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Article 
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Abstract: The neural network technology for real-time cryptographic data protection with symmetric keys 

(masking codes, neural network architecture and weights matrix) for unmanned aerial vehicles (UAV) onboard 

communication systems has been developed. It provides hardware and software implementation with high 

technical and operational characteristics. The development of neural network technology for real-time 

cryptographic data protection was performed using an integrated approach based on theoretical foundations 

of neural network cryptographic data protection, new algorithms and structures of neural network data 

encryption and decryption, modern element base with the possibility of programming for the structure, and 

computer-aided design (CAD) of hardware and software tools. The development and implementation of the 

on-board system of neural network cryptographic data protection in real-time are based on the following 

principles: variable composition of equipment; modularity; conveyorization and spatial parallelism; 

specialization and adaptation of hardware and software to data encryption and decryption. The tabular-

algorithmic method of calculating the scalar product has been improved, it provides fast calculation of the 

scalar product of input data for both fixed and floating-point by bringing to the largest common order of 

weights and forming tables of macro-partial products for them. Components of neural network cryptographic 

data encryption and decryption have been developed on the processor core supplemented by specialized scalar 

product calculation modules. The specialized hardware for neural network cryptographic data encryption was 

developed using VHDL for equipment programming in the Quartus II development environment ver. 13.1 and 

the appropriate libraries, and implemented on the basis of the FPGA EP3C16F484C6 Cyclone III family. 

Keywords: neural network technology; cryptographic protection; UAV; UAS; onboard system; 

encryption; decryption; tabular-algorithmic method; scalar product; real time 

 

1. Introduction 

A key problem is to guarantee cryptographic security of data transmission in the management 

of UAV [1,2], intelligent robots [3], microsatellites [4] and various mobile transport systems [5]. Due 

to the security vulnerabilities of UAVs, and illegal and malicious attacks against UAVs, especially 

against communication data and UAV control, solutions to prevent such attacks are needed, and one 

of them is to encrypt UAV’s communication data [6–8]. Due to limited battery capacity, Unmanned 

Aerial Vehicles (UAVs) must use energy-efficient data processing [9]. Solving this problem requires 

the development of neural network technology [10–12] for cryptographic data protection, which is 

focused on use in UAV onboard communication systems. When developing onboard cryptographic 

data protection systems, it is necessary to provide real-time mode, increase cryptographic resistance, 

and noise immunity and reduce power consumption, weight, size and cost [13–23]. One of the ways 

to meet such requirements is to use an auto-associative neural network of direct propagation, which 
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is trained on the basis of the principal components analysis. A specific feature of such neural 

networks is the facility to pre-calculate weights and to apply the tabular-algorithmic method for the 

implementation of neuro-like elements using the basis of elementary arithmetic operations. For 

neural network cryptographic encryption and decryption of data, it is proposed to use symmetric 

keys, which include masking codes, neural network architecture and a matrix of weights [24,25]. 

Through the extensive use of a modern component base and the development of new VLSI 

methods, algorithms and structures, high technical and operational rates of on-board cryptographic 

data protection systems are achieved. Onboard systems for neural network cryptographic protection 

of data must have variable hardware for rapid changes in neural network architecture. The use of 

modern element base (microcontrollers, programmable logic integrated circuits FPGA) in the 

development of onboard and embedded systems makes it possible to reduce their weight, size and 

power consumption [26,27], and in the development of onboard systems of neural network 

cryptographic data protection provides a quick change of encryption and decryption keys. 

Neural network cryptographic encryption and decryption of data in real-time is achieved 

through the application of parallel encryption and decryption of data, hardware implementation of 

neuro-like elements based on a multi-operand approach and macro-partial products tables. 

Therefore, an urgent problem is to develop neural network technology for cryptographic data 

protection, focused on implementing in on-board systems with high technical and operational 

characteristics. The objective of the work is to develop the onboard neural network technology for 

real-time cryptographic data protection. In order to achieve this goal, the following tasks have to be 

solved: 

• development of neural network technology for cryptographic data protection; 

• development of the structure of the system of neural network cryptographic protection and real-

time data transmission; 

• development of components of onboard systems of neural network cryptographic encryption-

decryption of data; 

• implementation of the specialized hardware components of neural network cryptographic data 

encryption on FPGA. 

This article is structured as follows. In the introduction, we have considered the problem 

relevancy and the main objectives of this research. Section 2 contains a brief review of the related 

works (the research context). The structure of neural network technology for cryptographic data 

protection is described in Section 3 and the main stages of neural network data encryption/decryption 

are considered here as well. Section 4 presents the structure of the system for neural network 

cryptographic data protection and transmission (stationery and UAV onboard parts) developed 

using an integrated approach. The components of the onboard system for neural network 

cryptographic data encryption and decryption are proposed in Section 5, the diagrams for the 

specialized hardware are given. 

