
Article

Not peer-reviewed version

A Simple Hidden Markov Model Could

Prevent Physician Error in Failure To

Diagnose Infectious Mononucleosis

Vanathi Gopalakrishnan 

*

Posted Date: 17 April 2023

doi: 10.20944/preprints202304.0411.v1

Keywords: Probabilistic model; Patient safety; Infectious Mononucleosis

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/208731


 

Article 

A simple Hidden Markov Model Could Prevent 
Physician Error in Failure to Diagnose Infectious 
Mononucleosis 

Vanathi Gopalakrishnan PhD 

Department of Biomedical Informatics; School of Medicine; University of Pittsburgh; Pittsburgh, PA 15260; 

vanathi@pitt.edu 

Abstract: Infectious mononucleosis is mostly caused by the Epstein-Barr virus (EBV), and can spread through 

infected people sharing food and drinks with others. Once this virus gets into your system, it is there to stay. 

The virus can get activated when a person has low immunity and can cause major complications. Furthermore, 

if physicians miss the diagnosis of this disease, and prescribe penicillin-based antibiotics, it can cause severe 

rash and adverse reactions that compromise patient safety. This paper develops a simple Hidden Markov 

Model using which a Viterbi algorithm provides the maximum a posteriori probability estimate for the most 

likely hidden state path, given a sequence of symptoms arising as observations from a patient with hidden EBV 

positive or negative states. Apart from bringing awareness to help reduce missed diagnoses and subsequent 

adverse events, this work provides a tool for health care systems to better incorporate prompts during 

electronic medical record (EMR) interactions to help physicians catch potential missed diagnoses during a visit. 

This research demonstrates how statistical models can be used to assess likelihood of underlying conditions 

that require tests to be offered by physicians in order to make a definitive diagnosis. The model developed and 

applied herein for estimating likelihood of EBV infection from a series of observations has the potential to alter 

guidelines within healthcare systems to ensure that the safety of patients, particularly teens, is not 

compromised due to a lack of definitive diagnosis for Mono at point of care. 

Keywords: keyword 1; keyword 2; keyword 3 (List three to ten pertinent keywords specific to the 

article; yet reasonably common within the subject discipline.) 

 

Key Messages 

What is already known on this topic – Infectious mononucleosis (Mono) is a viral syndrome 

characterized by fever, pharyngitis and posterior cervical lymphadenopathy and most often affects 

adolescents and young adults 15 to 24 years of age. EBV infection is extremely common worldwide 

(approximately 90% of adults becoming antibody-positive before the age of 30), and 75% of young 

adults between the ages of 18 and 22 developing Mono months after being infected by EBV, which 

stays dormant and can cause major complications in individuals with compromised immunity. 

What this study adds – Inspite of EBV infection and Mono being so prevalent, physicians can fail 

to order the necessary tests to confirm this diagnosis. They may order antibiotics for a pediatric 

patient without considering Mono as a possibility, and perhaps not realizing that certain antibiotics 

can cause severe adverse reactions such as a maculopapular rash, that usually arises between 3 and 

10 days of taking penicillin and its multi-drug combinations such as Augmentin. This study develops 

a probabilistic model using which the likelihood of hidden states such as EBV infection can be easily 

estimated so that physicians can be alerted by building prompts into future EMRs. 

How this study might affect research, practice or policy – This research provides a model containing 

probabilities that describe the EBV infection as a possible hidden state and demonstrates how the 

likelihood of EBV can be calculated to ensure that Mono is not missed by physicians (via a possible 

change in policy or practice  within healthcare), especially since there exist highly sensitive tests for 

EBV, which can be readily ordered at the time of clinical visit. This research also highlights the utility 

of Markov models such as developed herein for estimating and comparing probabilities associated 
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with likelihoods of hidden disease states, which can be used more broadly for medical knowledge 

engineering. 

Introduction 

Infectious mononucleosis (Mono), also known as glandular fever or the kissing disease, is caused 

most often by the Epstein-Barr virus (EBV), and can be diagnosed by serological analysis.[1–11] Blood 

tests can help diagnose mononucleosis by detecting specific antibodies that the body produces in 

response to EBV. The two types of antibodies that are typically detected are immunoglobulin M (IgM) 

and immunoglobulin G (IgG). A positive test for IgM antibodies indicates a recent infection, while a 

positive test for IgG antibodies indicates a past infection. A complete blood count (CBC) can help 

diagnose mononucleosis by showing an increased number of white blood cells, particularly 

lymphocytes, which are the cells targeted by EBV. While the monospot test is a rapid diagnostic test 

that detects the presence of heterophile antibodies that are produced in response to EBV within a few 

hours, it may miss infections that are in the beginning stages. The EBV DNA testing is highly reliable 

and sensitive and can detect the presence of EBV DNA in the blood, enabling accurate diagnosis of 

current and past infections in a few days, typically around 3 days after the patient provides their 

blood sample to the testing lab. 

