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Abstract: Factory safety inspections are crucial for ensuring safe production. However, manual
inspections present issues such as low efficiency and high workload. Inspection robots provide an
efficient and reliable solution for completing patrol tasks. The development of robot localization
and path planning technologies provides guarantees for factory inspection robots to autonomously
complete inspection tasks in complex environments. This paper studies mapping and localization, as
well as path planning methods for robots in order to meet the application requirements of factory
inspections. Two SLAM application systems based on multiple-line laser radar and vision are
designed for different scenarios in consideration of the limitations of cameras and laser sensors
in terms of their own characteristics and applicability in different environments. To address the
issue of low efficiency in inspection tasks, a hybrid path planning algorithm that integrates the
A-star algorithm and time elasticity band algorithm is proposed. This algorithm effectively solves
the problem of path planning in complex environments that is prone to falling into local optimal
solutions, thereby improving the inspection efficiency of robots. Experimental tests show that the
designed SLAM and path planning methods can meet the needs of robot inspection in complex
scenes and have good reliability and stability. The code used in this article is open source and can be
accessed at https://github.com/Mxiii99 /RSPP_CS.git.

Keywords: complex scenes; inspection robot; SLAM; path planning

1. Introduction

With the introduction of "Industry 4.0", robotics technology has rapidly advanced. Among
them, inspection robots have been extensively used in aerospace, manufacturing, agriculture, service
industries, and other fields due to their superior flexibility, mobility, and functionality [1,2]. As
inspection application scenarios become more diversified and complex, higher requirements are placed
on the autonomous navigation performance of robots. Robot navigation technology mainly consists of
SLAM technology and path planning technology. Simultaneous Localization and Mapping (SLAM) is
the process by which a mobile robot determines its own position and creates a map through sensors
carried in the surrounding environment. Path planning technology creates the optimal navigation
path for the robot to reach the target location based on different task goals and requirements.

SLAM technology can be classified into two categories based on different sensors: vision-based
and LIDAR-based. The MonoSLAM method proposed by Davison et al. estimates the camera pose
by extracting sparse feature points frame by frame, which is the first real-time visual SLAM system
using a single camera [3]. Subsequently, Klein et al. proposed the PTAM method, which introduced
nonlinear optimization and keyframe mechanism [4], solving the problem of high computational
complexity in MonoSLAM. Newcombe et al. proposed a dense per-pixel method based on RGB-D
camera, which can achieve real-time tracking and reconstruction [5]. As for LIDAR-based SLAM
methods, Grisetti et al. proposed a 2D SLAM algorithm based on particle filtering, which solved
the problem of particle dissipation caused by resampling through reducing the number of particles
[6]. Konolige et al. proposed the first open-source algorithm based on graph optimization by using
highly optimized and non-iterative square-root factorization to sparsify and decouple the system [7].
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Kohlbrecher et al. designed the Hector SLAM algorithm, which matches the current frame’s LIDAR
data with the factor graph and optimizes the pose using the Gauss-Newton method to obtain the
optimal solution and bias [8].

Path planning is to plan a collision-free optimal path from the starting point to the destination
point in the map environment. Path planning can be divided into global and local path planning
according to whether the environment information is known in advance. Dijkstra et al. proposed
the shortest path planning algorithm, which uses breadth-first search to search for paths [9]. Hart
et al. proposed the A-star algorithm, which reduces the search nodes by using heuristic evaluation
function and improves the efficiency of path searching [10]. Fox et al. proposed the DWA, which
samples velocity dynamically in the robot’s sampling space according to the robot’s kinematic model
and current motion parameters, and selects the best trajectory [11]. To address the insufficient
evaluation function of DWA, Chang et al. proposed an improved DWA algorithm based on Q-learning,
which modifies and extends the evaluation function and adds two evaluation functions to improve
navigation performance and achieve higher navigation efficiency and success rate in complex unknown
environments [12]. Résmann et al. proposed the Time Elastic Band algorithm based on multi-objective
optimization, which ensures that the robot can output a smooth trajectory under the premise of
satisfying its kinematic constraints [13].

