
Article

Not peer-reviewed version

A Simulation Based Solution Approach

for the Capacitated Lot-Sizing Problem

With Remanufacturing

Luis Rocha

*

Posted Date: 20 April 2023

doi: 10.20944/preprints202304.0242.v2

Keywords: Simulation based optimization; capacitated lot-sizing problem; heuristics;remanufacturing

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2893919

Article

A Simulation Based Solution Approach for the
Capacitated Lot-Sizing Problem with
Remanufacturing

Luis Rocha

Chair of Supply Chain Management, European University Viadrina Frankfurt (Oder), Große Scharrnstraße 59,

Frankfurt (Oder) 15230, Germany; rocha@europa-uni.de

Abstract: We present a new model formulation for a class of capacitated lot-sizing problem

considering setup costs, product returns, and remanufacturing (CLSP-RM). We investigate a broad

class of instances that fall into two groups, in the first group we can reformulate the problem with

a relaxation and test whether the original problem is solvable. The relaxation gives near optimal

solutions and the solution of this class does not give any difficulty to known solvers such as Cplex,

Gurobi or Xpress. The second group of instances are of category NP and will be solved with a simple

period-by-period simulation.

Keywords: simulation based optimization; capacitated lot-sizing problem; heuristics;

remanufacturing

1. Introduction

The production planning with consideration of recycling options has received increasing attention

in the last few years [1]. The literature describes two different categories of recycling production

planning problems. In the first category (Cat. 1), the given external demand of the products has to

be satisfied by remanufactured or newly produced goods Figure 1. Only two types of inventories

are regulated: the inventory of new products and the inventory of remanufactured products, and

this is the category that has been thoroughly investigated by numerous authors. It is assumed that

new and remanufactured products are identical, and hence, both are regarded as serviceables, i.e.,

entities that can be used to satisfy demands. In the second category (Cat. 2) the additional feature

of this problem is that in each period a deterministic amount of returned items enters the system.

These returns can be remanufactured and used to satisfy the demand for remanufactured products in

addition to the regular production of new items. Thus, there are three types of inventory: new product

inventory, remanufactured product inventory and returned product inventory (Figure 1). This situation

is typical in paper manufacturing. Demand for recovered paper has increased enormously worldwide,

making separate collection more attractive again. Peter Probst, CEO of LEIPA Group, Germany

(Viadrina University, 05.2019) explains the advantage: "paper recycling proves to be economically and

ecologically efficient, because the production of recycled paper requires considerably less water and

considerably less energy than the production of virgin fiber papers. In addition, the transport distances

are generally shorter as well. Recycled paper comes from Germany, while the fresh fibers and fresh

fiber papers are also imported to Germany in larger proportions". Paper production is also energy

intensive. It takes as much energy to produce one ton of paper from fresh wood fibers as it does to

produce one ton of steel ([2]).

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202304.0242.v2
http://creativecommons.org/licenses/by/4.0/

2 of 23

Figure 1. Dynamic Capacitated Lot-Sizing with Produkt Returns and Remanufacturing.

2. Literature Review

Publications regarding Category 1: [3] analyzes several CLSP-RM formulations with the

column generation method, where he uses the idea of Garfinkel and Nemhauser (1969), namely

the Set Partitioning Problem (SPP). [4] compared MIP approaches to the economic lot-sizing with

remanufacturing (ELSR) and proposes a shortest path formulation. [5] studied another multi-item

variant of the problem and propose a variable neighborhood search heuristic. The polynomial-time

heuristics of [6] also belongs to this category, where there is also an excellent compilation of the

methods developed by [7–11].

Publications regarding category 2: The only publication known to us is that of [12] where he

presents a Lagrange relaxation to solve the problem. Based on Zhang’s model we formulate the

same problem but taking more general capacity constraints and doing more extensive numerical

experiments.

The capacitated lot sizing problem model is NP-hard. The proof of this statement is to be found

in [13,14]. [15] has shown that even the two-item problem with constant capacity is NP-hard. Many

methods have been proposed to solve the CLSP [16]. In general, these heuristics do not use random

numbers. However, many heuristics cannot guarantee the generation of a feasible solucion [15]. These

heuristic methods used to solve a CLSP class problem are generally based on the definition of a

multitude of rules derived from demand, capacity, setup costs, inventing costs and productions costs

e.g. [9,10,17]. The solution margin varies between 1% and 10% [12,17].

The contribution of this work is: independently of the input parameters of the problem, we

organize the production in the framework of feasibility and randomly. A simple simulation with

quasi-random numbers (QRN) will be presented. The heuristic will always generate a feasible

solution, if the problem is solvable. After simulating N production plans we choose the cheapest one.

The scheduling is very simple, the results are quite acceptable considering the size of the presented

problems.

It is well known that the QRN of [18–20] have significant properties [21]. The most important of

these are: they are uniformly distributed. These are some allow us a systematic search of the solution

in the set of admissible points with a few QRN. We implement a search algorithm with Halton’s QRN

and compare it with numerical solutions by the Gurobi solver.

In Section 3 we propose a new mathematical programming formulation for the problem. In

Section 4 we present a relaxation of the problem without capacity constraints (Model A) and we will

see that the solution obtained for the chosen class of tasks is very close to the optimal solution of the

original problem. In Section 5, we present a heuristic solution method (Model B) for another class of

tasks. In Section 6, we report the results of computational experiments. In Section 7 we present some

conclusions and suggested directions for further research.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

3 of 23

3. Problem Description

We assume that a factory produces two types of products, one manufactured from raw materials

and the other remanufactured from collected used products. The demands for these two products

are separate, deterministic, and time varying during a finite planing horizon, and should be satisfied

without backlogging. The costs consist of fixed setup cost, linear production cost proportional to

the production quantity, and linear inventory holding costs. All cost components are considered for

both manufacturing and remanufacturing activities per unit and periode [12]. The following Table 1

summarize the notation used in this paper.

Table 1. Data and parameters.

Name Paramenter

T Number of time periods
t ∈ {1, · · · , T}

in
0 , ir0, ire

0 Initial inventory stocks
Cost per unit and period t

sn
t Setup cost for manufacturing new product

sr
t Setup cost for remanufacturing product

pn
t production cost of new product

pr
t production cost of remanufactured product

hn
t holding cost of new product

hr
t holding cost of remanufactured product

hre
t holding cost of returned product

Demand and return in period t
dn

t Demand of new product
dr

t Demand of remanufactured product
rre

t Quantity of returned product
Available Capacities in period t

ct capacities for manufacturing and
remanufacturing
(capacity requirement for new product and
recovery product is set to one).

dt = dn
t + dr

t , ∀t = 1, · · · , T

dn
[T] = ∑

T
t=1 dn

t

dr
[T] = ∑

T
t=1 dr

t

Table 2. Decision variables.

