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Abstract: Pyrolyzed waste biomass, or biochar, has been suggested as a means to increase plant growth and to 

mitigate soil salinization, which is a widespread agricultural issue and can reach extreme levels in urban soils 

impacted by de-icing salts. Soil mixing is enhanced by reduced biochar particle size; however, biochar 

properties vary with particle size and recent studies suggest that plant growth responses may be maximized 

at intermediate particle sizes. We examined the responses of two plant species (cowpea (Vigna unguiculata) and 

velvetleaf (Abutilon theophrasti)) to biochar amendments that spanned a wide range of particle sizes obtained 

by sieving, with and without de-icing salt additions. The smallest size fractions of biochar reduced plant 

growth relative to unamended controls. Plant biomass production was generally maximized at intermediate 

biochar particle size treatments, with particles sizes of 0.5-2.0 mm showing the best response. Mitigation of salt 

effects was also improved at intermediate biochar particle sizes in this particles size range. Our results 

emphasize the importance of optimizing biochar particle size to best enhance plant responses to biochar, with 

particular reference to saline soils. 
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1. Introduction 

Soil salinization is a global economic and environmental issue, with large impacts on agricultural 

productivity and high costs of remediation [1,2]. An estimated ~1.26 billion hectares are impacted by 

salinization globally [3]. High soil salinity can be induced by human activities, often through poor 

fertilization and water management practices [4]; however, saline soils also occur naturally, 

especially in arid and semi-arid regions where precipitation is low [5]. In an urban context, use of de-

icing salts, mainly sodium chloride (NaCl), in the winter months, is a main cause of soil salinization 

[6,7]. The runoff and infiltration of de-icing salts increase soil electrical conductivity and chloride 

concentration in the surrounding environment [8,9], often resulting in contamination of surface and 

groundwaters [10,11]. Additional adverse environmental impacts of de-icing salts include inhibition 

of soil nutrient cycling [12], alteration of aquatic and plant communities [13-15], and toxicological 

effects on birds [16].  

Both Na+ and Cl- are toxic at high concentrations and stunt plant growth by displacing nutrients 

in the soil and reducing plant water availability by osmotic effects [5]. Urban street trees are often 

susceptible to road salt pollution due to their proximity to roads and high traffic areas, though some 

species show relatively high salt tolerance [17-19]. Plants affected by soil salinization tend to have 

lower leaf chlorophyll concentrations because excessive chloride is associated with chlorophyll 

degradation [20]. The negative impacts of de-icing salts are clear; however, use of de-icing salt 

remains widespread due to its effectiveness and low cost. Alternative de-icing agents are often costly 

and may themselves have adverse environmental impacts [21]; research on practices to reduce road 

salt impacts on urban ecosystems remains scarce.  

Biochar is an organic soil amendment product made from carbon-rich organic waste materials 

by pyrolysis [22]. Although much biochar research has focused on agricultural applications [23,24] 

and carbon sequestration [25,26], biochar has also been applied to forest restoration [27], wastewater 

treatment [28] and pollutant removal [29,30]. Biochar can potentially remediate salt-affected soils by 
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salt sorption [31,32]. Specifically, biochar sorption of Na+ in the soil solution can both reduce plant 

Na uptake and increase the relative uptake of Ca2+ and Mg2+ [33,34]. More broadly, biochar can 

generally enhance plant growth by improving soil properties, such as cation-exchange capacity 

(CEC), water retention capacity, and bulk density [23]. By increasing the soil CEC and water-holding 

capacity (WHC), biochar can reduce fertilizer and water use [35,36], which is particularly beneficial 

in the context of urban ecosystems. 

The quality and performance of biochars depend on their chemical and physical properties, 

which are affected by the feedstock materials, pyrolysis method and conditions, and post-processing 

treatments [37,38]. Physical manipulation of biochar by post-processing treatments, such as sieving 

and grinding to alter the particle size and shape, can substantially change biochar porosity 

characteristics, WHC, bulk density and pH [39]. For example, sieved biochar has a higher aspect ratio 

than ground biochar, which can increase WHC by generating increased inter-pore space [40]. Heat 

treatment and aeration increase surface area and reduce non-water-soluble volatile organic 

compounds and toxins in biochar [38,41]. In general, the properties of biochar can be manipulated to 

target specific applications.  