Both lidar and camera sensors are essential for factory inspections, but their applicability depends
on the specific application scenarios and factory environments. Lidar is suitable for long-distance
and high-precision measurements, such as inventory management in large warehouses and position
control in robot operations. However, lidar has limitations in processing details and colors, making it
unsuitable for high-visual requirements scenes. Camera sensors, with their functions such as image
recognition, detection, and tracking, are ideal for environments that require high-precision visual
detection and recognition, such as detecting product dimensions, shapes, colors, and performing
automated visual inspections during assembly processes on production lines. In addition, camera
sensors have strong processing capabilities for details and colors, providing more detailed image
information. However, camera sensors are highly dependent on ambient light, which can limit their
effectiveness in poor lighting conditions or when obstacles are present.

In this article, we designed two sets of SLAM systems based on multi-line lidar and vision sensors
respectively to meet the inspection needs of robots in different environments. Global path planning
using the A-star algorithm was adopted to improve navigation efficiency and help robots quickly plan
the optimal path, reducing inspection time and costs. However, the A-star algorithm is not suitable
for dynamic environments. Therefore, we introduced the Time Elastic Band algorithm, a real-time
path planning algorithm that can adapt to changes in the environment and obstacles, resulting in more
optimized path planning results to improve the efficiency of robot inspections and reduce collisions
and other safety issues between robots and factory equipment. The method proposed in this article
adopts a global and local fusion path planning algorithm for both lidar SLAM and vision SLAM,
ultimately achieving autonomous navigation and obstacle avoidance of inspection robots in comple.
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Figure 1. System framework.
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2. Inspection robot SLAM system

2.1. Visual-SLAM Algorithm Design and Implementation

In the factory environment, the position and motion of inspection robots and equipment may
undergo rapid changes, thus requiring real-time acquisition and processing of sensor data for accurate
localization and mapping. To achieve this, we have chosen an appearance-based localization and
mapping method that is invariant to time and scale, as shown in the structural diagram in Figure 2.
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Figure 2. Vision-based SLAM system structure diagram.

From Figure 2, it can be seen that RGB-D images are used as external input, and the ORB
algorithm is used to extract feature points from RGB-D images [14]. Then, a Bag-of-Words based image
matching method is used to match feature points between adjacent frames. The loop-closure detection
mechanism is introduced to eliminate drift. When the robot returns to an area previously visited, the
loop-closure detection can identify the area and match the newly observed data with the previous map
data, thus addressing the cumulative drift problem. Next, graph optimization is performed, where
the robot’s poses are represented as nodes in the graph and the observed data is represented as edges.
Then, the least squares method is used to optimize the positions of all nodes, minimizing the error
between observed and predicted data. Finally, a dense map can be generated.

This vision-based mapping and localization algorithm utilizes global and local loop-closure
detection techniques, which can identify and handle errors and drift in sensor data, improving the
robustness and accuracy of localization and mapping, and enhancing the efficiency and real-time
performance of inspection robots.

2.2. Multi-line LIDAR-based SLAM Algorithm Design and Implementation

In indoor factory environments, lighting conditions can vary with time and location, which may
lead to misidentification of objects or inaccurate positioning by visual sensors. However, laser sensors
do not require an external light source, as they emit their own laser beams and are not affected by
lighting issues. Therefore, we have adopted a lightweight and ground optimized laser odometry and
mapping method, whose structural diagram is shown in Figure 3. Firstly, the laser point cloud data
is dimensionally reduced, projecting the 3D laser onto a 2D depth image, segmenting the ground
according to the pitch angle, clustering non-ground point clouds, and obtaining labeled point cloud
data. Then, feature extraction is performed based on smoothness, resulting in four sets of feature
point clouds. Constraint relationships are established for the feature point cloud sets, and the 6-DOF
pose transformation matrix is solved using the Levenberg-Marquardt (LM) optimization method.
Subsequently, loop detection is conducted using the Iterative Closest Point (ICP) algorithm, and finally,
the current point cloud is mapped to the global map based on graph optimization, completing the
establishment of a high-precision map [15].
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Figure 3. Multi-line LiDAR-based SLAM system structure diagram.

