
Article Not peer-reviewed version

Solution of the Capacitated Lot-Sizing

Problem with Remanufacturing (CLSPR)

in a General Way with the Help of

Simulation and Relaxation

Luis Rocha *

Posted Date: 30 July 2024

doi: 10.20944/preprints202304.0242.v4

Keywords: simulation based optimization; capacitated lot-sizing problem; heuristics; remanufacturing

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2893919

Article

Solution of the Capacitated Lot-Sizing Problem with
Remanufacturing (CLSPR) in a General Way with the
Help of Simulation and Relaxation

Luis Rocha

Chair of Supply Chain Management, European University Viadrina, Große Scharrnstraße 59, Frankfurt (Oder), 15230,
Brandenburg, Germany; rocha@europa-uni.de

Abstract: The capacitated lot-sizing problem with product recovery (CLSP-RM) holds significant importance in

reverse logistics but is notoriously complex (NP-hard). In this study, two techniques are introduced to confront

this challenge. The first technique entails devising a linear optimization task that eliminates capacity limitations

across a wide problem spectrum, yielding a remarkably accurate approximation of the optimal solution. This

adaptable approach presents a potent alternative and holds potential for extension to diverse problem categories

owing to its versatile nature. The second technique employs a simulation methodology utilizing Halton’s uniform

random numbers to address the issue. This randomized production search method sidesteps considerations

of production costs, inventory expenditures, and production order when determining production batches. The

research’s novelty lies in its application of these techniques to the problem. The suggested methods undergo

evaluation via a benchmark dataset of approximately 4200 instances, with comparison against solutions derived

through the Gurobi solver. The results underscore the efficacy and resilience of the introduced methodology in

tackling the CLSP-RM predicament (The test instances and solutions are available here).

Keywords: capacitated lot-sizing problem; heuristic; simulation based optimization; remanufacturing

1. Introduction

Two seminal papers have profoundly shaped the landscape of the Lot Sizing Problem (LSP).
The inaugural paper, known as the Dynamic Economic Lot Sizing model (DLS), was concurrently
introduced by [1,2], and is widely recognized as the Manne-Wagner-Whitin Model. In its "classical"
rendition, the DLS addresses a discrete-time, finite-horizon inventory management challenge involving
a singular item. Its primary objective is to efficiently meet deterministic time-varying demands
through optimal stock management or procurement strategies, with further elucidation provided in
([3]). The second pivotal paper, the Economic Lot Scheduling Problem (ELSP), was brought forth
by Elmaghraby ([4]). Both of these works tackle a fundamental issue within production planning
determining optimal lot sizes and production schedules for a multitude of items produced on a
shared production line or machine. The overarching goal is to minimize expenses associated with
production and inventory while simultaneously fulfilling demand requirements and adhering to
pertinent production constraints. Supplementary insights can be found in ([4]). Researchers have
further expanded upon the work of Elmaghraby and Manne-Wagner-Whitin to tackle variations and
more advanced versions of the ELSP and DLS. These advancements include incorporating uncertainties,
time windows, and remanufacturing into the models. For a comprehensive overview of the economic
lot sizing problem, readers can consult [5,6]. The Economic Lot Scheduling Problem (ELSP) with
remanufacturing options (ELSPR) represents an extension of the classical Wagner Whitin model. A
notable enhancement is the incorporation of a distinct element: within each time period, predetermined
quantities of used products are introduced into the system. These returned items offer the potential for
remanufacturing, serving to fulfill demand alongside the conventional manufacturing processes. In
recent decades, there has been a growing emphasis on production planning, particularly with regard
to incorporating recycling options [7]. The literature outlines two distinct categories of recycling
production planning problems.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://data.mendeley.com/datasets/pggm5wvg2n/1
https://doi.org/10.20944/preprints202304.0242.v4
http://creativecommons.org/licenses/by/4.0/

2 of 26

In the first category (Cat. 1), the primary objective is to meet the external demand for products
through either remanufactured or newly produced goods Figure 1. This category focuses on regulating
two types of inventories: the inventory of new products and the inventory of remanufactured products.
It is assumed that both new and remanufactured products are identical and, thus, considered service-
able entities that can fulfill demands. Numerous authors have extensively studied this category [8].
This category also encompasses issues related to pricing and lot sizing, wherein demand is fulfilled
through various substitution alternatives.

The second category (Cat. 2) deals with two distinct demands: one for new products and the other
for recycled products. Additionally, this category introduces a key feature where a deterministic quan-
tity of returned goods enters the system in each period. These returned items can be remanufactured
and used to meet the demand for remanufactured products, complementing the regular production of
new items. As a result, the inventory includes three types of stocks: new products, remanufactured
products, and returned products Figure 1.

In specific industrial sectors, such as the paper industry, two different types of demand are
observed: one for recycled paper and the other for paper made from new fiber. Recycled paper is
typically priced lower due to its reduced water and energy consumption during production, compared
to virgin fiber papers [9]. Moreover, recycled paper often benefits from shorter transportation distances
as it is sourced locally, while virgin fiber and new fiber papers are imported from other countries in
larger quantities. This observation extends to other sectors, including photocopiers, tires, and personal
computers [see 10,11].

ire
t

Inventory
Remanufacturing

in
t

Inventory

Manufacturing

Customers

rre
t

xr
t

xn
t

dn
t

(a) Category 1

ire
t

Inventory
Remanufacturing

irt

Inventory

in
t

Inventory
Manufacturing

Customers

rre
t xr

t

xn
t

dr
t

dn
t

(b) Category 2
Figure 1. Dynamic Capacitated Lot-Sizing with Produkt Returns and Remanufacturing.

Publications regarding Category 1: Building upon Elmaghraby’s groundwork ([see 4]), Tang
and Teunter ([12]) investigated the hybrid production line’s multi-product dynamic lot sizing. This
involved manufacturing new products and remanufacturing returns, with a single manufacturing and
remanufacturing lot per product synchronized within a common cycle. They constructed a Mixed
Integer Linear Programming (MILP) problem for precise resolution. The multi-product dynamic lot
sizing problem with distinct manufacturing and remanufacturing sources, each operating on separate
dedicated lines, was further examined in [13].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

3 of 26

In a study by [14], a multi-item economic lot-sizing problem involving remanufacturing and
capacitated production was examined. The study drew upon the concept introduced by Garfinkel
and Nemhauser (1969), known as the Set Partitioning Problem (SPP). Another contribution, by [15],
delved into the multi-item economic lot-sizing problem with remanufacturing and uncapacitated
production. They extended the model initially proposed by [16] and put forward two innovative
variations of the Variable Neighborhood Search (VNS) algorithm. These variants aimed at discovering
optimal solutions for the ELSR problem. In a separate work, [17] introduced an effective Mixed
Integer Programming (MIP)-based matheuristic for the multi-item capacitated lot-sizing problem with
remanufacturing (CLSP-RM). Notably, this approach addresses capacity constraints individually for
new and remanufactured products.

[18] conducted a comparative analysis of MIP approaches for the economic problem of single-item
lot-sizing with remanufacturing (ELSR) and uncapacitated production. They proposed a shortest
path formulation. [19] contributed a polynomial-time heuristic within this category. Their work also
includes a comprehensive compilation of methods developed by [20–24]. Addressing an extension of
the economic problem of single-item lot sizing, [25] introduced considerations for remanufacturing,
final disposal, and distinct demand flows for new and remanufactured products. This extension also
accounted for a unidirectional substitution, wherein the demand for remanufactured products can be
satisfied by new items, but not vice versa. The authors proposed both a network flow formulation and
a pseudopolynomial time dynamic programming algorithm. Notably, the model does not incorporate
capacity constraints.

