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Article

Numerical Simulation for Transient Diffusion
Convection Reaction Problems of a Class of
Anisotropic FGMS

Mohammad Ivan Azis

Department of Mathematics, Hasanuddin University, Makassar, Indonesia; ivan@unhas.ac.id

Abstract: In this paper a combined Laplace transform (LT) and boundary element method (BEM) is
used to find numerical solutions to problems of anisotropic functionally graded media which are
governed by the transient diffusion-convection-reaction equation. First, the variable coefficients
governing equation is reduced to a constant coefficients equation. Then, the Laplace-transformed
constant coefficients equation is transformed a boundary-only integral equation. Using a BEM,
the numerical solutions in the frame of Laplace transform may then be obtained from this integral
equation. Then the solutions are inversely transformed numerically using the Stehfest formula.
Some problems considered are those of compressible or incompressible flow, and of media which
are quadratically, exponentially and trigonometrically graded materials. The results obtained show
that the analysis used to transform the variable coefficients equation into the constant coefficients
equation is valid, and the mixed LT-BEM is easy to implement for obtaining the numerical solutions.
The numerical solutions are verified by showing their accuracy and steady state. For symmetric
problems, the symmetry of solutions is also justified. Moreover, the effect of the anisotropy and
inhomogeneity of the material on the solutions are also shown, as to suggest that it is important to
take the anisotropy and inhomogeneity into account when doing experimental studies.

Keywords: transient; diffusion convection reaction; anisotropic; functionally graded materials;
simulation

MSC: 35N10; 65N38

1. Introduction

Over the last ten years, functionally graded materials (FGMs) have become a popular research
topic, and many studies have been conducted on FGMs for various applications. FGMs are defined by
authors as materials that are inhomogeneous and have properties that change spatially in a continuous
manner, such as thermal conductivity, hardness, toughness, ductility, and corrosion resistance.

The diffusion convection reaction (DCR) equation has many applications in engineering, medicine,
biology, and ecology. Several studies have been conducted to find numerical solutions to the DCR
equation. Some of these studies include Fendoglu et al. [1] in 2018, Wang and Ang [2] in 2018,
Sheu et al. [3] in 2000, Xu [4] in 2018, and AL-Bayati and Wrobel [5] in 2019, who considered the
DCR equation with constant coefficients. Samec and Škerget [6] in 2004, Rocca et al. [7] in 2005,
and AL-Bayati and Wrobel [8,9] in 2018 studied the DCR equation with variable velocity. Martinez
et al. [10] used nonstandard finite difference schemes based on Green’s function formulations for
reaction-diffusion-convection systems in 2013.

This paper is intended to extend the recently published works [11] on the steady DCR equation to
the transient DCR equation for anisotropic functionally graded materials of the form

∂

∂xi

[

dij (x)
∂c (x, t)

∂xj

]

− ∂

∂xi
[vi (x) c (x, t)]− k (x) c (x, t) = α (x, t)

∂c (x, t)

∂t
(1)
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The continuously varying coefficients dij, vi, k, α in (1) respectively represent the anisotropic diffusivity,
velocity, decay reaction and change rate coefficients of the medium of interest. Therefore equation (1)
is relevant for FGMs. Equation (1) provides a wider class of problems since it applies for anisotropic

and inhomogeneous media but nonetheless covers the case of isotropic diffusion taking place when
d11 = d22, d12 = 0 and also the case of homogeneous media which occurs when the coefficients dij (x),
vi (x), k (x) and α (x, t) are constant.

2. The initial boundary value problem

Referred to the Cartesian frame Ox1x2 we will consider initial boundary value problems governed
by (1) where x = (x1, x2). The coefficient

[

dij

]

(i, j = 1, 2) is a real positive definite symmetrical matrix.
Also, in (1) the summation convention for repeated indices applies, so that explicitly (1) can be written
as

∂

∂x1

(

d11
∂c

∂x1

)

+
∂

∂x1

(

d12
∂c

∂x2

)

+
∂

∂x2

(

d12
∂c

∂x1

)

+
∂

∂x2

(

d22
∂c

∂x2

)