1) Point cloud segmentation: Due to the complexity of the inspection environment and other
factors, noise may exist in the laser point cloud data. We first use point cloud segmentation to filter
out noise. By projecting a frame of 3D point cloud onto a 2D depth image using a projection method,
ground segmentation is performed to separate non-ground points [16]. Let P = py, pa, ..., pn be the
point cloud data obtained by the lidar at time ¢, where P; is a point in P;. These points are projected
onto a depth image, and the 3D points in space become 2D pixels in space. After projection, the
Euclidean distance r; of point P; to the sensor is obtained. Since the 3D point cloud contains a large
amount of ground information, it is necessary to filter the point cloud to improve the efficiency and
accuracy of feature extraction. Firstly, the ground points are labeled, and the labeled ground points
will no longer be segmented in subsequent steps. After separating ground points and non-ground
points, the non-ground points are processed by clustering. After this module, each point has its own
segmentation label (ground or non-ground), row and column indices in the depth image, and the
Euclidean distance r; to the sensor.

2)Feature extraction: According to the smoothness, the projected depth image is horizontally
divided into several sub-images. For each sub-image, the following process is performed [17]: Let S be
the set of continuous points in the same row in the depth image, and calculate the smoothness ¢ of
point P;.

= 1 (rj—ri)
IS - Il jeSj#i
where r; and 7; are the Euclidean distances from points P; and P; to the sensor. According to Equation
(1), the smoothness of each point can be calculated, and then the smoothness is sorted. After sorting,
feature points are selected. Different types of features are segmented based on the set threshold cy,.
The edge points with a smoothness c greater than cy, are selected as set Fy;., and the plane points with
a smoothness c less than ¢, are selected as set Fy;,. The largest nf,, edge points with the maximum ¢
value and the smallest 1, , plane points with the minimum c value are selected from all sub-images
to form the edge feature point set Fy,e and the plane feature point set Fy,,. Then, n, edge points not
belonging to ground points with the maximum c value are selected from set Fy, to form set F,, and n,
plane points belonging to ground points with the minimum c value are selected from set F,, to form
set F,. Obviously F, C Fpe& F), C Fyp.

3)Radar Odometry: The odometry module estimates the robot’s pose change between adjacent
frames using a radar sensor. In the estimation process, tag matching is used to narrow down the
matching range and improve accuracy, and a two-step LM optimization method is used to find the
transformation relationship between two consecutive frames [18]. The first step uses ground feature

‘ )

points Fj to obtain [tz, trolls tpitch} , and the second step matches the edge features extracted from the
segmented point cloud to obtain the transformation [tx, ty, tyaw] . Finally, by fusing [tz, trolls tpitch} and

[tx, ty, tyaw} , a 6-DOF pose transformation matrix [tx, ty, tz, troits tpitchs tyaw} is obtained.
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4)Radar Mapping: After obtaining the pose change between adjacent frames with radar odometry,
the features in the feature set F,,, anp at time t are matched with the surrounding point cloud Q'~! to
further refine the pose transformation. Then, using the LM optimization, the final transformed pose is
obtained and the pose graph is sent to GTSAM for map optimization to update the sensor estimated
pose and the current map [19].

In addition, noise may exist in the collected laser point cloud data. In order to achieve
high-precision localization on the map, it is necessary to preprocess the high-precision map. We
use a statistical-based robust filter to remove outliers, a pass-through filter to clip the point cloud
within a specified coordinate range, and a voxel grid filter to downsample the point cloud. For the
inspection task that requires high-precision real-time localization, we perform real-time localization
on the constructed high-precision map through point cloud registration. First, the reference point
cloud (i.e., high-precision map) is transformed into a multivariate normal distribution [20]. If the
transformation parameters can accurately match the reference point cloud and the current point
cloud, the transformed points in the reference frame have a high probability density. Therefore, an
optimization method can be used to calculate the transformation parameters that maximize the sum of
the probability densities. In this case, the two sets of laser point cloud data match best. The specific
algorithm steps are as follows:

1) Given the current scanning point cloud S and the reference point cloud T, the space occupied
by the T point cloud is divided into voxel grids of a specified size, and the expected vector ji and
covariance matrix X of N points in each voxel grid are calculated.

Ly

==Y % 2
Nk:l

£o L Gem i) ) 3)
_Nflkzl X — W) (X — M

Here, X represents the three-dimensional coordinates of the point cloud in the voxel grid.

