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Abstract: Factory safety inspections are crucial for ensuring safe production. However, manual

inspections present issues such as low efficiency and high workload. Inspection robots provide an

efficient and reliable solution for completing patrol tasks. The development of robot localization

and path planning technologies provides guarantees for factory inspection robots to autonomously

complete inspection tasks in complex environments. This paper studies mapping and localization, as

well as path planning methods for robots in order to meet the application requirements of factory

inspections. Two SLAM application systems based on multiple-line laser radar and vision are

designed for different scenarios in consideration of the limitations of cameras and laser sensors

in terms of their own characteristics and applicability in different environments. To address the

issue of low efficiency in inspection tasks, a hybrid path planning algorithm that integrates the

A-star algorithm and time elasticity band algorithm is proposed. This algorithm effectively solves

the problem of path planning in complex environments that is prone to falling into local optimal

solutions, thereby improving the inspection efficiency of robots. Experimental tests show that the

designed SLAM and path planning methods can meet the needs of robot inspection in complex

scenes and have good reliability and stability. The code used in this article is open source and can be

accessed at https://github.com/Mxiii99/RSPP_CS.git.

Keywords: complex scenes; inspection robot; SLAM; path planning

1. Introduction

With the introduction of "Industry 4.0", robotics technology has rapidly advanced. Among

them, inspection robots have been extensively used in aerospace, manufacturing, agriculture, service

industries, and other fields due to their superior flexibility, mobility, and functionality [1,2]. As

inspection application scenarios become more diversified and complex, higher requirements are placed

on the autonomous navigation performance of robots. Robot navigation technology mainly consists of

SLAM technology and path planning technology. Simultaneous Localization and Mapping (SLAM) is

the process by which a mobile robot determines its own position and creates a map through sensors

carried in the surrounding environment. Path planning technology creates the optimal navigation

path for the robot to reach the target location based on different task goals and requirements.

SLAM technology can be classified into two categories based on different sensors: vision-based

and LIDAR-based. The MonoSLAM method proposed by Davison et al. estimates the camera pose

by extracting sparse feature points frame by frame, which is the first real-time visual SLAM system

using a single camera [3]. Subsequently, Klein et al. proposed the PTAM method, which introduced

nonlinear optimization and keyframe mechanism [4], solving the problem of high computational

complexity in MonoSLAM. Newcombe et al. proposed a dense per-pixel method based on RGB-D

camera, which can achieve real-time tracking and reconstruction [5]. As for LIDAR-based SLAM

methods, Grisetti et al. proposed a 2D SLAM algorithm based on particle filtering, which solved

the problem of particle dissipation caused by resampling through reducing the number of particles

[6]. Konolige et al. proposed the first open-source algorithm based on graph optimization by using

highly optimized and non-iterative square-root factorization to sparsify and decouple the system [7].
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Kohlbrecher et al. designed the Hector SLAM algorithm, which matches the current frame’s LIDAR

data with the factor graph and optimizes the pose using the Gauss-Newton method to obtain the

optimal solution and bias [8].

Path planning is to plan a collision-free optimal path from the starting point to the destination

point in the map environment. Path planning can be divided into global and local path planning

according to whether the environment information is known in advance. Dijkstra et al. proposed

the shortest path planning algorithm, which uses breadth-first search to search for paths [9]. Hart

et al. proposed the A-star algorithm, which reduces the search nodes by using heuristic evaluation

function and improves the efficiency of path searching [10]. Fox et al. proposed the DWA, which

samples velocity dynamically in the robot’s sampling space according to the robot’s kinematic model

and current motion parameters, and selects the best trajectory [11]. To address the insufficient

evaluation function of DWA, Chang et al. proposed an improved DWA algorithm based on Q-learning,

which modifies and extends the evaluation function and adds two evaluation functions to improve

navigation performance and achieve higher navigation efficiency and success rate in complex unknown

environments [12]. Rösmann et al. proposed the Time Elastic Band algorithm based on multi-objective

optimization, which ensures that the robot can output a smooth trajectory under the premise of

satisfying its kinematic constraints [13].