− ∂

∂x1
(v1c)− ∂

∂x2
(v2c)− kc = α

∂c

∂t

By knowing the coefficients dij (x) , vi (x) , k (x) , α (x, t) we will seek solutions c (x, t) and its
derivatives to (1) which are valid for time interval t ≥ 0 and in a region Ω in R2 with boundary ∂Ω

which consists of a finite number of piecewise smooth curves. On ∂Ω1 the dependent variable c (x, t)

is specified, and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2) denotes the outward pointing normal to
∂Ω. The initial condition is

c (x, 0) = 0 (3)

3. The boundary integral equation

We restrict the coefficients dij, vi, k, α to be of the form

dij (x) = d̂ij g(x) (4)

vi (x) = v̂i g(x) (5)

k (x) = k̂ g(x) (6)

α (x, t) = α̂ (t) g(x) (7)

where g(x) is a differentiable function, d̂ij, v̂i, k̂ are constants and α̂ (t) is a function of time t.
Substitution of (4)-(7) into (1) gives

d̂ij
∂

∂xi

(

g
∂c

∂xj

)

− v̂i
∂ (gc)

∂xi
− k̂gc = α̂g

∂c

∂t
(8)

Assume
c (x, t) = g−1/2 (x)ψ (x, t) (9)

therefore use of (4) and (9) in (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x) Pψ (x, t) (10)

where

Pg (x) = d̂ij
∂g1/2 (x)

∂xj
ni Pψ (x, t) = d̂ij

∂ψ (x, t)

∂xj
ni
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Moreover, equation (8) can be written as

d̂ij
∂

∂xi



g
∂
(

g−1/2ψ
)

∂xj



− v̂i

∂
(

g1/2ψ
)

∂xi
− k̂g1/2ψ = α̂g

∂
(

g−1/2ψ
)

∂t

d̂ij
∂

∂xi

[

g

(

g−1/2 ∂ψ

∂xj
+ ψ

∂g−1/2

∂xj

)]

− v̂i

(

g1/2 ∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)

− k̂g1/2ψ = α̂g

(

g−1/2 ∂ψ

∂t

)

d̂ij
∂

∂xi

(

g1/2 ∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)

− v̂i

(

g1/2 ∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)

− k̂g1/2ψ = α̂g1/2 ∂ψ

∂t

Use of the identity
∂g−1/2

∂xi
= −g−1 ∂g1/2

∂xi

implies

d̂ij
∂

∂xi

(

g1/2 ∂ψ

∂xj
− ψ

∂g1/2

∂xj

)

− v̂i

(

g1/2 ∂ψ

∂xi
+ ψ

∂g1/2

∂xi

)

− k̂g1/2ψ = α̂g1/2 ∂ψ

∂t

Rearranging and neglecting some zero terms gives

g1/2

(

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi

)

− ψ

(

d̂ij
∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi

)

− k̂g1/2ψ = α̂g1/2 ∂ψ

∂t

So that if g satisfies

d̂ij
∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi
− λg1/2 = 0 (11)

where λ is a constant, then the transformation (9) brings the variable coefficients equation (1) into a
constant coefficients equation

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
−
(

λ + k̂
)

ψ = α̂
∂ψ

∂t
(12)

Taking the Laplace transform of (9), (10), (12) and applying the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x) c∗ (x, s) (13)

Pψ∗ (x, s) =
[

P∗ (x, s) + Pg (x)ψ∗ (x, s)
]

g−1/2 (x) (14)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
−
(

λ + k̂ + sα̂∗
)

ψ∗ = 0 (15)

By using Gauss divergence theorem, equation (15) can be transformed into a boundary integral
equation

η (ζ) ψ∗ (ζ, s) =
∫

∂Ω

{

Pψ∗ (x, s) Φ (x, ζ)− [P (x) Φ (x, ζ)

+Γ (x, ζ)]ψ∗ (x, s)} dS (x) (16)

where
Pv (x) = v̂ini (x)

For 2-D problems the fundamental solutions Φ(x, ζ) and Γ(x, ζ) for are given as
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Φ(x, ζ) =
ρi

2πD
exp

(

− v̇. Ṙ

2D

)

K0
(

µ̇Ṙ
)