2) Initialize the transformation parameters to be solved, with zero values or odometry data. For
each sample X} in the S point cloud, transform it to the T point cloud according to the transformation
parameters. Let ¥} be the coordinate of ¥y in the T point cloud coordinate system. Find the grid where
X}, falls in the T point cloud, and combine the probability density function of each grid in the T point
cloud to calculate the corresponding probability distribution function p(X}).

20 Tw—1 (2
p (%) ~exp <—(xk ta) 22" % Vk))

3) Add up the probability densities calculated for each mapped point to obtain the registration

4)

score.

©)

¥ _ Tv1(zr
score(p) = ;exp (_ (%% — ) Ek (% Hk))

Use the Newton optimization algorithm to optimize the objective function until the optimal
transformation parameters are found that maximize the registration score, complete convergence,
and solve the best rigid body transformation between the target and source point clouds to achieve
accurate localization.
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3. Inspection robot Path planning system

3.1. Sports model

Currently, the chassis of inspection robots mainly consists of legged, tracked, and wheeled types,
each with its advantages and disadvantages in different environments. Legged inspection robots have
strong terrain adaptability, but their structure and control system are complex. Tracked inspection
robots have high traction and strong applicability in complex terrains such as outdoor, sandy, and
muddy areas, but their speed is relatively low, and they have high motion noise. Wheeled inspection
robots have fast speed, high efficiency, and low motion noise, and are widely used. In this paper, we
focus on the complex indoor factory environment and adopt a two-wheel differential wheeled robot
whose kinematic model is shown in Figure 4 [21].

><‘ 4

Figure 4. Two-wheel differential robot model.

In Figure 4, the motion of robot R; (i = 1,2, - - - ,n) is completed by two independently driven
wheels. Let the radius of the driving wheel be r;, and define the midpoint of the two driving wheels as
O;. The distance between the two wheels is 2b;, where {O, X, Y} is the inertial Cartesian coordinate
system, and {O;, X, Y} is the local coordinate system of the robot. v; is the speed of the left driving
wheel, v, is the speed of the right wheel, and v, is the speed of the center of the robot. If v; # v,, the
angular velocity w; can be obtained. According to the robot model, the forward speed depends on the
speed of the wheels.

b= ©)

The angular velocity w is determined by the difference in speed between the left and right driving

wheels and the distance between them.

U] — Ur
w =
2;

In the ideal case, according to the principle of rigid motion, the trajectory of the robot is a circle,

@)

and the radius can be expressed as

e bi(vp+or)
R_;_ (01 — or) ®)

The kinematic equation of the robot can be expressed as
T
q= [ x y 6 } u 9)

V:[vc wr (10)
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' cosf 0 11 o
[x j 9} — | sing 0 é _2% Ui (11)
0 1

The above formula is the pose state matrix and motion state matrix, and the final formula can be
written as follows:

cosf 0 o
g=S(q)V=| sinf 0 [ aJC 1 (12)
0 1

where S (g) isa 3 x 2 smooth linearly independent matrix, and V is the motion matrix of the robot.

3.2. Path Planning

The path planning of inspection robots mainly relies on the constructed grid map to generate a
safe and collision-free path by specifying the start and target locations. The path planning for robots
can be divided into global path planning and local path planning.

(1) Global path planning

To ensure that the patrol robot can effectively avoid obstacles globally and locally, and considering
that the grid map of the actual road scene is relatively simple, the A-star algorithm is used as the
global path planning method to provide accurate obstacle avoidance directions for the robot through
real-time planning [22,23]. A-star combines heuristic search with breadth-first algorithm to select the
search direction through the cost function f(n), and expands around the starting point. The cost value
of each surrounding node is calculated by the heuristic function k(#n), and the minimum cost value is
selected as the next expanding point. This process is repeated until the endpoint is reached, generating
a path from the starting point to the endpoint. In the search process, since each node on the path is the
node with the minimum cost, the cost of the path obtained is also minimum. The cost function of the
A-star algorithm is

f(n) = g(n) +h(n) (13)

where f(n) is the cost function at the current position, g(n) is the cost value from the starting position
to the current position in the search space, and h(n) is the cost value from the current position to the
goal position. In the A-star algorithm, the selection of the heuristic function is crucial. Since the map
environment is a grid map with obstacles, the Manhattan distance is used as the heuristic function,
which is given by:

h(n) = |x1 — x2| + |[y1 — y2 (14)

where (x1,y1),(x2, y2) represent the coordinates from the current position to the target position. In the
path planning of the A-star algorithm, the nodes are stored in two lists, Closelist and Openlist. The
nodes that have been searched and generated cost values are stored in Openlist. The node with the
minimum estimated cost is stored in Closelist, and the moving trajectory is formed by processing the
trajectories of each node in Closelist. The specific steps are as follows:

Step 1.The starting point s of the robot is the first calculated point, and the surrounding nodes are
added to Openlist, and the cost function f(n) of each point is calculated.

