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Abstract: In this paper a combined Laplace transform (LT) and boundary element method (BEM) is
used to find numerical solutions to problems of anisotropic functionally graded media which are
governed by the transient diffusion-convection-reaction equation. First, the variable coefficients
governing equation is reduced to a constant coefficients equation. Then, the Laplace-transformed
constant coefficients equation is transformed a boundary-only integral equation. Using a BEM,
the numerical solutions in the frame of Laplace transform may then be obtained from this integral
equation. Then the solutions are inversely transformed numerically using the Stehfest formula.
Some problems considered are those of compressible or incompressible flow, and of media which
are quadratically, exponentially and trigonometrically graded materials. The results obtained show
that the analysis used to transform the variable coefficients equation into the constant coefficients
equation is valid, and the mixed LT-BEM is easy to implement for obtaining the numerical solutions.
The numerical solutions are verified by showing their accuracy and steady state. For symmetric
problems, the symmetry of solutions is also justified. Moreover, the effect of the anisotropy and
inhomogeneity of the material on the solutions are also shown, as to suggest that it is important to
take the anisotropy and inhomogeneity into account when doing experimental studies.

Keywords: transient; diffusion convection reaction; anisotropic; functionally graded materials;
simulation
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1. Introduction

Over the last ten years, functionally graded materials (FGMs) have become a popular research
topic, and many studies have been conducted on FGMs for various applications. FGMs are defined by
authors as materials that are inhomogeneous and have properties that change spatially in a continuous
manner, such as thermal conductivity, hardness, toughness, ductility, and corrosion resistance.

The diffusion convection reaction (DCR) equation has many applications in engineering, medicine,
biology, and ecology. Several studies have been conducted to find numerical solutions to the DCR
equation. Some of these studies include Fendoglu et al. [1] in 2018, Wang and Ang [2] in 2018,
Sheu et al. [3] in 2000, Xu [4] in 2018, and AL-Bayati and Wrobel [5] in 2019, who considered the
DCR equation with constant coefficients. Samec and gkerget [6] in 2004, Rocca et al. [7] in 2005,
and AL-Bayati and Wrobel [8,9] in 2018 studied the DCR equation with variable velocity. Martinez
et al. [10] used nonstandard finite difference schemes based on Green’s function formulations for
reaction-diffusion-convection systems in 2013.

This paper is intended to extend the recently published works [11] on the steady DCR equation to
the transient DCR equation for anisotropic functionally graded materials of the form

? ac (x, t)] B dc (x,1) @

o, ldij (x) ox, o [0; (x)c(x,t)] —k(x)c(x,t) =a(x,t) 5
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The continuously varying coefficients d;;, v;, k, a in (1) respectively represent the anisotropic diffusivity,
velocity, decay reaction and change rate coefficients of the medium of interest. Therefore equation (1)
is relevant for FGMs. Equation (1) provides a wider class of problems since it applies for anisotropic
and inhomogeneous media but nonetheless covers the case of isotropic diffusion taking place when
dy1 = dy,d1p = 0 and also the case of homogeneous media which occurs when the coefficients djj (x),
v; (x), k (x) and « (x, t) are constant.

2. The initial boundary value problem

Referred to the Cartesian frame Ox1x, we will consider initial boundary value problems governed
by (1) where x = (x1, x2). The coefficient [d;;] (i,j = 1,2) is a real positive definite symmetrical matrix.
Also, in (1) the summation convention for repeated indices applies, so that explicitly (1) can be written

as
0 ac ) ac 0 ac o) ac
P (da> N (da> ) (da> S (da)
] 0 ac
T (v1c) — Fr (vac) — ke = e

By knowing the coefficients d;; (x),v; (x), k (x), & (x, ) we will seek solutions c (x,t) and its
derivatives to (1) which are valid for time interval t > 0 and in a region Q in R? with boundary 9Q)
which consists of a finite number of piecewise smooth curves. On d(); the dependent variable c (x, t)
is specified, and
oc (x,t) .

axi ]

is specified on 0Q); where dQ) = 90}y U (), and n = (11, n1p) denotes the outward pointing normal to

P(xt) = dij (x) @

dQ). The initial condition is
c(x,0)=0 3)