Previous studies by Thomas et al. [31] and Akhtar et al. [33,34] have highlighted the importance 

of the ion sorption capacity of biochar in enhancing plant growth under saline soil conditions. Smaller 

biochar particles might be expected to better enhance biochar sorption capacity – and thus plant 

growth under salt stress – because smaller particles have a higher WHC [40] and improved soil-

biochar contact [42]. However, recent studies suggest that there may generally be an optimum 

biochar particle size for enhancing plant growth responses. Large particles clearly reduce particle 

mixing and accessible surface area for sorption; however, very small particles may reduce soil WHC 

and hydraulic conductivity by filling soil inter-pores [43,44]. Small biochar particles also can show 

increased ash content and pH [39]. Although very few studies have examined plant growth responses 

across a wide range of biochar particle sizes, a recent meta-analysis presents evidence for an optimal 

biochar particle size of 0.5-1.0 mm [38]. Prior studies on biochar particle size effects have focused on 

agricultural soils; in urban ecosystems, compost-amended soils are common, and are likely to show 

distinct responses to both salt exposure and biochar amendments. 

The present study examines soil and plant responses to a wide range of biochar particle sizes 

with and without additions of road salt. A greenhouse experiment was conducted over a 10-week 

growth period using a representative compost-amended topsoil substrate. We tested the following 

hypotheses: (1) biochar amendments will in general enhance plant growth and mitigate negative 

effects of salt additions; (2) an optimum biochar particle size will exist, with biochar particle size 

fractions of 0.5-1.0 mm best enhancing plant growth and plant tolerance of saline soil. 

2. Materials and Methods 

2.1. Experimental design and growth conditions 

A greenhouse experiment was conducted at the University of Toronto for 67 days between 

March 19 and May 25, 2021. The average daily temperature was 20.1 ℃ with the highest 25.0 ℃ and 

lowest 13.4 ℃. The experiment included two treatment factors: biochar particle size and salt addition. 

The growth container for each plant had a volume of 0.5 L, 10 cm depth and a surface area of ~78 cm2. 

Biochar and salt treatment dosages were calculated based on the container’s surface area. A fibreglass 

mesh liner was added to each container to prevent soil and biochar loss. A total of 196 containers 

were used: 2 plant species x 6 biochar particle sizes and a control group x 2 salinity levels x 7 replicates 

per treatment. Replicates were grouped by using a randomized complete block designed to minimize 

spatial effects.  

Two fast-growing plant species, Vigna unguiculata (L.) Walp. (cowpea), and Abutilon theophrasti 

Medik. (velvetleaf) were used in the experiment; seeds were sourced from Sprout Master and V&S 

Seed Supply, respectively. Cowpea is a nitrogen-fixing and salt-tolerant species suitable for hot and 

dry environments [45]. Velvetleaf is considered a weed in North America but is also grown as a crop 

plant for its edible leaves, seeds, and bast fibres [46]. Seeds were germinated in vermiculite for 17 
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days before being transplanted into individual containers. The growing period for cowpea was 50 

days (from March 19 to May 8, 2021) and 67 days (from March 19 to May 25, 2021) for velvetleaf. 

Plants were watered every 3-4 days to field capacity. Both species were supplemented with ~1538.5 

kg/ha (0.12 g per container) of 16-10-10 NPK slow-release fertilizer (Nutricote 16-10-10 NPK, from 

JCAM AGRI). Rhizocell C (LalRise Vita, from Lallemand Inc.), a mixture of live Bacillus velezensis and 

inert Saccharomyces cerevisiae, was also added as a biofertilizer to velvetleaf using an application rate 

of 50 ml per container. Five arthropod species, Aphidoletes aphidimyza, Rhopalosiphum padi, Neoseiulus 

fallacis, Encarsia Formosa and Stratiolaelaps scimitus, were released in the greenhouse as biocontrols to 

prevent pests and fungal disease.  