Step 2.Search Openlist, select the node with the smallest cost value f(n) as the current processing
node n, remove the node from Openlist, and put it into Closelist.

Step 3.If the real cost value g(n) of the adjacent node from the current processing node to the starting
point s is smaller than the original g(n) value, the parent node of the adjacent node is set to the current
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processing node; if it is larger, the current processing node is removed from Closelist, and the node
with the second smallest value of f(n) is selected as the current processing node.
Step 4.Repeat the above steps until the target point g is added to Closelist, traverse along each parent
node, and the obtained node coordinates are the path.

(2)Local path planning

The working environment of inspection robots is not always static. In the process of moving along
the global path, real-time obstacles may appear. To avoid collisions, the Timed-Elastic-Band (TEB)
algorithm, which introduces local path planning with time elasticity, is used on the basis of global
path planning to achieve real-time obstacle avoidance [24]. The TEB algorithm is an optimization
algorithm that follows the path generated by the global path planner. The local trajectory it generates
is composed of a series of continuous time and pose sequences, and the robot’s pose is defined as:

X; =[x,y Bi) " (15)

where X; represents the i-th pose in the robot coordinate system, including position information x;,y;
and angle B;. The time interval between adjacent poses X; and X; 1 is denoted by ATj, as shown in

Figure 5.
Y A
\/Z Bis2 o
Xio T
———————————— Bir1 q ATy
Xin B;
___________ .
X AT,
5.
o »

Figure 5. Time interval and pose sequence of the TEB.

In the optimization process, the TEB algorithm applies graph optimization to the adjacent time
intervals and states of the robot as nodes, and uses velocity, acceleration, and non-holonomic constraints
of the robot as edges. It also considers obstacle information, discrete interval of planned trajectory,
and adjacent temporal and spatial sequence constraints. Finally, the G20 solver is used to calculate
the control variable V (v, w) (where v and w represent the linear and angular velocity of the robot,
respectively), to obtain the optimal trajectory. The TEB algorithm obtains the optimal pose points
through weighted multi-objective optimization [25,26], where the mathematical description of the
objective function is:

f(B) =}_fr(B) (16)
k

B* = argmBinf(B) (17)

where f(B) is the objective function that considers various constraints, f;(B) is the constraint function,
Yk is the weight of each item, and B* is the optimal TEB trajectory. The TEB algorithm has four
constraint functions.

1) Path following and obstacle constraint objective function

The TEB algorithm aims to avoid collisions with static or dynamic obstacles while following
the path. The algorithm treats piecewise continuous and differentiable functions as constraints and
punishes behaviors that do not conform to the constraints. Specifically:
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er (x’ Xy, €, S,Tl) ~ ((x (xr S)) / ) X Xr € (18)
0 other
fpath =er (dmin,]'/ " pmaxs € S, n) (19)
fob =er (7dmirl,jl 7rpmin’ & Sr n) (20)

Building on equation (18), penalty functions f,an and fop are constructed. Here, x, denotes the
boundary, ¢ is the offset factor, S is the scaling factor, n is the order, d,;; ; is the independent variable
representing the distance between the path point and obstacle, rp, . is the maximum distance of the
trajectory deviation from the path point, and r,,, is the minimum distance between the trajectory and
obstacle.