2. Related Works 

The study of the main trends in the area of UAV onboard systems development for real-time 

cryptographic data protection shows that neural network methods are increasingly used for 

performing data encryption and decryption in such systems [28–32]. These publications show that 

the implementation of neural network methods of cryptographic data protection is performed 

generally by software. The critical drawback of software implementation of neural network 

cryptographic data protection is the difficulty of providing real-time mode and the constraints 

imposed on on-board systems in terms of weight, size, power consumption and cost. 

The possibilities of adapting the auto-associative neural network with non-iterative learning to 

the tasks of cryptographic data protection are considered in [28–32]. The peculiarity of the functioning 

of such a neural network is the possibility of preliminary calculation of weights as a result of its 

training based on the principal components analysis (PCA). This method uses a system of 

eigenvectors that correspond to the eigenvalues of the covariance matrix of input data [33]. Auto-

associative neural network with pre-calculated weights is used to encrypt and decrypt data. In [34] it 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2023                   doi:10.20944/preprints202304.0252.v1

https://doi.org/10.20944/preprints202304.0252.v1


 3 

 

was shown that the key to cryptographic encryption and decryption of data in neural networks is the 

masking codes, the architecture of the neural network and the matrix of weights. 

Publications [35–37] are devoted to the hardware implementation of neural networks showing 

that they are based on neural elements. The feature of such neural elements is that the number of 

inputs and their bit size are determined by the neural network architecture, which is one of the 

characteristics of the data encryption key. The main operation of the neuroelement is the calculation 

of the scalar product using pre-calculated weights. 

In [37–39] the methods for calculating the scalar product using the basis of elementary arithmetic 

operations—addition and shift, are considered. The peculiarity of these methods is the formation of 

macro-partial products, their shift, and addition to the previously accumulated amount. Hardware 

implementation of such methods requires significant equipment costs. The implementation of a 

tabular-algorithmic method for calculating the scalar product, which is reduced to the operations of 

reading macro-partial products, addition and shift, requires fewer equipment costs and less 

computation time. The disadvantage of this method is that it is focused on working with input data 

and weights in a fixed-point format. 

Analyzing the works [31,41] it can be noted that neural network tools for cryptographic 

symmetric encryption and decryption of data [42] are implemented on the basis of microprocessors 

supplemented by hardware that implements time-consuming computational operations using FPGA 

[43]. High speed of neural network tools for cryptographic encryption and decryption of data is 

achieved through parallelization, pipeline computing processes and hardware implementation of 

neural elements. The disadvantage of the existing neural network tools for cryptographic data 

protection is the difficulty of changing the encryption and decryption key rapidly. 

3. The Development of Neural Network Technology for Cryptographic Data Protection 

3.1. Structure of Neural Network Technology of Cryptographic Data Protection 

The development of neural network technology for cryptographic protection of data 

transmission is focused on hardware and software implementation with high technical and 

operational characteristics. It is proposed to carry out such development on the basis of an integrated 

approach that includes: 

• research and development of theoretical foundations of neuro-like cryptographic data 

protection; 

• research and development of new algorithms and structures of neuro-like encryption and 

decryption of data focused on modern element base; 

• modern element base with the ability to program the structure; 

• means for automated design of software and hardware. 

Figure 1 shows the developed structure of neural network technology for cryptographic data 

protection, which is focused on hardware and software implementation. 

The given neural network technology of cryptographic data protection provides encryption with 

symmetric keys. When implementing the symmetric cryptosystem, the encryption key and the 

decryption key are the same or the decryption key is easily calculated from the encryption key. The 

use of the tabular-algorithmic method of data encryption and decryption enables the implementation 

of data encryption-decryption tools with high technical and operational characteristics. 
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Figure 1. Structure of neural network technology for cryptographic data protection: a) the process of 

data encryption; b) the process of decrypting data. 

3.2. Main Stages of Neural Network Encryption 

Encryption is performed over plaintext using a key, which consists of a given number of 𝑁 

neurons in the neural network, a matrix of weights and masking operations. Let’s consider the main 

stages of message encryption. 

Choice of neural network architecture. The architecture of the neural network is determined by the 

number of neuro elements 𝑁, the number of inputs 𝑘 and the bit inputs 𝑚. The number of neural 

elements is determined by the following formula: 𝑁 = ௡௠, (1)

where 𝑛 is the bit size of the message, and 𝑚—the bit size of the inputs. 

The incoming messages which are encrypted can have different bit size (𝑛) and different number 

of inputs (𝑘), which is equal to the number of neuroelements 𝑁 . The architecture of the neural 

network depends on the value of the bit size of the message n and the number of inputs k. The 

following variants of the neural network architecture are possible for the 𝑛 =  16 bit message: 𝑚 = 2, 𝑘 =  8, 𝑁 =  8; 𝑚 =  4, 𝑘 =  4, 𝑁 =  4; 𝑚 =  8, 𝑘 =  2, 𝑁 =  2, and for 𝑛 =  24 they are: 𝑚 =  2, 𝑘 =  12, 𝑁 =  12; 𝑚 =  3, 𝑘 =  8, 𝑁 =  8; 𝑚 =  4, 𝑘 =  6, 𝑁 =  6, 𝑚 =  6, 𝑘 =  4, 𝑁 = 4; 𝑚 =  8, 𝑘 =  3, 𝑁 =  3; 𝑚 =  12, 𝑘 =  2, 𝑁 =  2. 