Publications regarding category 2: By [26] address the production planning problem within
a hybrid manufacturing and remanufacturing system (HMRS). They postulate a multi-objective
mathematical model (MIP) whose objective is to determine a production plan taking into account
the available capacities in each period, which satisfies the demand for new and remanufactured
products and minimizes all costs of production, storage and disposal of new products, as well as the
minimization of CO2 emissions generated in production. They introduce a solution method based on
a non-dominant sorting algorithm (NSGA-II).

[27] investigates the joint problem of pricing and lot sizing in a hybrid manufacturing and
remanufacturing system with a one-way substitution option. Two demand performances, for new and
remanufactured items, are considered in this paper. In the case of a shortage of remanufactured items, a
one-way substitution option is assumed, so that the demand for these remanufactured items is satisfied
with new items. The presented mathematical model is an MIP but without capacity constraints. As a
solution method they adapt "the cost and benefit heuristic" (CB-heuristic) introduced by [28] and also
a memetic algorithm which is improved with the help of a local search.

Zhang et al. ([29]) investigate the capacitated lot sizing problem in closed-loop suply chain
considering setup costs, product returns, and remanufacturing. They present a Lagrange relaxation to
solve the problem. Based on Zhang’s model we formulate the same problem but taking more general
capacity constraints and doing more extensive numerical experiments.

The capacitated lot-sizing problem model is NP-hard. The proof of this statement is to be found
in [30,31]. [32] has shown that even the two-item problem with constant capacity is NP-hard. Heuristic
methods employed for solving problems within the CLSP class typically rely on a wide range of
sorting rules and other criteria derived from factors such as demand, capacity, setup costs, inventory
costs, and production costs. Examples of such heuristic methods include those presented in references
like [22,23,33,34]. The achieved solution margin tends to vary within the range of 1% to 10%, as
reported in references such as [29,34].

1.1. Research Contributions

This study incorporates two significant constraints. The first constraint ensures that the cumulative
demand for both new and remanufactured products remains within the cumulative capacity for each
period. The second constraint mandates that the cumulative demand for remanufactured products

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

4 of 26

during each period does not surpass the cumulative quantities of used products returned within the
same period. No specific relationship is imposed between the existing capacities and the quantities of
returned products. This particular characteristic, which is overlooked in certain promoted publications,
adds an additional layer of complexity to the problem, rendering it non-standard in nature.

The contribution of this work can be summarized as follows: We examine two overarching
problem classes under the framework of the aforementioned capacity constraints. These classes are as
follows:

• The first class involves production periods where the demand for both new and remanufactured
product exceeds the available capacity within those specific time frames. To address this sce-
nario, we propose a linear program devoid of capacity constraints, providing a highly accurate
approximation of the optimal solution.

• In the second problem class, each period experiences demand that falls short of the existing
capacity. This specific problem category exhibits an NP-hard nature, leading us to adopt a direct
simulation approach. Additionally, the quasi-random numbers QRN, introduced by [35–37],
showcase significant properties, as evidenced by [38]. Among these characteristics, their uniform
distribution stands out. Accordingly, we present a straightforward simulation utilizing these quasi-
random numbers (QRN). Irrespective of the input parameters, we organize production based
on both feasibility and randomness. Starting from the initial production period, we define lower
and upper limits for viable production ranges of the new product. This production information
informs the establishment of production range limits for the remanufactured product. The order
in which the new or remanufactured product is produced holds no significance in the algorithm’s
execution. These defined limits delineate production intervals that strictly adhere to all problem
constraints. Within each interval, a random production quantity is generated using uniform
random numbers derived from the Halton sequence. It is imperative to emphasize that the
random production process significantly influences the subsequent determination of feasible
production intervals.

• Moreover, our heuristic approach ensures the generation of a feasible solution whenever the
problem is solvable. After simulating N production plans, we select the most cost-effective one.
This solution is then compared against numerical solutions obtained through the Gurobi solver.
The scheduling process is straightforward, and the results prove to be quite satisfactory given the
scale of the presented problems.

1.2. Outline

The rest of the paper is organized as follows: section 2 we propose a new mathematical program-
ming formulation for the problem. In section 3 we present a relaxation of the problem without capacity
constraints (Model A) and we will see that the solution obtained for the chosen class of tasks is very
close to the optimal solution of the original problem. In section 4, we present a heuristic solution
method (Model B) for another class of tasks. In section 5, we report the results of computational
experiments. In section 6 we present some conclusions and suggested directions for further research.

2. Problem Description

We assume that a factory produces two types of products, one manufactured from raw materials
and the other remanufactured from collected used products. The demands for these two products
are separate, deterministic, and time varying during a finite planing horizon, and should be satisfied
without backlogging. The costs consist of fixed setup cost, linear production cost proportional to
the production quantity, and linear inventory holding costs. All cost components are considered for
both manufacturing and remanufacturing activities per unit and periode [29]. The following Table 1
summarize the notation used in this paper.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

5 of 26

Table 1. Data and parameters

Name Paramenter

T Number of time periods
t ∈ {1, · · · , T}

in
0 , ir0, ire

0 Initial inventory stocks
Cost per unit and period t

sn
t Setup cost for manufacturing new product

sr
t Setup cost for remanufacturing product

pn
t production cost of new product

pr
t production cost of remanufactured product

hn
t holding cost of new product

hr
t holding cost of remanufactured product

hre
t holding cost of returned product

Demand and return in period t
dn

t Demand of new product
dr

t Demand of remanufactured product
rre

t Quantity of returned product
Available Capacities in period t

ct capacities for manufacturing and
remanufacturing
(capacity requirement for new product and
recovery product is set to one).

dt = dn
t + dr

t , ∀t = 1, · · · , T
dn
[T] = ∑T

t=1 dn
t

dr
[T] = ∑T

t=1 dr
t

Table 2. Decision variables

Name Paramenter

αn
t 1, if new products are manufactured

in period t; 0, otherwise
xn

t quantity of new products manufactured
in period t

in
t inventory stock of new products

at the end of period t
αr

t 1, if returned products are remanufactured
in period t; 0, otherwise

xr
t quantity of returned products remanufactured

in period t
irt inventory stock of remanufactured

products at the end of period t
ire
t inventory stock of returned products

at the end of period t

We make the following assumptions

1. The demand for new products and remanufactured products are separate and backlog is not
allowed.

2. The manufacturing capacity is sufficient to meet the demands in each period, in particularly
we have: the capacity can satisfy the demands for new products and remanufactured products
simultaneously, i.e.

t

∑
j=1

(dn
j + dr

j) ≤
t

∑
j=1

cj, ∀t = 1, · · · , T (1)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

6 of 26

3. Initial and end inventory stocks are zero, 1 i.e.

in
0 = 0, ir0 = 0, ire

0 = 0

in
T = 0, irT = 0 (2)

The demand will be fully satisfied if the final inventories are zero.
4. The quantity of returned products can satisfy the demand for remanufactured products i.e.

t

∑
j=1

dr
j ≤

t

∑
j=1

rre
j ∀t = 1, · · · , T. (3)

5. In economic terms, inventory holding cost of returned products is less than that of remanufactured
products.

T

∑
j=t

hre
j ≤

T

∑
j=t

hr
j , ∀t = 1, · · · , T (4)

This hypothesis can be found in [39] too.