Γ(x, ζ) = d̂ij
∂Φ (x, ζ)

∂xj
ni

where

µ̇ =

√

(v̇/2D)2 +
[(

λ + k̂ + sα̂∗
)

/D
]

D =
[

d̂11 + 2d̂12ρr + d̂22

(

ρ2
r + ρ2

i

)]

/2

Ṙ = ẋ − ζ̇

ẋ = (x1 + ρrx2, ρix2)

ζ̇ = (ζ1 + ρrζ2, ρiζ2)

v̇ = (v̂1 + ρr v̂2, ρi v̂2)

Ṙ =

√

(x1 + ρrx2 − ζ1 − ρrζ2)
2 + (ρix2 − ρiζ2)

2

v̇ =

√

(v̂1 + ρr v̂2)
2 + (ρi v̂2)

2

where ρr and ρi are respectively the real and the positive imaginary parts of the complex root ρ of the
quadratic equation d̂11 + 2d̂12ρ + d̂22ρ2 = 0 and K0 is the modified Bessel function. Use of (13) and (14)
in (16) yields

ηg1/2c∗ =
∫

∂Ω

{(

g−1/2Φ
)

P∗ +
[(

Pg − Pvg1/2
)

Φ − g1/2Γ
]

c∗
}

dS (17)

Equation (17) provides a boundary integral equation for determining the numerical solutions of c∗

and its derivatives at all points of Ω. The derivative solutions ∂c∗/∂ξ1 and ∂c∗/∂ξ2 can be determined
using the following equations

∂c∗

∂ζ1
= g−1/2

[

∫

∂Ω

{(

g−1/2 ∂Φ

∂ζ1

)

P∗ +
[

(

Pg − Pvg1/2
) ∂Φ

∂ζ1
− g1/2 ∂Γ

∂ζ1

]

c∗
}

dS − c∗
∂g1/2

∂ζ1

]

∂c∗

∂ζ2
= g−1/2

[

∫

∂Ω

{(

g−1/2 ∂Φ

∂ζ2

)

P∗ +
[

(

Pg − Pvg1/2
) ∂Φ

∂ζ2
− g1/2 ∂Γ

∂ζ2

]

c∗
}

dS − c∗
∂g1/2

∂ζ2

]

Knowing the solutions c∗ (x, s) and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 from (17), the numerical
Laplace transform inversion technique using the Stehfest formula is then employed to find the values
of c (x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The Stehfest formula is

c (x, t) ≃ ln 2
t

N

∑
m=1

Vmc∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t

N

∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(18)

∂c (x, t)

∂x2
≃ ln 2

t

N

∑
m=1

Vm
∂c∗ (x, sm)

∂x2

where
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sm =
ln 2

t
m

Vm = (−1)
N
2 +m

min(m, N
2 )

∑
k=[ m+1

2 ]

kN/2 (2k)!
(

N
2 − k

)

!k! (k − 1)! (m − k)! (2k − m)!

Possible multi-parameter solutions g1/2 (x) to (11) are

g1/2 (x) =

{

constant, λ = 0
exp (β0 + βixi) , d̂ijβiβ j + v̂iβi − λ = 0

(19)

If the flow is incompressible, that is the divergence of the velocity is zero, then

∂vi (x)

∂xi
= 0

Therefore the governing equation (1) reduces to

∂

∂xi

[

dij (x)
∂c (x, t)

∂xj

]

− vi (x)
∂c (x, t)

∂xi
− k (x) c (x, t) = α (x)

∂c (x, t)

∂t

Also, from (5) we obtain
∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

so that

v̂i
∂g1/2(x)

∂xi
= 0

Therefore equation (11) reduces to

d̂ij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (20)

Thus, for incompressible flow, possible multi-parameter functions g1/2 (x) satisfying (20) are

g1/2 (x) =











β0 + βixi, λ = 0
cos (β0 + βixi) + sin (β0 + βixi) , d̂ijβiβ j + λ = 0
exp (β0 + βixi) , d̂ijβiβ j − λ = 0

(21)

4. Numerical examples

We will examine multiple analytical and non-analytical test problems to demonstrate the accuracy
and effectiveness of the mixed Laplace transform and boundary element method used in deriving the
boundary integral equation (17). We will also analyze the efficiency, accuracy, and consistency of the
combined LT-BEM method.