2) The velocity and acceleration constraint functions of a robot

According to the dynamic equation, the constraint functions of the robot’s velocity and
acceleration are expressed as equations (21) - (24) :

Linear velocity:

1 Xit1 — X
v R — 21
"AT; ( Yit1 — Vi @)
Angular velocity:
b0
w; ~ AT, (22)

Linear acceleration:

_ 2(vig1 —vi)

. 23
Y AT T AT (23)

Angular acceleration:

g = 2(Wir1 — i) (24)
(AT; 4+ ATiyq)

3) Non-holonomic constraint:

The robot used in the algorithm simulation and experiment is a differential drive structure with
two degrees of freedom, which cannot perform translational motion along the y-axis of the robot
coordinate system. The curvature of the circular arc between two adjacent robot poses is approximately
constant, and the outer product of the direction vector d;, 1 and the turning angle 6; between adjacent
poses in the robot coordinate system is equal to the outer product of the turning angle 6,1 and the
direction vector d; ;1. B; represents the orientation of the robot in the global coordinate system, and
the corresponding relationship equation and non-holonomic constraint are:

cos B; cos Bit1
sin ,Bi X di,i+l = di,i+1 X sin ‘BiJrl &0 = 9,‘+1 (25)
0 0
Xit1 — Xi
dip1 = | Yiy1 — Vi (26)

0
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2
cos B; cos Bit1
fi (X3, Xi1) = sinf; |+ | sinpip X dijy1 (27)
0 0

The objective function fi(X;, Xj1+1) punishes the quadratic error for violating this constraint,
ensuring that the output velocity of the robot follows the non-holonomic constraint.

4) Fastest path constraint

The TEB algorithm incorporates the time interval information between poses, and the total time
is the sum of all time intervals. The relevant objective function is:

" 2
fe = (Z ATi) (28)
i+1

After optimizing the TEB sequence, the objective function of the constraints is optimized to ensure
that the path planned by the algorithm achieves the best results in terms of obstacle avoidance, time,
and distance.

(3)Path planning based on fusion algorithm

The A-star algorithm yields a navigation path consisting of only the start point, key points, and
destination point, but it cannot avoid unknown obstacles in the environment. The TEB algorithm
exhibits good local obstacle avoidance ability, but with only a single final goal point as a guide, it is
prone to becoming trapped in local optima. Therefore, we propose a hybrid path planning algorithm
that combines the strengths of both algorithms. The specific algorithm process is shown in Figure 6.

Hybrid path planning algorithm Output
A-star Algorithm Initialization Path

Target Position == Build Hypergraph .
9 ! = L yperorep Iterative
. F - N N Optimization —™>
Current Location—> ' . S

N Expected Acceleration

Input
Expected Speed

1 X
Global Costmap Local Map =—p =

Map —— = i X — | )
Location * ﬂ .:q 8 r! = L
’ B I_yl | i I-I e : ,
t Y

i o o
TEB Algorithm [} T

Figure 6. Hybrid path planning algorithm flow chart.

Global path planning takes a static obstacle cost map as input, and does not consider the robot’s
mechanical performance and kinematic constraints when planning the path. It uses the A-star
algorithm to plan the optimal path from the robot’s current position to the desired target position, and
provides an initial value for local planning.

Local path planning collects path nodes on the global optimal path, and optimizes the global path
subset between the robot’s current node and the collected path nodes. It combines the static obstacle
cost map and dynamic obstacle cost map, and uses the TEB algorithm to continuously adjust the pose
and orientation of the robot during its movement, taking into account its shape, dynamic model, and
motion performance in the scope of local planning. When encountering dynamic obstacles, it removes
the old robot pose and adds a new robot pose, so that a new path can be generated in each iteration,
and an optimized path can be obtained through continuous iteration.

By fusing navigation algorithms, we achieve optimal global path planning and real-time obstacle
avoidance functionality in the process of mobile robot navigation.
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4. Experiment and Analysis

4.1. Experiment settings

In order to verify the effectiveness of navigation systems in practical applications, we conducted
experiments using a Turtlebot3 mobile robot in different types of scenarios built using the Gazebo
simulation platform within the ROS on a 64-bit Ubuntu 18.04 operating system with 4GB of running
memory. As shown in Figure 7, we constructed a home environment and a library environment
to simulate real-world environments. Using the real-time localization and mapping capabilities in
Rviz, we scanned the simulated environments, constructed corresponding maps, and performed path
planning.

(a) (b)

Figure 7. Simulation environment.(a)House scene;(b)Library scene.