A de-icing road salt (97% NaCl, from Sifto Safe Step) was added to the soil surface of half the 

pots after the seedlings were established on day 18 after the transplant on April 6, 2021. The salt 

dosage was 0.3 t/ha (0.234 g per container) to mimic common roadside conditions [31]. 

2.2. Soil and biochar characterization 

The soil used was premium topsoil from LessMess Soil (Concord, ON), a typical topsoil used 

in an urban setting, with mineral soil components derived from calcareous subsoil material. Soil 

analysis was completed by Agriculture and Food Laboratory in Guelph. Basic soil properties were as 

follows: total C: 26.4%; total N: 1.06%; extractable P: 130 mg/L; extractable Mg: 480 mg/L; extractable 

K: 2500 mg/L; pH: 7.5. 

The biochar used was produced by Burt‘s Greenhouses (Odessa, ON) from waste mixed-wood 

shipping pallets in a BlueFlame boiler using pyrolysis mode at 700℃ for 30 min [47,48]. Total carbon 

of the material was 64.5% (by Dumas combustion analysis, Activation Laboratories Ltd., Ancaster, 

ON). Detailed analyses of properties of the bulk biochar have been published elsewhere [47,48]. 

Biochar was sieved in a mechanic sieve shaker into six particle fractions (< 0.063 mm, 0.063-0.499 mm, 

0.50-0.99 mm, 1.00-1.99 mm, 2.00-2.79 mm and ≥ 2.8 mm) using U.S. Standard sieves. Images of 

representative biochar samples from each size fraction were taken using a scanning electron 

microscope (SU3500, Hitachi). The biochar application dosage used was 10 t/ha (7.8 g per container); 

comparable to dosages used in the context of restoration [49,50].  

The moisture content of each size fraction was calculated using the change in dried and pre-

dried masses; these values were used to adjust biochar dosages on a dry mass basis. Biochar was 

dried in the convection oven at 105℃ for 24 h before measurement according to the protocol in ASTM 

D1762-84 [51]. After harvest, pH and electrical conductivity (EC) of biochar and soil mixture from 

each container were measured, the upper 2 cm of soil were collected, a pH/mV/Temp system from 

IQ Scientific Instruments and a conductivity meter from Hanna Instruments Inc. were used. A 1:5 

(v/v) mixture of soil and deionized water mixture was shaken on an oscillating table at 60 rpm for 24 

h before measurement [40]. Similar methods were used to determine pH and EC of biochar size 

fractions but using a 1:20 (v/v) mixture of biochar and deionized water. Bulk density of biochar size 

fractions was determined using a graduated cylinder and analytical balance, with tap density and 

compression (Hausner) ratio based on manual tapping of the cylinder to achieve an equilibrium 

volume.  

2.3. Plant performance measurements 

Plant mortality was recorded bi-weekly, and plants dying immediately after transplant were 

replaced (43% of the cowpea and 37% of the velvetleaf were dead and replanted within the first 10 

days). Plant height and leaf length were measured to the nearest cm on day 14 (before the fertilizer 

and salt treatment) and before the final harvest. Leaf area (A) in cm2 was estimated using the leaf 

length (L) in cm. The allometric equation used for velvetleaf was based on a previous study: A = 0.613 

x L2.204 [40]. An allometric equation for cowpea was developed based on the scanned leaf area and 

leaf length from 71 harvested leaves: A = 0.539 x L1.8729 (Adjusted r2 = 0.838). The final total leaf area 

of each plant was measured using a leaf area meter (Li-3100C from Li-Cor Biosciences).  

Chlorophyll fluorescence and chlorophyll content of cowpea were measured before the final 

harvest using a chlorophyll fluorometer (MINI-PAM, Walz GmbH) and a chlorophyll meter (CCM-
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200 plus, Opti-Sciences Inc.), respectively. Light-saturated photosynthetic rate (Amax), stomatal 

conductance (gs) and instantaneous leaf water use efficiency (WUEi) were measured prior to harvest 

on the most recently developed fully expanded leaf of each surviving cowpea using a portable 

photosynthesis system (LI-6400xt, Li-Cor Biosciences, Lincoln, NE). Measurements were made 

between 7:00-14:00 local time at a light level 1500 µmol m-2 s-1 PPFD, leaf temperature 20-22°C, and 

humidity 50-60%. Leaf physiology measurements were made on cowpea only due to leaf area 

constraints. At harvest, above- and below-ground biomass of plants were separated at soil level. 