Name Paramenter

αn
t 1, if new products are manufactured

in period t; 0, otherwise
xn

t quantity of new products manufactured
in period t

in
t inventory stock of new products

at the end of period t
αr

t 1, if returned products are remanufactured
in period t; 0, otherwise

xr
t quantity of returned products remanufactured

in period t
irt inventory stock of remanufactured

products at the end of period t
ire
t inventory stock of returned products

at the end of period t

We make the following assumptions, which are necessary for the feasibility of the problem

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

4 of 23

1. The demand for new products and remanufactured products are separate and backlog is not

allowed.
2. The manufacturing capacity is sufficient to meet the demands in each period, in particularly

we have: the capacity can satisfy the demands for new products and remanufactured products

simultaneously, i.e.
t

∑
j=1

(dn
j + dr

j) ≤
t

∑
j=1

cj, ∀t = 1, · · · , T (1)

3. Initial and end inventory stocks are zero, (We can always transform a problem with non zero

initial or final stock by adapting the demand), i.e.

in
0 = 0, ir0 = 0, ire

0 = 0

in
T = 0, irT = 0 (2)

The demand will be fully satisfied if the final inventories are zero.
4. The quantity of returned products can satisfy the demand for remanufactured products i.e.

t

∑
j=1

dr
j ≤

t

∑
j=1

rre
j ∀t = 1, · · · , T. (3)

5. In economic terms, inventory holding cost of returned products is less than that of

remanufactured products.
T

∑
j=t

hre
j ≤

T

∑
j=t

hr
j , ∀t = 1, · · · , T (4)

This hypothesis can be found in [22] too.

Hence, the problem can be formulated as

f (xn, xr) =
T

∑
t=1

(sn
t αt + pn

t xn
t + hn

t in
t)

+
T

∑
t=1

(sr
t αr

t + pr
t xr

t + hr
t irt)

+
T

∑
t=1

(hre
t ire

t) −→ min (5)

subject to

in
t = in

t−1 + xn
t − dn

t , ∀t = 1, · · · , T (6)

irt = irt−1 + xr
t − dr

t , ∀t = 1, · · · , T (7)

ire
t = ire

t−1 + rre
t − xr

t , ∀t = 1, · · · , T (8)

xn
t + xr

t ≤ ct, ∀t = 1, · · · , T (9)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (10)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (11)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (12)

αn
t , αr

t ∈ {0, 1} (13)

The objective function (5) minimizes the sum of setup cost, production cost, and inventory cost

for new products and remanufactured products in all periods. Constraints (6)–(8) are the inventory

balance constraints for new products, remanufactured products and returned products. Constraints (9)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

5 of 23

represent capacity constraints for manufacturing and remanufacturing activities. Constraints (10), (11)

allow production only with the according setups (i.e αn
t = 1, αr

t = 1.) (12) and (13) are the standard

integrality and non-negative constraints.

3.1. Rewriting the Optimization Problem

in
t , irt , ire

t are replaced in the objective function by

in
t =

t

∑
j=1

(

xn
j − dn

j

)

, irt =
t

∑
j=1

(

xr
j − dr

j

)

, (14)

ire
t =

t

∑
j=1

(

rre
j − xr

j

)

(15)

And with a bit of algebraic transformations, we obtain

T

∑
t=1

(pn
t xn

t + hn
t in

t) =
T

∑
t=1

(pn
t +

T

∑
j=t

hn
j)xn

t −
T

∑
t=1

(hn
t

t

∑
k=1

dn
k)

T

∑
t=1

(pr
t xr

t + hr
t irt + hre

t ire
t) =

T

∑
t=1

(pr
t +

T

∑
j=t

(hr
j − hre

j))xr
t

+
T

∑
t=1

(−hr
t

t

∑
k=1

dr
k + hre

t

t

∑
k=1

rre
k)

With the notation

vn
t = pn

t +
T

∑
j=t

hn
j ,

vr
t = pr

t +
T

∑
j=t

(hr
j − hre

j)

K =
T

∑
t=1

{

−hn
t

t

∑
k=1

dn
k − hr

t

t

∑
k=1

dr
k + hre

t

t

∑
k=1

rre
k

}

.

our model is finally

ϕ(xn, xr) =
T

∑
t=1

[sn
t αn

t + vn
t xn

t]

+ [sr
t αr

t + vr
t xr

t] + K −→ min (16)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

6 of 23

Subject to

t

∑
j=1

xn
j ≥

t

∑
j=1

dn
t , ∀t = 1, · · · , T (17)

t

∑
j=1

xr
j ≥

t

∑
j=1

dr
t , ∀t = 1, · · · , T (18)

t

∑
j=1

rre
j ≥

t

∑
j=1

xr
j , ∀t = 1, · · · , T (19)

xn
t + xr

t ≤ ct, ∀t = 1, · · · , T (20)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (21)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (22)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (23)

αn
t , αr

t ∈ {0, 1} (24)

4. Model A (Relaxation)

According to our conditions(1) and (3) the general problem has a solution, if the total pro-period

demand is less than the pro-period capacity (i.e.dt <= ct). However there are situations, where

conditions (1) and (3) are satisfied but dt <= ct is not satisfied. We need a feasibility routine which

ensures that all demand is satisfied without backlogging. Indeed there are periods (or could be) in

which total demand exceeds total capacity. In this case some inventory will have to be build up in

earlier periods which slack capacity. We explain how to shift excess demand to earlier periods in which

slack capacity is available. We use and complement the idea of [23].

w̃T = 0

w̃t = max {dt+1 − ct+1 + w̃t+1; 0} , t = T − 1, · · · , 1.

We define

w1 = w̃1

wt = w̃t − w̃t−1, t = 2, · · · , T.

It is easy to see that the sum w[T] is null.

w[T] = w1 + w2 + · · ·+ wT

= w̃1 + (w̃2 − w̃1) + · · ·+ (w̃T − w̃T−1)

= w̃T = 0.

Remark 1. The vector wT = (w1, · · · , wT) is very useful. Because wt gives the amount of stock to accumulate

(wt > 0) or reduce (wt < 0) in each period so that production does not exceed available capacity pro period. And

allows us to determine a good permissible solution.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

7 of 23

We see that the demand transformation done in Table 4 is a valid (permissible) solution to the

problem (16)–(24). There are many ways to make this transformation, for this reason to transform the

demand in an optimal way we formulate the following problem.