Both lidar and camera sensors are essential for factory inspections, but their applicability depends

on the specific application scenarios and factory environments. Lidar is suitable for long-distance

and high-precision measurements, such as inventory management in large warehouses and position

control in robot operations. However, lidar has limitations in processing details and colors, making it

unsuitable for high-visual requirements scenes. Camera sensors, with their functions such as image

recognition, detection, and tracking, are ideal for environments that require high-precision visual

detection and recognition, such as detecting product dimensions, shapes, colors, and performing

automated visual inspections during assembly processes on production lines. In addition, camera

sensors have strong processing capabilities for details and colors, providing more detailed image

information. However, camera sensors are highly dependent on ambient light, which can limit their

effectiveness in poor lighting conditions or when obstacles are present.

In this article, we designed two sets of SLAM systems based on multi-line lidar and vision sensors

respectively to meet the inspection needs of robots in different environments. Global path planning

using the A-star algorithm was adopted to improve navigation efficiency and help robots quickly plan

the optimal path, reducing inspection time and costs. However, the A-star algorithm is not suitable

for dynamic environments. Therefore, we introduced the Time Elastic Band algorithm, a real-time

path planning algorithm that can adapt to changes in the environment and obstacles, resulting in more

optimized path planning results to improve the efficiency of robot inspections and reduce collisions

and other safety issues between robots and factory equipment. The method proposed in this article

adopts a global and local fusion path planning algorithm for both lidar SLAM and vision SLAM,

ultimately achieving autonomous navigation and obstacle avoidance of inspection robots in comple.
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Figure 1. System framework.
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2. Inspection robot SLAM system

2.1. Visual-SLAM Algorithm Design and Implementation

In the factory environment, the position and motion of inspection robots and equipment may

undergo rapid changes, thus requiring real-time acquisition and processing of sensor data for accurate

localization and mapping. To achieve this, we have chosen an appearance-based localization and

mapping method that is invariant to time and scale, as shown in the structural diagram in Figure 2.

Front-end
Odometry

Back-end

Add Key-Frame
to Graph

Loop Closure
Detection

Graph
Optimization

Input

RGB-D Image

Output

Map

Figure 2. Vision-based SLAM system structure diagram.

From Figure 2, it can be seen that RGB-D images are used as external input, and the ORB

algorithm is used to extract feature points from RGB-D images [14]. Then, a Bag-of-Words based image

matching method is used to match feature points between adjacent frames. The loop-closure detection

mechanism is introduced to eliminate drift. When the robot returns to an area previously visited, the

loop-closure detection can identify the area and match the newly observed data with the previous map

data, thus addressing the cumulative drift problem. Next, graph optimization is performed, where

the robot’s poses are represented as nodes in the graph and the observed data is represented as edges.

Then, the least squares method is used to optimize the positions of all nodes, minimizing the error

between observed and predicted data. Finally, a dense map can be generated.

This vision-based mapping and localization algorithm utilizes global and local loop-closure

detection techniques, which can identify and handle errors and drift in sensor data, improving the

robustness and accuracy of localization and mapping, and enhancing the efficiency and real-time

performance of inspection robots.

2.2. Multi-line LiDAR-based SLAM Algorithm Design and Implementation

In indoor factory environments, lighting conditions can vary with time and location, which may

lead to misidentification of objects or inaccurate positioning by visual sensors. However, laser sensors

do not require an external light source, as they emit their own laser beams and are not affected by

lighting issues. Therefore, we have adopted a lightweight and ground optimized laser odometry and

mapping method, whose structural diagram is shown in Figure 3. Firstly, the laser point cloud data

is dimensionally reduced, projecting the 3D laser onto a 2D depth image, segmenting the ground

according to the pitch angle, clustering non-ground point clouds, and obtaining labeled point cloud

data. Then, feature extraction is performed based on smoothness, resulting in four sets of feature

point clouds. Constraint relationships are established for the feature point cloud sets, and the 6-DOF

pose transformation matrix is solved using the Levenberg-Marquardt (LM) optimization method.

Subsequently, loop detection is conducted using the Iterative Closest Point (ICP) algorithm, and finally,

the current point cloud is mapped to the global map based on graph optimization, completing the

establishment of a high-precision map [15].
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Figure 3. Multi-line LiDAR-based SLAM system structure diagram.