Stems and leaves were separated. Roots were removed from the soil and washed manually. All 

collected biomass was weighed after being dried in a forced-air oven at 60℃ for 48 h.   

2.4. Statistical Analysis 

Statistical analyses were conducted using R programming environment (R version 4.0.2, R Core 

Team 2021). Analysis of variance (ANOVA) and correlation tests were used in analyses of physical 

properties of biochar size fractions. For the greenhouse experiment, initial analyses including block 

as a random factor in a linear mixed model were run, but the block effect was not significant; 

therefore, simple two-way ANOVA was used to examine the effects of biochar particle size and salt 

on soil parameters and plant performance. Assumptions of normality of variances and 

homoscedasticity of residuals were confirmed graphically. As a supplementary test for biochar 

particle size effects per se, we conducted separate analyses excluding the control (no biochar) 

treatment. We used the Scott-Knott post-hoc test clustering algorithm [52] to group means by biochar 

particle size, making use of the SK() function in the ScottKnott R package [53]. Pairwise tests for salt 

effects within a biochar particle used t-tests with p-values adjusted for multiple comparisons using a 

false discovery rate correction. 

In addition to species-specific analyses, we utilized meta-regression techniques to quantify 

general, species-pooled patterns of response. The response ratio statistic (R = ln(Xt/Xc) was used to 

quantify the effect size, where R is the response ratio statistic, Xt is the treatment mean, and Xc is the 

control mean. Pooled R values were inversely weighted by sampling variance. Response ratios were 

quantified for both biomass responses to biochar additions (relative to the unamended controls) and 

for biomass responses to salt additions (relative to the biochar-amended controls without salt 

additions). In both cases, we quantified response patterns using a 2nd-order polynomial meta-

regression function and considered a negative 2nd-order term and positive 1st-order term consistent 

with an optimum curve response within the range of biochar particle sizes tested. Meta-regression 

analyses treated particle size classes as a ranked ordinal variable, and were conducted using the 

escalc() and rma() functions in the metafor R package [54]. 

3. Results 

3.1. Biochar properties 

Physiochemical properties of biochar fractions varied with particle size (Table 1). Biochar pH 

ranged from 9.0 to 9.5 and did not vary significantly with particle size (ANOVA p > 0.05). EC values 

did vary significantly (ANOVA p < 0.001): the smaller size fractions had a higher EC than the soil, 

while the larger fractions had a lower EC than the soil (> 1 mS/cm). Both bulk density and tap 

density of varied among particle size classes (ANOVA p < 0.001) and were negatively correlated 

with particle size (r = -0.881 and r = -0.860; p < 0.001: analysis based on mid-points of size ranges). 

The compression (Hausner) ratio also varied with particle size (ANOVA p = 0.018), being largest for 

the 0.063-0.5 mm size category and smallest for the 1-2 mm size category (Table 1). SEM images 

indicated a collapse of wood cell structure in biochar particles at the smallest size fractions (Figure 

1), suggesting reduced macroporosity. 
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Table 1. Selected physicochemical properties of biochar by particle size fraction and of the soil used. 

Standard errors are given in brackets (for triplicate measurements where available). 

Biochar size (mm) 

Size category: 0 1 2 3 4 5  

Attribute < 0.063 

0.063-

0.50 0.50-1.00 1.00-2.00 2.00-2.80 > 2.8 Soil 

pH  9.1 (0.04) 9.0 (0.03) 9.0 (0.01) 9.0 (0.02) 9.2 (0.02) 9.5 (0.05) 7.5 

EC (mS/cm) 

1.70 

(0.01) 

1.47 

(0.03) 

1.21 

(0.02) 

0.83 

(0.00) 

0.96 

(0.06) 

0.89 

(0.04) 

1.00 

(0.04) 

Bulk density 

(g/cm3) 

0.31 

(0.01) 