We assume each problem belongs to a system which is valid in given spatial and time domains
and governed by equation (1). The system also is assumed to satisfy the initial condition (3) and some
boundary conditions as mentioned in Section 2. The characteristics of the system which are represented
by the coefficients dij (x) , vi (x) , k (x) , α (x, t) in equation (1) are assumed to be of the form (4), (5), (6)
and (7). They represents respectively the diffusivity or conductivity, the velocity of flow existing in the
system, the reaction coefficient and the change rate of the unknown or dependent variable c (x, t).

Standard BEM with constant elements is employed to obtain numerical results. For a simplicity, a
unit square depicted in Figures 1 and 11 will be taken as the geometrical domain for all problems. A
number of 320 elements of equal length, namely 80 elements on each side of the unit square, are used.
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A FORTRAN script is developed to compute the numerical solutions. A subroutine that evaluates
the values of the coefficients Vm, m = 1, 2, . . . , N of the Stehfest formula in (18) for any number N is
embedded in the script. Table 1 shows the values of Vm for N = 6, 8, 10, 12 resulted from the subroutine.

Table 1. Values of Vm of the Stehfest formula for N = 6, 8, 10, 12

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60

V2 −49 145/3 −385/12 961/60

V3 366 −906 1279 −1247

V4 −858 16394/3 −46871/3 82663/3

V5 810 −43130/3 505465/6 −1579685/6

V6 −270 18730 −236957.5 1324138.7

V7 −35840/3 1127735/3 −58375583/15

V8 8960/3 −1020215/3 21159859/3

V9 164062.5 −8005336.5

V10 −32812.5 5552830.5

V11 −2155507.2

V12 359251.2

✲

✻

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P given

P given

P given

c given

Figure 1. The boundary conditions for Problem 4.1

4.1. A test problem

The problems will consider three types of inhomogeneity functions g (x), namely exponential
function of the form (19) with compressible flow, and quadratic and trigonometric functions of the
form (21) with incompressible flow. For all test problems we take coefficients d̂ij and k̂

d̂ij =

[

1 0.35
0.35 0.25

]

k̂ = 0.5

and a set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD
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For each problem, numerical solutions c and the derivatives ∂c/∂x1 and ∂c/∂x2 are sought at
19 × 19 interior points (x1, x2) = {.05, .1, .15, . . . , .9, .95} × {.05, .1, .15, . . . , .9, .95} and 9 time-steps
t = .0004, π

8 , π
4 , 3π

8 , π
2 , 5π

8 , 3π
4 , 7π

8 , π. The value t = .0004 is the approximating value of t = 0 as the
singularity of the Stehfest formula. The individual relative error EI at each interior point and the
aggregate relative error EA of the numerical solutions are computed using the formulas

EI =

∣

∣

∣

∣

cn,i − ca,i

ca,i

∣

∣

∣

∣

EA =

[

∑
19×19
i=1 (cn,i − ca,i)

2

∑
19×19
i=1 c2

a,i

]
1
2

where cn and ca are the numerical and analytical solutions c or the derivatives respectively.

4.1.1. Case 1

First, we suppose that the function g(x) is an exponential function

g1/2(x) = exp (1 + 0.15x1 − 0.25x2)

that is, the material under consideration is an exponentially graded material. We choose

v̂i = (1, 1)

α̂ (t) = 0.192625t

so that the system has a compressible flow. In order for g(x) to satisfy (19) then λ = −0.088125. The
analytical solution c (x, t) for this problem is

c (x, t) =
t exp [− (0.2x1 + 0.3x2)]

exp (1 + 0.15x1 − 0.25x2)
.