ϕ(x, y) =
T

∑
t=1

[sn
t αn

t + vn
t xn

t]

+ [sr
t αr

t + vr
t xr

t] + K −→ min (25)

Subject to

t

∑
j=1

xn
j ≥

t

∑
j=1

dn
t , ∀t = 1, · · · , T (26)

t

∑
j=1

xr
j ≥

t

∑
j=1

dr
t , ∀t = 1, · · · , T (27)

t

∑
j=1

rre
j ≥

t

∑
j=1

xr
j , ∀t = 1, · · · , T (28)

xn
t + xr

t − dn
t − dr

t = wt, ∀t = 1, · · · , T (29)

xn
t ≤ dn

[T]α
n
t , ∀t = 1, · · · , T (30)

xr
t ≤ dr

[T]α
r
t , ∀t = 1, · · · , T (31)

xn
t , xr

t ≥ 0, ∀t = 1, · · · , T (32)

αn
t , αr

t ∈ {0, 1} (33)

If the model (25)-(33) has no solution, it means the model (16)-(24) has no solution too.

We have a problem with no capacity restrictions. We solve this problem and compare it with the

optimal solution of the initial problem (16)-(24).

Table 3. Original Data.

t rre
t

dn
t

dr
t

dt ct w

1 198 153 183 336 609 57
2 806 84 302 386 632 246
3 223 100 146 246 101 -145
4 283 100 127 227 295 68
5 500 248 598 846 620 -226
6 500 0 0 0 561 0
Sum 2510 685 1356 2041 2818 0

Table 4. Demand Transformation.

t d̃n
t

d̃r
t

d̃t ct d̃[t] c[t]

1 195 198 393 609 393 609
2 42 590 632 632 1025 1241
3 101 0 101 101 1126 1342
4 295 0 295 295 1421 1637
5 52 568 620 620 2041 2257
6 0 0 0 561 2041 2818
Sum 685 1356 2041 2818

Remark 2. It is important to clarify that this task only makes sense if the vector w is not equal to the null vector.

If the vector w is equal to the null vector it means that in each period dt <= ct. In this case a relaxation is not

possible and the problem (16)-(24) will be solved with a heuristic method (Model B).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

8 of 23

5. Model B (Simulation)

5.1. Low Discrepancy Sequences

The generation of random numbers with a computer is not possible Knuth [24]. As John von

Neumann said: Any one who considers arithmetical methods of producing random digits is, of course, in a

state of sin, [25]. An excellent overview of the methods of generating pseudo-random numbers are

available eg. [24,26] or [27].

In this section we explain the number-theoretical concept of discrepancy. Then, we introduce the

Halton sequence which is probably the easiest low-discrepancy (low discrepancy sequences are called

quasi-random sequences) number generation method to describe.

Definition 1. Let {z1, · · · , zN} a sequence of real numbers with 0 < zi < 1, i = 1, · · · , N. The discrepancy

DN for the sequence is defined as

DN = sup
l

| SN(l)− N |l| | (34)

where l is any subinterval [a, b) ⊆ [0, 1], |l| = b− a, and SN(l) denotes the number of elements of the sequence,

that belongs to the interval l.

A measure for how a sequence of real numbers {z1, · · · , zN} , a < zi < b, i = 1, · · · , N is

equidistributed on an interval [a, b] is the discrepancy DN . Low-discrepancy sequences, also known

as quasirandom sequences, are numbers that are better equidistributed in a given volume than

pseudo-random numbers.

Remark 3. A sequence {z1, · · · , zN} , 0 < zi < 1, i = 1, · · · , N of real numbers is said equidistributed on the

interval [0, 1] if DN = o(N), N → ∞, [18].

The (QRN) of Halton, Sobol and Niederreiter have a low discrepancy DN = O(ln(N)/N). While

pseudorandon sequences have a discrepancy DN = O(1/
√

N), [26]. Figure 2 uses two-dimensional

projection of a pseudorandom sequence and of a low-discrepancy (Halton) sequence to demonstrate

the fundamental difference between the two classes of sequences.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Halton Points

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pseudorandom Points

Figure 2. Two-dimensional projection of 5000 Halton and Pseudorandom points.

The desirable properties of a sequence of this (QRN) may be summarized as follows ([20]):

1. the least period length should be sufficiently large,
2. it should have littie intrinsic structure (such as lattice structure),
3. it should have good statistical properties,
4. the algorithm generating the sequence should be reasonably efficient.

It’s easy to generate sequences of Halton with the following Algorithm 1, [20].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

9 of 23

Algorithm 1: Construction of Halton sequences

Input: p prime, n >= 1 natural number
Output: A Halton number zh

i = 1, zh = 0
while n 6= 0 do

r = n mod p
n = n\p
zh = zh +

r
pi

i = i + 1

end
return zh

The following Halton sequences of Table 5 are constructed according to Algorithm 1 that uses a

prime number as its base.

Table 5. Halton Numbers.

Prime Numbers
2 3 5 7

n Halton numbers

1 0,5 0,33333333 0,2 0,14285714
2 0,25 0,66666667 0,4 0,28571429
3 0,75 0,11111111 0,6 0,42857143
4 0,125 0,44444444 0,8 0,57142857
5 0,625 0,77777778 0,04 0,71428571

Remark 4. To generate the n-th Halton point in a sequence consider the base b−ary expansion of a

n = ∑
∞
i=0 ai bi where the b−ary coefficients ai ∈ {0, · · · , b− 1} . Then the n-th Halton point is H(n) =

∑
∞
i=0 ai b−i−1. It’s easy to build a Halton-sequence with the following observation: If a0 < b − 1 then

H(n + 1) = H(n) + 1/b else if a0 = b − 1 then H(n + 1) = H(n) − (1 − bk − bk+1) where k =

min {i ≥ 0 : ai 6= b− 1} (details see [21]). This method is very efficient and will be used in this paper.