Hence, the problem can be formulated as

f (xn, xr) =
T

∑
t=1

(sn
t αt + pn

t xn
t + hn

t in
t) +

T

∑
t=1

(sr
t αr

t + pr
t xr

t + hr
t irt)

+
T

∑
t=1

(hre
t ire

t) −→ min (5)

subject to

in
t = in

t−1 + xn
t − dn

t , ∀t = 1, · · · , T (6)

irt = irt−1 + xr
t − dr

t , ∀t = 1, · · · , T (7)

ire
t = ire

t−1 + rre
t − xr

t , ∀t = 1, · · · , T (8)

xn
t + xr

t ≤ ct, ∀t = 1, · · · , T (9)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (10)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (11)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (12)

αn
t , αr

t ∈ {0, 1} (13)

The objective function (5) minimizes the sum of setup cost, production cost, and inventory cost for new
products and remanufactured products in all periods. Constraints (6),(7) and (8) are the inventory
balance constraints for new products, remanufactured products and returned products. Constraints (9)
represent capacity constraints for manufacturing and remanufacturing activities. Constraints (10), (11)
allow production only with the according setups (i.e αn

t = 1, αr
t = 1.) (12) and (13) are the standard

integrality and non-negative constraints.

1 We can always transform a problem with non zero initial or final stock by adapting the demand.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

7 of 26

2.1. Rewriting the Optimization Problem

in
t , irt , ire

t are replaced in the objective function by

in
t =

t

∑
j=1

(
xn

j − dn
j

)
, irt =

t

∑
j=1

(
xr

j − dr
j

)
, (14)

ire
t =

t

∑
j=1

(
rre

j − xr
j

)
(15)

And with a bit of algebraic transformations, we obtain

T

∑
t=1

(pn
t xn

t + hn
t in

t) =
T

∑
t=1

(pn
t +

T

∑
j=t

hn
j)xn

t −
T

∑
t=1

(hn
t

t

∑
k=1

dn
k)

T

∑
t=1

(pr
t xr

t + hr
t irt + hre

t ire
t) =

T

∑
t=1

(pr
t +

T

∑
j=t

(hr
j − hre

j))xr
t

+
T

∑
t=1

(−hr
t

t

∑
k=1

dr
k + hre

t

t

∑
k=1

rre
k)

With the notation

vn
t = pn

t +
T

∑
j=t

hn
j ,

vr
t = pr

t +
T

∑
j=t

(hr
j − hre

j)

K =
T

∑
t=1

{
−hn

t

t

∑
k=1

dn
k − hr

t

t

∑
k=1

dr
k + hre

t

t

∑
k=1

rre
k

}
.

our model is finally

φ(xn, xr) =
T

∑
t=1

[sn
t αn

t + vn
t xn

t] + [sr
t αr

t + vr
t xr

t] + K −→ min (16)

Subject to

t

∑
j=1

xn
j ≥

t

∑
j=1

dn
t , ∀t = 1, · · · , T (17)

t

∑
j=1

xr
j ≥

t

∑
j=1

dr
t , ∀t = 1, · · · , T (18)

t

∑
j=1

rre
j ≥

t

∑
j=1

xr
j , ∀t = 1, · · · , T (19)

xn
t + xr

t ≤ ct, ∀t = 1, · · · , T (20)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (21)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (22)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (23)

αn
t , αr

t ∈ {0, 1} (24)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

8 of 26

3. Model A (Relaxation)

According to our conditions(1) and (3) the general problem has a solution, if the total pro-period
demand is less than the pro-period capacity (i.e.dt <= ct). However there are situations, where
conditions (1) and (3) are satisfied but dt <= ct is not satisfied e.g. Table 3. We need a feasibility
routine which ensures that all demand is satisfied without backlogging. Indeed there are periods (or
could be) in which total demand exceeds total capacity. In this case some inventory will have to be
build up in earlier periods which slack capacity. We explain how to shift excess demand to earlier
periods in which slack capacity is available. We use and complement the idea of [40].

w̃T = 0

w̃t = max{dt+1 − ct+1 + w̃t+1; 0}, t = T − 1, · · · , 1.

We define

w1 = w̃1

wt = w̃t − w̃t−1, t = 2, · · · , T.

It is easy to see that the sum w[T] is null.

w[T] = w1 + w2 + · · ·+ wT

= w̃1 + (w̃2 − w̃1) + · · ·+ (w̃T − w̃T−1)

= w̃T = 0.

Remark 1. The vector wT = (w1, · · · , wT) is very useful. Because wt gives the amount of stock to accumulate
(wt > 0) or reduce (wt < 0) in each period so that production does not exceed available capacity pro period. And
allows us to determine a good permissible solution.

Table 3. Original Data

t rre
t dn

t dr
t dt ct w

1 198 153 183 336 609 57
2 806 84 302 386 632 246
3 223 100 146 246 101 -145
4 283 100 127 227 295 68
5 500 248 598 846 620 -226
6 500 0 0 0 561 0
Sum 2510 685 1356 2041 2818 0

We see that the demand transformation done in Table 4 is a valid (permissible) solution to the
problem (16)-(24). There are many ways to make this transformation, and for this reason to transform
the demand in an optimal way we formulate the following problem.

φ(xn, xr) =
T

∑
t=1

[sn
t αn

t + vn
t xn

t] + [sr
t αr

t + vr
t xr

t] + K −→ min (25)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

9 of 26

Subject to

t

∑
j=1

xn
j ≥

t

∑
j=1

dn
t , ∀t = 1, · · · , T (26)

t

∑
j=1

xr
j ≥

t

∑
j=1

dr
t , ∀t = 1, · · · , T (27)

t

∑
j=1

rre
j ≥

t

∑
j=1

xr
j , ∀t = 1, · · · , T (28)

xn
t + xr

t − dn
t − dr

t = wt, ∀t = 1, · · · , T (29)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (30)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (31)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (32)

αn
t , αr

t ∈ {0, 1} (33)

If the model (25)-(33) has no solution, it means the model (16)-(24) has no solution too.
We have a problem with no capacity restrictions. We solve this problem and compare it with the
optimal solution of the initial problem (16)-(24).

Table 4. Demand Transformation

t d̃n
t d̃r

t d̃t ct d̃[t] c[t]
1 195 198 393 609 393 609
2 42 590 632 632 1025 1241
3 101 0 101 101 1126 1342
4 295 0 295 295 1421 1637
5 52 568 620 620 2041 2257
6 0 0 0 561 2041 2818
Sum 685 1356 2041 2818

Remark 2. It is important to clarify that this task only makes sense if the vector w is not equal to the null vector.
If the vector w is equal to the null vector it means that in each period dt <= ct. In this case a relaxation is not
possible and the problem (16)-(24) will be solved with a heuristic method (Model B).

4. Model B (Simulation)

4.1. Low Discrepancy Sequences

The generation of random numbers with a computer is not possible Knuth [41]. As John von
Neumann said: Any one who considers arithmetical methods of producing random digits is, of course, in a
state of sin, [42]. An excellent overview of the methods of generating pseudo-random numbers are available [e.g.
41,43,44].

In this section we explain the number-theoretical concept of discrepancy. Then, we introduce the Halton
sequence which is probably the easiest low-discrepancy 2 number generation method to describe.

Definition 1. Let {z1, · · · , zN} a sequence of real numbers with 0 < zi < 1, i = 1, · · · , N. The discrepancy
DN for the sequence is defined as

DN = sup
l
| SN(l)− N |l| | (34)

2 low discrepancy sequences are called quasi-random sequences

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

10 of 26

where l is any subinterval [a, b) ⊆ [0, 1], |l| = b− a, and SN(l) denotes the number of elements of the sequence,
that belongs to the interval l.

A measure for how a sequence of real numbers {z1, · · · , zN} , a < zi < b, i = 1, · · · , N is equidistributed
on an interval [a, b] is the discrepancy DN . Low-discrepancy sequences, also known as quasirandom sequences,
are numbers that are better equidistributed in a given volume than pseudo-random numbers.