1) Point cloud segmentation: Due to the complexity of the inspection environment and other

factors, noise may exist in the laser point cloud data. We first use point cloud segmentation to filter

out noise. By projecting a frame of 3D point cloud onto a 2D depth image using a projection method,

ground segmentation is performed to separate non-ground points [16]. Let Pt = p1, p2, . . . , pn be the

point cloud data obtained by the lidar at time t, where Pi is a point in Pt. These points are projected

onto a depth image, and the 3D points in space become 2D pixels in space. After projection, the

Euclidean distance ri of point Pi to the sensor is obtained. Since the 3D point cloud contains a large

amount of ground information, it is necessary to filter the point cloud to improve the efficiency and

accuracy of feature extraction. Firstly, the ground points are labeled, and the labeled ground points

will no longer be segmented in subsequent steps. After separating ground points and non-ground

points, the non-ground points are processed by clustering. After this module, each point has its own

segmentation label (ground or non-ground), row and column indices in the depth image, and the

Euclidean distance ri to the sensor.

2)Feature extraction: According to the smoothness, the projected depth image is horizontally

divided into several sub-images. For each sub-image, the following process is performed [17]: Let S be

the set of continuous points in the same row in the depth image, and calculate the smoothness c of

point Pi.

c =
1

|S| · ‖ri‖

∥

∥

∥

∥

∥

∑
j∈S,j 6=i

(

rj − ri

)

∥

∥

∥

∥

∥

(1)

where ri and rj are the Euclidean distances from points Pi and Pj to the sensor. According to Equation

(1), the smoothness of each point can be calculated, and then the smoothness is sorted. After sorting,

feature points are selected. Different types of features are segmented based on the set threshold cth.

The edge points with a smoothness c greater than cth are selected as set Fme, and the plane points with

a smoothness c less than cth are selected as set Fmp. The largest nFme edge points with the maximum c

value and the smallest nFmp plane points with the minimum c value are selected from all sub-images

to form the edge feature point set Fme and the plane feature point set Fmp. Then, nFe edge points not

belonging to ground points with the maximum c value are selected from set Fme to form set Fe, and nFp

plane points belonging to ground points with the minimum c value are selected from set Fmp to form

set Fp. Obviously Fe ⊂ Fme& Fp ⊂ Fmp.

3)Radar Odometry: The odometry module estimates the robot’s pose change between adjacent

frames using a radar sensor. In the estimation process, tag matching is used to narrow down the

matching range and improve accuracy, and a two-step LM optimization method is used to find the

transformation relationship between two consecutive frames [18]. The first step uses ground feature

points Fp to obtain
[

tz, troll , tpitch

]

, and the second step matches the edge features extracted from the

segmented point cloud to obtain the transformation
[

tx, ty, tyaw

]

. Finally, by fusing
[

tz, troll , tpitch

]

and
[

tx, ty, tyaw

]

, a 6-DOF pose transformation matrix
[

tx, ty, tz, troll , tpitch, tyaw

]

is obtained.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2023                   doi:10.20944/preprints202304.0219.v1

https://doi.org/10.20944/preprints202304.0219.v1


5 of 15

4)Radar Mapping: After obtaining the pose change between adjacent frames with radar odometry,

the features in the feature set Ft
me, Ft

mp at time t are matched with the surrounding point cloud Qt−1 to

further refine the pose transformation. Then, using the LM optimization, the final transformed pose is

obtained and the pose graph is sent to GTSAM for map optimization to update the sensor estimated

pose and the current map [19].

In addition, noise may exist in the collected laser point cloud data. In order to achieve

high-precision localization on the map, it is necessary to preprocess the high-precision map. We

use a statistical-based robust filter to remove outliers, a pass-through filter to clip the point cloud

within a specified coordinate range, and a voxel grid filter to downsample the point cloud. For the

inspection task that requires high-precision real-time localization, we perform real-time localization

on the constructed high-precision map through point cloud registration. First, the reference point

cloud (i.e., high-precision map) is transformed into a multivariate normal distribution [20]. If the

transformation parameters can accurately match the reference point cloud and the current point

cloud, the transformed points in the reference frame have a high probability density. Therefore, an

optimization method can be used to calculate the transformation parameters that maximize the sum of

the probability densities. In this case, the two sets of laser point cloud data match best. The specific

algorithm steps are as follows:

1) Given the current scanning point cloud S and the reference point cloud T, the space occupied

by the T point cloud is divided into voxel grids of a specified size, and the expected vector ~µ and

covariance matrix Σ of N points in each voxel grid are calculated.

~µ =
1

N

N

∑
k=1

~xk (2)

Σ =
1

N − 1

N

∑
k=1

(~xk −~µ) (~xk −~µ)T (3)

Here, ~xk represents the three-dimensional coordinates of the point cloud in the voxel grid.