0.25 

(0.01) 

0.17 

(0.01) 

0.14 

(0.00) 

0.11 

(0.00) 

0.12 

(0.00) 

0.44 

(0.01) 

Tap density 

(g/cm3) 

0.38 

(0.01) 

0.33 

(0.01) 

0.20 

(0.00) 

0.15 

(0.01) 

0.13 

(0.00) 

0.14 

(0.01) 

0.49 

(0.03) 

Compression 

ratio 

1.23 

(0.08) 

1.33 

(0.04) 

1.17 

(0.03) 

1.07 

(0.01) 

1.23 

(0.04) 

1.23 

(0.01) 

1.13 

(0.04) 

 

Figure 1. Representative SEM images of biochar by particle size fraction. 

3.2. Soil properties 

Biochar particle size effects on soil pH were statistically significant (p < 0.001 for cowpea, p = 0.043 for 

velvetleaf; Table 2); however, pH values remained in a narrow range near optimum pH levels (7.2-

7.4; data not shown). Salt additions did not significantly affect pH (Table 2). Both salt and biochar 

particle size effects significantly affected soil EC in cowpea (Table 2); the smallest particle size (< 0.063 

mm) showed the most pronounced increase in EC relative to the control (Figure 2A). Although there 

were no biochar particle size effects for velvetleaf, salt additions significantly increased EC (Figure 

2B; Table 2). 

< 0.063 mm 0.063 – 0.50 mm 0.50 – 1.00 mm

1.00 – 2.00 mm 2.00 – 2.80 mm > 2.80 mm
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Figure 2. Biochar particle size and salt addition effects on soil EC in cowpea (A) and velvetleaf (B). 

Means are plotted ±1 SE. The dashed line in each panel indicates the control with no salt. ANOVA 

results indicate significant salt effects in both cases, and a significant biochar particle size effect in the 

case of cowpea (Table 2). Letters indicate differences among biochar particle size treatments (p < 0.05) 

according to Scott-Knott post-hoc test clustering algorithm. Asterisks indicate significance of salt 

treatments within a biochar particle size class: *, p < 0.05 and **, p < 0.01.  
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Table 2. ANOVA results for greenhouse experiment examining effects of biochar particle size and 

salt additions on soil properties and plant performance. Numerator degrees of freedom are 6 for 

biochar effects, 1 for salt effects, and 6 for the biochar x salt interaction, with 83 degrees of freedom 

for the denominator. Values for p < 0.05 are given in bold. Significance of the biochar size effect in an 

ANOVA omitting the control (no biochar) treatment is also indicated: *: p<0.05; **: p<0.01; ***: p<0.001. 

        

    Biochar size            Salt   Size x Salt Scott-Knott clusters*  

Attribute F p F p F p    (for biochar size) 

Cowpea            

Soil pH 5.63 

<0.001**

* 0.09 0.760 1.09 0.370 (c,1,3) (0,2,4,5) 

   

Soil EC (µS/cm) 2.84 0.015 7.06 0.009 1.69 0.134 (c,1,2) (0,3,4,5)    

Early leaf area (cm2)  3.11 0.004** 0.22 0.612 2.83 0.015 (c,0,1,2) (3,4,5)    

Total biomass (g) 3.03 0.010** 0.02 0.871 1.84 0.101 (0,1) (c,2-5)    

Aboveground biomass 

(g) 3.07 0.009** 0.01 0.918 1.49 0.191 (0,1) (c,2-5) 

   

Belowground biomass 

(g) 2.62 0.022* 0.52 0.471 2.56 0.025 (0,1,5) (c,2-4) 

   

Root fraction 2.47 0.030* 0.93 0.337 1.22 0.306 (5) (c,0-4)    

Final leaf area (cm2) 1.46 0.204 0.00 0.978 0.87 0.522 -    

LMA (g/cm2) 1.32 0.255 1.03 0.313 1.14 0.348 -    

CCI 1.67 0.140 0.46 0.499 1.46 0.201 -    

Fv/Fm 2.52 0.027 7.49 0.008 1.25 0.289 (c,1) (0,2-5)    