  The diagnosis of Mono is often made based on a combination of symptoms, physical 

examination, and laboratory tests.[12] It is well known that if certain antibiotics are prescribed to a 

patient who was not tested for Mono but was positive, the patient could develop a rash that can 

spread all over the body and cause swelling and itching that can last for days and weeks.[13–22] 

Other complications could potentially arise from failure of a physician to diagnose Mono by ordering 

appropriate tests.[23–27] This research was motivated by the observation that ordering these tests is 

rather painless especially given the wide adoption of electronic medical records in current healthcare 

systems, and once the patient tests negative for Strep throat infections in the clinic. We will also 

assume that the patient tested negative for other infectious diseases such as COVID-19 which have 

rapid tests available. Since EBV infection is extremely common worldwide, with  approximately 90% 

of adults becoming antibody-positive before the age of 30, with a recent study determining that 75% 

of young adults between the ages of 18 and 22 develop typical infectious mononucleosis after primary 

EBV infection.[28] Mono is a viral syndrome characterized by fever, pharyngitis (“sore throat”), and 

posterior cervical lymphadenopathy (“swollen neck or glands”) and most often affects adolescents 

and young adults 15 to 24 years of age.[29] Pediatricians particularly need to avoid missing the Mono 

diagnosis especially when these primary signs are obvious.  This paper presents a reasonably easy 

tool that can be used for training physicians to think in terms of probabilities and hidden states, using 

both pen and paper analyses, as well as simple programming that could be taught as part of the 

Medical curriculum.  

 Decision theory has been employed by medical practitioners and physician training has 

included algorithmic approaches to decision making for most of this past century.[30,31] Even 

though the actual use of these techniques are limited in clinical practice, decision theoretic approaches 

which combine probabilities with utilities such as cost/risk, enable guidelines for patient 

management. The work presented in the methods section below demonstrates statistical methods 

that can be used to assess the probabilities of hidden causes for observed symptoms over time. Such 

probabilities of observed sequences arising from probable causes can easily be compared 

computationally and used as input to decision theoretic calculations which can include the other 

parameters used for risk assessment conveyed numerically as utilities.  

Methods 

Hidden Markov Models (HMMs) are statistical models that are commonly used in many real-

world applications and are also very popular in Bioinformatics.[32] As an artificial intelligence tool, 

HMMs have been most extensively used in speech recognition. A HMM is a generative model in that 

it consists of a set of states that are hidden, which emit a sequence of observations with associated 

probabilities. There are two types of probabilities that comprise a HMM – the state transition 
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probabilities, and the emission probabilities. Apart from these, there is an initial distribution of 

probabilities for starting in any of the hidden states. Once you are in a state, the transition 

probabilities inform the model as to how likely it is to remain in the same hidden state, versus 

transitioning to other states in the model. The emission probabilities provide the distribution for how 

likely a particular observation arose due to that hidden state in the model. Given an observation 

sequence, there exist well-known algorithms for HMMs that can estimate the most likely hidden state 

path (Viterbi algorithm), and the probability of that sequence given the HMM. 

The Viterbi algorithm takes as input the following: 

• obs: a list of observed emissions 

• states: a list of possible states 

• start_p: a dictionary of starting probabilities for each state 

• trans_p: a dictionary of transition probabilities between states 

• emit_p: a dictionary of emission probabilities for each state and observation 

     and outputs the following: 

• opt: the most likely sequence of hidden states given the observed emissions 

• max_prob: the probability of the most likely sequence of hidden states 

A simple Hidden Markov Model (HMM) for a patient who tests negative for Strep Throat and 

other infections such as COVID-19, is presented below for considering EBV positive/negative status: 

Let the start state (S) represent the Absence of Strep Throat and also that other simple rapid tests 

such as for COVID-19 were also negative. The HMM in Figure 1 shows the transition probabilities 

between the start state S, and the two possible hidden states – “Positive for EBV” and “Negative for 

EBV”. Once someone is in the positive state, since EBV stays on in the body, and the EBV blood test 

can reveal past infections as well, there is a zero transition probability to the negative state. If one is 

in the negative state, there is an equal chance of transitioning between negative and positive states, 

similar to the distribution from start state (initial probabilities). 