2) Initialize the transformation parameters to be solved, with zero values or odometry data. For

each sample ~xk in the S point cloud, transform it to the T point cloud according to the transformation

parameters. Let ~x′k be the coordinate of ~xk in the T point cloud coordinate system. Find the grid where

~x′k falls in the T point cloud, and combine the probability density function of each grid in the T point

cloud to calculate the corresponding probability distribution function p(~x′k).

p
(

~x′k
)

∼ exp

(

−

(

~x′k − µk

)T
∑
−1
k

(

~x′k − µk

)

2

)

(4)

3) Add up the probability densities calculated for each mapped point to obtain the registration

score.

score(p) = ∑
k

exp

(

−

(

~x′k − µk

)T
∑
−1
k

(

~x′k − µk

)

2

)

(5)

Use the Newton optimization algorithm to optimize the objective function until the optimal

transformation parameters are found that maximize the registration score, complete convergence,

and solve the best rigid body transformation between the target and source point clouds to achieve

accurate localization.
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3. Inspection robot Path planning system

3.1. Sports model

Currently, the chassis of inspection robots mainly consists of legged, tracked, and wheeled types,

each with its advantages and disadvantages in different environments. Legged inspection robots have

strong terrain adaptability, but their structure and control system are complex. Tracked inspection

robots have high traction and strong applicability in complex terrains such as outdoor, sandy, and

muddy areas, but their speed is relatively low, and they have high motion noise. Wheeled inspection

robots have fast speed, high efficiency, and low motion noise, and are widely used. In this paper, we

focus on the complex indoor factory environment and adopt a two-wheel differential wheeled robot

whose kinematic model is shown in Figure 4 [21].

Y

X O  O

Y

Y

X
θ

x

y 

R

Figure 4. Two-wheel differential robot model.

In Figure 4, the motion of robot Ri (i = 1, 2, · · · , n) is completed by two independently driven

wheels. Let the radius of the driving wheel be ri, and define the midpoint of the two driving wheels as

Oi. The distance between the two wheels is 2bi, where {O, X, Y} is the inertial Cartesian coordinate

system, and {Oi, X, Y} is the local coordinate system of the robot. vl is the speed of the left driving

wheel, vr is the speed of the right wheel, and vc is the speed of the center of the robot. If vl 6= vr, the

angular velocity ωi can be obtained. According to the robot model, the forward speed depends on the

speed of the wheels.

vc =
vl + vr

2
(6)

The angular velocity ω is determined by the difference in speed between the left and right driving

wheels and the distance between them.

ω =
vl − vr

2bi
(7)

In the ideal case, according to the principle of rigid motion, the trajectory of the robot is a circle,

and the radius can be expressed as

R =
vc

ω
=

bi (vl + vr)

(vl − vr)
(8)

The kinematic equation of the robot can be expressed as

q =
[

x y θ
]T

u (9)

V =
[

vc ω
]T

(10)
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[

ẋ ẏ θ̇
]T

=







cos θ 0

sin θ 0

0 1







[

1
2

1
2

1
b − 1

b

] [

vl

vr

]

(11)

The above formula is the pose state matrix and motion state matrix, and the final formula can be

written as follows:

q̇ = S(q)V =







cos θ 0

sin θ 0

0 1







[

vc

ω

]

(12)

where S (q) is a 3 × 2 smooth linearly independent matrix, and V is the motion matrix of the robot.

3.2. Path Planning

The path planning of inspection robots mainly relies on the constructed grid map to generate a

safe and collision-free path by specifying the start and target locations. The path planning for robots

can be divided into global path planning and local path planning.

(1) Global path planning

To ensure that the patrol robot can effectively avoid obstacles globally and locally, and considering

that the grid map of the actual road scene is relatively simple, the A-star algorithm is used as the

global path planning method to provide accurate obstacle avoidance directions for the robot through

real-time planning [22,23]. A-star combines heuristic search with breadth-first algorithm to select the

search direction through the cost function f (n), and expands around the starting point. The cost value

of each surrounding node is calculated by the heuristic function h(n), and the minimum cost value is

selected as the next expanding point. This process is repeated until the endpoint is reached, generating

a path from the starting point to the endpoint. In the search process, since each node on the path is the

node with the minimum cost, the cost of the path obtained is also minimum. The cost function of the