Figure 2 (top row) shows the aggregate relative errors EA of the numerical solutions c obtained
using N = 6, 8, 10, 12 for the Stehfest formula (18). It indicates convergence of the Stehfest formula
when the value of N changes from N = 6 to N = 10. For this specific case (Case 1) the value of N is
optimized at N = 10. Increasing N to N = 12 does not give more accurate solutions. According to
Hassanzadeh and Pooladi-Darvish [12] increasing N will increase the accuracy up to a point, and then
the accuracy will decline due to round-off errors. Bottom row of Figure 2 depicts individual relative
errors EI for the 19 × 19 interior points at time t = π/2 (left) and t = π (right) with N = 10 as the
optimized value of N. It indicates that the errors EI decreases as t changes from t = π/2 to t = π. This
result agrees with the result of the aggregate relative error EA in the top row of Figure 2.
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t

N = 8

N = 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1
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 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
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 0.006

 0.007

 0.008

 0.009
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x1
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 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

Figure 2. Top: The aggregate relative error EA of the numerical solutions c with N = 6, 8, 10, 12 for Case
1 (left) and zoom-in view for N = 8, 10 (right). Bottom: The individual relative errors EI at t = π/2
(left) and t = π (right) with N = 10.

For the derivative solution ∂c/∂x1, Figure 3 (top row) shows that N = 6 is the optimized value of
N for the aggregate relative errors EA. Bottom row of Figure 3 depicts individual relative errors EI

with N = 6. It indicates that the errors EI stay steady as t changes from t = π/2 to t = π. This result
agrees with the result of the aggregate relative error EA in the top row of Figure 3.
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Figure 3. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x1 with N = 6, 8, 10, 12
for Case 1 (left) and zoom-in view for N = 6, 8, 10 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 6.

Whereas for the derivative solution ∂c/∂x2, Figure 4 (top row) shows that N = 10 is the optimized
value of N for the aggregate relative errors EA. Bottom row of Figure 4 depicts individual relative
errors EI with N = 10.
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Figure 4. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x2 with N = 6, 8, 10, 12
for Case 1 (left) and zoom-in view for N = 6, 8, 10 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 10.

4.1.2. Case 2

Next, we choose an analytical solution

c (x, t) =
exp [− (0.2x1 + 0.3x2)]

1 + 0.15x1 − 0.25x2
sin

√
t

Suppose the function g(x) and the coefficients are

g1/2(x) = 1 + 0.15x1 − 0.25x2

v̂i = (1, 0.6)

α̂ (t) = −0.031
√

t tan
(√

t
)

Therefore the considered system involves a quadratically graded material with an incompressible flow.
From (21) we have the parameter λ = 0.

Figure 5 (top row) indicates that N = 10 is the optimized value of N for the aggregate relative
errors EA of the numerical solutions c. Increasing N to N = 12 gives worse solutions. Bottom row of
Figure 5 depicts individual relative errors EI with N = 10.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6

N = 8

N = 10

N = 12

0.00059

0.00059

0.00060

0.00060

0.00061

0.00061

0.00062

0.00062

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 10

N = 12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x2

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x2

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

Figure 5. Top: The aggregate relative error EA of the numerical solutions c with N = 6, 8, 10, 12 for
Case 2 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 10.
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N = 10 is also the optimized value of N for the aggregate relative errors EA of the numerical
solutions ∂c/∂x1. This results is shown in Figure 6 (top row). Bottom row of Figure 6 depicts individual
relative errors EI with N = 10.
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Figure 6. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x1 with N = 6, 8, 10, 12
for Case 2 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 10.

Whereas for the derivative solution ∂c/∂x2, Figure 7 (top row) shows that N = 6 is the optimized
value of N for the aggregate relative errors EA. Bottom row of Figure 7 depicts individual relative
errors EI with N = 6.
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Figure 7. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x2 with N = 6, 8, 10, 12
for Case 2. Bottom: The individual relative errors EI at t = π/2 (left) and t = π (right) with N = 6.

4.1.3. Case 3

Now, we consider a trigonometrically graded material with a grading function

g1/2(x) = cos (1 + 0.15x1 − 0.25x2)

We choose
v̂i = (1, 0.6) , α̂ (t) = 0.003625 [1 − exp (t)]
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so that the system has an incompressible flow. From (21) we have λ = −0.011875. The analytical
solution c (x, t) for this problem is

c (x, t) =
exp [− (0.2x1 + 0.3x2)] [1 − exp (−t)]

cos (1 + 0.15x1 − 0.25x2)

Based on the results in Figures 8–10 (top rows) we assume that N = 12 is the optimized value
for the aggregate relative errors EA of the solutions c and the derivatives ∂c/∂x1 and ∂c/∂x2. The
corresponding individual relative errors EI are shown at the bottom row of each figure.
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Figure 8. Top: The aggregate relative error EA of the numerical solutions c with N = 6, 8, 10, 12 for
Case 3 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 12.