5.2. Notation

We use the following notation ∀t = 1, · · · , T

Name Meaning

dn
[t] =

t

∑
j=1

dn
j dn

[0] = 0

dr
[t] =

t

∑
j=1

dr
j dr

[0] = 0

rre
[t]=

t

∑
j=1

rre
j rre

[0]= 0

xn
[t] =

t

∑
j=1

xn
j xn

[0] = 0

xr
[t] =

t

∑
j=1

xr
j xr

[0] = 0

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

10 of 23

The notation x ∈ [a, b]p means x = (b− a)z + a, a ≤ b, 0 ≤ z ≤ 1 and the number z is simulated with

the following distribution

z =

(

zh 0 1

p q q

)

(35)

0 ≤ p ≤ 1, q =
1

2
(1− p), zh is a Halton number

We generate a pseudorandom number 0 ≤ g ≤ 1 to decide, that values take z, see Algorithm 2. In

Algorithm 2: Simulation of z with distribution (35)

if g ≤ p then
z = zh ;

end
else if g ≤ p + q then

z = 0 ;
end
else

z = 1 ;
end

Model B (Section 5) we will investigate the class of problems with the condition

dn
t + dr

t = dt ≤ ct, ∀t (36)

If this condition is not satisfied, the problem is easily solved with Model A (Section 4).

5.3. Simulation

The simulation is based on the following lemma.

Lemma 1. Let xt = xn
t + xr

t and dt ≤ ct, ∀t = 1, · · · , T. Then

d[t] − x[t−1] ≤ xt ≤ ct, ∀t = 1, · · · , T (37)

Proof. The proof proceeds by induction on t. In fact, if t = 1 because x[0] = 0 and d1 ≤ c1, we can

choose x1 such that d1 ≤ x1 ≤ c1.

d[t+1] − x[t] = dt+1 − xt + d[t] − x[t−1]

By induction hypothesis

≤ dt+1 − xt + xt

≤ ct+1

Then we can xt+1 choose such that d[t+1] − x[t] ≤ xt+1 ≤ ct+1.

Remark 5. If in Lemma 1 d[t] − x[t−1] < 0 then production in period t is xt = 0 because production up to

period t− 1 satisfies demand up to period t.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

11 of 23

Remark 6. Lemma 1 gives the following lower bound for the production of the products

xn
t ≥ un

t =max
{

dn
[t] − xn

[t−1]; 0
}

(38)

xr
t ≥ ur

t =max
{

dr
[t] − xr

[t−1]; 0
}

(39)

5.4. Basis of the Simulation

The production plan is created step by step starting from period t = 1. To determine the

production in period t, we know the selected production until period t− 1. In each period, using the

constraints of the task (16)-(24) for the production of the products, we determine a lower and an upper

bound. Then the production quantity is chosen randomly between the lower and upper limits. These

production quantities affect the lower and upper bounds of the future period. We continue in this way

until the period t = T. Then we calculate the value of the cost function(i.e. objective function). We

repeat this procedure (N times) and choose the production plan with the lowest cost. The advantages

of this method, we do not have to worry about the inventory, production or setup costs. The method is

now presented in more detail.

Proposition 1. If un
t = 0 then xn

t = 0, αn
t = 0, else xn

t ≥ un
t , αn

t = 1.

Proof. From (17) we get

xn
[t] − dn

[t] = xt + (xn
[t−1] − dn

[t]) ≥ 0 (40)

If (xn
[t−1] − dn

[t]) ≥ 0, then total production of new products up to period (t− 1) satisfies total demand

up to period t and therefore nothing is produced in period t, i.e. xn
t = 0, αn

t = 0.

If (xn
[t−1] − dn

[t]) < 0, then the production xn
t has a lower bound. From (40) we obtain

xn
t ≥ dn

[t] − xn
[t−1]. (41)

Proposition 2. If ur
t = 0 then xr

t = 0, αr
t = 0, else αr

t = 1 and

rre
[t] − xr

[t−1] ≥ xr
t ≥ ur

t . (42)

Proof. From (18) and (19)

rre
[t] ≥ xr

t + xr
[t−1] ≥ dr

[t]. (43)

If (xr
[t−1] − dr

[t]) ≥ 0, then total production up to period (t− 1) satisfies total demand up to period t

and therefore nothing is produced in period t, i.e. xr
t = 0, αr

t = 0.

If (xr
[t−1] − dr

[t]) < 0, then the production xr
t has an upper and lower bound. From (43) results the

assertion.

Proposition 3. If un
t > 0 and ur

t > 0, then

on
t = min

{

ct − ur
t , dn

[T] − xn
[t−1]

}

or
t = min

{

ct − xn
t , dr

[T] − xr
[t−1], rre

[t] − xr
[t−1]

}

And

un
t ≤ xn

t ≤ on
t (44)

ur
t ≤ xr

t ≤ or
t (45)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

12 of 23

Proof. From (20) and Remark 6

ct ≥ xn
t + xr

t ≥ xn
t + ur

t

ct − ur
t ≥ xn

t (46)

From (2)

dn
[T] = xn

[T] ≥ x
n

[t−1] + xn
t

dn
[T] − xn

[t−1] ≥ xn
t (47)

From (46) and (47)

xn
t ≤ on

t (48)

Therefore we simulate the production xn
t according to (35)

xn
t ∈ [un

t , on
t]p, αn

t = 1. (49)

From (20) using xn
t of (49) we get

ct − xn
t ≥ xr

t (50)

and then from (2) we obtain

dr
[T] = xr

[T] ≥ xr
[t] = xr

t + xr
[t−1]

dr
[T] − xr

[t−1] ≥ xr
t (51)

From (50), (51) and (42) results

xr
t ≤ or

t (52)

Therefore we simulate the production xr
t according to (35)

xr
t ∈ [ur

t , or
t]p, αr

t = 1. (53)

5.5. Simulation of the Objective Function

Let R be a matrix with Halton’s QRN

R =

(

R(1, 1) · · · R(1, T)

R(2, 1) · · · R(2, T)

)

=

(

R1

R2

)

We simulate the production starting in period t=1. The calculation of the objective function is carried

out with Algorithm 3 using proposition (1), (2) and (3).

Further information on the complexity-theoretic approach to randomness can be found in [28–30].