Calculation of the matrix of weights. For data encryption-decryption we will use an auto-associative 

neural network, which learns non-iteratively using the principal components analysis (PCA), which 

performs a linear transformation following the formula: 𝑦̄ = 𝑊 ⋅ 𝑥̄. (2)

According to formula (2), the matrix 𝑊 ∈ 𝑅௡∗௡ is used to convert the input vector 𝑥̄ ∈ 𝑅௡ into 

the output vector 𝑦̄ ∈ 𝑅௡ . The transformation is performed by a system of linearly independent 

vectors that selects an orthonormal system of eigenvectors corresponding to the eigenvalues of the 

covariance matrix of the input data. 

Let the input data be represented as a set of 𝑁 vectors 𝑥̄௝ , 𝑗 = 1, … 𝑁 , and each of the vectors has 

dimension 𝑛, 𝑥̄௝ = ൫𝑥௝ଵ, 𝑥௝ଶ,  . . . ,  𝑥௝௡൯: 𝑋 = (𝑥̄ଵ, 𝑥̄ଶ,   . . . ,   𝑥̄ே)௧. (3)

The autocovariance matrix for 𝑁 vectors 𝑥̄௝ can be written as: 
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𝑅 = 𝑋௧ ⋅ 𝑋, (4)

where each of the elements is defined by the expression: 

𝑟௝௟ = ෍ 𝑥̄௝௟𝑥̄௜௟ே
௜ୀଵ = ෍൫𝑥̄௝௜ − 𝜇௝൯(𝑥̄௜௟ − 𝜇௟)ே

௜ୀଵ , (5)

where 𝑗, 𝑙 = 1, 2, … , 𝑛, and 𝜇௝, 𝜇௟—mathematical expectations of vectors 𝑥̄௝, 𝑥̄௟. 
The eigenvalues of 𝑅  symmetric non-negative matrix are real and positive numbers. We 

arrange them in descending order 𝜆ଵ > 𝜆ଶ >. . . > 𝜆௡ . Similarly, we place the eigenvectors 

corresponding to 𝜆௜ . Then the matrix W defines a linear transformation (2), where 𝑦̄ =(𝑦ଵ, 𝑦ଶ,   . . . ,  𝑦௡) is a vector of the principal components of the PCA, which corresponds to the input 

data vector 𝑥̄. The number of vectors of the principal components N corresponds to the number of 

input data vectors 𝑥̄ [29]. The matrix of weights used to encrypt the data is as follows:  

ተ𝑊ଵଵ 𝑊ଵଶ ⋯ 𝑊ଵ௞𝑊ଶଵ 𝑊ଶଶ ⋯ 𝑊ଶ௞⋮ ⋮ ⋯ ⋮𝑊ேଵ 𝑊ேଶ ⋯ 𝑊ே௞ተ. (6)

The basic operation of the neural network used to encrypt data is the operation of calculating 

the scalar product. This operation should be implemented using the tabular-algorithmic method 

because the matrix of weights 𝑊௝௦, where 𝑗 =  1, … , 𝑁, 𝑠 =  1, … , 𝑘, is pre-calculated. 

Calculation of the table of macro-partial products for data encryption. The specificity of the scalar 

product calculation operation used in data encryption is that the weights are pre-calculated 

(constants) and set in floating point format, and the input data X_j is in fixed point format with its 

fixing before the high digit of a number. The scalar product is calculated by means of the tabular-

algorithmic method according to the formula: 

𝑍 = ෍ 𝑊௝𝑋௝ = ෍ 2ି௜௡
௜ୀଵ ෍ 𝑊௝𝑋௝௜ =ே

௝ୀଵ
ே

௝ୀଵ ෍ 2ି௜௡
௜ୀଵ ෍ 𝑃௝௜ =ே

௝ୀଵ ෍ 2ି௜𝑃ெ௜௡
௜ୀଵ , (7)

where 𝑁—number of products, 𝑋௝—input data, 𝑊௝—𝑗-th weigh coefficient, 𝑛—bit size of the input 

data, 𝑃௜௝—partial product, 𝑃ெ௜—macro-partial product, formed by adding 𝑁 partial products 𝑃௜௝, 

as follows: 𝑃ெ௜ = ∑ 𝑃௝௜ே௝ୀଵ . 