A-star algorithm is

f (n) = g(n) + h(n) (13)

where f (n) is the cost function at the current position, g(n) is the cost value from the starting position

to the current position in the search space, and h(n) is the cost value from the current position to the

goal position. In the A-star algorithm, the selection of the heuristic function is crucial. Since the map

environment is a grid map with obstacles, the Manhattan distance is used as the heuristic function,

which is given by:

h(n) = |x1 − x2|+ |y1 − y2| (14)

where (x1, y1),(x2, y2) represent the coordinates from the current position to the target position. In the

path planning of the A-star algorithm, the nodes are stored in two lists, Closelist and Openlist. The

nodes that have been searched and generated cost values are stored in Openlist. The node with the

minimum estimated cost is stored in Closelist, and the moving trajectory is formed by processing the

trajectories of each node in Closelist. The specific steps are as follows:

Step 1.The starting point s of the robot is the first calculated point, and the surrounding nodes are

added to Openlist, and the cost function f (n) of each point is calculated.

Step 2.Search Openlist, select the node with the smallest cost value f (n) as the current processing

node n, remove the node from Openlist, and put it into Closelist.

Step 3.If the real cost value g(n) of the adjacent node from the current processing node to the starting

point s is smaller than the original g(n) value, the parent node of the adjacent node is set to the current
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processing node; if it is larger, the current processing node is removed from Closelist, and the node

with the second smallest value of f (n) is selected as the current processing node.

Step 4.Repeat the above steps until the target point g is added to Closelist, traverse along each parent

node, and the obtained node coordinates are the path.

(2)Local path planning

The working environment of inspection robots is not always static. In the process of moving along

the global path, real-time obstacles may appear. To avoid collisions, the Timed-Elastic-Band (TEB)

algorithm, which introduces local path planning with time elasticity, is used on the basis of global

path planning to achieve real-time obstacle avoidance [24]. The TEB algorithm is an optimization

algorithm that follows the path generated by the global path planner. The local trajectory it generates

is composed of a series of continuous time and pose sequences, and the robot’s pose is defined as:

Xi = [xi, yi, βi]
T (15)

where Xi represents the i-th pose in the robot coordinate system, including position information xi,yi

and angle βi. The time interval between adjacent poses Xi and Xi+1 is denoted by ∆Ti, as shown in

Figure 5.

Y

X O  O

Y

Y

X
θ

x

y 

R

Figure 5. Time interval and pose sequence of the TEB.

In the optimization process, the TEB algorithm applies graph optimization to the adjacent time

intervals and states of the robot as nodes, and uses velocity, acceleration, and non-holonomic constraints

of the robot as edges. It also considers obstacle information, discrete interval of planned trajectory,

and adjacent temporal and spatial sequence constraints. Finally, the G2O solver is used to calculate

the control variable V(v, ω) (where v and ω represent the linear and angular velocity of the robot,

respectively), to obtain the optimal trajectory. The TEB algorithm obtains the optimal pose points

through weighted multi-objective optimization [25,26], where the mathematical description of the

objective function is:

f (B) = ∑
k

γk fk(B) (16)

B∗ = arg min
B

f (B) (17)

where f (B) is the objective function that considers various constraints, fk(B) is the constraint function,

γk is the weight of each item, and B∗ is the optimal TEB trajectory. The TEB algorithm has four

constraint functions.

1) Path following and obstacle constraint objective function

The TEB algorithm aims to avoid collisions with static or dynamic obstacles while following

the path. The algorithm treats piecewise continuous and differentiable functions as constraints and

punishes behaviors that do not conform to the constraints. Specifically:
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eΓ (x, xr, ε, S, n) ≈

{

((x − (xr − ε)) /S)n x > xr − ε

0 other
(18)

fpath = eΓ

(

dmin,j, rpmax , ε, S, n
)

(19)

fob = eΓ

(

−dmin,j,−rpmin , ε, S, n
)

(20)

Building on equation (18), penalty functions fpath and fob are constructed. Here, xr denotes the

boundary, ε is the offset factor, S is the scaling factor, n is the order, dmin,j is the independent variable

representing the distance between the path point and obstacle, rPmax is the maximum distance of the

trajectory deviation from the path point, and romin
is the minimum distance between the trajectory and

obstacle.