Remark 3. A sequence {z1, · · · , zN}, 0 < zi < 1, i = 1, · · · , N of real numbers is said equidistributed on the
interval [0, 1] if DN = o(N), N → ∞, [35].

The (QRN) of Halton, Sobol and Niederreiter have a low discrepancy DN = O(ln(N)/N). While
pseudorandon sequences have a discrepancy DN = O(1/

√
N), [?]. Figure 2 uses two-dimensional projection of

a pseudorandom sequence and of a low-discrepancy (Halton) sequence to demonstrate the fundamental difference
between the two classes of sequences.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Halton Points

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pseudorandom Points

Figure 2. Two-dimensional projection of 5000 Halton and Pseudorandom points

The desirable properties of a sequence of this (QRN) may be summarized as follows [see 37]:

1. the least period length should be sufficiently large,
2. it should have littie intrinsic structure (such as lattice structure),
3. it should have good statistical properties,
4. the algorithm generating the sequence should be reasonably efficient.

It’s easy to generate sequences of Halton with the following Algorithm 1.

Algorithm 1: Construction of Halton sequences
Input: p prime, n >= 1 natural number
Output: A Halton number zh
i = 1, zh = 0
while n ̸= 0 do

r = n mod p
n = n\p
zh = zh +

r
pi

i = i + 1
end
return zh

The following Halton sequences of Table 5 are constructed according to Algorithm 1 that uses a prime
number as its base.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

11 of 26

Table 5. Halton Numbers

Prime numbers
2 3 5 7

n Halton numbers

1 0,5 0,33333333 0,2 0,14285714
2 0,25 0,66666667 0,4 0,28571429
3 0,75 0,11111111 0,6 0,42857143
4 0,125 0,44444444 0,8 0,57142857
5 0,625 0,77777778 0,04 0,71428571

Remark 4. To generate the n-th Halton point in a sequence consider the base b−ary expansion of a n =

∑∞
i=0 ai bi where the b−ary coefficients ai ∈ {0, · · · , b− 1}. Then the n-th Halton point is H(n) = ∑∞

i=0 ai b−i−1.
It’s easy to build a Halton-sequence with the following observation: If a0 < b− 1 then H(n+ 1) = H(n) + 1/b
else if a0 = b− 1 then H(n + 1) = H(n)− (1− bk − bk+1) where k = min{i ≥ 0 : ai ̸= b− 1} (details
see [38]). This method is very efficient and will be used in this paper.

4.2. Notation

We use the following notation ∀t = 1, · · · , T

Name Meaning

dn
[t] =

t

∑
j=1

dn
j dn

[0] = 0

dr
[t] =

t

∑
j=1

dr
j dr

[0] = 0

rre
[t]=

t

∑
j=1

rre
j rre

[0]= 0

xn
[t] =

t

∑
j=1

xn
j xn

[0] = 0

xr
[t] =

t

∑
j=1

xr
j xr

[0] = 0

The notation x ∈ [a, b]p means x = (b− a)z + a, a ≤ b, 0 ≤ z ≤ 1 and the number z is simulated with the
following distribution

z =

(
zh 0 1
p q q

)
(35)

0 ≤ p ≤ 1, q =
1
2
(1− p), zh is a Halton number

We generate a pseudorandom number 0 ≤ g ≤ 1 to decide, that values take z, see Algorithm 2.
In Model B (section 4) we will investigate the class of problems with the condition

dn
t + dr

t = dt ≤ ct, ∀t (36)

If this condition is not satisfied, the problem is easily solved with Model A (section 3).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

12 of 26

Algorithm 2: Simulation of z with distribution (35)

if g ≤ p then
z = zh ;

end
else if g ≤ p + q then

z = 0 ;
end
else

z = 1 ;
end

4.3. Simulation

The simulation is based on the following lemma.

Lemma 1. Let xt = xn
t + xr

t and dt ≤ ct, ∀t = 1, · · · , T. Then

d[t] − x[t−1] ≤ xt ≤ ct, ∀t = 1, · · · , T (37)

Proof. The proof proceeds by induction on t. In fact, if t = 1 because x[0] = 0 and d1 ≤ c1, we can
choose x1 such that d1 ≤ x1 ≤ c1.

d[t+1] − x[t] = dt+1 − xt + d[t] − x[t−1]

By induction hypothesis

≤ dt+1 − xt + xt

≤ ct+1

Then we can xt+1 choose such that d[t+1] − x[t] ≤ xt+1 ≤ ct+1.

Remark 5. If in Lemma 1 d[t] − x[t−1] < 0 then production in period t is xt = 0 because production up to
period t− 1 satisfies demand up to period t.

Remark 6. Lemma 1 gives the following lower bound for the production of the products

xn
t ≥ un

t =max{dn
[t] − xn

[t−1]; 0} (38)

xr
t ≥ ur

t =max{dr
[t] − xr

[t−1]; 0} (39)

4.4. Basis of the Simulation

The production plan is created step by step starting from period t = 1. To determine the production in
period t, we know the selected production until period t− 1. In each period, using the constraints of the task
(16)-(24) for the production of the products, we determine a lower and an upper bound. Then the production
quantity is chosen randomly between the lower and upper limits. These production quantities affect the lower
and upper bounds of the future period. We continue in this way until the period t = T. Then we calculate the
value of the cost function(i.e., objective function). We repeat this procedure (N times) and choose the production
plan with the lowest cost. The advantages of this method is that we do not have to worry about the inventory,
production or setup costs. The method is now presented in more detail.

Proposition 1. If un
t = 0 then xn

t = 0, αn
t = 0, else xn

t ≥ un
t , αn

t = 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

13 of 26

Proof. From (17) we get
xn
[t] − dn

[t] = xt + (xn
[t−1] − dn

[t]) ≥ 0 (40)

If (xn
[t−1] − dn

[t]) ≥ 0, then total production of new products up to period (t− 1) satisfies total demand
up to period t and therefore nothing is produced in period t, i.e. xn

t = 0, αn
t = 0.

If (xn
[t−1] − dn

[t]) < 0, then the production xn
t has a lower bound. From (40) we obtain

xn
t ≥ dn

[t] − xn
[t−1]. (41)

Proposition 2. If ur
t = 0 then xr

t = 0, αr
t = 0, else αr

t = 1 and

rre
[t] − xr

[t−1] ≥ xr
t ≥ ur

t . (42)

Proof. From (18) and (19)
rre
[t] ≥ xr

t + xr
[t−1] ≥ dr

[t]. (43)

If (xr
[t−1] − dr

[t]) ≥ 0, then total production up to period (t− 1) satisfies total demand up to period t
and therefore nothing is produced in period t, i.e. xr

t = 0, αr
t = 0.

If (xr
[t−1] − dr

[t]) < 0, then the production xr
t has an upper and lower bound. From (43) results the

assertion.

Proposition 3. If un
t > 0 and ur

t > 0, then

on
t = min{ct − ur

t , dn
[T] − xn

[t−1]}

or
t = min{ct − xn

t , dr
[T] − xr

[t−1], rre
[t] − xr

[t−1]}

And

un
t ≤ xn

t ≤ on
t (44)

ur
t ≤ xr

t ≤ or
t (45)

Proof. From (20) and remark 6

ct ≥ xn
t + xr

t ≥ xn
t + ur

t

ct − ur
t ≥ xn

t (46)

From (2)

dn
[T] = xn

[T] ≥ x
n

[t−1] + xn
t

dn
[T] − xn

[t−1] ≥ xn
t (47)

From (46) and (47)
xn

t ≤ on
t (48)

Therefore we simulate the production xn
t according to (35)

xn
t ∈ [un

t , on
t]p, αn

t = 1. (49)

From (20) using xn
t of (49) we get

ct − xn
t ≥ xr

t (50)

and then from (2) we obtain

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

14 of 26

dr
[T] = xr

[T] ≥ xr
[t] = xr

t + xr
[t−1]

dr
[T] − xr

[t−1] ≥ xr
t (51)

From (50), (51) and (42) results
xr

t ≤ or
t (52)

Therefore we simulate the production xr
t according to (35)

xr
t ∈ [ur

t , or
t]p, αr

t = 1. (53)

4.5. Simulation of the Objective Function

Let R be a matrix with Halton’s QRN

R =

(
R(1, 1) · · · R(1, T)
R(2, 1) · · · R(2, T)

)

We simulate the production starting in period t=1. The calculation of the objective function is carried out with
Algorithm 3 using proposition 1, 2 and 3.