Apart from the state transition probabilities, a HMM has emission probabilities associated with 

each hidden state. Let us define the set of possible observations as comprising of “sorethroat”, 

“fever”, “swollenneck”, and “swallowdiff” to denote the presence of a sore throat, fever, swollen 

neck or glands, and difficulty swallowing. These can be appropriately optimized by health systems 

and physicians. For our demonstration of the power of these models for estimating the most probable 

hidden state sequence from observations, these appear adequate.  We next provide equal emission 

probabilities of 0.25 to each of these four observations when in the EBV negative state, and assign 

{0.2, 0.2, 0.3, 0.3} as the respective emission probabilities in the EBV positive state. These are also 

shown in Figure 1. 
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Figure A simple HMM for modeling EBV positive and negative hidden states. State transition 

probabilities are depicted as are the emission probabilities for observing each of the four symptoms 

for each hidden state. 

The famous Viterbi algorithm is used to calculate the most likely sequence of hidden states or 

state path, given the observed emissions, via calculating the maximum a posteriori probability of that 

most likely state path. The Viterbi algorithm is a dynamic programming algorithm, and calculations 

can be done easily even by hand (see Table 1) for a small sequence of observations. There are python 

implementations of this algorithm that can also be utilized. Using the simple python implementation 

recommended by ChatGPT, the author was able to verify the calculations that were done by hand 

using this above simple HMM. Below are some sample observations, and results from application of 

the Viterbi algorithm to determine the most likely sequence of hidden states and associated 

probability. It must be noted that probabilities always get smaller as they are multiplied. The 

maximum probability for the most likely state path for the sequence of observations is calculated 

keeping track of the most likely hidden state sequence. The >>> refers to the command line prompts 

used to specify the observations, run the Viterbi python program and observe the outputs opt and 

max_prob, which are the variables containing the most likely hidden state path and maximum 

probability for the observation, obs. 

>>> obs = ["sorethroat"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 

('Most likely hidden states:', ['NegativeforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 0.125) 

>>> obs = ["swollenneck"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 

('Most likely hidden states:', ['PositiveforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 0.15) 

>>> obs=["sorethroat", "fever", "sorethroat", "fever", "swollenneck", "swallowdiff"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 
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('Most likely hidden states:', ['PositiveforEBV', 'PositiveforEBV', 'PositiveforEBV', 'PositiveforEBV', 

'PositiveforEBV', 'PositiveforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 7.200000000000002e-05) 

>>> obs=["sorethroat", "fever"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 

('Most likely hidden states:', ['PositiveforEBV', 'PositiveforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 0.020000000000000004) 

>>> obs = ["sorethroat", "fever", "swollenneck"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 

('Most likely hidden states:', ['PositiveforEBV', 'PositiveforEBV', 'PositiveforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 0.006000000000000001) 

>>> obs = ["sorethroat", "fever", "swollenneck", "swallowdiff"] 

>>> opt, max_prob = viterbi(obs, states, start_p, trans_p, emit_p) 

>>> print("Most likely hidden states:", opt) 

('Most likely hidden states:', ['PositiveforEBV', 'PositiveforEBV', 'PositiveforEBV', 'PositiveforEBV']) 

>>> print("Probability of most likely hidden states:", max_prob) 

('Probability of most likely hidden states:', 0.0018000000000000002) 

From the above analyses, it is clear that if just sore throat or fever was present as a single 

observation, the hidden state is more likely to be Negative for EBV. But, even having both or just a 

single more severe symptom such as swollen neck, would result in the most likely hidden state 

sequence becoming Positive for EBV. The calculations that are performed by hand to estimate the 

maximum a posteriori probability of the sequence {“sorethroat”, “fever”, “swollenneck”, 

“swallowdiff”} are shown in Table In dynamic programming, each previously calculated maximum 

probability for each previous hidden state is utilized in the computation for observing an emission in 

the current state, and the state that gives rise to the maximum probability in the current state is then 

kept track off using the backtrace pointer. Backtracking from the final maximum probability cell at 

the final observation, provides the hidden state sequence that is most likely as per the HMM and the 

Viterbi algorithm. The forward algorithm for HMM can also be used as needed to determine the 

probability of the sequence given the model. 

Table Below is the hand calculation for the Viterbi dynamic programming algorithm. The observation 

sequence is ”sorethroat”, “fever”, “swollenneck”, and “swallowdiff.” The most likely state path is 

obtained by backtracking using pointers.  . 