Remark 7. 1. The generation of the matrix R[N × T] requires O(N × T) operations.
2. Die evaluation of the function ϕ(x, y) with Algorithm 3 requires O(T) operations

Then, the computational complexity of the simulation with N points and T periods is O(N × T).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

13 of 23

Algorithm 3: Calculation of the objective function

Data: R = [2× T] matrix with Halton-QRN

Result: ϕ(x, y)
t = 1, ϕ = 0, in

T = irT = 0
while t ≤ T do

if un
t > 0 and ur

t > 0 then
xt ∈ [un

t , on
t]p using R1

xr
t ∈ [ur

t , or
t]p using R2

αn
t = 1, αr

t = 1

end
else if un

t > 0 and ur
t = 0 then

xn
t ∈ [un

t , on
t]p using R1

xr
t = 0,

αn
t = 1, αr

t = 0

end
else if un

t = 0 and ur
t > 0 then

xn
t = 0

xr
t ∈ [ur

t , or
t]p using R2

αn
t = 0, αr

t = 1

end
else

xt = 0, xr
t = 0

αn
t = 0, αr

t = 0

end
ϕ := ϕ + sn

t αn
t + vn

t xn
t + sr

t αr
t + vr

t xr
t

xn
[t] := xn

[t−1] + xn
t , xr

[t] := xr
[t−1] + xr

t

end

6. Numerical Experiments

6.1. Test Design

We analyse the quality of our solution approach of model A and model B by defining 11 problem

classes (PC) by varying the number of periods, see Table 6. The planning horizon T is made very

large because in the paper industry planning is done daily. Each PC consists of 200 test instances

(TI). In model A, 1824 of the 2200 TI were solvable, in model B 2200. In total, we examined 4024

TI. Model A and Model B are implemented on a computer with Intel(R) Core(TM)iT − 9700K,

CPU@3.60GHz,3600MHz.

Table 6. Problem classes.

PC1 PC2 PC3 PC4 PC5 PC6
T 15 30 60 90 120 150

PC7 PC8 PC9 PC10 PC11
T 180 210 240 270 300

We vary different parameters to define the TI, e.g., the time between orders (TBO) to determine

setup costs. The specifications of the parameters are designed in an exaggerated form, which may not

occur in practice, to make the TI as difficult as possible.

The parameters for generating data sets (see Table 7) use the following notation x ∈ [a; b] ⇔
x = (b− a)θ + a, a ≤ b, where 0 ≤ θ ≤ 1 is a random number, that means the values are uniformly

distributed on the interval [a, b].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

14 of 23

6.2. Model A

We randomly generate capacities ct, then with condition (1) randomly generate aggregate demand

dt. This latter is then randomly cut into dn
t and dr

t . The remaining parameters according to Table 7.

Table 7. Parameters for Model A.

ct ∈ [0; 800] dn
t , dr

t with condition (1)
pn ∈ [15; 20] pr ∈ [10; 15]

hn
t ∈ [5; 10] hr

t ∈ [3; 8]
hre

t with condition (4) rre
t with condition (3)

sn
t =

d̄n TBO2 hn
t

2 , TBO ∈ {1, 2, 4}
sr

t=
d̄r TBO2 hr

t
2 , TBO ∈ {1, 2, 4}

6.2.1. Results of Model A

The solution of problem (25)-(33) (TD) and the optimal solution of problem (16)-(24) (OP) were

found with the Gurobi solver version 9.0.3.

We randomly generated 200 instances per PC and usually between 10 and approx. 20% of the

instances have no solution (see line Count). This justifies the fact that the problem is not standard. For

example, in Table A1 we see that of the 200 instances for problem class T = 60, only 167 had a solution.

With the following notation, we can better understand the results of Table A1.
T ∈ {15, 30, · · · , 300}
m ∈ Count = {172, 155, · · · , 170}
ϕTi(xn, xr) i = 1, · · · , m solution of problem (25)-(33)

ϕ∗Ti(xn, xr) i = 1, · · · , m solution of problem (16)-(24)

µT = ∑
m
i=1 ϕTi(xn ,xr)

m

µ∗T = ∑
m
i=1 ϕ∗Ti(xn ,xr)

m

CPUT = ∑
m
i=1 CPUTi

m

CPU∗T = ∑
m
i=1 CPU∗Ti

m

In Table A1 the relative error for Total costs (Tc) and CPU-time for every problem class was

calculated as

RelativeAvg.Error(Tc) =
µT − µ∗T

µ∗T

RelativeAvg.Error(CPU) =
CPUT − CPU∗T

CPU∗T

This is exactly how we calculated the relative errors in inventory cost and setup cost.

Attached in Appendix A are the results of the average total cost, average CPU time, average

Inventory costs

There is hardly any difference between the cost of relaxation (TD) and the original task (OP).

Only the computation time for relaxation is faster. The longer the planning horizon, the smaller the

difference between the optimal solutions of the problems TD and original optimization task OP. This

feature applies to the stocks of the return and setup costs too. On the other hand, the inventory costs

for problem TD are always smaller than the inventory costs of problems OP. For more details, please

see Figure A1 and Appendix A.1 for the exact calculations. However, we see beyond doubt that this

class of problems can be solved very well either with the relaxation TD or directly with a standard

solver (here Gurobi).

6.3. Model B

[13] have shown that several families of CLSP are Np-hard. For the construction of the Np-hard

instances (2200 instances) we follow the findings of [14]. They use the following notation Nr/α/β/γ/σ,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

15 of 23

where Nr, α, β, γ and σ specify respectively the number of items, a special structure for the setup costs,

the holding costs, production costs, and capacities. In this paper [14] they show that the following class

2/C/G/A/C is NP-hard. For this reason we have created 2200 instances, where the set-up costs per

product and capacities per instance are constant. The holding cost do not necessarily follow a specified

pattern, the production costs can be chosen arbitrarily. The maximum calculation time for Gurobi is

600 seconds. The heuristic operates according to the number of simulations, which gradually increases

with the number of periods. The largest group T300 uses 130 seconds. The parameters for generating

data sets (see Table 8) use the following notation x ∈ [a; b]⇔ x = (b− a)θ + a, a ≤ b, where 0 ≤ θ ≤ 1

is a random number, that means the values are uniformly distributed on the interval [a, b].

The important assumption in model B is: the capacities for each TI is constant, the set-up costs

in each TI and for each product are constant. These parameters vary between a minimum and a

maximum depending on the T parameter.

The capacities for each TI vary according to the parameter T. For example if T = 15 the capacities

are between 600 and 800. If T = 300 the capacities vary between 3000 and 5500. Analogously the other

parameters. The remaining parameters according to Table 8.

Table 8. Model B: Parameters.

c ∈ [200; 5500] dn
t , dr

t with condition (1)
pn ∈ [4; 20] pr ∈ [2; 15]

hn
t ∈ [0.6; 10] hr

t ∈ [0.6; 8]
hre

t with condition (4) rre
t with condition (3)

scn ∈ [4000; 30000] srr ∈ [3000; 16000]

For the simulation we used following parameters:

NT = 215T

NT is the Halton’s numbers used for T periods (see Table 9).

Table 9. Periods, Halton’s numbers.