Formation of the tables of macro-partial products for floating-point weights 𝑊௝ = 𝑤௝2௠ೈೕ  

(where 𝑤௝ —mantissa of 𝑊௝  weigh coefficient, 𝑚ௐೕ —order of 𝑊௝  weigh coefficient) foresees the 

following operations to be performed: 

• defining the largest common order of weights 𝑚Wmaxc; 

• calculation of the difference of orders for each 𝑊௝ weigh coefficient: 𝛥𝑚ௐೕ = 𝑚Wmaxс − 𝑚ௐೕ;  

• shift the mantissa 𝑤௝ to the right by a difference of orders 𝛥𝑚ௐೕ; 

• calculation of 𝑃ெ௜ macro-partial product for the case when 𝑥ଵ௜ = 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 1; 

• determining the number of overflow bits q in the 𝑃ெ௜ macro-partial product for the case when 𝑥ଵ௜ = 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 1; 

• obtaining scalable mantissas 𝑤௝௛ by shifting them to the right by the number of overflow bits; 

• adding to the largest common order of weight 𝑚Wmaxc the number of overflow bits q, as per 

formula 𝑚௝ = 𝑚Wmaxc + 𝑞. 

The table of macro-partial products is calculated by the formula: 
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𝑃ெ௜ =
⎩⎪⎪
⎨⎪
⎪⎧ 0,  𝑖𝑓 𝑥ଵ௜ = 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 0𝑤ଵ௛,  𝑖𝑓 𝑥ଵ௜ = 1, 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 0𝑤ଶ௛,  𝑖𝑓 𝑥ଵ௜ = 0, 𝑥ଶ௜ = 1, 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 0𝑤ଵ௛ + 𝑤ଶ௛,  𝑖𝑓 𝑥ଵ௜ = 1, 𝑥ଶ௜ = 1, 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 0⋮𝑤ଶ௛ + ⋯ + 𝑤ே௛, 𝑖𝑓 𝑥ଵ௜ = 0, 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 1𝑤ଵ௛ + 𝑤ଶ௛ + ⋯ + 𝑤ே௛,  𝑖𝑓 𝑥ଵ௜ = 𝑥ଶ௜ = 𝑥ଷ௜ = ⋯ = 𝑥ே௜ = 1

, (8)

where 𝑥ଵ௜ , 𝑥ଶ௜ , 𝑥ଷ௜ , … , 𝑥ே௜ —address inputs of the table, 𝑤௝௛ —mantissa of 𝑊௝  weigh coefficient 

brought to the greatest common order. 

The possible combinations number of 𝑃ெ௜  macro-partial products and accordingly the table 

volume is determined by the formula: 𝑄 = 2ே. (9)

The memory volume can be reduced by dividing all 𝑁 products by parts 𝑁1 and 𝑁2. Separate 

tables of macro-partial products 𝑃ேଵெ௜ and 𝑃ேଶெ௜ are formed for each of these parts. Tables for 𝑃ேଵெ௜ 
and 𝑃ேଶெ௜  can be stored in separate memory blocks or a single memory block. When using two 

memory blocks, parts of the macro-partial products 𝑃ேଵெ௜ and 𝑃ேଶெ௜ are read in one clock cycle, and 

in one memory block—in two clock cycles. The macro-partial product 𝑃ெ௜ is the sum of two macro-

partial products 𝑃ேଵெ௜ and 𝑃ேଶெ௜. 
Neural network tabular-algorithmic data encryption. The matrix of weights W, formed by the 

eigenvectors of the autocovariance matrix of the input data R, is determined during the training of 

the neural network. The type of auto-associative neural network used for data encryption is shown 

in Figure 2, where 𝑀௝ is the mask for the 𝑗-th input, 𝑥௝ is the 𝑗-th input data, XOR is the masking 

operation using the exclusive OR elements. 






 

Figure 2. The structure of the neural network for data encryption. 

The main operation of neural network data encryption is reduced to multiplying the 𝑊 matrix 

of weights by the input data vector 𝑥 under the following formula:  

𝑦௝ = ተ𝑊ଵଵ 𝑊ଵଶ ⋯ 𝑊ଵ௞𝑊ଶଵ 𝑊ଶଶ ⋯ 𝑊ଶ௞⋮ ⋮ ⋯ ⋮𝑊ேଵ 𝑊ேଶ ⋯ 𝑊ே௞ተ × 𝑥ଵ𝑥ଶ⋮𝑥௞. (10)

The multiplication of the matrix of weights 𝑊  by the vector of input data 𝑥  is reduced to 

performing 𝑁 operations of calculating the scalar product: 

𝑦௝ = ෍ 𝑊௝௦𝑥௦௞
௦ୀଵ  (11)

where 𝑘—number of products, 𝑠 = 1, 2, … , 𝑘;  𝑗 = 1,2, … , 𝑁. 
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The calculation of scalar products will be achieved using the tabular-algorithmic method, where 

the weights 𝑊௝௦ are set in floating-point format, and the input data 𝑥௦—in a fixed-point format with 

fixation before the highest digit. Tabular-algorithmic calculation of the mantissa of the scalar product 

is reduced to reading the macro-partial product 𝑃ெ௜  from the j-th table (memory) at the address 

corresponding to the i-th bit slice of N input data, and adding it to the before accumulated sums 

according to: 𝑦ெ௝௜ = 2ିଵ𝑦ெ௝(௜ିଵ) + 𝑃ெ௝௜, (12)

where 𝑦ெ௝଴ = 0 , 𝑖 = 1, … , 𝑚, 𝑚—bit size of the input data. The number of tables of macro-partial 

products corresponds to 𝑁—the number of rows of the matrix (10). The result of calculating of the 

scalar product 𝑦௝ consists of the mantissa 𝑦ெ௝ and the order 𝑚௝. 