2) The velocity and acceleration constraint functions of a robot

According to the dynamic equation, the constraint functions of the robot’s velocity and

acceleration are expressed as equations (21) - (24) :

Linear velocity:

vi ≈
1

∆Ti

(

xi+1 − xi

yi+1 − yi

)

(21)

Angular velocity:

wi ≈
θi+1 − θi

∆Ti
(22)

Linear acceleration:

ai ≈
2 (vi+1 − vi)

∆Ti + ∆Ti+1
(23)

Angular acceleration:

αi =
2 (wi+1 − wi)

(∆Ti + ∆Ti+1)
(24)

3) Non-holonomic constraint:

The robot used in the algorithm simulation and experiment is a differential drive structure with

two degrees of freedom, which cannot perform translational motion along the y-axis of the robot

coordinate system. The curvature of the circular arc between two adjacent robot poses is approximately

constant, and the outer product of the direction vector di,i+1 and the turning angle θi between adjacent

poses in the robot coordinate system is equal to the outer product of the turning angle θi+1 and the

direction vector di,i+1. βi represents the orientation of the robot in the global coordinate system, and

the corresponding relationship equation and non-holonomic constraint are:







cos βi

sin βi

0






× di,i+1 = di,i+1 ×







cos βi+1

sin βi+1

0






⇔ θi = θi+1 (25)

di+1 :=







xi+1 − xi

yi+1 − yi

0






(26)
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fk (Xi, Xi+1) =

∥

∥

∥

∥

∥

∥

∥













cos βi

sin βi

0






+







cos βi+1

sin βi+1

0












× di,i+1

∥

∥

∥

∥

∥

∥

∥

2

(27)

The objective function fk(Xi, Xi+1) punishes the quadratic error for violating this constraint,

ensuring that the output velocity of the robot follows the non-holonomic constraint.

4) Fastest path constraint

The TEB algorithm incorporates the time interval information between poses, and the total time

is the sum of all time intervals. The relevant objective function is:

fk =

(

n

∑
i+1

∆Ti

)2

(28)

After optimizing the TEB sequence, the objective function of the constraints is optimized to ensure

that the path planned by the algorithm achieves the best results in terms of obstacle avoidance, time,

and distance.

(3)Path planning based on fusion algorithm

The A-star algorithm yields a navigation path consisting of only the start point, key points, and

destination point, but it cannot avoid unknown obstacles in the environment. The TEB algorithm

exhibits good local obstacle avoidance ability, but with only a single final goal point as a guide, it is

prone to becoming trapped in local optima. Therefore, we propose a hybrid path planning algorithm

that combines the strengths of both algorithms. The specific algorithm process is shown in Figure 6.

Location

A-star Algorithm

Global Costmap Local Map

Initialization Path
Build Hypergraph

TEB Algorithm

Input

Current Location

Hybrid path planning algorithm

Iterative 
Optimization

Output

Expected Acceleration

Expected SpeedTarget Position

Map

Figure 6. Hybrid path planning algorithm flow chart.

Global path planning takes a static obstacle cost map as input, and does not consider the robot’s

mechanical performance and kinematic constraints when planning the path. It uses the A-star

algorithm to plan the optimal path from the robot’s current position to the desired target position, and

provides an initial value for local planning.

Local path planning collects path nodes on the global optimal path, and optimizes the global path

subset between the robot’s current node and the collected path nodes. It combines the static obstacle

cost map and dynamic obstacle cost map, and uses the TEB algorithm to continuously adjust the pose

and orientation of the robot during its movement, taking into account its shape, dynamic model, and

motion performance in the scope of local planning. When encountering dynamic obstacles, it removes

the old robot pose and adds a new robot pose, so that a new path can be generated in each iteration,

and an optimized path can be obtained through continuous iteration.

By fusing navigation algorithms, we achieve optimal global path planning and real-time obstacle

avoidance functionality in the process of mobile robot navigation.
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4. Experiment and Analysis

4.1. Experiment settings

In order to verify the effectiveness of navigation systems in practical applications, we conducted

experiments using a Turtlebot3 mobile robot in different types of scenarios built using the Gazebo

simulation platform within the ROS on a 64-bit Ubuntu 18.04 operating system with 4GB of running

memory. As shown in Figure 7, we constructed a home environment and a library environment

to simulate real-world environments. Using the real-time localization and mapping capabilities in

Rviz, we scanned the simulated environments, constructed corresponding maps, and performed path

planning.

(a) (b)

Figure 7. Simulation environment.(a)House scene;(b)Library scene.