T NT

15 491520
30 983040
60 1966080
90 2949120
120 3932160
150 4915200
180 5898240
210 6881280
240 7864320
270 8847360
300 9830400

All instances for T = 15, 30 · · · , 300 have the same schema Step 1 until Step 5. We used τ = 4 (see

Table 10).

Table 10. Schematic of the simulation.

Step 1 Initialisation:ϕ∗, k = 1, τ > k, T, N = NT
τ

Step 2 pk = k
τ . If k = τ, stop; otherwise go to Step 3.

Step 3 Using Algorithm 4 and pk calculate the function
ϕpk

:= min {ϕi(x, y), i = 1, · · · , N} .
Step 4 If ϕ∗ > ϕpk

then ϕ∗ = ϕpk
.

Step 5 k = k + 1 and go to Step 2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

16 of 23

Algorithm 4: Heuristic: blind search

Data: R = [NT × T] random matrix

Result: min {ϕ(x, y)}
Initialisation:ϕmin

for k← 1 to NT − 1; k = k + 2 do

x ← R[k]

y← R[k + 1]

ϕ← ϕ(x, y)

if ϕ < ϕmin then
ϕmin ← ϕ

end

end

6.3.1. Results of Model B

We generated 200 random instances for each problem class (PC) and with a Box-plot we compared

the feasible solutions GTi(xn, xr) of the problem (16)-(24) found by Gurobi 9.0.3 with the solution

STi(xn, xr) of the simulation presented in this paper and clearly see the similarity of the results found

(see Figures A4 and A5).

With the following notation we present the results (see Table A3).
T ∈ {15, 30, · · · , 300}
m = 200

STi(xn, xr) i = 1, · · · , m

GTi(xn, xr) i = 1, · · · , m

µT = ∑
m
i=1 STi(xn ,xr)

m

µ∗T = ∑
m
i=1 GTi(xn ,xr)

m

CPU_ST = ∑
m
i=1 CPUTi

m with Simulation

CPU∗T = ∑
m
i=1 CPU∗Ti

m with Gurobi

In Table A3 the relative error for Total costs (Tc) and CPU-time for every problem class was

calculated as

RelativeAvg.Error(Tc) =
µT − µ∗T

µ∗T

RelativeAvg.Error(CPU) =
CPU_ST − CPU∗T

CPU∗T

The graphical comparison is shown in Figure A3.

This is exactly how we calculated the relative errors in inventory cost and setup cost. Attached

in Appendix B are the results of the average total cost, average CPU time, average Inventory costs.

Figure A3 (average CPU time) clearly shows that the Gurobi admissible solution for the PC from T150

to T300 are not optimal and that the CPU of the simulation is much faster.

The simulation in average determines the setup costs and return inventory costs always higher

than Gurobi. On the other hand, the inventory costs of Gurobi are higher than the simulation. What

can we say about the quality of the solution of the problems? the simulation could not give a better

solution than Gurobi’s solution. Gurobi solved the (PC) problems up to T120 in an optimal way. The

problems from T150 to T300 were not solved optimally by Gurobi, since it would take too much time

due to the Np-hard category of the problem. The simulation found feasible solutions much faster than

Gurobi. Here is the advantage of the simulation, the simplicity of its implementation and the speed in

finding an acceptable solution.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

17 of 23

7. Conclusions and Outlook

We have analyzed a problem that belongs to the NP-hard class. However, the choice of the

parameters is very important to obtain a problem that is really Np-hard. With the choice of parameters

made in model A, we see that this class of problems is easily solved with a standard solver. By doing a

relaxation of the problem, the solution is found more quickly. The error rate is between 0.02% and 2%

(taking into account more than 1800 instances).

If we choose the parameters according to model B, Gurobi needs a lot of time to find the optimal

solution. In this kind of problem the presented simulation can help a lot in finding a good solution. We

have seen that the error rate is between 1.7% and 3.5% (taking into account more than 2000 instances).

The simulation is sometimes better than Gurobi, but on average Gurobi solves the problem with a

maximum time of 600 seconds better than the simulation. The great advantage of the simulation is that

the calculation is extremely fast and easy.Thanks to the Halton numbers, few simulations are needed

to obtain a very good approximation of the solution.

The simulation has a general character and can be adapted to investigate even more complex

problems of the Np-hard category (for example, researching CLSP problems with n products).

The quality of the solutions can be improved by increasing the number of simulations but it is

necessary to have a fairly fast computer. In this work we use at most 10 million simulations. Another

parameter that influences the quality of the solutions is the correct choice of the probability p (see

(35)). Is there an optimal probability? This is a question for further research.

Acknowledgments: My special thanks to Luis Aurelio Rocha of Passau University for his comments on this work.

Abbreviations

The following abbreviations are used in this manuscript:

QRN Low-discrepancy sequences, also known as Quasirandom sequences,

CLSP capacitated lot-sitzing problem

Appendix A. Results Visualization

Appendix A.1. Model A

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.0

0.5

1.0

1.5

2.0

2.5

M
ea
ns

1e7 Average total cost by group and Method
TD
OP

(a) Totalcost

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

1

2

3

4

5

6

7

tim
e
in
 se

co
nd

s

CPU average time in seconds by group and method
TD
OP

(b) CPU-time

Figure A1. Model A: Average Totalcost and CPU Time.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

18 of 23

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.0

0.5

1.0

1.5

2.0

2.5

co
st
s

1e7Average return inventory costs by group and method
TD
OP

(a) Return Inventory cost

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

100000

200000

300000

400000

500000

co
st
s

Average inventory costs by group and method
TD
OP

(b) Inventory cost

Figure A2. Model A: Average Inventory cost.

Appendix A.2. Model B

Visualization of the results and average costs.

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

s

1e7 Average total cost by group and Method
Simulation
Gurobi

T15 T30 T60 T90 T120 T150 T180 T210 T240 T270 T300
0

100

200

300

400

500

600

tim
e

in
 se

co
nd

s

CPU average time in seconds by group and method
Simulation
Gurobi

Figure A3. Model B: Average Total cost and CPU time.

T15 T30 T60
Total costs

200000

400000

600000

800000

1000000

1200000

1400000

Ob
se
rv
ed

 v
al
ue

s

Gurobi

T15 T30 T60
Total costs

200000

400000

600000

800000

1000000

1200000

1400000

Ob
se
rv
ed

 v
al
ue

s

Simulation

T90 T150 T180
Total costs

2000000

3000000

4000000

5000000

6000000

7000000

Ob
se
rv
ed

 v
al
ue

s

Gurobi

T90 T150 T180
Total costs

3000000

4000000

5000000

6000000

7000000

Ob
se
rv
ed

 v
al
ue

s

Simulation

Figure A4. Model B: Total costs.