Amax (µmol m-2 s-1) 0.29 0.939 0.59 0.445 0.235 0.964 -    

gs (mmol m-2 s-1) 0.55 0.772 0.19 0.667 0.56 0.758 -    

WUEi 2.87 0.015 1.72 0.194 0.47 0.827 (c,0,2,3) (1,4,5)    

           

Velvetleaf           

Soil pH 2.61 0.027* 1.64 0.203 1.11 0.364 (c,1,4,5) (0,2,3)    

Soil EC (µS/cm) 1.28 0.275 14.95 <0.001 0.59 0.740 -    

Early leaf area (cm2)  1.04 0.408 0.29 0.593 0.67 0.672 -    

Total biomass (g) 3.89 0.002** 0.29 0.591 0.60 0.727 (c,0,1,4,5) (2,3)    

Aboveground biomass 

(g) 3.97 0.002** 0.26 0.610 0.60 0.730 (c,0,1,4,5) (2,3) 

   

Belowground biomass 

(g) 3.44 0.004** 0.36 0.548 0.62 0.714 (c,0,1,4,5) (2,3) 

   

Root fraction 3.81 0.002** 0.745 0.391 0.67 0.676 (1-5) (c,0)    

Final leaf area (cm2) 3.15 0.008** 2.19 0.143 0.73 0.627 (c,0,1,4,5) (2,3)    

LMA (g/cm2) 1.83 0.103 1.57 0.214 1.59 0.161 -    

           

 

* Clusters among biochar particle size treatments as determined by the Scott-Knott algorithm for post-hoc tests at 

p < 0.05, listed in ascending order (c: control; 0: <0.063 mm; 1: 0.063-0.5 mm; 2: 0.5-1 mm; 3: 1-2 mm; 4: 2-2.8 mm; 

5: >2.8 mm). 

3.3. Plant growth responses 

Mortality was low in the experiment, with 99% of the cowpea and 96% of the velvetleaf 

surviving to harvest. In early growth responses (based on non-destructive estimates of leaf area), 

cowpea showed a positive growth response to medium to large particle size (> 1.0 mm) biochar, but 

no response to smaller particle size (Table 2). Biomass responses showed significant responses to 

biochar particle sizes for both species. Cowpea growth was highest for particle sizes > 0.5 mm (Figure 

3A; Table 2), while velvetleaf showed a clearer peak in response at intermediate particle sizes (0.5-2.0 

mm) (Figure 3B; Table 2). Similar trends were found for various measures of plant size, including leaf 

area, and aboveground, belowground, and total biomass (Table 2). For velvetleaf, biomass was 

enhanced relative to controls for intermediate biochar particle sizes (0.5-1 and 1-2 mm) even for the 
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salt addition treatments (Figure 3B: post-hoc comparisons signify ant at p < 0.5 in both cases). Leaf 

area at harvest showed a similar response to biomass for velvetleaf, but no significant response to 

treatments in cowpea (Table 2). Root fraction showed a significant response to biochar particle size 

in both species (Table 2), with root fraction increasing for larger biochar particle sizes. Leaf mass per 

area did not respond to treatments (Table 2). No visible root nodules were present on cowpea.  

 

Figure 3. Biochar particle size and salt addition effects on biomass production at harvest (at 67 days) 

in cowpea (A) and velvetleaf (B). Means are plotted ±1 SE. ANOVA results indicate significant biochar 

particle size effects in both cases (Table 2). The dashed line in each panel indicates the control with no 

salt. Letters indicate differences among biochar particle size treatments (p < 0.05) according to Scott-

Knott post-hoc test clustering algorithm. 