Algorithm 3: Calculation of the objective function

Data: R = [2× T] matrix with Halton-QRN
Result: φ(xn, xr)

t = 1, φ = 0, xn
[0] = xr

[0] = 0

while t ≤ T do
if un

t > 0 and ur
t > 0 then

xt ∈ [un
t , on

t]p using R(1, t)
xr

t ∈ [ur
t , or

t]p using R(2, t)
αn

t = 1, αr
t = 1

end
else if un

t > 0 and ur
t = 0 then

xn
t ∈ [un

t , on
t]p using R(1, t)

xr
t = 0,

αn
t = 1, αr

t = 0
end
else if un

t = 0 and ur
t > 0 then

xn
t = 0

xr
t ∈ [ur

t , or
t]p using R(2, t)

αn
t = 0, αr

t = 1
end
else

xt = 0, xr
t = 0

αn
t = 0, αr

t = 0
end
φ := φ + sn

t αn
t + vn

t xn
t + sr

t αr
t + vr

t xr
t

xn
[t] := xn

[t−1] + xn
t , xr

[t] := xr
[t−1] + xr

t

t = t + 1
end

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

15 of 26

Further information on the complexity-theoretic approach to randomness can be found in [45,46] and [47].

Remark 7. 1. The generation of the matrix R[N × T] requires O(N × T) operations.
2. Die evaluation of the function φ(xn, xr) with Algorithm 3 requires O(T) operations

Then, the computational complexity of the simulation with N points and T periods is O(N × T).

5. Numerical Experiments

5.1. Test Design

We analyse the quality of our solution approach of model A and model B by defining 11 problem classes
(PC) by varying the number of periods, see Table 6. The planning horizon T is made very large because in the
paper industry planning is done daily. Each PC consists of 200 test instances (TI). In model A, 1824 of the 2200
TI were solvable, in model B 2200. In total, we examined 4024 TI 3+. Model A and Model B are implemented on
a computer with Intel(R) Core(TM)iT − 9700K, CPU@3.60GHz,3600MHz.

Table 6. Problem classes

PC1 PC2 PC3 PC4 PC5 PC6
T 15 30 60 90 120 150

PC7 PC8 PC9 PC10 PC11
T 180 210 240 270 300

We vary different parameters to define the TI, e.g., the time between orders (TBO) to determine setup costs.
The specifications of the parameters are designed in an exaggerated form, which may not occur in practice, to
make the TI as difficult as possible.

The parameters for generating data sets (see Table 7) use the following notation x ∈ [a; b] ⇔ x =

(b− a)θ + a, a ≤ b, where 0 ≤ θ ≤ 1 is a random number, that means the values are uniformly distributed on
the interval [a, b].

5.2. Model A

We randomly generate capacities ct, then with condition (1) randomly generate aggregate demand dt. This
latter is then randomly cut into dn

t and dr
t . The remaining parameters according to Table 7.

Table 7. Parameters for Model A

ct ∈ [0; 800] dn
t , dr

t with condition (1)
pn ∈ [15; 20] pr ∈ [10; 15]

hn
t ∈ [5; 10] hr

t ∈ [3; 8]
hre

t with condition (4) rre
t with condition (3)

sn
t = d̄n TBO2 hn

t
2 , TBO ∈ {1, 2, 4}

sr
t= d̄r TBO2 hr

t
2 , TBO ∈ {1, 2, 4}

d̄n, d̄r represent the average demand values.

5.2.1. Results of Model A

The solution of problem (25)-(33) (TD) and the optimal solution of problem (16)-(24) (OP) were found
with the Gurobi solver version 9.0.3.

We randomly generated 200 instances per PC and usually between 10 and approx. 20% of the instances
have no solution (see line Count). This justifies the fact that the problem is not standard. For example, in
Table A1 we see that of the 200 instances for problem class T = 60, only 167 had a solution.

3 The test instances and solutions are available here

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://data.mendeley.com/datasets/pggm5wvg2n/1
https://doi.org/10.20944/preprints202304.0242.v4

16 of 26

With the following notation, we can better understand the results of Table A1.
T ∈ {15, 30, · · · , 300}
m ∈ Count = {172, 155, · · · , 170}
φTi(xn, xr) i = 1, · · · , m solution of problem (25)-(33)
φ∗Ti(xn, xr) i = 1, · · · , m solution of problem (16)-(24)

µT = ∑m
i=1 φTi(xn ,xr)

m

µ∗T = ∑m
i=1 φ∗Ti(xn ,xr)

m
CPUT = ∑m

i=1 CPUTi
m

CPU∗T = ∑m
i=1 CPU∗Ti

m
In Table A1 the relative error for Total costs (Tc) and CPU-time for every problem class was calculated as

RelativeAvg.Error(Tc) =
µT − µ∗T

µ∗T

RelativeAvg.Error(CPU) =
CPUT − CPU∗T

CPU∗T

This is exactly how we calculated the relative errors in inventory cost and setup cost.
Attached in Appendix A are the results of the average total cost, average CPU time, average Inventory costs
There is hardly any difference between the cost of relaxation (TD) and the original task (OP). Only the

computation time for relaxation is faster. The longer the planning horizon, the smaller the difference between
the optimal solutions of the problems TD and original optimization task OP. This feature applies to the stocks
of the return and setup costs too. On the other hand, the inventory costs for problem TD are always smaller
than the inventory costs of problems OP. For more details, please see Figure A1 and Appendix A.1 for the exact
calculations. However, we see beyond doubt that this class of problems can be solved very well either with the
relaxation TD or directly with a standard solver (here Gurobi).

5.3. Model B

[30] have shown that several families of CLSP are NP-hard. For the construction of the NP-hard instances
(2200 instances) we follow the findings of [31]. They use the following notation Nr/α/β/γ/σ, where Nr, α, β, γ

and σ specify respectively the number of items, a special structure for the setup costs, the holding costs,
production costs, and capacities. In this paper [31] show that the following class 2/C/G/A/C is NP-hard. For
this reason we have created 2200 instances, where the set-up costs per product and capacities per instance
are constant. The holding costs do not necessarily follow a specified pattern, the production costs can be
chosen arbitrarily. The maximum calculation time for Gurobi is 600 seconds. The heuristic operates according
to the number of simulations, which gradually increases with the number of periods. The largest group
T300 uses 130 seconds. The parameters for generating data sets (see Table 8) use the following notation
x ∈ [a; b] ⇔ x = (b− a)θ + a, a ≤ b, where 0 ≤ θ ≤ 1 is a random number, that means the values are
uniformly distributed on the interval [a, b].

The important assumption in model B is: the capacities for each TI is constant, the set-up costs in each TI
and for each product are constant. These parameters vary between a minimum and a maximum depending on the
T parameter.

The capacities for each TI vary according to the parameter T. For example if T = 15 the capacities are
between 600 and 800. If T = 300 the capacities vary between 3000 and 5500. Analogously the other parameters.
The remaining parameters according to Table 8.