T120 T210
Total costs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ob
se
rv
ed

 v
al
ue

s

1e7 Gurobi

T120 T210
Total costs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ob
se
rv
ed

 v
al
ue

s

1e7 Simulation

T240 T270 T300
Total costs

1.0

1.5

2.0

2.5

3.0

3.5

Ob
se
rv
ed

 v
al
ue

s

1e7 Gurobi

T240 T270 T300
Total costs

1.0

1.5

2.0

2.5

3.0

3.5

Ob
se
rv
ed

 v
al
ue

s

1e7 Simulation

Figure A5. Model B: Total costs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

19 of 23

Appendix B. Average Costs

Appendix B.1. Model A

Table A1. Model A: Average Total Costs.

Total Costs T 15 30 60 90 120 150

Count 172 155 167 162 166 164

TD Mean 274061 665537 1798127 3348945 5552436 8062797

Std. 87161 151370 389288 660684 906092 1349699

Optimal Mean 268593 659453 1792494 3344788 5546715 8058311

Std. 83431 148783 385859 659403 904686 1348457

Relative error Tc 2,04% 0,92% 0,31% 0,12% 0,10% 0,06%

Total costs T 150 180 210 240 270 300

Count 164 164 168 168 170 168

TD Mean 8062797 11087631 14620895 19015245 23243458 28160753

Std. 1349699 1811439 2199306 2911556 3384673 3870830

Optimal Mean 8058311 11081145 14614610 19008049 23237758 28154353

Std. 1348457 1808995 2198938 2910200 3382841 3868995

Relative error Tc 0,06% 0,06% 0,04% 0,04% 0,02% 0,02%

Table A2. Model A: Average CPU time.

CPU Time T 15 30 60 90 120 150

Count 172 155 167 162 166 164

TD Mean 0,10 0,11 0,21 0,31 0,50 0,78

Std. 0,06 0,05 0,10 0,16 0,26 0,39

Optimal Mean 0,14 0,28 0,41 0,59 1,12 1,79

Std. 0,06 0,11 0,17 0,30 0,51 1,42

Relative error CPU -25,27% -59,97% -49,61% -47,53% -55,39% -56,26%

CPU Time T 150 180 210 240 270 300

Count 164 164 168 168 170 168

TD Mean 0,78 1,00 1,25 1,59 1,77 2,36

Std. 0,39 0,47 0,69 0,82 0,90 1,39

Optimal Mean 1,79 2,44 3,52 5,03 5,33 7,60

Std. 1,42 1,73 3,00 3,50 3,98 5,97

Relative error CPU -56,26% -59,00% -64,53% -68,46% -66,87% -68,94%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

20 of 23

Appendix B.2. Model B

Table A3. Model B: Average Total Costs.

Total Costs T 15 30 60 90 120 150

Count 200 200 200 200 200 200

Simulation Mean 185971 342933 815220 4576352 7829443 3979678

Std. 21273 45909 155884 858442 1559305 397507

Gurobi Mean 182040 332163 784654 4498331 7718552 3845522

Std. 21125 45150 155097 882996 1594738 393440

Relative error Tc 2,16% 3,24% 3,90% 1,73% 1,44% 3,49%

Total costs T 150 180 210 240 270 300

Count 200 200 200 200 200 200

Simulation Mean 3979678 5477237 8177244 19065355 18786745 20708665

Std. 397507 593444 1275892 4030464 3201422 3672141

Gurobi Mean 3845522 5318346 7905438 18570461 18146172 19992493

Std. 393440 590176 1265172 4055425 3179322 3670651

Relative error Tc 3,49% 2,99% 3,44% 2,66% 3,53% 3,58%

Table A4. Model B: Average CPU time.

CPU Time T 15 30 60 90 120 150

Count 200 200 200 200 200 200

Simulation Mean 0,79 2,28 5,94 11,68 19,87 34,12

Std. 0,13 0,13 0,16 0,18 0,23 0,54

Gurobi Mean 0,12 1,57 90,38 111,93 204,94 597,03

Std. 0,08 1,53 156,10 186,04 245,47 36,02

Relative error CPU 552,92% 44,87% -93,43% -89,56% -90,31% -94,28%

CPU Time T 150 180 210 240 270 300

Count 200 200 200 200 200 200

Simulation Mean 34,12 46,26 62,84 77,96 101,69 130,17

Std. 0,54 0,58 1,22 2,63 2,74 3,78

Gurobi Mean 597,03 596,88 597,47 591,51 596,54 593,22

Std. 36,02 4,06 3,92 33,19 3,80 7,14

Relative error CPU -94,28% -92,25% -89,48% -86,82% -82,95% -78,06%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

21 of 23

Table A5. Model B: Inventory costs.

Inventory Costs T 15 30 60 90 120 150

Count 200 200 200 200 200 200

Simulation Mean 28307 52842 112536 253095 340599 260657

Std. 5341 8170 12391 86118 107587 28744

Gurobi Mean 27801 57117 132943 509248 790970 318360

Std. 6907 12243 29889 194930 324335 43350

Relative error Inv. 1,82% -7,49% -15,35% -50,30% -56,94% -18,13%

Inventory costs T 150 180 210 240 270 300

Count 200 200 200 200 200 200

Simulation Mean 260657 345666 542344 990715 1147482 1282444

Std. 28744 38613 75292 175805 161861 196713

Gurobi Mean 318360 507104 835915 1859977 1730800 1959659

Std. 43350 89630 191367 486708 372666 455506

Relative error Inv. -18,13% -31,84% -35,12% -46,74% -33,70% -34,56%

Table A6. Model B: Return stock cost.

Return Inventory Costs T 15 30 60 90 120 150

Count 200 200 200 200 200 200

Simulation Mean 45867 92667 249888 3690209 6646915 821946

Std. 18040 35850 137395 1028216 1793396 208315

Gurobi Mean 41356 74641 195294 3346068 6070949 700634

Std. 17493 33456 133042 1109603 1957840 207573

Relative error Ret. Inv. 10,91% 24,15% 27,96% 10,28% 9,49% 17,31%

Return Inventory costs T 150 180 210 240 270 300

Count 200 200 200 200 200 200

Simulation Mean 821946 1548362 2628642 9347966 7251886 8608929

Std. 208315 482657 1041268 4406311 2744151 3706917

Gurobi Mean 700634 1293559 2169556 8142232 6309891 7524531

Std. 207573 477084 1026872 4293352 2685984 3610684

Relative error Ret. Inv. 17,31% 19,70% 21,16% 14,81% 14,93% 14,41%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

22 of 23

Table A7. Model B: Average Setup costs.

