb

Squaring both sides, we have

(−SφaSφb)
2 = (k1 − CφaCφb)

2
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Eliminating Sφa and Sφb from the above equation using the trigonometric identities S2φa + C2φa = 1

and S2φb + C2φb = 1, we have

(1 − C2φa)(1 − C2φb)− (k1 − CφaCφb)
2 = 0 (A2)

Solving the second equation in Eq. (A1) for Cφb, we obtain

Cφb = k2 − Cφa (A3)

Substituting Eq. (A3) into Eq. (A2), we obtain the following equation in L and φa.

(1 − C2φa)[1 − (k2 − Cφa)
2]− [k1 − Cφa(k2 − Cφa)]

2 = 0 (A4)

Similarly, the third and fourth equations in Eq. (1) can be reduced to

(1 − C2ψa)[1 − (k2 − Cψa)
2]− [k1 − Cψa(k2 − Cψa)]

2 = 0 (A5)

Combining Eqs. (A4) and (A5), we obtain Eq. (2).

Appendix B. Derivation of Eq. (11)

Equation. (11) can be derived from Eq. (8) using the primary decomposition of ideals in the

following five steps.

Step 1: Convert Eq. (8) into a polynomial equation.

Substituting Cφa = ca and Cψa = cb into Eq. (8), we obtain a polynomial equation in ca and cb.

f = 0 (A6)

where f = 72900ca4 − 5940ca3cb − 215280ca2cb2 − 5940cacb3 + 72900cb4 + 63661ca2 +

12122cacb + 63661cb2 − 57600.
Step 2: Calculate the primary decomposition of ideal J =< f , ca2 + sa2 − 1, cb2 + sb2 − 1 >, where

sa = Sφa and sb = Sψa. The last two polynomials correspond to the trigonometric identities

S2φa + C2φa = 1 and S2ψa + C2ψa = 1.

Calculating the primary decomposition of J using computer algebra system software, such as

MAPLE command PrimeDecomposition(J, ’removeredundant’), we have

J =
2
⋂

j=1

Jj (A7)

where the irreducible components, J1 and J2, of J are:

J1 =< ca2 + sa2 − 1, cb2 + sb2 − 1,−270ca2 + 11cacb − 270cb2 + 601sasb + 551, 270ca2sa +

601ca2sb − 11cacbsa + 270cb2sa − 551sa − 601sb,−162270ca2sa − 288301ca2sb + 6611cacbsa −

2970cacbsb + 72900cb2sb + 168881sa + 212431sb, 72900ca4 − 5940ca3cb − 215280ca2cb2 −

5940cacb3 + 72900cb4 + 63661ca2 + 12122cacb + 63661cb2 − 57600 >, and

J2 =< ca2 + sa2 − 1, cb2 + sb2 − 1, 270ca2 − 11cacb + 270cb2 + 601sasb − 551, 270ca2sa −

601ca2sb − 11cacbsa + 270cb2sa − 551sa + 601sb, 162270ca2sa − 288301ca2sb − 6611cacbsa −

2970cacbsb + 72900cb2sb − 168881sa + 212431sb, 72900ca4 − 5940ca3cb − 215280ca2cb2 −

5940cacb3 + 72900cb4 + 63661ca2 + 12122cacb + 63661cb2 − 57600 >.
Step 3: Calculate the Gröbner basis for each irreducible component.

Using the MAPLE command, Basis(J1, tdeg(sa, ca, sb, cb)) , we obtain the Gröbner basis of J1 as
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J ′
1 =< cb2 + sb2 − 1, 270ca2 − 11cacb + 270cb2 − 601sasb − 551, 11cacb − 270cb2 + 270sa2 +

601sasb + 281 >.

Similarly, the Gröbner basis of J2 is

J ′
2 =< cb2 + sb2 − 1, 270ca2 − 11cacb + 270cb2 + 601sasb − 551, 11cacb − 270cb2 + 270sa2 −

601sasb + 281 >.
Step 4: Convert the polynomials in each of the irreducible components into trigonometrical functions.

Substituting ca = Cφa, sa = Sφa, cb = Cψa and sb = Sψa into J ′
1 and simplifying the results, we

obtain

J ′
1 =< C2ψa + S2ψa − 1, 270C2φa − 11CφaCψa + 270C2ψa + 601SφaSψa − 551, 11CφaCψa −

270C2ψa + 270S2φa − 601SφaSψa + 281 >. i.e., J ′
1 =< 0, g1,−g1 >

where g1 = −281 + 135C(2φa) + 295C(φa + ψa)− 306C(φa − ψa) + 135C(2ψa).

Similarly, we obtain J ′
2 =< 0, g2,−g2 >

where g2 = −281 + 135C(2φa) + 295C(φa − ψa)− 306C(φa + ψa) + 135C(2ψa).
Step 5: Divide the trigonometrical function in Eq. (8) by the product of the trigonometrical functions

obtained in Step 4.

Divide g by g1g2, We can readily obtain

g/(g1g2) = 1

i.e.

g = g1g2 (A8)

Substituting Eq. (A8) into Eq. (8), we obtain Eq. (11).
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