3. The boundary integral equation

We restrict the coefficients di]', v;, k, a to be of the form

dij(x) = dijg(x) 4)
vi (x) = 9:8(x) )
k(x) = kglx (©)
a(xt) = a(t)g(x) @)

~

where g(x) is a differentiable function, dAl-j, 0;,k are constants and & (f) is a function of time f.
Substitution of (4)-(7) into (1) gives

g9 [0
”axi gaX]

c(xt) =g 2 (x) 9 (xt) ©)
therefore use of (4) and (9) in (2) gives

a(ge) - . dc
o, K88y ®)

— 9

Assume

P(x,t) = =Py (x) 9 (x,t) + g% (x) Py (x, ) (10)

where 2
~ 0 X
Py (x) = dj gax( )

_ 5 9P (x 1)
j n; Py (x,t) = dj ax; n;
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Moreover, equation (8) can be written as
3 P} <g—1/2¢) d (g1/2¢) A P} (g—l/Zl/))
5 |8 — 0, —kg'?yp=ag
g ox; ax] ! dx; ot
; 0 ~129¢ g 1/? s [ o172 Y PN a0
U5 lg<g ox; +p% ax 8 axl“” 8x1 ety =g (85,
A SRV alP 871/2 [ a0y 9g'? Rol/2p — 17209
dij ox; (g +8¢ %\ & 5y, + w ax Y =ag o,
Use of the identity
ag—l/z agl/Z
ax; = ox;
implies
c 9 [ 10y 0g'? [ 1200 172, _ 1/231,0
dl]axi <g ax] l)b ax] —Ui |8 a +lp ax kg ll) Dég
Rearranging and neglecting some zero terms gives
R azlp alp a2g1/2 g l/)
1/2 _ 1/2 1/2
8 (df oxox; U 8x1> ¥ (d” axiox; T o, —kg' Py = ot
So that if g satisfies
82g1/2 ag1/2 12
dlj ax;0%; + 0; o AgHe=0 (11)

where A is a constant, then the transformation (9) brings the variable coefficients equation (1) into a
constant coefficients equation

Yy oY - O
ijaxl-axj — Uiafxi — <)\ + k) lIJ = Déﬁ (12)

Taking the Laplace transform of (9), (10), (12) and applying the initial condition (3) we obtain

P (x,5) = g2 (x) c* (x,5) (13)
Py (x,5) = [P* (x,5) + Py () 9" (x,5)] g V2 (x) (14)
~ azw* N al/)* ~ Ak *
By using Gauss divergence theorem, equation (15) can be transformed into a boundary integral
equation
1O Y@ = [ {Prx9) ex) [P @ (x)
L (O] (x,5)}dS (x) (16)
where

P, (X) = 0;n; (x)

For 2-D problems the fundamental solutions ®(x, {) and I'(x, {) for are given as
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O(xg) = Fsexp (—Z‘g‘)KO(ﬂR)
» 0D (x,0)

I'(x,0) = dij—=—"n

(X g) ] ax] n

where

\/(v/ZD)Z +[(A+F+sar) /D]

[0{11 + 2d1p0r + dx (P% + .012)} /2

x—{

(x1 + prax2, pix2)

= (C1+pr02,0i02)

(01 + pyD2, 0i02)

V1 + o — = pr8a) + (pixa — pica)”
6 = /(61 +pr52) + (pit2)?

< o~ x ™ O =
|

R

where p, and p; are respectively the real and the positive imaginary parts of the complex root p of the
quadratic equation di + 2dA12p + dAzzpz = 0 and Kj is the modified Bessel function. Use of (13) and (14)
in (16) yields

1/2 % _ -1/2 x P2\ @ _ ol/2r] o
ng’“c /an{<g <I>>P + [(Pg Pyg )d> g 1"] c }dS (17)
Equation (17) provides a boundary integral equation for determining the numerical solutions of c*

and its derivatives at all points of (). The derivative solutions dc* /d¢1 and dc*/d¢, can be determined
using the following equations

dc* ~1/2 / {( 1/23q’) « { 12 9P 1,0 ar] *} L0872
= — | P*+ | (P, — P, — | c*$dS—c
o 8 [ 0 \® G (Ps = 2s') Gy 8" 5, o1

dc* ~1/2 / {( 1/23q’) « { 12 9P 1,0 ar] *} L0872
- 2Vp 4| (P, —P Sl bas -
i ¢ [ao ) P (e R ) o s e