4.2. Performance evaluation

4.2.1. Visual-SLAM Algorithm performance evaluation

This paper presents a method for constructing a corresponding point cloud map using a depth
camera in a ROS environment. The depth camera data is first read in the ROS environment, and
then the front-end and back-end threads are executed to construct a sparse feature point map, which
is continuously updated to create a real-time point cloud map. Keyframes from the front-end are
passed into the point cloud construction thread to generate the point cloud map. The effectiveness of
the proposed algorithm for generating maps is validated by the corresponding point cloud map in
Figure 8, which demonstrates good 3D effects for constructing maps in indoor environments. As shown
in Figure 8, the algorithm detects the object’s motion trajectory, which is consistent with the actual
trajectory. Although there are deviations between the detected trajectory and the actual trajectory,
there is no serious deviation, which satisfies the perception requirements of the robot. When the
object’s motion trajectory changes significantly, there is still no serious deviation, which also meets the
perception requirements of the robot.

(@)

Figure 8. Vision-based mapping results.(a)House scene;(b)Library scene.
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4.2.2. Multi-line LiDAR-based SLAM Algorithm performance evaluation

From the comparison between point cloud mapping and visual mapping, it can be observed
that maps constructed using multi-line laser scanning are clearer than those constructed using
visual algorithms, which reduces accumulated errors and provides better handling of edge contours.
Furthermore, a comparison was conducted on mapping time, mapping effectiveness, and CPU
utilization, in order to validate the feasibility, reliability, and accuracy of the algorithm.

To ensure the accuracy of the experiments, multiple tests were conducted. The robot was fixed at
a certain position, denoted as the origin (0,0), and the output object motion data was compared with
the actual object motion data. The results are shown in Figure 9. The algorithm detected that the point
cloud map was generally consistent with the simulated scene, and that the detected trajectory was
not significantly deviated from the actual trajectory, which satisfies the perception requirements of
the robot. As shown in the figure, when there were large changes in the object’s motion trajectory,
there was a slight deviation between the detected trajectory and the actual trajectory, but no serious
deviation occurred, which still satisfied the perception requirements of the robot.

(a)

Figure 9. Laser-based mapping results.(a)House scene;(b)Library scene.
4.2.3. Path Planning Performance Evaluation

Through testing, the path distance planned by the A-star algorithm has a certain distance from
the obstacles, which avoids the collision of the robot. At the same time, global path planning has a
good effect and can accurately reach the set target point location, satisfying the requirement of precise
navigation. The robot moves along a square path. When encountering obstacles, it autonomously
avoids them through local path planning. The process and result of local path planning are shown in
Figure 10. After configuring the relevant parameters, observe the 3D view area of robot navigation in
Rviz. The environment of the map is displayed as a global cost map, and the environment around
the robot is a local cost map. The blue area is the expansion layer of the obstacle, which is expanded
outward on the map to avoid collision between the robot and the obstacle. By adding the Path plugin
in RViz, you can see the path that the robot moves. The green line is the route of global path planning,
and the red line is the route of local path planning. It can be seen from Figure 10 that the local path
planning route of the inspection robot is smooth and the planned route does not enter the expansion
layer of the obstacle, which can reasonably avoid the surrounding obstacles and has a good obstacle
avoidance effect. The global path planning is shown in Figure 11. After testing, the inspection robot
can accurately achieve autonomous obstacle avoidance and complete local path planning for the set
target point, satisfying the requirement of precise navigation.
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Figure 10. Local path planning map.(a)House scene;(b)Library scene.

Figure 11. Global path planning map.(a)House scene;(b)Library scene.

5. Conclusions

The utilization of intelligent inspection robots has been shown to enhance production efficiency
and reduce costs. However, the complex factory environment, filled with machinery equipment,
pipelines, cables, and other obstacles, can pose a challenge to accurate inspections. To address this,
we have developed a high-precision navigation inspection system that is specifically designed for
complex factory scenes. The system is equipped with two types of sensors, visual and LiDAR, to
allow for rich environmental information and localization and mapping. Optimal path planning
is achieved by combining the A-star algorithm and TEB algorithm for dynamic programming. To
evaluate the performance of the navigation system, simulations were conducted in two scenarios
using Gazebo simulation software in the ROS system: a residential area and a library. Results indicate
that the navigation system provides real-time localization and map construction, can navigate mobile
platforms, and implements real-time obstacle avoidance in different scenarios. As such, this technology
can be applied to the localization and navigation system of wheeled inspection robots in various
complex environments, and has significant reference value.
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