Table 8. Model B: Parameters

c ∈ [200; 5500] dn
t , dr

t with condition (1)
pn ∈ [4; 20] pr ∈ [2; 15]

hn
t ∈ [0.6; 10] hr

t ∈ [0.6; 8]
hre

t with condition (4) rre
t with condition (3)

scn ∈ [4000; 30000] srr ∈ [3000; 16000]

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

17 of 26

For the simulation we used following parameters:

NT = 215T

NT is the Halton’s numbers used for T ∈ {15, 30, · · · , 300} periods.
All instances for T = 15, 30 · · · , 300 have the same schema Step 1 until Step 5. We used τ = 4 (see

Table 9).

Table 9. Schematic of the simulation

Step 1 Initialisation:φ∗, k = 1, τ > k, T, N = NT
τ

Step 2 pk = k
τ . If k = τ, stop; otherwise go to Step 3.

Step 3 Using Algorithms 3 and 4 along with pk calculate the function
φpk := min{φi(x, y), i = 1, · · · , N}.

Step 4 If φ∗ > φpk then φ∗ = φpk .
Step 5 k = k + 1 and go to Step 2.

Algorithm 4: Heuristic: blind search
Data: R = [NT × T] random matrix
Result: min{φ(x, y)}
Initialisation:φmin
for k← 1 to NT − 1; k = k + 2 do

x ← R[k]
y← R[k + 1]
φ← φ(x, y)
if φ < φmin then

φmin ← φ

end

end

5.3.1. Results of Model B

We generated 200 random instances for each problem class (PC) and with a Box-plot we compared the
feasible solutions GTi(xn, xr) of the problem (16)-(24) found by Gurobi 9.0.3 with the solution STi(xn, xr) of
the simulation presented in this paper and clearly see the similarity of the results found (see Figures A4 and A5).

With the following notation we present the results (see Table A3).
T ∈ {15, 30, · · · , 300}
m = 200
STi(xn, xr) i = 1, · · · , m
GTi(xn, xr) i = 1, · · · , m
µT = ∑m

i=1 STi(xn ,xr)
m

µ∗T = ∑m
i=1 GTi(xn ,xr)

m
CPU_ST = ∑m

i=1 CPUTi
m with Simulation

CPU∗T = ∑m
i=1 CPU∗Ti

m with Gurobi
In Table A3 the relative error for Total costs (Tc) and CPU-time for every problem class was calculated as

RelativeAvg.Error(Tc) =
µT − µ∗T

µ∗T

RelativeAvg.Error(CPU) =
CPU_ST − CPU∗T

CPU∗T

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

18 of 26

The graphical comparison is shown in Figure A3.
This is exactly how we calculated the relative errors in inventory cost and setup cost. Attached in Appendix

B are the results of the average total cost, average CPU time, average Inventory costs. Figure A3 (average CPU
time) clearly shows that the Gurobi admissible solution for the PC from T150 to T300 are not optimal and that
the CPU of the simulation is much faster.

The simulation in average determines the setup costs and return inventory costs always higher than Gurobi.
On the other hand, the inventory costs of Gurobi are higher than the simulation. What can we say about the
quality of the solution of the problems? The simulation could not give a better solution than Gurobi’s solution.
Gurobi solved the (PC) problems up to T120 in an optimal way. The problems from T150 to T300 were not
solved optimally by Gurobi, since it would take too much time due to the NP-hard category of the problem.
The simulation found feasible solutions much faster than Gurobi. Here is the advantage of the simulation, the
simplicity of its implementation and the speed in finding an acceptable solution.

6. Conclusions and Outlook

We have analyzed a problem that belongs to the NP-hard class. However, the choice of the parameters is
very important to obtain a problem that is really NP-hard. With the choice of parameters made in model A, we
see that this class of problems is easily solved with a standard solver. By doing a relaxation of the problem, the
solution is found more quickly. The error rate is between 0.02% and 2% (taking into account more than 1800
instances). In addressing more intricate CLSP class problems characterized by Model A, the solution derived
from Model A can serve as an initial approximation for tackling the problem. This initial approximation can
then be seamlessly integrated into various heuristic or metaheuristic approaches.

If we choose the parameters according to model B, Gurobi needs a lot of time to find the optimal solution.
In this kind of problem, the presented simulation can help a lot in finding a good solution. We have seen that
the error rate is between 1.7% and 3.5% (taking into account more than 2000 instances). On average Gurobi
solves the problem with a maximum time of 600 seconds better than the simulation. The great advantage of the
simulation is that the calculation is extremely fast and easy.Thanks to the Halton numbers, few simulations are
needed to obtain a very good approximation of the solution.

The quality of the solutions can be improved by increasing the number of simulations but it is necessary
to have a fairly fast computer. In this work we use at most 10 million simulations. Another parameter that
influences the quality of the solutions is the correct choice of the probability p (see (35)). Is there an optimal
probability? This is a question for further research.

The simulation possesses a broad nature and can be tailored to examine additional, intricate production
issues within the NP-hard category. The benefit is readily apparent: it circumvents the necessity for an extensive
array of sorting rules and additional criteria stemming from factors like demand, setup expenses, production
outlays, or capacities.

Acknowledgments: I extend my heartfelt gratitude to Robert W. Grubbström and Chistian Almeder for their invaluable
insights and thoughtful comments on this paper.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

19 of 26

Appendix A. Results Visualization

Appendix A.1. Model A

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.0

0.5

1.0

1.5

2.0

2.5
M
ea
ns

1e7 Average total cost by group and Method
TD
OP

(a) Totalcosts

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

1

2

3

4

5

6

7

tim
e
in
 se

co
nd

s

CPU average time in seconds by group and method
TD
OP

(b) CPU-time.
Figure A1. Model A: Average Total cost and CPU Time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

20 of 26

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.0

0.5

1.0

1.5

2.0

2.5

co
st
s

1e7Average return inventory costs by group and method
TD
OP

(a) Return Inventory cost.

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

100000

200000

300000

400000

500000

co
st
s

Average inventory costs by group and method
TD
OP

(b) Inventory cost.
Figure A2. Model A: Average Inventory cost.

Appendix A.2. Model B

Visualization of the results and average costs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

21 of 26

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

s

1e7 Average total cost by group and Method
Simulation
Gurobi

(a) Total costs.

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

100

200

300

400

500

600

tim
e

in
 se

co
nd

s

CPU average time in seconds by group and method
Simulation
Gurobi

(b) CPU time.
Figure A3. Model B: Average Total cost and CPU time.

T15 T30 T60
Total costs

200000

400000

600000

800000

1000000

1200000

1400000

Ob
se

rv
ed

 v
al

ue
s

Gurobi

T15 T30 T60
Total costs

200000

400000

600000

800000

1000000

1200000

1400000

Ob
se

rv
ed

 v
al

ue
s

Simulation

T90 T150 T180
Total costs

2000000

3000000

4000000

5000000

6000000

7000000

Ob
se

rv
ed

 v
al

ue
s

Gurobi

T90 T150 T180
Total costs

3000000

4000000

5000000

6000000

7000000

Ob
se

rv
ed

 v
al

ue
s

Simulation

Figure A4. Model B: Average Total cost.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

22 of 26

T120 T210
Total costs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ob
se

rv
ed

 v
al

ue
s

1e7 Gurobi

T120 T210
Total costs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ob
se

rv
ed

 v
al

ue
s

1e7 Simulation

T240 T270 T300
Total costs

1.0

1.5

2.0

2.5

3.0

3.5

Ob
se

rv
ed

 v
al

ue
s

1e7 Gurobi

T240 T270 T300
Total costs

1.0

1.5

2.0

2.5

3.0

3.5

Ob
se

rv
ed

 v
al

ue
s

1e7 Simulation

Figure A5. Model B: Average Total cost.