The time required to compute the mantissa of the scalar product (SP) is determined by the 

formula: 𝑡ௌ௉ = 𝑚(𝑡௧௔௕௟௘ + 𝑡௥௘௚ + 𝑡௔ௗௗ), (13)

where 𝑡ௌ௉ is the time of calculation of the scalar product, 𝑡௧௔௕௟௘ is the time of reading from the table 

(memory), 𝑡௥௘௚ is the time of reading (writing) from the register, 𝑡௔ௗௗ is the time of adding. 

Data encryption can be performed either sequentially or in parallel, depending on the speed 

required. In the case of sequential encryption, the encryption time is the result of the formula: 𝑡௘௡௖௥௬௣௧ = 𝑁𝑚(𝑡௧௔௕௟௘ + 𝑡௥௘௚ + 𝑡௔ௗௗ), (14)

where 𝑡௘௡௖௥௬௣௧—time required for encryption. The encryption time can be reduced by performing N 

operations of calculating the scalar product in parallel. 

At the output of the neural network, we obtain 𝑁 encrypted data in the following form 𝑦௝ =𝑦ெ௝2௠ೕ, where 𝑦ெ௝—mantissa at the 𝑗-th output, 𝑚௝—order value at the 𝑗-th output. To transmit the 

encrypted data for decryption, it is advisable to bring all encrypted data to the highest common order. 

The reduction to the greatest common order is performed in three stages: 

• define the greatest order 𝑚௘௡௖௥; 

• for each encrypted data 𝑦௝ calculate the difference between the orders 𝛥𝑚௝ = 𝑚௘௡௖௥ − 𝑚௝;  

• by performing shift of the mantissa 𝑦ெ௝ to the right by the difference of orders 𝛥𝑚௝ we obtain 

mantissa of the encrypted data 𝑦ெ௝௛  reduced to the greatest common order.  

The mantissa of the encrypted data 𝑦ெ௝௛  which are reduced to the largest common order, and 

the largest common order 𝑚௘௡௖௥ are sent for decryption. 

3.3. The Main Stages of Neural Network Cryptographic Data Decryption  

Encrypted data in the form of mantissa 𝑦м௝௛ , which are reduced to the largest common order 𝑚௘௡௖௥  (block-floating point), come to be decrypted. Therefore, the main stages of decrypting the 

encrypted data are considered further. 

Configuration of the neural network architecture for the decryption of encrypted data. The architecture 

of the neural network for the decryption of encrypted data, in terms of the number of neural elements, 

is the same as the architecture of the neural network used for the encryption of data. In this neural 

network, the number of inputs and the number of neurons corresponds to the number of the 

encrypted mantissa 𝑦м௝௛ . The neural network architecture used to decrypt encrypted data is presented 

in Figure 3. 

In the neural network for decrypting encrypted data, the bit rate of the inputs corresponds to 

the bit rate of the encrypted mantissa 𝑦ெ௝௛ , which determines the decryption time. To reduce the 

decryption time, the lower bits of the mantissa may be discarded, it will not affect the recovery of the 

original message. 
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Figure 3. Neural network architecture for decrypting encrypted data. 

Formation of the matrix of weights. The matrix of weights for decrypting encrypted data is formed 

from a matrix of weights for encrypting input data by transposing it: 

ተ𝑊ଵଵ 𝑊ଵଶ ⋯ 𝑊ଵ௞𝑊ଶଵ 𝑊ଶଶ ⋯ 𝑊ଶ௞⋮ ⋮ ⋯ ⋮𝑊ேଵ 𝑊ேଶ ⋯ 𝑊ே௞ተ் = ተ𝑊ଵଵ 𝑊ଶଵ ⋯ 𝑊ேଵ𝑊ଵଶ 𝑊ଶଶ ⋯ 𝑊ேଶ⋮ ⋮ ⋯ ⋮𝑊ଵ௞ 𝑊ଶ௞ ⋯ 𝑊ே௞ተ. (15)

The basic operation for encryption of input data and decryption of encrypted data is the 

calculation of the scalar product, which is implemented using a tabular-algorithmic method. 

Calculation of the table of macro-partial products for decryption of encrypted data. A specific feature of 

the scalar product calculation operation used to decrypt encrypted data is that the weights are pre-

calculated (constants) and set in floating-point format, while the encrypted data 𝑦௝ are received in 

block-floating-point format. The calculation of the scalar product using the tabular-algorithmic 

method is performed by formula (7). Preparation and calculation of possible variants of macro-partial 

products is performed as in the previous case under the formula (8). The number of possible variants 

of macro-partial products 𝑃ெ௜ and, accordingly, the volume of the table depends on the amount of 

encrypted data. For each table of macro-partial products, its largest common order 𝑚௉௠௦  is 

computed. 