Knowing the solutions c* (x, s) and its derivatives oc*/dx; and dc* /9x, from (17), the numerical

Laplace transform inversion technique using the Stehfest formula is then employed to find the values
of ¢ (x,t) and its derivatives dc/dx; and dc/dx;. The Stehfest formula is

ln2

c(xt) ~ —= Z Vinc™ (%, $m)
dc(x,t)  In2 N (X, 5m)

8x1 o T Z axl (18)
dc(x,t)  In2 % (X, 5m)

dxo o t 1 axz

where
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S In2
mo=
min(m, §) N/2 (901
Ve = (DETOY k™7 (2Kk)!
(1) (7 - k)!k! (k—1)! (m — k)! (2k — m)!
Possible multi-parameter solutions g'/2 (x) to (11) are
12 () — constant, A =0 R 19
§7 { exp (Bo + Bixi) , dijpifj + 0ifi —A =0 19)
If the flow is incompressible, that is the divergence of the velocity is zero, then
9vi () _
axi =0
Therefore the governing equation (1) reduces to
0 ac (x, 1) oc (x, 1) _ ac (x, 1)
aixi [dl] (X) ax] ] Ui (X) axi k (X) ¢ (X, t) = (X) ot
Also, from (5) we obtain
90 (X) . 12,0, 082(%)
axi N 28 (X)Ul axl- =0
so that 2
5,087 (x) _
0; o, 0
Therefore equation (11) reduces to
0,287 g (20)
" axiaxj 8 N
Thus, for incompressible flow, possible multi-parameter functions g'/2 (x) satisfying (20) are
,30 + ,Bl-xz-, A=0 .
g2 (x) = cos (Bo + Bix;) +sin (Bo + Bix;) , diBifj + A =0 (21)

exp (Bo + Bixi) /dAij,Bi,Bj —-A=0
4. Numerical examples

We will examine multiple analytical and non-analytical test problems to demonstrate the accuracy
and effectiveness of the mixed Laplace transform and boundary element method used in deriving the
boundary integral equation (17). We will also analyze the efficiency, accuracy, and consistency of the
combined LT-BEM method.

We assume each problem belongs to a system which is valid in given spatial and time domains
and governed by equation (1). The system also is assumed to satisfy the initial condition (3) and some
boundary conditions as mentioned in Section 2. The characteristics of the system which are represented
by the coefficients d;; (x) ,v; (x) , k (x) , & (x, t) in equation (1) are assumed to be of the form (4), (5), (6)
and (7). They represents respectively the diffusivity or conductivity, the velocity of flow existing in the
system, the reaction coefficient and the change rate of the unknown or dependent variable ¢ (x, t).

Standard BEM with constant elements is employed to obtain numerical results. For a simplicity, a
unit square depicted in Figures 1 and 11 will be taken as the geometrical domain for all problems. A
number of 320 elements of equal length, namely 80 elements on each side of the unit square, are used.
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A FORTRAN script is developed to compute the numerical solutions. A subroutine that evaluates
the values of the coefficients V,,;,,m = 1,2,..., N of the Stehfest formula in (18) for any number N is
embedded in the script. Table 1 shows the values of V}; for N = 6, 8, 10, 12 resulted from the subroutine.

Table 1. Values of V};, of the Stehfest formula for N = 6,8,10,12

Vo N=6 N=8 N=10 N=12
%] 1 -1/3 1/12 —1/60
Vs —49 145/3 —385/12 961/60
V3 366 —906 1279 —1247
V4 —858 16394/3 —46871/3 82663/3
Vs 810 —43130/3 505465/6 —1579685/6
Vi —270 18730 —236957.5 1324138.7
% —35840/3 1127735/3 —58375583/15
Vs 8960/3 —1020215/3 21159859/3
Vo 164062.5 —8005336.5
V1o —32812.5 5552830.5
Vit —2155507.2
Vi 359251.2
X2

D(0,1) P given C(1,1)

c given c(x,0) =0 P given

A(0,0) P given B(1,0)
Figure 1. The boundary conditions for Problem 4.1
4.1. A test problem

The problems will consider three types of inhomogeneity functions g (x), namely exponential
function of the form (19) with compressible flow, and quadratic and trigonometric functions of the
form (21) with incompressible flow. For all test problems we take coefficients cfij and k