Appendix B. Average Costs

Table A1. Model A: Average Total Costs

Total costs T 15 30 60 90 120 150
Count 172 155 167 162 166 164

TD Mean 274061 665537 1798127 3348945 5552436 8062797
Std. 87161 151370 389288 660684 906092 1349699

Optimal Mean 268593 659453 1792494 3344788 5546715 8058311
Std. 83431 148783 385859 659403 904686 1348457

Relative error TcError 2.04% 0.92% 0.31% 0.12% 0.10% 0.06%

Total costs T 150 180 210 240 270 300
Count 164 164 168 168 170 168

TD Mean 8062797 11087631 14620895 19015245 23243458 28160753
Std. 1349699 1811439 2199306 2911556 3384673 3870830

Optimal Mean 8058311 11081145 14614610 19008049 23237758 28154353
Std. 1348457 1808995 2198938 2910200 3382841 3868995

Relative error TcError 0.06% 0.06% 0.04% 0.04% 0.02% 0.02%

Table A2. Model A: Average CPU time

CPU Time T 15 30 60 90 120 150
Count 172 155 167 162 166 164

TD Mean 0.10 0.11 0.21 0.31 0.50 0.78
Std. 0.06 0.05 0.10 0.16 0.26 0.39

Optimal Mean 0.14 0.28 0.41 0.59 1.12 1.79
Std. 0.06 0.11 0.17 0.30 0.51 1.42

Relative error CPUError -25.27% -59.97% -49.61% -47.53% -55.39% -56.26%

CPU Time T 150 180 210 240 270 300
Count 164 164 168 168 170 168

TD Mean 0.78 1.00 1.25 1.59 1.77 2.36
Std. 0.39 0.47 0.69 0.82 0,90 1.39

Optimal Mean 1.79 2.44 3.52 5.03 5.33 7.60
Std. 1.42 1.73 3.00 3.50 3.98 5.97

Relative error CPUError -56.26% -59.00% -64.53% -68.46% -66.87% -68,94%

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

23 of 26

Table A3. Model B: Average Total Costs

Total costs T 15 30 60 90 120 150
Count 200 200 200 200 200 200

Simulation Mean 185971 342933 815220 4576352 7829443 3979678
Std. 21273 45909 155884 858442 1559305 397507

Gurobi Mean 182040 332163 784654 4498331 7718552 3845522
Std. 21125 45150 155097 882996 1594738 393440

Relative error TcError 2.16% 3.24% 3.90% 1.73% 1.44% 3.49%

Total costs T 150 180 210 240 270 300
Count 200 200 200 200 200 200

Simulation Mean 3979678 5477237 8177244 19065355 18786745 20708665
Std. 397507 593444 1275892 4030464 3201422 3672141

Gurobi Mean 3845522 5318346 7905438 18570461 18146172 19992493
Std. 393440 590176 1265172 4055425 3179322 3670651

Relative error TcError 3.49% 2.99% 3.44% 2.66% 3.53% 3.58%

Table A4. Model B: Average CPU time

CPU Time T 15 30 60 90 120 150
Count 200 200 200 200 200 200

Simulation Mean 0.79 2.28 5.94 11.68 19.87 34.12
Std. 0.13 0.13 0.16 0.18 0.23 0.54

Gurobi Mean 0.12 1.57 90.38 111.93 204.94 597.03
Std. 0.08 1.53 156.10 186.04 245.47 36.02

Relative error CPUError 552.92% 44.87% -93.43% -89.56% -90.31% -94.28%

CPU Time T 150 180 210 240 270 300
Count 200 200 200 200 200 200

Simulation Mean 34.12 46.26 62.84 77.96 101.69 130.17
Std. 0.54 0.58 1.22 2.63 2.74 3.78

Gurobi Mean 597.03 596.88 597.47 591.51 596.54 593.22
Std. 36.02 4.06 3.92 33.19 3.80 7.14

Relative error CPUError -94.28% -92.25% -89.48% -86.82% -82.95% -78.06%

Table A5. Model B: Inventory costs

Inventory costs T 15 30 60 90 120 150
Count 200 200 200 200 200 200

Simulation Mean 28307 52842 112536 253095 340599 260657
Std. 5341 8170 12391 86118 107587 28744

Gurobi Mean 27801 57117 132943 509248 790970 318360
Std. 6907 12243 29889 194930 324335 43350

Relative error Inv. Error 1.82% -7.49% -15.35% -50.30% -56.94% -18.13%

Inventory costs T 150 180 210 240 270 300
Count 200 200 200 200 200 200

Simulation Mean 260657 345666 542344 990715 1147482 1282444
Std. 28744 38613 75292 175805 161861 196713

Gurobi Mean 318360 507104 835915 1859977 1730800 1959659
Std. 43350 89630 191367 486708 372666 455506

Relative error Inv. Error -18.13% -31.84% -35.12% -46.74% -33.70% -34.56%

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

24 of 26

Table A6. Model B: Return stock cost

Return Inv. costs T 15 30 60 90 120 150
Count 200 200 200 200 200 200

Simulation Mean 45867 92667 249888 3690209 6646915 821946
Std. 18040 35850 137395 1028216 1793396 208315

Gurobi Mean 41356 74641 195294 3346068 6070949 700634
Std. 17493 33456 133042 1109603 1957840 207573

Relative error Ret. Inv. Error 10.91% 24.15% 27.96% 10.28% 9.49% 17.31%

Return Inv. costs T 150 180 210 240 270 300
Count 200 200 200 200 200 200

Simulation Mean 821946 1548362 2628642 9347966 7251886 8608929
Std. 208315 482657 1041268 4406311 2744151 3706917

Gurobi Mean 700634 1293559 2169556 8142232 6309891 7524531
Std. 207573 477084 1026872 4293352 2685984 3610684

Relative error Ret. Inv. Error 17.31% 19.70% 21.16% 14.81% 14.93% 14.41%

Table A7. Model B: Average Setup costs

Setup Costs T 15 30 60 90 120 150
Count 200 200 200 200 200 200

Simulation Mean 50033 106876 238570 293071 388685 1521814
Std. 10663 17638 31424 27563 34664 212705

Gurobi Mean 55707 114588 248504 307481 408104 1458747
Std. 10343 17268 30443 27399 37230 201433

Relative error Setup. Error -10.19% -6.73% -4.00% -4.69% -4.76% 4.32%

Setup Costs T 150 180 210 240 270 300
Count 200 200 200 200 200 200

Simulation Mean 1521814 1699197 2214098 2828660 3716988 4920930
Std. 212705 233148 330991 404730 467555 902775

Gurobi Mean 1458747 1641182 2118141 2669355 3397775 4526298
Std. 201433 223689 310292 367954 412785 200

Relative error Setup. Error 4.32% 3.53% 4.53% 5.97% 9.39% 8.72%

References

1. Manne, A.S. Programming of economic lot sizes. Management science 1958, 4, 115–135.
2. Wagner, H.M.; Whitin, T.M. Dynamic version of the economic lot size model. Management science 1958, 5, 89–96.
3. Beltrán, J.L.; Krass, D. Dynamic lot sizing with returning items and disposals. IIe transactions 2002, 34, 437–448.
4. Elmaghraby, S.E. The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Management Science

1978, 24, 587–598.
5. Brahimi, N.; Dauzere-Peres, S.; Najid, N.M.; Nordli, A. Single item lot sizing problems. European Journal of

Operational Research 2006, 168, 1–16.
6. Buschkühl, L.; Sahling, F.; Helber, S.; Tempelmeier, H. Dynamic capacitated lot-sizing problems: a classification and

review of solution approaches. Or Spectrum 2010, 32, 231–261.
7. Thierry, M.; Salomon, M.; Van Nunen, J.; Van Wassenhove, L. Strategic issues in product recovery management.