Meta-analysis was used to conduct species-pooled analyses for the experiment, with results 

supporting peak performance at intermediate biochar particle sizes (Figure 4). The pooled response 

ratio for the biomass response to biochar addition was negative for the smallest biochar size category 

(< 0.063 mm), and positive for the 1-2 mm size category (Figure 4A). The overall test for effects of 

moderators was significant (p = 0.008). The 1st-order term for the polynomial meta-regression was 

significant (p = 0.014), and the 2nd-order term significant (p = 0.067) with the peak falling between the 

0.5-1.0 mm and 1-2 mm size categories (Figure 4A). The pooled response ratio for the biomass 

response to salt addition did not deviate from zero for any biochar size category (Figure 4B), and the 

test for effects of moderators was not significant (p = 0.135). However, both the 1st and 2nd-order meta-

regression terms were significant in this case (p = 0.038 and p = 0.041, respectively), with the peak 

falling between the 0.063-0.5 mm and 0.5-1.0 mm size categories (Figure 4B). 
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Figure 4. Meta-analyses (combining results for both species) of total plant biomass responses to 

biochar(A) and plant biomass responses to salt addition (B) in relation to biochar particle size. 

Response ratio metrics are plotted ± 95% confidence limits; polynomial response curves are shown 

fitted using meta-regression analysis with biochar particle size categories treated as nominal ranked 

categories. Percent changes indicated are back-transformed from the log response ratio statistic. 

3.4. Physiological responses 

Treatment effects on chlorophyll content index (CCI) values were not detected (Figure 5A; Table 

2). Both biochar particle size and salt treatments significantly affect chlorophyll fluorescence (Fv/Fm) 

(p = 0.027 and p = 0.008, respectively), with positive effects of most biochar treatments and negative 

effects of salt addition (Figure 5B; Table 2). Increases in Fv/Fm relative to controls were particularly 

pronounced for biochar particles > 0.5 mm (Figure 5B).  

 

Figure 5. Biochar particle size and salt addition effects on leaf chlorophyll concentration index (CCI) 

(A), and chlorophyll fluorescence (Fv/Fm) (B) in cowpea evaluated prior to harvest. Means are plotted 

±1 SE. ANOVA results indicate significant biochar particle size and salt effects for Fv/Fm but not CCI 

(Table 2). The dashed line in each panel indicates the control with no salt. Letters indicate differences 

among biochar particle size treatments (p < 0.05) according to Scott-Knott post-hoc test clustering 

algorithm. 

No significant biochar particle size or salt effects were observed on light-saturated 

photosynthesis (Amax) or stomatal conductance (gs;) (Table 2); however, leaf-level instantaneous 

water-use efficiency (WUEi) was significantly reduced relative to controls at intermediate biochar 

particles size (0.5-2 mm) (Table 2; Figure 6). 
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Figure 6. Biochar particle size and salt addition effects on instantaneous water-use efficiency (WUEi) 

of cowpea measured using photosynthetic gas-exchange. The dashed line in each panel indicates the 

control with no salt. Letters indicate differences among biochar particle size treatments (p < 0.05) 

according to Scott-Knott post-hoc test clustering algorithm. 

4. Discussion 

Our results support the hypothesis that an optimal biochar particle size for enhancing plant 

growth and stress tolerance exists. Intermediate biochar particle sizes (0.5-2.0 mm) better enhanced 

plant growth and better mitigated salt effects than either smaller or large biochar particles. At the 

same application dosage (10 t/ha), the smallest biochar size (< 0.063 mm) generally suppressed plant 

growth, while the intermediate particle size categories (0.5-2.0 mm) generally enhanced growth 

relative to controls, even in the case of saline soil conditions.  

Biochar particle size “benefits” have been quantified in a variety of ways, including soil biota 

responses [55,56], metal toxicity mitigation [57,58], and in terms of soil hydraulic properties, such as 

water retention capacity [40,59], and permanent wilting point [60]. Prior results on particle size effects 

on plant growth have been mixed in individual studies. Stem growth of Salix viminalis on a 

contaminated technosol was greatest at a biochar size of 0.2-0.4 mm [61], while lentil (Lens culinaris) 

had a reduced biomass improvement or even a decrease with particle sizes of < 2 mm compared to 

5-10 mm in a silt loam agricultural soil [62]. Brassica chinensis showed no biochar particle size effects 

among three size categories (< 0.5 mm, 0.5-2 mm and 2-5 mm) on a contaminated yellow ferralsol 

[57], and Hordeum vulgare responded well to both sizes tested (< 0.15 mm or > 0.15 mm) in a 

commercial garden soil [42]. There is also evidence that plant growth responses to biochar particle 

size can vary among plant species [40]. However, a key limitation of these prior studies is that not 

more than three biochar particle size categories have been included, making detection of any 

optimum point unlikely. 