Neural network tabular-algorithmic decryption of encrypted data. The main operation of neural 

network decryption of encrypted data is to multiply the matrix of weights 𝑊  by the vector of 

encrypted data 𝑦 by the following formula: 

𝑥௦ = ተ𝑊ଵଵ 𝑊ଶଵ ⋯ 𝑊ேଵ𝑊ଵଶ 𝑊ଶଶ ⋯ 𝑊ேଶ⋮ ⋮ ⋯ ⋮𝑊ଵ௞ 𝑊ଶ௞ ⋯ 𝑊ே௞ተ × 𝑦ଵ𝑦ଶ⋮𝑦ே. (16)

The multiplication of the matrix of weights 𝑊்  by the vector of input data 𝑦 is reduced to 

performing 𝑁 operations of scalar product calculation: 

𝑥௦ = ෍ 𝑊௦௝𝑦௝ே
௝ୀଵ  (17)

where 𝑁—number of products, 𝑠 = 1, 2, … , 𝑘;  𝑗 = 1, 2, … , 𝑁.  

Tabular-algorithmic calculation of the mantissa of the scalar product is reduced to reading the 

macro-partial product 𝑃ெ௜ from the table (memory) at the address corresponding to the i-th bit-slice 

of k input data, and adding it to the previously accumulated sums, according to the formula: 𝑥ெ௦௜ = 2ିଵ𝑦ெ௦(௜ିଵ) + 𝑃ெ௦௜, (18)
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where 𝑥௦଴ = 0, 𝑖 = 1, … , 𝑔 , 𝑔—bit rate of the encrypted data. The time necessary to calculate the 

scalar product mantissa is defined under the formula: 𝑡ௌ௉ = 𝑔(𝑡௧௔௕௟௘ + 𝑡௥௘௚ + 𝑡௔ௗௗ), (19)

where 𝑡ௌ௉ —time for scalar product calculation, 𝑡௧௔௕௟௘ – time for reading from a table (memory), 𝑡௥௘௚—time of reading (writing) from the register, 𝑡௔ௗௗ—time for adding. The result of the calculation 

of 𝑥௦ scalar product consists of a mantissa 𝑥ெ௦ and order, which is equal to 𝑚ௗ௘௖௥ ௦ = 𝑚௉ெ௦ + 𝑚௘௡௖௥. 

At the output of the neural network (see Figure 3), we obtain 𝑘 decrypted data in the following 

form 𝑥௦ = 𝑥ெ௦2௠೏೐೎ೝ ೞ, where 𝑥ெ௦ is the mantissa at the 𝑠-th output, 𝑚ௗ௘௖௥ ௦ is the value of the order 

at the 𝑠-th output. To obtain the input data, it is necessary to shift the 𝑠-th mantissa 𝑥ெ௦ by the value 

of the order 𝑚ௗ௘௖௥ ௦. 

4. The Structure of the System for Neural Network Cryptographic Data Protection and 

Transferring in Real-Time Mode  

The development of the structure of the system for neural network cryptographic data 

protection and transmission in real-time will be carried out using an integrated approach, which 

contains: 

• research and development of theoretical foundations of neural network cryptographic data 

encryption and decryption; 

• development of new tabular-algorithmic algorithms and structures for neural network 

cryptographic data encryption and decryption; 

• modern element base, development environment and computer-aided design tools. 

A system for neural network cryptographic data protection in real-time was developed using 

the following principles: 

• changeable composition of the equipment, which foresees the presence of the processor core and 

replaceable modules, with which the core adapts to the requirements of a particular application; 

• modularity, which involves the development of system components in the form of functionally 

complete devices; 

• pipeline and spatial parallelism in data encryption and decryption; 

• the openness of the software, which provides opportunities for development and improvement, 

maximising the use of standard drivers and software.; 

• specialising and adapting hardware and software to the structure of tabular algorithms for 

encrypting and decrypting data.; 

• the programmability of hardware module architecture through the use of programmable logic 

integrated circuits. 

The system of neural network cryptographic real-time data protection and transmission consists 

of a stationary part, which is a remote-control centre, and an UAV onboard part. The structure of the 

stationary part of the system of neural network cryptographic data protection and transmission is 

shown in Figure 4. 
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Figure 4. Structure of the stationary part of the system of neural network cryptographic data 

protection and transmission. 

The processor core of the remote-control centre is implemented on the basis of a personal 

computer. The transceiver is used to transmit encrypted data, it communicates with the processor 

core through the interface based on a microcontroller. 

The UAV onboard part of the system for neural network cryptographic real-time data protection 

and transmission is implemented on the processor core, which is supplemented by dedicated 

hardware and software. The processor core of the UAV onboard part of the system is designed on a 

microcomputer. The structure of the onboard part of the system of neural network cryptographic 

data protection and receiving is depicted in Figure 5. 

 

Figure 5. Structure of the UAV onboard part of the system of neural network cryptographic data 

protection and transmission. 

The effective implementation of neural network encryption-decryption and encoding-decoding 

algorithms in real time is achieved by combining universal and customised software and hardware. 