California management review 1995, 37, 114–136.
8. Amin, S.H.; Zhang, G.; Eldali, M. A review of closed-loop supply chain models. Journal of Data, Information and

Management 2020, 2, 279–307.
9. Agrawal, S.; Singh, R.K.; Murtaza, Q. A literature review and perspectives in reverse logistics. Resources,

Conservation and Recycling 2015, 97, 76–92.
10. Ayres, R.; Ferrer, G.; Van Leynseele, T. Eco-efficiency, asset recovery and remanufacturing. European Management

Journal 1997, 15, 557–574.
11. Inderfurth, K. Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. Inter-

national Journal of Production Economics 2004, 90, 325–343.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

25 of 26

12. Tang, O.; Teunter, R. Economic lot scheduling problem with returns. Production and Operations Management
2006, 15, 488–497.

13. Teunter, R.; Kaparis, K.; Tang, O. Multi-product economic lot scheduling problem with separate production lines for
manufacturing and remanufacturing. European journal of operational research 2008, 191, 1241–1253.

14. Sahling, F. A Column-Generation Approach for a Short-Term Production Planning Problem in Closed-Loop Supply
Chains. BuR- Business Research 2013, 6(1), 55–75.

15. Cunha, J.O.; Konstantaras, I.; Melo, R.A.; Sifaleras, A. On multi-item economic lot-sizing with remanufacturing and
uncapacitated production. Applied Mathematical Modelling 2017, 50, 772–780.

16. Sifaleras, A.; Konstantaras, I. Variable neighborhood descent heuristic for solving reverse logistics multi-item dynamic
lot-sizing problems. Electronic Notes in Discrete Mathematics 2015, 47, 69–76.

17. Cunha, J.O.; Kramer, H.H.; Melo, R.A. Effective matheuristics for the multi-item capacitated lot-sizing problem with
remanufacturing. Computers & Operations Research 2019, 104, 149–158.

18. Helmrich, R.; Jans, M.; van den Heuvel, W.; Wagelmans, A. Economic lot-sizing with remanufacturing: Complexity
and efficient formulations. IISE Transactions 2014, 46(1), 67–86.

19. Kilic, O.; van den Heuvel, W. Economic lot sizing with remanufacturing: Structural properties and polynomial-time
heuristics. IISE Transactions 2019, 51:12, 1318–1331. https://doi.org/10.1080/24725854.2019. 1593555.

20. Richter, K.; Weber, J. The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost.
International Journal of Production Economics 2001, 71, 447–456.

21. Richter, K.; Sombrutzki, M. Remanufacturing planing for the reverse Wagner/Whitin models. Journal of Operational
Research 2000, 121, 304–315.

22. Teunter, R.; Bayindir, Z.; van den Heuvel, W. Dynamic lot sizing with product returns and remanufacturing. Int.
Journal of Production Research 2006, pp. 4377–4400.

23. Schulz, T. A new Silver-Meal basic heuristic for the single-item dynamic lot sizing problem with returns and
remanufacturing. International Journal of Production Research 2011, p. 2519–2533.

24. Cunha, J.; Melo, R. A computational comparison of formulations for the economic lot-sizing with remanufacturing.
Computers & Industrial Engineering 2016, 92, 72–81.

25. Piñeyro, P.; Viera, O. The economic lot-sizing problem with remanufacturing and heterogeneous returns: formulations,
analysis and algorithms. International Journal of Production Research 2022, 60, 3521–3533.

26. Lahmar, H.; Dahane, M.; Mouss, K.; Haoues, M. Multi-objective production planning of new and remanufactured
products in hybrid production system. IFAC-PapersOnLine 2022, 55, 275–280.

27. Zouadi, T.; Yalaoui, A.; Reghioui, M. Lot sizing and pricing problem in a recovery system with returns and one-way
substitution option: Novel cost benefit evaluation based approaches. IFAC-PapersOnLine 2019, 52, 36–41.

28. Şenyiğit, E.; Erol, R. New lot sizing heuristics for demand and price uncertainties with service-level constraint.
International Journal of Production Research 2010, 48, 21–44.

29. Zhang, Z.H.; Jiang, H.; Pan, X. A Lagrangian relaxation based approach for the capacitated lot sizing problem in
closed-loop supply chain. International Journal of Production Economics 2012, 140, 249–255.

30. Florian, M.; Lenstra, J.K.; Rinnooy Kan, A. Deterministic production planning: Algorithms and complexity.
Management science 1980, 26, 669–679.

31. Bitran, G.R.; Yanasse, H.H. Computational complexity of the capacitated lot size problem. Management Science
1982, 28, 1174–1186.

32. Dixon, P.S. Multi-Item Lot-Sizing with Limited Capacity. dissertation, University of Waterloo, Ontario, 1979.
33. Dziuba, D.; Almeder, C. New construction heuristic for capacitated lot sizing problems. European Journal of

Operational Research 2023.
34. Maes, J.; McClain, J.; Van Wassenhove, L. Multilevel capacitated lotsizing complexity and LP-based heuristics.

Journal of Operational Research 1991, 53, 131–148.
35. Sobol’, I.M. Calculation of improper integrals using uniformly distributed sequences. Soviet Math. Dokl. 1973,

14, 734–738.
36. Halton, J.H. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals.

Numerische Mathematik 1960, 2, 84–90.
37. Niederreiter, H. Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 1978,

84, 957–1041.
38. Klinger, B. Numerical integration of singular integrands using low-discrepancy sequences. Computing 1997,

59, 223–236.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.1080/24725854.2019.1593555
https://doi.org/10.20944/preprints202304.0242.v4

26 of 26

39. Van den Heuvel, W.; Wagelmans, A.P. Four equivalent lot-sizing models. Operations Research Letters 2008,
36, 465–470.

40. Maes, J.; Van Wassenhove, L. A simple heuristic for the multi item single level capacitated lotsizing problem.
Operations research letters 1986, 4, 265–273.

41. Knuth, D.E. Art of computer programming: Seminumerical algorithms; Vol. 2, Addison-Wesley Professional,
2014.

42. von Neumann, J. Various techniques used in connection with random digits. Monte Carlo Method, Appl. Math.
Series 1951, 12, 36–38.

43. Niederreiter, H. Random number generation and quasi-Monte Carlo methods; SIAM, 1992.
44. Tezuka, S. Uniform random numbers: Theory and practice; Vol. 315, Springer Science & Business Media, 2012.
45. Chaitin, G.J. Information, Randomness and Incompleteness. Papers on Algorithmic Information Theory. 1987, p.

236.
46. Kolmogorov, A.N.; Uspenskii, V.A. Algorithms and randomness. Theory of Probability & Its Applications 1988,

32, 389–412.
47. Schnorr, C. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Math. 1971, 218, 109.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the indi-
vidual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility
for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 doi:10.20944/preprints202304.0242.v4

https://doi.org/10.20944/preprints202304.0242.v4

	Introduction
	Research Contributions
	 Outline

	Problem Description
	Rewriting the Optimization Problem

	Model A (Relaxation)
	Model B (Simulation)
	Low Discrepancy Sequences
	Notation
	Simulation
	Basis of the Simulation
	Simulation of the Objective Function

	Numerical Experiments
	Test Design
	Model A
	Results of Model A

	Model B
	Results of Model B

	Conclusions and Outlook
	Results Visualization
	 Model A
	Model B

	Average Costs
	References