. 1 035 .
di; = k=05
Y [ 0.35 0.25 1

and a set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD
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For each problem, numerical solutions ¢ and the derivatives dc/9dx; and dc/dx; are sought at
19 x 19 interior points (x1,x) = {.05,.1,.15,...,.9,.95} x {.05,.1,.15,...,.9,.95} and 9 time-steps
t =.0004, %, 7, %”, % %’T, ‘%T, %”, 7. The value t = .0004 is the approximating value of t = 0 as the
singularity of the Stehfest formula. The individual relative error Ej at each interior point and the

aggregate relative error E4 of the numerical solutions are computed using the formulas

EI _ Cn,i — Caji
Ca,i
19x19 273
E, — Zi:T (Cni — Cai) ’
A = Zl9><l9 2
i=1 a,i

where ¢, and ¢, are the numerical and analytical solutions ¢ or the derivatives respectively.
4.1.1. Case 1
First, we suppose that the function g(x) is an exponential function
g'/2(x) = exp (1 + 0.15x; — 0.25x,)
that is, the material under consideration is an exponentially graded material. We choose

6 = (1,1)
&(t) = 0.192625¢

so that the system has a compressible flow. In order for g(x) to satisfy (19) then A = —0.088125. The
analytical solution ¢ (x, t) for this problem is

c(x,t) = texp [— (0.2x1 + 0.3x2)]
" exp (1+0.15x1 — 0.25x7)

Figure 2 (top row) shows the aggregate relative errors E 4 of the numerical solutions ¢ obtained
using N = 6, 8,10, 12 for the Stehfest formula (18). It indicates convergence of the Stehfest formula
when the value of N changes from N = 6 to N = 10. For this specific case (Case 1) the value of N is
optimized at N = 10. Increasing N to N = 12 does not give more accurate solutions. According to
Hassanzadeh and Pooladi-Darvish [12] increasing N will increase the accuracy up to a point, and then
the accuracy will decline due to round-off errors. Bottom row of Figure 2 depicts individual relative
errors Ej for the 19 x 19 interior points at time t = 71/2 (left) and ¢ = 7 (right) with N = 10 as the
optimized value of N. It indicates that the errors E; decreases as ¢ changes from t = 7r/2 to t = 7. This
result agrees with the result of the aggregate relative error E 4 in the top row of Figure 2.
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Figure 2. Top: The aggregate relative error E 4 of the numerical solutions ¢ with N = 6,8, 10, 12 for Case

1 (left) and zoom-in view for N = 8,10 (right). Bottom: The individual relative errors Ey at t = 71/2
(left) and f = 7t (right) with N = 10.

For the derivative solution dc/9dx;, Figure 3 (top row) shows that N = 6 is the optimized value of
N for the aggregate relative errors E 4. Bottom row of Figure 3 depicts individual relative errors E;
with N = 6. It indicates that the errors Ej stay steady as t changes from t = 77/2 to t = 7. This result
agrees with the result of the aggregate relative error E 4 in the top row of Figure 3.

Ep 0.

0
0.0004  Pi/8

P4  3P¥8 P2 SPI8 3Pi4  TPI8

02 03 04 05 06 07 08 09

X1

Pi

0.03
0.025
0.02
0.015
0.01
0.005
0

Pi

0.012 T T T T
0.0115 F—
0.011 8
Ex 00105 |- ,
0.01 ,
0.0095
0,009 \ \ \ \ \ \ \
0.0004 PU8 P4 3PU8 P2 SPUR 3P4 TPiR
0.9
0.8
0.7
0.6
Xy 0.5
0.4
0.3
0.2

0.1

02 03 04 05 06 07 08 09

X1

0.03
0.025
0.02
0.015
0.01
0.005
0

Figure 3. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6, 8,10, 12

for Case 1 (left) and zoom-in view for N = 6, 8,10 (right). Bottom: The individual relative errors Ej at
t = /2 (left) and t = 7 (right) with N = 6.

Whereas for the derivative solution dc/9dx,, Figure 4 (top row) shows that N = 10 is the optimized
value of N for the aggregate relative errors E4. Bottom row of Figure 4 depicts individual relative
errors E; with N = 10.
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0.3
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0.2
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0

0.1 02 03 04 05 06 0.7 08 09 01 02 03 04 05 06 07 08 09

X] X1

Figure 4. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6,8,10,12
for Case 1 (left) and zoom-in view for N = 6, 8,10 (right). Bottom: The individual relative errors E at
t = 1t/2 (left) and t = 7 (right) with N = 10.