The use of modern elements (microcomputer, microcontroller, FPGA) in the development of the UAV 

onboard part ensures the accomplishment of the requirements for weight, dimensions and energy 

consumption. 

The effectiveness of the system for neural network cryptographic real-time data protection and 

transmission is directly associated with the choice of both hardware and software implementation. 
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5. Development of the Components of the Onboard System for Neural Network Cryptographic 

Data Encryption and Decryption 

5.1. Development of the Structure of the Components for Neural Network Cryptographic Data Encryption 

and Decryption 

In general, the problem of developing onboard systems for neural network cryptographic 

encryption-decryption of data can be formulated as follows: 

• to develop an algorithm for the onboard system of neural network encryption-decryption of data 

and present it in the form of a specified flow graph; 

• to design the structure of the onboard system for neural network data encryption-decryption 

with the maximum efficiency of equipment use, taking into account all the limitations and 

providing real-time data processing; 

• to determine the main characteristics of neural elements and carry out their synthesis; 

• to choose exchange methods, determine the necessary connections and develop algorithms for 

exchange between system components; 

• to determine the order of implementation in time of neural network data encryption-decryption 

processes and develop algorithms for their management.  

Components of the onboard system of neural network cryptographic data encryption and 

decryption should provide the implementation of the selected neural network, the ability to change 

masks, calculate matrices of weights 𝑊௝ and tables of macro-partial products 𝑃ெ௜ for possible neural 

network options. To effectively implement the components of the onboard system of neural network 

cryptographic encryption-decryption of data, it is proposed to use hardware-software 

implementation of the algorithms based on a microcontroller supplemented by specialized hardware. 

The structure of the component of neural network cryptographic data encryption, which meets such 

requirements, is presented in Figure 6, where MC—microcontroller, MN—mask node, NN—neural 

network, MP—macro-partial product, Rg—register, Add—adder. 

 

Figure 6. Structure of the component of neural network cryptographic encryption of data. 

The developed component of neural network cryptographic data encryption has a variable 

composition of equipment, which is based on the core of the system and a set of modules for 

calculating the scalar product. The system core is constant for all applications and consists of 

microcontroller MC, mask node MN, keys memory and module of the shaper of the NN architecture 

and bit slices of input data. The scalar product calculation modules implement the basic operation of 

the tabular-algorithmic method of scalar product calculation under the formula: 𝑍௜ = 2ିଵ𝑍௜ିଵ + 𝑃ெ௜, (20)
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where 𝑍଴ = 0. 

The number of modules for calculating the scalar product depending on the required speed is 

determined by the following formula: 𝑠 = ேଶೡ, (21)

where 𝑁 is the number of neuro-like elements, 𝑣 = 0, … , 𝑑, 𝑑 = 𝑙𝑜𝑔ଶ 𝑁. The system of neural network 

cryptographic data encryption reaches its highest speed when the number of computational modules 

of the scalar product corresponds to the number of neural elements 𝑁. To ensure real-time data 

encryption, it is proposed to implement the scalar product calculation modules, mask node module 

(MN), and module of the shaper of neural network architecture and bit slices of the input data in the 

form of specialized hardware. 

The neural network cryptographic data encryption component works as follows. Before 

encrypting the data, the MC configures the neural network architecture (determines the number of 

neural elements 𝑁, the number of inputs 𝑘 and their bit-size 𝑚). For the selected neural network 

architecture matrix of weights 𝑊௝ and tables of 𝑃ெ௜ macro-partial products are calculated by MC, 

and then they are written in the memory of MP. In addition, the masks selected from the keys’ 

memory are stored in the MN node. The message Х to be encrypted comes to input of MN in fixed-

point format, here it is masked. The masked message Х* from the output of MN comes to input of the 

module of the shaper of neural network architecture and bit slices, where it is divided into N groups 

with m bit rate and bit slices are formed 𝑥ଵ௜ , … , 𝑥ே௜ . It should be noted that forming of bit slices 𝑥ଵ௜ , … , 𝑥ே௜  begins with lower bits. The formed bit slices 𝑥ଵ௜ , … , 𝑥ே௜  are the addresses for reading 

macro-partial products 𝑃ெ௜ from the MP memory. The read macro-partial product 𝑃ெ௜ is written to 

the Rg1 register. The adder (Add) performs a summation of macro-partial products 𝑃ெ௜  as per 

formula (20). The number of cycles required to calculate the scalar product is determined by the bit-

size of input 𝑚 . Control of the encryption process in the onboard system of neural network 

cryptographic data encryption is performed by MC. 

The structure of the component of neural network cryptographic decryption of the encrypted 

data corresponds in general to the structure of the component of neural network cryptographic 

encryption of data, presented in Figure 6. 