4.2. Performance evaluation

4.2.1. Visual-SLAM Algorithm performance evaluation

This paper presents a method for constructing a corresponding point cloud map using a depth

camera in a ROS environment. The depth camera data is first read in the ROS environment, and

then the front-end and back-end threads are executed to construct a sparse feature point map, which

is continuously updated to create a real-time point cloud map. Keyframes from the front-end are

passed into the point cloud construction thread to generate the point cloud map. The effectiveness of

the proposed algorithm for generating maps is validated by the corresponding point cloud map in

Figure 8, which demonstrates good 3D effects for constructing maps in indoor environments. As shown

in Figure 8, the algorithm detects the object’s motion trajectory, which is consistent with the actual

trajectory. Although there are deviations between the detected trajectory and the actual trajectory,

there is no serious deviation, which satisfies the perception requirements of the robot. When the

object’s motion trajectory changes significantly, there is still no serious deviation, which also meets the

perception requirements of the robot.

(a) (b)

Figure 8. Vision-based mapping results.(a)House scene;(b)Library scene.
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4.2.2. Multi-line LiDAR-based SLAM Algorithm performance evaluation

From the comparison between point cloud mapping and visual mapping, it can be observed

that maps constructed using multi-line laser scanning are clearer than those constructed using

visual algorithms, which reduces accumulated errors and provides better handling of edge contours.

Furthermore, a comparison was conducted on mapping time, mapping effectiveness, and CPU

utilization, in order to validate the feasibility, reliability, and accuracy of the algorithm.

To ensure the accuracy of the experiments, multiple tests were conducted. The robot was fixed at

a certain position, denoted as the origin (0,0), and the output object motion data was compared with

the actual object motion data. The results are shown in Figure 9. The algorithm detected that the point

cloud map was generally consistent with the simulated scene, and that the detected trajectory was

not significantly deviated from the actual trajectory, which satisfies the perception requirements of

the robot. As shown in the figure, when there were large changes in the object’s motion trajectory,

there was a slight deviation between the detected trajectory and the actual trajectory, but no serious

deviation occurred, which still satisfied the perception requirements of the robot.

(a) (b)

Figure 9. Laser-based mapping results.(a)House scene;(b)Library scene.

4.2.3. Path Planning Performance Evaluation

Through testing, the path distance planned by the A-star algorithm has a certain distance from

the obstacles, which avoids the collision of the robot. At the same time, global path planning has a

good effect and can accurately reach the set target point location, satisfying the requirement of precise

navigation. The robot moves along a square path. When encountering obstacles, it autonomously

avoids them through local path planning. The process and result of local path planning are shown in

Figure 10. After configuring the relevant parameters, observe the 3D view area of robot navigation in

Rviz. The environment of the map is displayed as a global cost map, and the environment around

the robot is a local cost map. The blue area is the expansion layer of the obstacle, which is expanded

outward on the map to avoid collision between the robot and the obstacle. By adding the Path plugin

in RViz, you can see the path that the robot moves. The green line is the route of global path planning,

and the red line is the route of local path planning. It can be seen from Figure 10 that the local path

planning route of the inspection robot is smooth and the planned route does not enter the expansion

layer of the obstacle, which can reasonably avoid the surrounding obstacles and has a good obstacle

avoidance effect. The global path planning is shown in Figure 11. After testing, the inspection robot

can accurately achieve autonomous obstacle avoidance and complete local path planning for the set

target point, satisfying the requirement of precise navigation.
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(a) (b)

Figure 10. Local path planning map.(a)House scene;(b)Library scene.

(a) (b)

Figure 11. Global path planning map.(a)House scene;(b)Library scene.

5. Conclusions

The utilization of intelligent inspection robots has been shown to enhance production efficiency

and reduce costs. However, the complex factory environment, filled with machinery equipment,

pipelines, cables, and other obstacles, can pose a challenge to accurate inspections. To address this,

we have developed a high-precision navigation inspection system that is specifically designed for

complex factory scenes. The system is equipped with two types of sensors, visual and LiDAR, to

allow for rich environmental information and localization and mapping. Optimal path planning

is achieved by combining the A-star algorithm and TEB algorithm for dynamic programming. To

evaluate the performance of the navigation system, simulations were conducted in two scenarios

using Gazebo simulation software in the ROS system: a residential area and a library. Results indicate

that the navigation system provides real-time localization and map construction, can navigate mobile

platforms, and implements real-time obstacle avoidance in different scenarios. As such, this technology

can be applied to the localization and navigation system of wheeled inspection robots in various

complex environments, and has significant reference value.
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