Setup Costs T 15 30 60 90 120 150

Count 200 200 200 200 200 200

Simulation Mean 50033 106876 238570 293071 388685 1521814

Std. 10663 17638 31424 27563 34664 212705

Gurobi Mean 55707 114588 248504 307481 408104 1458747

Std. 10343 17268 30443 27399 37230 201433

Relative error Setup -10,19% -6,73% -4,00% -4,69% -4,76% 4,32%

Setup Costs T 150 180 210 240 270 300

Count 200 200 200 200 200 200

Simulation Mean 1521814 1699197 2214098 2828660 3716988 4920930

Std. 212705 233148 330991 404730 467555 902775

Gurobi Mean 1458747 1641182 2118141 2669355 3397775 4526298

Std. 201433 223689 310292 367954 412785 200

Relative error Setup 4,32% 3,53% 4,53% 5,97% 9,39% 8,72%

References

1. Thierry, M.; Salomon, M.; Van Nunen, J.; Van Wassenhove, L. Strategic issues in product recovery

management. California Management Review 1995, 37, 114–135.

2. Umweltbundesamt. Papier und Druckerzeugnisse, 2020.

3. Sahling, F. A Column-Generation Approach for a Short-Term Production Planning Problem in Closed-Loop

Supply Chains. BuR- Business Research 2016, 6(1), 55–75.

4. Helmrich, R.; Jans, M.; van den Heuvel, W.; Wagelmans, A. Economic lot-sizing with remanufacturing:

Complexity and efficient formulations. IISE Transactions 2014, 46(1), 67–86.

5. Sifaleras, A.; Konstantaras, I. Variable neighborhood descent heuristic for solving reverse logistics multi-item

dynamic lot-sizing problems. Electronic Notes in Discrete Mathematics 2015, 47, 69–76.

6. Kilic, O.; van den Heuvel, W. Economic lot sizing with remanufacturing: Structural properties and

polynomial-time heuristics. IISE Transactions 2019, 51:12, 1318–1331. https://doi.org/https://doi.org/10.

1080/24725854.2019.1593555.

7. Richter, K.; Weber, J. Thre reverse Wagner/Whitin model with variable manufacturing and remanufacturing

cost. International Journal of Production Economics 2001, 71, 447–456.

8. Richter, K.; Sombrutzki, M. Remanufacturing planing for the reverse Wagner/Whitin models. Journal of

Operational Research 2000, 121, 304–315.

9. Teunter, R.; Bayindir, Z.; van den Heuvel, W. Dynamic lot sizing with product returns and remanufacturing.

Int. Journal of Production Research 2006, pp. 4377–4400.

10. Schulz, T. A new Silver-Meal basic heuristic for the single-item dynamic lot sizing problem with returns and

remanufacturing. International Journal of Production Research 2011, p. 2519–2533.

11. Cunha, J.; Melo, R. A computational comparison of formulations for the economic lot-sizing with

remanufacturing. Computers & Industrial Engineering 2016, 92, 72–81.

12. Zhang, Z.; Jiang, H.; Pan, X. A lagrangian relaxation based approach for the capacitated lot sizing problem

in closed-loop supply chain. Int. J. Productions Economics 2012, 140, 249–255.

13. Florian, M.; Lenstra, J.; Rinnooy, K. Deterministic production planning algorithms and complexity.

Management Science 1980, 26, 669–679.

14. Bitran, G.; Yanasse, H. Computational complexity of the capacitated lot size problem. Management Science

1982, 28, 1174–1186.

15. Dixon, P. Multi-Item Lot-Sizing with Limited Capacity. dissertation, University of Waterloo, Ontario, 1979.

16. Karimi, B.; Fatemi Ghomi, S.; Wilson, J.M. The capacitated lot sizing problem review of models and

algorithms. OMEGA 2003, 31, 365–378.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/https://doi.org/10.1080/24725854.2019.1593555
https://doi.org/https://doi.org/10.1080/24725854.2019.1593555
https://doi.org/10.20944/preprints202304.0242.v2

23 of 23

17. Maes, J.; McClain, J.; Van Wassenhove, L. Multilevel capacitated lotsizing complexity and LP-based heuristics.

Journal of Operational Research 1991, 53, 131–148.

18. Sobol, I. Calculation of improper integrals using uniformly distributed sequences. Soviet Math. Dokl. 1973,

14, 734–738.

19. Halton, J.H. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional

integrals. Numer. Math. 1960, 2, 84–90.

20. Niederreiter, H. Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 1978,

84, 957–1041.

21. Klinger, B. Numerical Integration of Singular Integrands using Low-Discrepancy Sequences. Computing

1997, 59, 223–236.

22. Heuvel, W.; Wagelmans, A. Four equivalent lot-sizing models. Operations Research Letters 2008, 36, 465–470.

23. Maes, J.; Van Wassenhove, L. A simple heuristic for the multi item single level capacitated lotsizing problem.

Operations research letters 1986, 4, 265–273.

24. Knuth, D.E. The Art of Compute Programming: Seminumerical Algorithms. Volume 2.; Addison-Wesley, 1981.

25. von Neumann, J. Various techniques used in connection with random digits. Monte Carlo Method, Appl.

Math. Series 1951, 12, 36–38.

26. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods.; SIAM, 1992.

27. Tezuka, S. Uniform Random Numbers: Theory and Practice.; Kluwer Academic, 1995.

28. Chaitin, G. Information, Randomness and Incompleteness. Papers on Algorithmic Information Theory. 1987, p.

236.

29. Kolmogorov, A.; Uspenskii, V. Algorithms and randomness. Teor. Veroyatnost i Primenen. 1987, 32, 425–455.

30. Schnorr, C. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Math. 1971, 218, 109.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2023 doi:10.20944/preprints202304.0242.v2

https://doi.org/10.20944/preprints202304.0242.v2

	Introduction
	Literature Review
	Problem Description
	Rewriting the Optimization Problem

	Model A (Relaxation)
	Model B (Simulation)
	Low Discrepancy Sequences
	Notation
	Simulation
	Basis of the Simulation
	Simulation of the Objective Function

	Numerical Experiments
	Test Design
	Model A
	Results of Model A

	Model B
	Results of Model B

	Conclusions and Outlook
	Appendix A
	Appendix A.1
	Model B

	Average Costs
	Model A
	Appendix B

	References