Our results suggesting a clear optimum biochar size are consistent with recent meta-analyses. 

Thomas [38] pooled data from 23 studies (involving 112 comparisons) and concluded that a biochar 

particle size of 0.5-1.0 mm generally resulted in an optimal plant growth response regardless of soil 

type or texture. Edeh et al. [63] suggest a size <2 mm is best for sandy soil because this size category 

best improves soil hydrological properties. Albert et al. [58] found that a biochar size of 0.9-2 mm 

better reduced Pb and Cd concentrations in plants compared to a size of 2-5 mm. In all cases results 

are consistent in supporting an optimum biochar particle size in the range of 0.5-2 mm.  

Prior work also indicates that different biochar particle sizes have distinctive physiochemical 

properties [39,64]. Soil bulk density increases as biochar particle size decreases in sandy, silt loam 

and clay soils; small particle sizes (< 0.5 mm) also generally show higher volumetric plant-available 

water content [65]. However, very fine biochar (< 0.063 mm) is commonly hydrophobic and alters 

soil structure by increasing micropore and reducing macropore volume [66]. Biochar also interacts 
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with soil and modifies the soil pore structure, with both intrapores and interpores influencing soil 

hydraulic properties [66]. In the present study, scanning electron microscopy images show that the 

smallest size category (<0.063 mm) had a visually disrupted macropore structure (Figure 1). Only this 

size fraction showed visual pooling of surface water during the experiment (personal observations), 

consistent with low hydraulic conductivity.  

NaCl is highly soluble in water, such that leaching can reduce soil salt concentrations [5]. 

Biochar can thus alter Na+ and Cl- concentrations by sorption as well as soil hydraulic conductivity 

effects, and drainage can be critical in mitigating salt effects. The soil EC for cowpea with biochar size 

< 0.063 mm was substantially (~200%) higher than the control (Figure 2A). A likely mechanism for 

this difference is that fine biochar physically fills the pore space between soil particles and decreases 

porosity [44], acting together with the water-repelling properties to hinder water movement and 

reduce ion leaching. However, elevated EC at small biochar particle sizes was not observed in the 

case of velvetleaf (Figure 2B). Prior studies have observed that biochar can increase EC at high 

application rates (e.g., [31,67-69]). The inconsistent effects on EC observed here may thus be due to a 

balance of ion sorption and ion leaching by biochars. In spite of this variability, there is a clear pattern 

of intermediate biochar particle sizes (in the 0.5-2.0 mm range) acting to better mitigate salt effects on 

plant growth (Figure 4B).  

Many urban soils are alkaline, and further increases in pH induced by biochar could be 

problematic. Here we found only slight but detectable effects of biochar addition on soil pH in the 

context of a typical urban topsoil mix, with pH remaining within an optimal range (7.2-7.4). This 

result is consistent with the few prior studies examining biochar effects on pH of neutral to alkaline 

urban soils, which also report only slight liming effects [70-72], or no detectable effect [73], at least for 

low to moderate dosages.  

This short-duration greenhouse experiment is unlikely to reflect long-term field conditions. The 

aging of biochar will likely change its hydraulic properties [74] and impact its ability to facilitate 

leaching in the root zone. Biochar weathers and fragments into smaller particles naturally and these 

small biochar fragments may be transported into deeper soil layers over time [75]. This suggests a 

strategy of adding biochar of particle sizes somewhat larger than optimal, which has additional 

advantages in terms of minimizing worker and public exposure to suspended biochar dust and 

minimizing wind erosion losses at the time of application. Our results suggest that very fine biochar 

is unsuitable for direct application, consistent with goals of avoiding potential human health [76] and 

environmental risks [77]. Along these lines, use of granulated or pelletized biochar products may be 

particularly advantageous in urban environments and similar settings [40,72]. Additional research, 

particularly in the form of field trials, is essential to develop workable models for optimized 

applications that fully realize the potential benefits of biochar use in saline soils and in an urban 

context. 
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