5.2. Implementation of the Specialized Hardware Components of Neural Network Cryptographic Data 

Encryption on FPGA 

The design of specialized on-board hardware systems for neural network cryptographic data 

encryption was performed in the VHDL hardware programming language in the Quartus II ver. 13.1 

development environment using its libraries. Nowadays, the hardware description langauges such 

as VHDL, VHDL-AMS, Verilog, Verilog-AMS are widely used for creating behavioral descriptions 

and models of digital, analog and mixed-signal devices and systems [44,45]. The Quartus II 

development environment supports the entire process of designing specialized hardware from user 

input to FPGA programming, debugging of both the chip itself and the tools as a whole. 

A schematic diagram of the specialized hardware components of neural network cryptographic 

data encryption is shown in Figure 7. The inputs of module XOR_Mask1_4_2: X [7..0]—are the input 

data; Clk—input sync for input data download; X_Mask [7..0]—8-bit mask. At the output of this block 

N vectors with bit size m are formed. Synchronization is implemented on the leading edge of Clk 

pulses. 
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Figure 7. A circuit of the specialized hardware components of neural network cryptographic data 

encryption. 

Block V_Cutter with 𝑁 =  4 input vectors of bit size 𝑚 =  2 consists of N registers of parallel-

serial type and forms vertical bit slices. Input data: Data_1 [n-1..0],…, Data_N [n-1..0]—𝑁 input 

vectors with bit size 𝑛; Clk—pulses of synchronization of forming vertical bit slices; Reset—the signal 

of the initial reset in the “0” output of the registers R_Par_Ser; Load—the signal to allow data to be 

loaded into the R_Par_Ser registers. Outputs: V_Out1,…, V_OutN—vertical bit slice. The formation 

of vertical sections begins with the lower bit. 

The weights of the neural network with 𝑁 =  4 inputs with a bit size of 𝑚 =  2 are stored in 

the FPGA ROM in the form of 4 tables. Each of them consists of 16 words with a bit size of 32 bits. 

Reading data from these tables is performed using blocks ROM_W_4_2_1,…, ROM_W_4_2_4. 

Inputs of these blocks: addr [3..0]—the address of the cell of the table from which the data will 

be read; clk—synchronization pulses for reading data from the table. Synchronization is implemented 

on the leading edge of the pulses clk. Output: q [31..0]—data read from the cell with the input address. 

The data read from the tables is transmitted to the input blocks Shift_EXP, which perform their 

multiplication by 2௝, where 𝑗 =  0, … , 𝑛 − 1. Upon receipt of this block of data corresponding to the 

zero digit, the bit counter is reset. Synchronization of this block is carried out by means of clock pulses 

Clk. At the output X_Out [0..31] we get the input data multiplied by 2௝. 

From the output of the Shift_EXP blocks, the data are sent to one of the inputs of the adders 

FP_ADD. The other input of the adders is connected to their output. Adder input signals: clk—

synchronization pulses; reset—signal to reset the input data opa when implementing the adder with 

the battery; opa [0..31], opb [0..31]—terms. On the leading edge of the first pulse clk the adders are 

loaded into the adder, and on the leading edge of the second pulse the received sum is displayed. 

Adder output: the sum add [0..31]. 

From the output of the adders, FP_ADD data is fed to the input of the block XOR_Mask2_32, 

which performs the overlay of the 32-bit mask. Inputs of the block XOR_Mask2_32: X [31..0]—

encrypted output data; Clk—synchronization of input data download; X_Mask [31..0]—32-bit mask. 

Block output: vector Y [31..0]. Synchronization is implemented on the leading edge of Clk pulses. The 

encrypted data are obtained at the outputs D_Out_1, D_Out_2, D_Out_3, D_Out_4. 

The timing diagram of the specialized hardware of neural network cryptographic data 

encryption is presented in Figure 8. 
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Figure 8. The timing diagram of the specialized hardware of neural network cryptographic data 

encryption. 

The implementation of the specialized hardware for neural network cryptographic data 

encryption based on the FPGA EP3C16F484C6 Cyclone III family [46] requires 3053 logic elements 

and 745 registers. Approximately 160 nanoseconds are required to encrypt one input vector. 

6. Conclusions 

The neural network technology for real-time cryptographic data protection with symmetric keys 

(masking codes, neural network architecture and weigh matrix) for UAV onboard communication 

systems has been presented in this work. It provides high cryptographic stability and hardware-

software implementation with high technical and operational characteristics. 

The tabular-algorithmic scalar product calculation method has been improved. It provides fast 

calculation of the scalar product for both fixed-point and floating-point input data. It does this by 

finding the largest common order of weights and building tables of macro partial products for them. 

It is proposed to develop the UAV onboard system for neural network cryptographic data 

protection in real-time using an integrated approach based on the following principles: variable 

equipment composition; modularity; conveyorization and spatial parallelism; software openness; 

specialization and adaptation of hardware and software to data encryption and decryption keys. 

Components of neural network cryptographic data encryption/decryption have been designed 

on the basis of the processor core supplemented by the specialized scalar product calculation 

modules. 

The specialized hardware for neural network cryptographic data encryption was developed in 

the VHDL equipment programming language in the Quartus II environment and implemented using 

family Cyclone III FPGA EP3C16F484C6. 
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