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6

N = 8

N = 10

N = 12

 0.0284

 0.0285

 0.0286

 0.0287

 0.0288

 0.0289

 0.029

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 10

N = 12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x2

 0

 0.5

 1

 1.5

 2

 2.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x2

 0

 0.5

 1

 1.5

 2

 2.5

Figure 9. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x1 with N = 6, 8, 10, 12
for Case 3 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 12.
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Figure 10. Top: The aggregate relative error EA of the numerical solutions ∂c/∂x2 with N = 6, 8, 10, 12
for Case 3 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 12.

4.2. A problem without analytical solution

Further, we will show that the anisotropy and inhomogeneity of materials give impacts on the
solutions. We will use d̂ij, v̂i, k̂, g1/2(x) in Case 3 of Problem 4.1 for this problem, which are

d̂ij =

[

1 0.35
0.35 0.25

]

v̂i = (1, 0.6)

k̂ = 0.5

g1/2(x) = cos (1 + 0.15x1 − 0.25x2)

We choose
α̂ (t) = 1

As we aim to show the impacts of the anisotropy and inhomogeneity of the material, we need to
consider the case of homogeneous material and the case of isotropic material. We assume when the
material is homogeneous then

g1/2(x) = 1

and for an isotropic material is under consideration then

d̂ij =

[

1 0
0 1

]

The boundary conditions are (see Figure 11)

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = P (t) on side AD

where P (t) is associated with four cases, namely

Case 1: P (t) = 1
Case 2: P (t) = exp (−t)

Case 3: P (t) = t

Case 4: P (t) = t/ (t + 0.01)
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Figure 12 shows for all cases when the material is isotropic and homogeneous the solutions
c (0.5, 0.3, t) and c (0.5, 0.7, t) coincide. This is to be expected as the problem is geometically symmetric
at x2 = 0.5 when the material is isotropic and homogeneous. The results in Figure 12 also indicate
that the anisotropy and inhomogeneity of the material give effects on the solutions. Moreover, as also
expected, the variation of the solution with respect to t mimics the time function P (t) as the boundary
condition on side AD.

Whereas, the results in Figure 13 show that the Case 1 of P(t) = 1 and Case 4 of P(t) =

t/ (t + 0.01) have the same steady state solution. This is to be expected as P(t) = t/ (t + 0.01) will
converge to 1 when t approaches infinity.

✲

✻

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P = 0

c = 0

P = 0

P = P (t)

Figure 11. The boundary conditions for Problem 4.2
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Figure 12. Cont.
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Figure 12. Solutions c (0.5, 0.3, t) and c (0.5, 0.7, t) for all cases of Problem 4.2
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Figure 13. Solutions c (0.5, 0.5, t) for Case 1 and 4 of Problem 4.2

5. Conclusion

Several problems for a class of anisotropic FGMs (quadratically, exponentially and
trigonometrically graded materials) have been solved using a combined BEM and Laplace transform.
From the results of the considered problems in Section 4.1 and 4.2, we may conclude that the analysis
of reduction to constant coefficients equation (in Section 3) for deriving the boundary-only integral
equation (17) is valid, and the BEM and Stehfest formula is appropriate for solving such problems
as defined in Section 2. Moreover, the results of the test problem in Section 4.1 show the accuracy of
the method, whereas the results of the problem in Section 4.2 exhibit the consistency of the numerical
solutions. The effect of the inhomogeneity and anisotropy of materials as well as the obtained
steady-state solutions are as expected.
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Abbreviations

The following abbreviations are used in this manuscript:

FGM Functionally Graded Material
BEM Boundary Element Method
LT Laplace Transform
DCR Diffusion Convection Reaction
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