 Sorethroat Fever Swollen Neck Swallowing  Difficulty 

EBV +ve 
0.2 * 0.5 

 = 0.1 

Max {0.2*0.1* 1.0, 

0.2*0.125*0.5} 

     = 0.02 

Max {0.3*0.02*1.0, 

0.3*0.06* 0.5) = 0.006 

Max {0.3*0.006*1.0,  

0.3*0.002*0.5} 

       = 0.0018 

EBV -ve 
0.25 * 0.5 

= 0.125 

Max {0.25*0.125 * 0.5, 0.25 

*0.1*0.0)  

   = 0.016 

Max {0.25*0.016*0.5, 

0.25*0.02*0.0) 

=0.002 

Max { 0.25*0.002*0.5, 

0.25*0.06*0.0) 

= 0.00025 
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The Viterbi algorithm calculates the maximum of the probabilities of transitioning from each 

previous hidden state, at each step in the sequence, and emitting that particular symbol in the current 

state, as represented by the calculations for each cell along each column of Table The emission 

probabilities for seeing the observation specified in the column header, is multiplied along with the 

probability of transitioning from each the previous hidden states, and the maximum probability for 

the observations up to that previous state. Then the maximum of these probabilities and the hidden 

previous state that gave rise to that maximum probability are stored for each cell. In Table 1, the blue 

arrows are used to enable backtracking from the maximum probability state, to previous hidden 

states that yielded the maximum probability observation in the current state. Backtracking via these 

pointers reconstructs the most likely hidden state sequence for the full set of 4 observations in this 

example.  

Discussion 

The above simple HMM model is representative of Markov modeling as a powerful tool for 

reasoning about hidden states that are important for accurate medical diagnosis and preventing 

medical errors. If more physicians were educated in these types of reasoning, it is likely that they 

would consider more possibilities to ensure accurate diagnosis at point of care clinics. Such tools can 

also be a valuable diagnostic assistant at point of care clinics if prompts could be offered to physicians 

as they are using electronic medical records to order tests and medications for their patient. For 

example, a prompt for justification of antibiotic prescription in the absence of a definitive diagnosis 

would ensure safety of patients who may be EBV positive at time of care. It would be even better if 

the prompt could alert the physician to the possibility of ordering a Mononucleosis test to rule it out 

definitively. Given that the EBV blood test could take up to 3 days to yield a result, it may indeed be 

worthwhile to order the test on the day of the visit if lacking a clear diagnosis of other infections, and 

signs indicating that Mono is a likely possibility. Thereby, even if an antibiotic was ordered, it could 

be stopped earlier to prevent adverse events such as a severe maculopapular rash, that usually arises 

between 3 and 10 days of taking penicillin and its multi-drug combinations such as Augmentin.  

Even if there is a possibility of error in using such a tool due to the inherent assumptions that 

underlie the HMM, such as the first-order Markov condition used herein, which assumes that only 

the previous state matters in the statistical calculations, the ability to consider all the possibilities 

before making a diagnosis or providing a therapy is of vital importance to medical practice. 

Furthermore, such tools can be calibrated by learning the state transition and emission probabilities 

from real-world evidence via appropriate aggregated data from national resources such as available 

using the i2b2 system.[33] 

Conclusions and Future Work 

Simple statistical modeling methods such as the HMM approach presented herein can augment 

decision making capabilities in clinical practice. For accurate timely diagnosis of EBV which causes 

infectious mononucleosis, the highly sensitive EBV DNA testing from blood samples which can take 

around 3 days to detect current infections has the potential to avert undesirable side effects such as 

maculopapular rash in patients. High school students who receive certain prescription antibiotics are 

vulnerable to such side effects, if their pediatrician misses the diagnosis for Mono. This can result in 

extra time taken off from school, and potential trips to the hospital/health care provider for 

corticosteroids that can cause further harmful side effects to manage. The costs associated with such 

unnecessary adverse effects are likely to exceed that for the EBV blood test. Therefore, this research 

aims to bring this awareness to physicians and health care systems that it would be in the best interest 

of patient safety to prescribe the EBV blood test especially when strep throat and other infectious 

diseases such as COVID-19 have been ruled out.  

Future work will involve further data collection from electronic health records to develop a 

reasonable cohort of patients who were tested for EBV, to learn the parameters for the HMM using 

algorithms such as Baum-Welch, which is a special case of the Expectation-Maximization algorithm 

that iteratively learns the unknown state transition and emission probabilities. The Baum-Welch uses 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2023                   doi:10.20944/preprints202304.0411.v1

https://doi.org/10.20944/preprints202304.0411.v1


 7 

 

the forward-backward algorithm to compute the statistics for the expectation step from a database of 

observed sequences. The existence of a well-developed theory and algorithms for HMMs makes them 

attractive as effective modeling tools for aiding diagnosis. 
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