4.1.2. Case 2

Next, we choose an analytical solution

_exp[—(0.2x1; +0.3x2)] .
00 = 15, 025, O Vi

Suppose the function g(x) and the coefficients are

g'2(x) = 1+0.15x —0.25x;
o = (1,0.6)
a(t) = —0031vitan (Vi)

Therefore the considered system involves a quadratically graded material with an incompressible flow.
From (21) we have the parameter A = 0.

Figure 5 (top row) indicates that N = 10 is the optimized value of N for the aggregate relative
errors E 4 of the numerical solutions c. Increasing N to N = 12 gives worse solutions. Bottom row of
Figure 5 depicts individual relative errors E; with N = 10.

0.014

— 0.00062
0.012 7 0.00062 -
0.01 H 0.00061 =
0.008 0.00061 [~
Ex Ex
0.006 0.00060 [~
0.004 1 0.00060 -
0.002 L 0.00059 | =T
0 i ——— t— i 0.00059 ,
0.0004 P8 P4 3PU8  Pi2  SPU8 3P4 P8 Pi 00004 PU8  Pi4 3PU8 P2 SPI8 3Pi4  TPU8  Pi
0.002 0.002
0.9 0.0018 0.9 0.0018
0.8 0.0016 0.8 0.0016
0.7 0.0014 0.7 0.0014
0.6 0.0012 0.6 0.0012
X, 0.5 0.001 X2 0.5 0.001
0.4 0.0008 0.4 0.0008
0.3 0.0006 0.3 0.0006
02 0.0004 02 0.0004
OAOOOZ . 0.0002
0.1 0.1 0
0.1 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 0.7 08 09
X X1

Figure 5. Top: The aggregate relative error E4 of the numerical solutions ¢ with N = 6,8,10,12 for
Case 2 (left) and zoom-in view for N = 10,12 (right). Bottom: The individual relative errors E; at
t = 1t/2 (left) and t = 7 (right) with N = 10.
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N = 10 is also the optimized value of N for the aggregate relative errors E 4 of the numerical
solutions dc/dx;. This results is shown in Figure 6 (top row). Bottom row of Figure 6 depicts individual

relative errors E; with N = 10.

0.016 ‘ | ‘
i i —
oosl N- :

N=1
0.012 H N-1
0.01 F
Ex
0.008
0.006
e
000
00004 PU8 P4 3PUS  Pi2  SPU8 3P4 TPU8 P
t
0.025
0.02
0.015
0.01
0.005
0

0.1

02 03 04 05 06 07 08 09

X

E,

0.00304
0.00302

0.003 -
0.00298
0.00296

* 0.00204 -
0.00292 -

0.0029

0.00288 -

0.00286

0.0004 P8

0.1

L L L L L L L
P4 3PV8 P2 5PiV8 3P4 TPi8 Pi
t

0.025
0.02
0.015
0.01
0.005

02 03 04 05 06

X]

0.7 08 09

Figure 6. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6,8,10,12
for Case 2 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors E; at

t = 1t/2 (left) and t = 7 (right) with N = 10.

Whereas for the derivative solution dc/dx,, Figure 7 (top row) shows that N = 6 is the optimized
value of N for the aggregate relative errors E4. Bottom row of Figure 7 depicts individual relative

errors E; with N = 6.

0.058 T T T
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—
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N=12
0.046 . . L
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Xy 0.5
0.4 :
0.3 ’
0.2 ’
0.1 0

02 03 04 05 06 07 08 09
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t
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0.2
0.1

-io

02 03 04 05 06

X

0.7 08 09

Figure 7. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6,8,10,12
for Case 2. Bottom: The individual relative errors E; at t = 77/2 (left) and t = 7t (right) with N = 6.

4.1.3. Case 3

Now, we consider a trigonometrically graded material with a grading function

g'/2(x) = cos (14 0.15x;

We choose
0, = (1,0.6),&

- 0.25XQ)

(t) = 0.003625 [1 — exp (t)]
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so that the system has an incompressible flow. From (21) we have A = —0.011875. The analytical
solution c (x, t) for this problem is

c(x 1) = exp [— (0.2x1 + 0.3x2)] [1 — exp (—1)]
/ cos (1 +0.15x1 — 0.25x)

Based on the results in Figures 8-10 (top rows) we assume that N = 12 is the optimized value
for the aggregate relative errors E4 of the solutions c and the derivatives dc/dx; and dc/dx;. The

corresponding individual relative errors E; are shown at the bottom row of each figure.
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Figure 8. Top: The aggregate relative error E 4 of the numerical solutions ¢ with N = 6,8,10,12 for

Case 3 (left) and zoom-in view for N = 10,12 (right). Bottom: The individual relative errors Ej at
t = 1t/2 (left) and t = 7 (right) with N = 12.
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Figure 9. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6,8,10, 12
for Case 3 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors E; at
t = 1t/2 (left) and t = 7 (right) with N = 12.
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Figure 10. Top: The aggregate relative error E 4 of the numerical solutions dc/dx; with N = 6,8,10,12

for Case 3 (left) and zoom-in view for N = 10, 12 (right). Bottom: The individual relative errors E; at

t = /2 (left) and t = 7t (right) with N = 12.

4.2. A problem without analytical solution

Further, we will show that the anisotropy and inhomogeneity of materials give impacts on the
solutions. We will use tfij, 9;,k,g'/?(x) in Case 3 of Problem 4.1 for this problem, which are

g - [ 1 0.35]
035 0.25
o, = (1,0.6)
k = 05
g/2(x) = cos (14 0.15x; — 0.25x;)

We choose
a(t)y=1

As we aim to show the impacts of the anisotropy and inhomogeneity of the material, we need to
consider the case of homogeneous material and the case of isotropic material. We assume when the

material is homogeneous then
1/2
g2 (x) =1

and for an isotropic material is under consideration then

A 10
dif:[o 1]

The boundary conditions are (see Figure 11)

P =0onside AB
¢ = 0 on side BC
P =0onside CD
P = P (t) onside AD

where P (t) is associated with four cases, namely

Casel: P(t)=1

Case2: P (t) =exp(—t)
Case3: P(t)=t

Case4: P (t)=t/(t+0.01)
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Figure 12 shows for all cases when the material is isotropic and homogeneous the solutions
c(0.5,0.3,t) and c (0.5,0.7, t) coincide. This is to be expected as the problem is geometically symmetric
at xo = 0.5 when the material is isotropic and homogeneous. The results in Figure 12 also indicate
that the anisotropy and inhomogeneity of the material give effects on the solutions. Moreover, as also
expected, the variation of the solution with respect to f mimics the time function P (¢) as the boundary
condition on side AD.

Whereas, the results in Figure 13 show that the Case 1 of P(t) = 1 and Case 4 of P(t) =
t/ (t+0.01) have the same steady state solution. This is to be expected as P(t) =t/ (t + 0.01) will
converge to 1 when t approaches infinity.

x2
D(0,1) P=0 C(1,1)
P=P(t) c(x,0)=0 c=0
—
A(0,0) P=0 B(1,0)

Figure 11. The boundary conditions for Problem 4.2
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Figure 12. Cont.
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Figure 12. Solutions ¢ (0.5,0.3,¢) and ¢ (0.5,0.7, t) for all cases of Problem 4.2
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Figure 13. Solutions ¢ (0.5, 0.5, t) for Case 1 and 4 of Problem 4.2

5. Conclusion

Several problems for a class of anisotropic FGMs (quadratically, exponentially and
trigonometrically graded materials) have been solved using a combined BEM and Laplace transform.
From the results of the considered problems in Section 4.1 and 4.2, we may conclude that the analysis
of reduction to constant coefficients equation (in Section 3) for deriving the boundary-only integral
equation (17) is valid, and the BEM and Stehfest formula is appropriate for solving such problems
as defined in Section 2. Moreover, the results of the test problem in Section 4.1 show the accuracy of
the method, whereas the results of the problem in Section 4.2 exhibit the consistency of the numerical
solutions. The effect of the inhomogeneity and anisotropy of materials as well as the obtained
steady-state solutions are as expected.
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Abbreviations

The following abbreviations are used in this manuscript:

FGM  Functionally Graded Material
BEM  Boundary Element Method

LT Laplace Transform

DCR Diffusion Convection Reaction
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